ВИМИХОИ

М. А. Тер-Карапетян, академик АН Армянской ССР, и С М Инджикян

Особенности усвоения моноаминомонокарбоновых кислот дрожжевыми организмами в зависимости от расположения аминной группы

(Представлено 16/V 1966)

Процессы ассимиляции дрожжевыми организмами аминной группы и углеродного скелета аминокислот в зависимости от структурных особенностей этих соединений еще недостаточно изучены.

Известны только некоторые факты, показывающие изменения степени усвоения аминокислот алифатического нормального ряда $C_1 - C_8$ в зависимости от длины углеродного скелета, от положения в их молекуле метильных групп, от разветвления углеродной цепи (1).

Весьма редки данные об усванваемости аминокислот в зависи-

мости от положения в молекуле аминной группы (- 3).

Показано, что 7-аминомасляная кислота (ГАМК) является для Гогиlopsis utilis (Candida utilis) и Saccharomyces cerevisiae хорошим источником азота, не уступающим сульфату аммония (4).

Настоящая работа преследует цель— изучить влияние α -или концевого расположения аминной группы алифатических моноаминомонокарбоновых кислот ряда C_3 — C_6 на усваиваемость азота и углерода в условиях аэробной жизнедеятельности дрожжевых организмов.

Объектами исследования служили следующие музейные культуры из рода Candida — C. chevalieri № 66, С. guilliermondii № 71, С. guilliermondii membranaefaciens № 72, С. pulcherrima № 95, С. arborea № 64, С. tropicalis DH3, С. tropicalis K3—10.

Культуры использовались после выращивания в синтетической среде и голодания в 1-процентном растворе глюкозы в течение 24-х

часов.

Выращивание культуры проводилось в синтетической среде (ОС) следующего состава на 1 литр водопроводной воды: глюкоза—10 г. КП РО —1,23 г. MgSO —7H О —0,625 г. СаС —2H О —0,125 г. NаС —0.125 биотин —8 мкг. Основная среда дополнялась одним из следующих источников азота, вносимых в количествах, равных по азоту (гл); аммоний сульфат (контроль) —3,10, г. или β-аланин (ААла, БАла)—4,24, г. или г-амино-н-масляная кислота (ААМК, ГАМК)—4,90, г. или в-амино-н-ва-

лериановая кислота (ААВК, ДАВК)—5,57, α-амино-и-капроновая кислота (ААКК)—6,24 и глицин (Гли)—3,60. Все ингредиенты среды перекристаллизовывались, чистота аминокислот проверялась хроматографически, рН среды доводилась до 5,5.

Опыты проводились в условиях интенсивного аэрирования на круговой качалке (200 об/мин), дыхание определялось с помощью аппарата Варбурга в культуральной среде с соответствующими аминокислотами.

Влияние источников азота испытывалось, при аэробной жизнедеятельности культур, по следующим показателям: расщепленная глюкоза, синтезированная биомасса (сухое вещество), отношение синтезированная биомасса (экономический коэффициент) и в отдель-

расщепленная глюкоза ных случаях интенсивность дыхания, накопление азота и аминокислот "запасного фонда" клеток.

Глюкоза определялась микро-методом феррицианида, азот микро-методом-Кьельдаля. Аминокислоты методом хроматографии на бумаге.

1. Особенности расщепления глюкозы и синтеза биомассы при ассимиляции азота ≈ и β-аланинов. Экспериментальные данные приведены в табл. 1.

Таблица 1 Объем культуральной среды — 100 мл; посевной материал — 2 мг (сухое вещество); продолжительность инкубации — 20—22 часа

Культура	Расщепленная глюкоза (мг)			Синтезированная бномасса (мг)			Биомасса глюкоза ×100		
	NH ₄ +	ААла	БАла	NH ₄ +	ААла	БАла	NH ₄ +	ААла	БАла
C. chevalieri C. guilliermondii C. guill. membran C. pulcherrima C. arborea C. tropicalis DH3 C. tropicalis K3-10	827 825 925 946 918 948 974	605 405 310 487 452 785 490	931 188 709 215 505 750 350	354 398 428 212 333 401 430	335 257 179 169 178 407 280	434 115 414 91 202 390 198	42 48 46 22 36 42 44	55 64 58 35 39 52 5?	47 62 58 42 39 52 57

Все исследуемые культуры наиболее интенсивно расщепляют глюкозу в присутствии аммония. Из них: С. guilliermondii, С. риссherrima и С. tropicalis К3—10 расщепляют глюкозу интенсивнее в присутствии ААла, чем БАла. С. arborea и С. tropicalis DH3 почти одинаковой скоростью при налични того или другого из аланинов, а С. guill. membranaefaciens и С. chevalieri—быстрее в присутствии БАла, чем ААла.

Культуры значительно отличаются также по способности усвоения углеродного скелета ААла и БАла, о чем можно судить по повышению экономического коэффициента синтеза биомассы в присутствии аминокислот по сравнению с таковой при усвоении аммония. Свойство усвоения углеродного скелета почти не замечается у

С. arborea, больше выражено и в равной степени для ААла и БАла у С. tropicalis K3—10, С. tropicalis DH3, С. guilliermondii и С. guill. membranaefaciens, в то время как у С. chevalieri лучше ассимилируется скелет ААла, а у С. pulcherrima скелет БАла.

2. Усвоение аминной группы разного расположения в зависимости от олины углеродной цепи аминокислот. Исследования проводились культурой С. guilliermondii membranaefaciens в основной среде, содержащей в качестве единственного источника азота следующий гомологический ряд N-аминокислот с а- или концевой аминной группой, а именно: ААла и БАла, ААМК и ГАМК, ААВК и ДАВК и ГЛИ.

Экспериментальные данные приведены в табл. 2.

Таблица 2 Объем культуральной среды — 50 мл; посевной материал — 1 мг (сух. вещ-во); продолжительность инкубации — 25 час.

Источник азота	Расщепленная глюкоза (иг)	Сиптезированная биомасса (мг)	Биомасса Глюкоза 100		
1. Сульфат аммония	485	210	43		
ГЛИ	62	33	53		
ААЛА	72	41	56		
БАЛА	145	85	58		
ААМК	10	3	30		
ГАМК	444	320	73		
ЛАВК	40	19	46		
ДАВК	90	30	33		
ЛАКК	32	13	39		

Полученные данные показывают замечательный пример влияния длины цепи аминокислот и положения аминной группы на усваиваемость дрожжами источников углерода и азота. Аминокислоты с концевыми аминными группами способствуют более интенсивному усвоению глюкозы и азота, а также синтезу биомассы; среди них наилучшим источником является ГАМК, в присутствии которой найдена наивысшая степень расщепления глюкозы и наивысший экономический коэффициент, а наиболее угнетающей является ААМК.

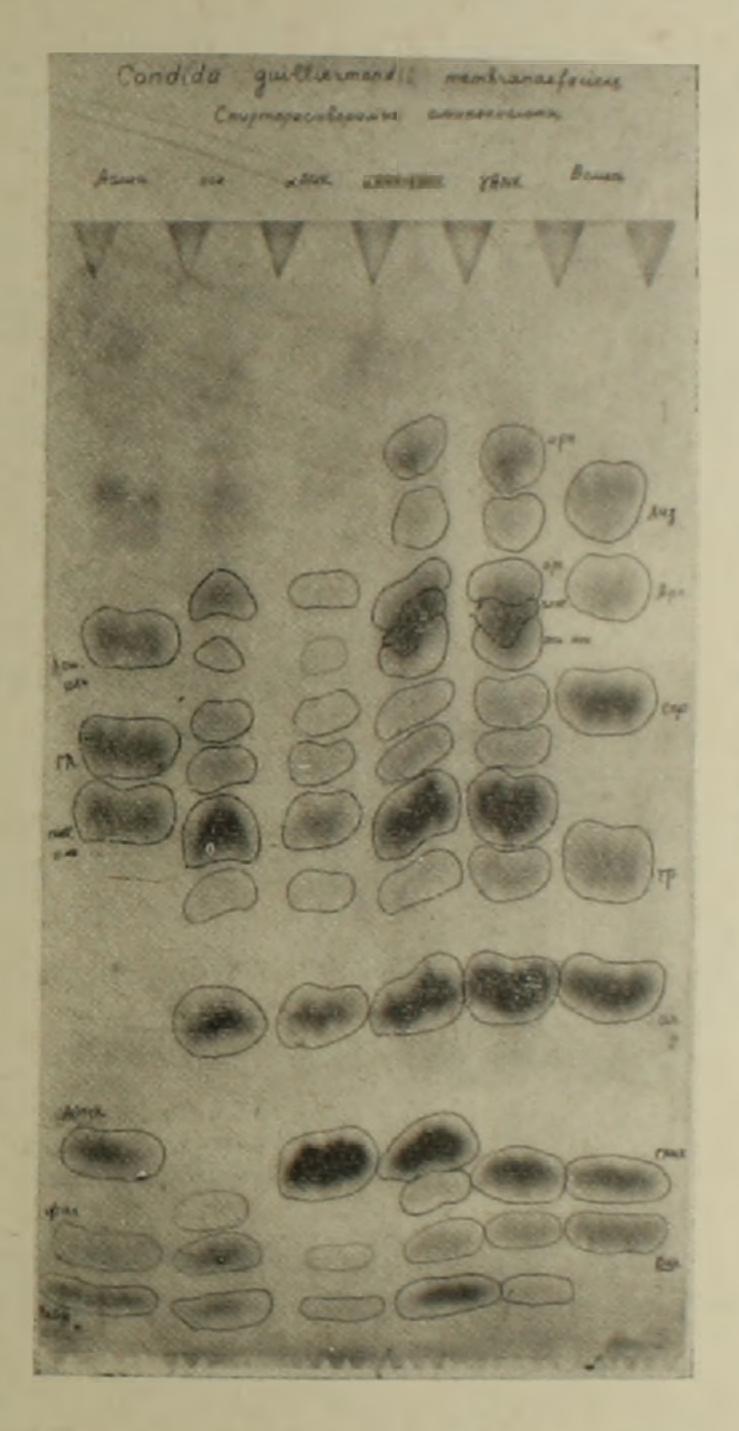
Эффективность же других аминокислот этого ряда в процессе расщепления глюкозы резко падает как в сторону БАЛА, так и ДАВК. Судя по экономическому коэффициенту, лучшим источником углерода оказался скелет ГАМК, в то время как в присутствии ААМК синтез биомассы не достигает даже уровня, достигаемого при усвоении аммония. Углеродные скелеты ААЛА и БАЛА в некоторой степени усваиваются, но значительно меньше, чем ГАМК. Что касается углеродных скелетов ААВК и ДАВК и ААКК-ы, то они не усваиваются.

3. Взаимодействие ААМК и ГАМК при аэробной жизнедеятельности дрожжевых организмов. Известен ряд примеров антагонизма между аминокислотами гомологических рядов, а также отдельными аминокислотами и их окси, метил, сульфо и других производными (5-7), однако, об антагонизме между изомерами по положению аминной группы аминокислот, нам не удалось найти фактических данных.

119

Исследования проводились на культуре С. guilliermondii membranaefaciens в условиях выращивания в синтетической среде, содер жащей в качестве единственного источника азота одно из следующи соединений—сульфат аммоний (контроль), ГАМК, ААМК, или смес ГАМК (1 часть) + ААМК (5 частей).

Результаты опытов обобщены в табл. З и 4 и на фиг. 1.


Таблица з Объем культуральной среды: для выращивания 50 мл, дыхания — 2 мл

	Посевная культу- ра — 104 лг (су- хое вещество)			Посевная культу- ра — 1 мг (сухое веще тво)			
Показатели опыта		AAMK	FAMK+ AAMK	++HN	FAMK	AAMK	LAMK+
	10	460 388 18 106	460 439 13 236	537 533 28 222	537 528 28 347	537 5 28	537 102 51 50
N растворимый исх — 0,39	0,81 5,92 19,5	3 43	6 64	5 74			
вещ. в 2 мл)				69,5	62,5	47,5	45,

Таблица в Ликг в 100 лиг абсолютно сухих дрожжей

Аминокислоты в за-	Исходная	Источники азота при выращивании					
пасном фонде	голодающая культура	NH ₄ +	ГАМК	AAMK	FAMK- AAM		
Цист(е)ин Орнитин Лизин Гистидин Аргинин Глютамин Аспарагиновая кислота Серин Глицин Глютаминовая к-та Треонин Аланин Аланин Аланин Аланин Лейцин/изолейцин	следы 24 77 13 70 86 53 49 71 388 54 175 0 10 321 156	следы 84 43 233 164 182 95 455 207 678 0 330 525 672	следы 228 88 48 303 270 199 77 83 841 170 783 0 389 111 37	следы 15 следы следы 23 23 19 42 152 27 151 1884	Следы 154 86 67 291 333 217 48 79 684 86 439 936 76 102 353		
Итого	1547	3628	3627	2441	3951		

Полученные данные показывают, что в смеси ГАМК + ААМК подавляются скорости расщепления глюкозы и накопления биомассы а также интенсивность дыхания (QO_2) по сравнению со средой, содержащей только ГАМК. Накопление общего азота в клетках в этом случае больше, чем в присутствии только ГАМК, или сульфата аммония. В среде, содержащей только ААМК, одновременно с торможением расщепления глюкозы и синтеза биомассы сильно подавлено также дыхание и накопление азота в клетках.

Фиг. 1.

Изучение образования запасного фонда аминокислот показало, что в присутствии ААМК не синтезируются аминокислоты, так как их уровень после вычета проникнувшего ААМК (1884 икг) падает даже ниже (557 икг) суммы аминокислот голодающих клеток (1547 кг).

В присутствии двух аминомасляных кислот ААМК несколько тормозит образование запасного фонда аминокислот, в частности, ГАМК, а также оринтина, глютаминовой кислоты, треонина, аланина,

но способствует накоплению значительного количества лейцина (с изо. лейцином).

Полученные данные указывают на то, что антагонизм между ААМК и ГАМК отражается сильнее на процессы распада глюкозы и включения углеродных осколков ГАМК в синтез биомассы, чем на реакции образования запасного фонда аминокислот, за исключением ГАМК, накопление и синтез которого специфично подавляется.

Вышеприведенные исследования приводят нас к следующим выводам.

1. Установлено, что отдельные представители рода Candida on ределенно отличаются между собой по способности усвоения азота аминокислот ациклического ряда в зависимости от расположения аминной группы на 2- или концевой позиции.

У различных культур позиция аминной группы оказывает также определенное влияние на процессы расщепления и усвоения основного источника углерода—глюкозы.

2. Обнаружено, что у культуры С. guill. membranaefaciens интенсивность усвоения азота аминокислот с альфа и концевой аминными группами определенно отличается между собою. В исследуемом рядемаксимальная усвояемость принадлежит аминной группе ГАМК, а минимальная таковой ААМК.

Выдвинута гипотеза о возможном антагонизме между ААМК в ГАМК, как единственными источниками азота при аэробном выращи вании упомянутой культуры.

Приведенные данные дают основание для дальнейшего изучения ферментативного механизма отщепления или переноса концевой аминной группы аминокислот и роли соответствующих ферментов в азотном обмене дрожжей.

Армянский паучно-исследовательский институт животноводства и ветеринарии Институт микробиологии Академии паук Армянской ССР

Մ. Ա. ՏԵՐ-ԿԱՐԱՊԵՏՅԱՆ, Հայկական ՍՍՀ ԳԱ ակադեմիկոս, և Ս. Մ. ԻՆՃԻԿՅԱՆ

ամուասնկային օւգանիզմների կողմից մոնոամինոմոնոկաբրոնաթթուների յուռացման առանձնանատկությունները՝ կախված ամինային խմբի դիռքից

ատկություններից, բավականաչափ ուսումնասիրված չեն։

Ներկա աշխատանքի նպատակն է հետազոտել C₃—C₆ նորմալ շարքի ալիֆատիկ մոնո⋅ ամինոմոնոկարբոնաββուների գ —կամ ծայրային ամինային իմեր աղդե<mark>ցուβյունը ազ</mark>ոտի ածխածնի յուրացման վրա՝ խմորասնկերի անրոր կենսագործուβյա<mark>ն պայմաններում</mark>ւ

1. Պարզվել է, որ Candida դեպե առանձին ներկայացուցիչներ որոշակիորեն տարբերվուժ են իրարից, ացիկլիկ չարթի աժինաβթուների ազոտը յուրացնելու իրենց ընդունակությամբ կախված աժինային իսժբի 2 կաժ ծայրային դիրքից։

Տարբեր կուլտուրաների մոտ ամինային խմբի դիրքը որոշակիորեն <mark>աղդում է ած</mark>խածնի .խմնական աղբյուրի— գլյուկողի ձևղջման և յուրացման պրոցեսներ<mark>ի վրա</mark>։ ինվին։

հայտնաբերվել է, որ C. guilliermondii membranaelaciens կուլտուրայի մոտ և և աստիձանի ամինաքումը վերաբերում է միմյանցից։ Հետազոտվող շարքում առավելագույն աստիձանի հայրային ամինադարերվում է միմյանցից։ Հետազոտվող շարքում առավելագույն աստիձանի հայրային ամինակարագաժինին, իսկ նվազադույնը՝ և — ամինակարագա-

Աստջ է թաշվում <mark>հիպոնեզ այն մասին, որ ն</mark>շված կուլտուրայի անրոր աձի պայմաններում

հելքի դիձը, սևաթո ամսաի դիան ամեշունրբեր։

3. Ներկայացված տվյալները հիմք են տալիս ուսումնասիրելու ամինաββուների ծայրային արևանիզմները խմորասնկային արկանիզմները խմորասնկային

ЛИТЕРАТУРА— ЧРИЧИБИ РЗИРЪ

1 В. Хартелиус, Biochem. Ztschr. 299, 5 6, 317, 333, 1938. ² Н. Нильсен, С. R. Labor. Carlsberg (Ser. Chim.) 22, 384, 1938. ³ Н. Нильсен, В. Хартелиус, Biochem. Ztschr. 296, 5 6, 358, 1938. ⁴ Р. Петрушко, А. Фауден, Annals of Botany 25, 491. 1961. ⁵ Н. Нильсен. Naturwiss. 31, 146, 1943. ⁶ Д. Вуллей. А study of the Antimetabolites. New-York, 1952. ⁷ A. Meister. Biochemistry of the Aminoacids, New-York, 1957.