МАТЕМАТИКА

Ф С. Лисин

О приближении в среднем с весом по площади регулярных функций

(Представлено академиком АН Армянской ССР М. М. Джрбашяном 1/11 1966)

Пусть \overline{B} — ограниченное замкнутое множество плоскости комплексного переменного z. Через $L_{\mu}(\overline{B})$, $\rho > 1$ обозначим пространство комплексных функций, вещественная и мнимая часть которых измеримы в B, а норма конечна, τ . е..

$$||f||_{p}^{\overline{B}} = \left\{ \iint_{\overline{B}} |f(z)|^{p} dz \right\}_{\overline{p}}^{\frac{1}{p}} < \infty,$$

где d= - элемент площади.

Пусть h(z) — вещественная, неотрицательная для $z \in B$ функция, $h(z) \in L_1(\bar{B})$ и mes $\{z \in \bar{B} : h(z) = 0\} = 0$. Через $A_p(\bar{B}, h)$ обозначим класс функций f(z), регулярных во внутренних точках \bar{B} таких, что их вещественная и мнимая части измеримы в \bar{B} и

$$||h^{p} f||_{p}^{B} < \infty.$$

При этом функцию h (z) будем называть весом.

Пусть $f(z) \in A_p(\overline{B}, h)$, для $z \in \overline{B}$ всегда будем полагать $f(z) \equiv 0$, $h(z) \equiv 0$.

Если для функции f(z) класса $A_p(\overline{B},h)$, для всех комплексных ζ

$$\iint_{B} h(z) |f(z+\zeta)|^{p} ds < \infty.$$

то будем писать $f(z) \in A_p^0(\overline{B}, h)$. Легко показать, что если $f(z) \in A_p^0(\overline{B}, h)$, то $f(z) \in A_p(\overline{B}, h)$. Отсюда следует, что в классе $A_p^0(\overline{B}, h)$ имеет смысл интегральный модуль непрерывности с весом

$$\omega(\delta) = \sup_{|z| \le \delta} \left\{ \iint_{B} h(z) |f(z+\zeta) - f(z)|^{p} dz \right\}^{\frac{1}{p}}.$$

При этом ω (δ) \rightarrow 0 при $\delta \rightarrow 0$.

Мы будем рассматривать только такие множества \overline{B} , любая порция которых имеет положительную плоскую меру.

Найдем условия, которые нужно наложить на \overline{B} , чтобы множество функций, регулярных на B, было всюду плотно в пространстве A_n^0 (\overline{B} , h).

Пусть $B_0 = \bar{B}_n$, D имеют тот же смысл, что и в (5) стр. 108, $\bar{B}_* = \bar{B} \, \bar{B}_n$, \bar{E}_n — множество тех точек $z \in \bar{B}_*$, расстояние которых до $C\bar{B}_*$ не меньше $\frac{1}{2}$ $n \circ n = 1, 2, \cdots$. $D_n^* = D \, \bar{E}_{n \circ}$.

На множестве \overline{B}_n функцию $f_{\delta,n}(z)$, регулярную на \overline{B} и приближающую в среднем с весом данную функцию f(z), можно положить равной нулю. При этом в силу того, что при $\delta \to 0$ mes $\overline{B}_n \to 0$,

будем иметь для любого $n=1,\ 2\cdots$ при

$$\left\{ \int \int h(z) |f(z) - f_{\delta, n}(z)|^{p} d\sigma \right\}^{\frac{1}{p}} = \|h^{\frac{1}{p}} f\|_{p}^{\overline{B}\delta} \to 0. \tag{1}$$

Перейдем к построению функции $f_{u,n}(z)$, регулярной на B и приближающей f(z) в среднем с весом на B_* .

Для этого следуя (2), (см. также (1) стр. 111) введем функции

$$K_{\delta}(r) = \begin{cases} \frac{12}{\pi \delta^2} \left(1 - \frac{2r}{\delta} \right) & 0 \leqslant r \leqslant \frac{\delta}{2} \\ 0 & r > \frac{\delta}{2} \end{cases}$$
 (2)

$$G_{\delta, n}(z) = \int_{D_{\delta}} \int_{\delta} G_{\delta, n-1}(\zeta) K_{\delta}(|\zeta-z|) d\sigma_{\zeta}, n = 1, 2, \cdots,$$
 (3)

где D_{i} круг $|\zeta - z| \leqslant \frac{\pi}{2}$ а $G_{i,0}(z) = f(z)$.

Принимая во внимание, что $f(z) \in A^n$ (\overline{B} , h) нетрудно убедиться в том, что $G_{n,n}(z)$, $n=1,\,2,\cdots$ непрерывна на всей конечной плоскости.

Так же как в (5), стр. 112 показывается, что $G_{6,n}$ (z), $n=2,3,\cdots$ имеет непрерывные частные производные первого порядка по $x=\text{Re}\,z$ и $y=\text{Im}\,z$ на всей конечной плоскости.

Поэтому функция

$$g_{h,n}(z) = \frac{\partial G_{h,n}(z)}{\partial x} + i \frac{\partial G_{b,n}(z)}{\partial y}, n=2, 3, \dots$$
 (4)

определена и непрерывна по х и у для всех конечных х и у и

$$g_{\delta, n}(z) = \int_{D_{\delta}} G_{\delta, n}(\zeta) \left[\frac{\partial}{\partial x} R_{\delta}(|\zeta - z|) + i \frac{\partial}{\partial y} K_{\delta}(|\zeta - z|) \right] dz_{\epsilon}. \tag{5}$$

Непосредственно проверяются следующие свойства введенных функций

$$\int_{D_{z}} \int K_{z} \left(|\zeta - z| dz \right) = 1, \tag{6}$$

$$\iint_{D_{\delta}} \frac{\partial}{\partial x} K_{\delta}(|\zeta - z|) d\sigma_{\xi} = \iint_{D_{\delta}} \frac{\partial}{\partial y} K_{\delta}(|\zeta - z|) d\sigma_{\xi} = 0, \tag{7}$$

$$f(z) = G_{b,n}(z), n = 1, 2, \dots, z \in \widehat{E}_{n^{c}},$$
 (8)

$$g_{b,n}(z) \equiv 0, n = 2, 3, \dots, z \in \bar{E}_{nb}.$$
 (9)

Лем ма 1. Пусть B — любое ограниченное замкнутое множество $f(z) \in A_F^{\shortparallel}(B,h), p \gg 1$. Тогда для $n=1,2,\cdots$

$$\|h^{\frac{1}{p}}(f-G_{\delta,n})\|_{p}^{\overline{B}} \leq n\omega\left(\frac{\delta}{2}\right). \tag{10}$$

Доказательство. Для n=1 с учетом (6) можем написать

$$\|h^{\frac{1}{p}}(f-G_{\delta,n})\|_{p}^{\overline{B}} = \left\{ \iint_{\overline{B}} h(z) \left| \iint_{D_{\delta}} [f(z)-f(\zeta)] K_{\delta} \left(|\zeta-z|\right) d\sigma_{\zeta}|^{p} d\sigma_{z} \right\}^{\frac{1}{p}}$$

Во внутреннем интеграле заменим переменную, полагая $-= re^{r}$ после чего применим к интегралу обобщенное неравенство Минковского (в) стр. 601. Получим с учетом (6), что (10) верно для n=1.

Аналогично, учитывая, что для n=1, (10) верно, получим

$$\|h^{\frac{1}{p}}(G_{\delta, n}-G_{\delta, n-1})\|_{p}^{\overline{B}} \leq \omega\left(\frac{\delta}{2}\right).$$

Отсюда утверждение леммы легко следует с помощью неравенства Минковского.

Обозначим через L границу B, пусть ζ — любая точка L, K_n — открытый круг радиуса $n \circ$ с центром в точке ζ , $D_n = K_n \cap C\overline{B}$.

Через $\gamma(D_{n\circ})$ обозначим аналитическую меру множества D_n (см. (5), стр. 103) и пусть $(B) = \inf \gamma(D_{n\circ})$, где нижняя грань берется по всем точкам $\zeta \in L$.

Нетрудно показать, что для любого ограниченного замкнугого множества \overline{B} (\overline{B}) > 0.

Для дальнейшего нам потребуются следующие утверждения из (5) стр. 110 и 113, которые мы сформулируем в виде леммы.

B и произвольного числа , удовлетворяющего условию $0 < i. < \frac{1}{n^{\alpha}}$, существуют функция g_n (z, ζ) $n=2, 3, \cdots$ $z \in D$, $\zeta \in D_n^*$

регулярная по г на D при всяком $\subseteq \overline{D}_n$, такая что

$$|g_{n}(z,\zeta)| \leqslant F_{\lambda} \cdot \frac{1}{n\delta}, \quad F_{\lambda} = \left(\frac{1}{\lambda} + \frac{3}{\lambda^{2}}\right)$$

$$\left|\frac{1}{\zeta - z} - g_{n}(z,\zeta)\right| \leqslant (4 + 8F_{\lambda}) \frac{(n\delta)^{2}}{|\zeta - z|^{2}}$$

н функция

$$f_{\delta,n}(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{G_{\delta,n}(\zeta)}{\zeta - z} d\zeta + \frac{1}{2\pi} \int_{D_n^*} \int_{D_n} g_n(z,\zeta) g_{\delta,n}(\zeta) d\sigma_{\zeta}$$

регулярная на D, $n = 2, 3, \dots, \Gamma - граница <math>D$.

B, числа I, удовлетворяющего условию леммы 2 и для произвольной функции $f(z) \in A_p^n(B, h)$, $p \geqslant 1$ существует открытое множество $D \Rightarrow \overline{B}$ и функция f(z), регулярная на D, такая, что для $n = 2, 3, \cdots$

$$||h^{\frac{1}{p}}(f-f_{\delta,n})||_{p}^{\overline{B}} \leqslant 25 n (2+3F_{\lambda}) \omega \left(\frac{\delta}{2}\right) + ||h^{\frac{1}{p}}f||_{p}^{\overline{B}_{\delta}}.$$

Доказательство. Примем за D_n множество D_n а за $f_{\delta_n n}(z)$ функцию леммы 2 и оценим $|G_{n,n}(z) - f_{\delta_n n}(z)|$ на множестве D.

Так как $G_{a,n}(z)$ можно представить в виде (см. (5) стр. 113)

$$G_{\delta,n}(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{G_{\delta,n}(\zeta)}{\zeta - z} d\zeta + \frac{1}{2\pi} \int_{D_{n\delta}^*} \frac{g_{\delta,n}(\zeta)}{\zeta - z} d\sigma_{\zeta}$$

для $z \in D$, то, используя лемму 2, можем написать

$$G_{\delta, n}(z) - f_{\delta, n}(z) = \frac{1}{2\pi} \int_{D_{n\delta}} \int_{g_{\delta, n}} g_{\delta, n}(\zeta) \left[\frac{1}{\zeta - z} - g_{n}(z, \zeta) \right] dz_{\zeta}.$$
 (11)

Фиксируем любое $z \in D$ и пусть $q(\mathfrak{d}) > \mathfrak{d}$, $q(\mathfrak{d}) \to 0$ при $\mathfrak{d} \to 0$. С помощью неравенств леммы 2 получаем

$$|G_{\delta, n}(z) - f_{\delta, n}(z)| \leq \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} |g_{\delta, n}(z + re^{i\varphi})| \cdot \left| \frac{F_{\lambda} \cdot r}{n\delta} + 1 \right| dr \, d\varphi +$$

$$+ (n\delta)^{2} \frac{2 + 4F_{\lambda}}{\pi} \int_{0}^{2\pi} \int_{2n\delta}^{2ng(\delta)} |g_{\delta, n}(z + re^{i\varphi})| \cdot \frac{dr d\varphi}{r^{2}} +$$

$$+ (n\delta)^{2} \frac{2 + 4F_{\lambda}}{\pi} \int_{0}^{2\pi} \int_{2nq(\delta)}^{\infty} |g_{\delta,n}(z + re^{i\varphi})| \frac{dr \, d\varphi}{r^{2}}. \tag{12}$$

Оценивая с помощью (12) $\|h^{\frac{1}{p}}(G_{b,n}-f_{b,n})\|_{p}^{\overline{B}_{a}}$ получим

К каждому слагаемому правой части (13) применим обобщенное неравенство Минковского ((⁶) стр. 601) и после элементарных вычислений получим

$$||h|^{\frac{1}{\rho}} (G_{\delta, n} - f_{\delta, n})||_{\rho}^{\frac{1}{\beta}} \le 2n\delta (1 + F_{\delta}) J_{1} + 2(1 + 2F_{\delta}) \frac{n\delta}{q(\delta)} [(q(\delta) - \delta) J_{2} + \delta J_{3}],$$
(14)

где

$$J_{k} = \sup \left\{ \iint_{\overline{B}_{k}} h(z) |g_{\delta, n}(z + r_{k}e^{iz})|^{p} d_{\sigma} \right\}^{\frac{1}{p}}, k = 1, 2, 3$$

$$0 \le r_{1} < 2n^{2}, 2n^{2} \le r_{2} < 2nq(2), 2nq(3), 2nq(3) \le r_{3} < \infty.$$
(15)

Для оценки сверху представим $z_n(z+r_ke^{iz})$ полагая $z+r_ke^{i\varphi}=r_k$, и используя (5) и (7) в виде

$$g_{b,n}(\zeta_{k}) = \frac{24}{\pi \delta^{3}} \int_{0}^{2\pi} \int_{0}^{\delta/2} \left[G_{b,n}(\zeta_{k}) - G_{b,n}(\zeta_{k} + \rho e^{i\theta}) \right] e^{i\theta} \varphi d\varphi d\theta. \tag{16}$$

Подставим в (15) значение $g_{-n}(z+z)$ из (16), а затем поменяем порядок интегрирования с помощью обобщенного неравенства Минковского. После несложных вычислений получим следующую оценку для интеграла, состоящего в правой части (15).

$$\left\{ \int \int \int h(z) |g_{\delta,n}(z+re^{iz})|^p ds_z \right\}^{\frac{1}{p}}$$

$$\leq \frac{6}{3} \sup \left\{ \int_{\overline{B}_{n}} |h(z)| G_{n,n}(z+re^{iz}) - G_{n,n}(z+re^{iz}+e^{i\theta})|^{p} d\sigma_{z} \right\}^{\frac{1}{p}},$$

где верхняя грань берется по всем $\rho \ll \frac{\delta}{2}$.

Поступая здесь так же, как при доказательстве леммы 1, будем иметь

$$\|h^{\frac{1}{p}}(G_{\delta, n} - f_{\delta, n})\|_{p}^{\overline{B_{\epsilon}}} \leq 124 n^{2} (2 + 3 F_{\lambda}) \omega (q(\delta)). \tag{18}$$

А из (18), (9) и (1) при помощи неравенства Минковского сразу получаем утверждение леммы.

Непосредственно из предыдущего получается.

Теорема 1. Если для замкнутого ограниченного множества \overline{B} найдется $\iota > 0$, независящее от \mathfrak{d} такое, что для какой-нибудь последовательности $\{\mathfrak{d}_m\}$ положительных чисел, сходящейся к нулю будет выполнено неравенство $\gamma_{\mathfrak{d}m}(\overline{B}) > \iota \mathfrak{d}_m$, то множество регулярных на \overline{B} функций всюду плотно в пространстве A_r^0 (\overline{B}, h) , $p \gg 1$.

Из теоремы 1 с помощью известной теоремы (⁵) стр. 115) сразу следует.

Теорема 2. B условиях теоремы 1 множество рациональных функций c полюсами вне \overline{B} всюду плотно в пространстве A_p^0 $(\overline{B}, h), p > 1.$

Замечание 1. Для случая $h\left(z\right)\equiv 1$ теорема 1 сформулирована в (4) при несколько более слабых ограничениях, накладываемых на \overline{B} .

Из теоремы 2, используя метод интегрального преобразования (см. (1) нетрудно получить:

Следствие 1. Пусть B — область Каратеодори, $z=\psi(w)$ — функция однолистно и конформно отображающая круг K:|w|<1 на B. Для полноты системы полиномов в классе $A_p(B,h)$, $p\geqslant 1$ необходимо и достаточно, чтобы система полиномов была полна в классе $A_p(K,H)$, где $H(w)=h(\psi(w))/\psi'(w)$. Если же для некоторого $2\geqslant 0$ $\frac{h(\psi(w))}{(1-|w|)^2}\in L_1(K,1)$, то можно положить $H(w)=h(\psi(w))$.

Ленинградский государственный университет

Ֆ. Ս. ԼԻՍԻՆ

Հարթ տիրույթում ռեղուլյար ֆունկցիաների միջին, կշռով մոտարկման մասին

Հոդվածում դիտարկված է վերջավոր B հարB - հրույBում ռևդուլյար f(z) ֆունկ- ցիտեների այնպիսի $A_{\mu}^{0}(B,h)$ դասը, որ ցանկացած "-ի համար

$$\int_{B} \int h(z) |f(z+\zeta)|^{p} dz < \infty,$$

արտեղ h(z) — կշատյին ֆունկցիան է, p = 1:

Ուսում Խասիրված է CB-ում բևևռներ ունեցող ռացիռնալ $\mathbf a$ ունկցիաների R րաղ-մուBյան լրիվուBյան հարցը $A_p(\overline B,h)$ դասում։

Հիւլբական արդյուրեն անվաց է չրար^{յան} <u>Ֆրահրդու</u>լ,

Դիցութ L-ը B-ի հզըն է, $K_k - |z-k| < \delta$ շրջանն է, $(-L, (D_k)) - D^* - K^* \cap CB$ բազմության անալիտիկ չափն է, $\gamma_k(B) = \inf_{z \in L} (D_k^*)^2$ հթե δ -ից անկախ զոյու- $\frac{1}{3}$ ուն ունի k > 0 այնպես, որ $\lim_{k \to 0} (B) > 10$, ապա R բազմությունը ամենուրեր հրտ է $A_\mu(B,h)$ տարածության մեջ։

ЛИТЕРАТУРА — ԳРԱԿԱՆՈՒԹՅՈՒՆ

¹ М. М. Джрбашян, ДАН АрмССР, т. 7, № 1 (1947). ² С. Н. Мергелян, Усп. матем. наук 7, в. 2 (1952). ³ С. Н. Мергелян, Усп. матем. наук, 8, в. 4 (1953). ⁴ С. О. Синанян, ДАН АрмССР, т. 35, № 3 (1962). ⁵ В. И. Смирнов и Н. А. Лебедев, Конструктивная теория функций комплексного переменного, Изд. Наука, М.—Л., 1964. ⁶ А. Ф. Тиман, Теория приближения функций действительного переменного. Госфизматиздат, М., 1960.