XL III

1966

МАТЕМАТИКА

Р. В. Амбарцумян

О выпуклых подскоплениях точечных скоплений на плоскости

(Представлено чл.-корр. АН Армянской ССР Р. А. Александряном 18/III 1966)

Точечными скоплениями на плоскости (в дальнейшем — просто скоплениями) мы называем произвольные конечные множества точек

$$P = (P_1, P_2 \cdots P_n),$$

расположенных на плоскости. Заимствование из астрофизики термина "скопление" в данном контексте представляется оправданным тем, что именно фотографии астрофизических объектов доставляют множество примеров обширных ($n \approx \infty$) скоплений.

Скопление P назовем выпуклым, если все точки $P_1 \cdots P_n$ могут служить вершинами одного выпуклого многоугольника.

Определим функцию скопления.

P(P) = число точек в максимальном (по числу входящих точек) выпуклом подскоплении скопления P.

Основываясь на результатах Реньи и Суланке, легко дать нижнюю оценку порядка роста среднего значения $\varphi(\Pi)$ для некоторых последовательностей случайных скоплений Π .

В работе этих авторов (1) в действительности исследуется асимптотическое поведение среднего числа вершин E_n в минимальной выпуклой оболочке случайных скоплений, получаемых путем независимого "бросания" n точек в различные области K.

Оказывается, что порядок роста E_n существенно зависит от наличия или отсутствия изломов у границы области K. В частности, для областей, граница которых обладает непрерывной кривизной, устанавливается

$$E_n \approx o(\sqrt{3} n)$$
.

Отсюда вытекает.

Теорема 1. Пусть случайное скопление Π_K строится путем независимого "бросания" п точек в произвольную ограниченую область K. Тогда порядок возрастания среднего значения $\mathfrak{P}(\Pi_K)$ не меньше, чем $\mathfrak{P}(\Pi_K)$

Доказательство следует из того, что в любой области K можно указать выпуклую подобласть K' с границей, имеющей непрерывную кривизну.

Легко видеть, что подходящим выбором области K для данного n можно добиться, чтобы среднее значение $\varphi(\Pi_k)$ было близко k n. Представляет интерес поэтому выяснение существования скоплений P с малыми (по сравнению с f n) значениями $\varphi(P)$. Класс таких скоплений, грубо говоря, всегда является маловероятным для случайных скоплений Π_k , каким бы образом мы ни выбирали область K.

Поставим минимаксную задачу; именно определим функцию

$$f(n) = \min \varphi(P),$$

где минимум берется по всем возможным n — точечным скопления P, при дополнительном ограничении, что никакие три точки скопления P не лежат на одной прямой. Задача состоит в нахождении верхней оценки для f(n).

Отметим некоторые свойства функций φ и f.

- 1) Существуют такие скопления P, что $\varphi(P) = f(n)$,
- 2) $f(n+1) \ge f(n)$,
- 3) $f(n+m) \leq f(n) + f(m)$.

Выводу более сильного неравенства в теореме 2 предпошлем две геометрические леммы.

Лемма 1. Пусть $\varphi(P) = f(n)$. Можно указать такие малые круги $C_1 \cdots C_n$ с центрами в $P_1 \cdots P_n$, что для любых точек $Q_1 \in C_1$. $Q_n \in C_n$

$$\varphi(Q) = f(n)$$
 где $Q = \{Q_1 \cdots Q_n\}.$

Легко видеть, что лемма 1 является следствием принятого ограничения на множество рассматриваемых скоплений.

Лемма 2. Пусть P- произвольное скопление точек. Можно построить дуги $\beta_1 \cdots \beta_n$. $P_1 \in \beta_1 \cdots P_n \in \mathbb{R}$ обладающие свойством: любые три точки $A_1 B_1$. С. вместе с любыми тремя точками A^1 , B^1 , С. (і и ј произвольные) не порождают выпуклого скопления.

Доказательство легко получить, беря в качестве $\beta_1 \cdots \beta_n$ "достаточно короткие" дуги окружностей "достаточно большого" радиуса, ориентировав их в подходящим образом выбранном направлении.

Теорема 2.
$$f(N) \leq \min_{nm=\Lambda} (2 \varphi(n) + m - 2)$$

Пусть mn = N. Возмем n — точечное скопление $\{P_1 \cdots P_n\}$ такое, что $\varphi(P_1 \cdots P_n) = f(n)$ и построим круги $C_1 \cdots C_n$ согласно лемме 1 и дуги $\beta_1 \cdots \beta_n$ согласно лемме 2. Поместим по m точек (с общим именем Q) на каждую из дуг

$$\alpha_1 = \beta_1 \cap C_1, \dots, \alpha_n = \beta_n \cap C_n$$

и оценим число точек x в максимальном выпуклом подскоплении L точечного скопления, состоящего из N точек Q. Нетрудно видеть, что число различных дуг α_I , для которых существует $Q \in \alpha_I$, $Q \in L$

не превосходит f(n). Кроме того, с f(n) - 1 из таких дуг α_i может входить в L не более чем по две точки Q, и лишь для одной из дуг α_i в L могут входить все m лежащих на ней точек Q. Таким образом,

$$x \leq 2 |f(n) - 1| + m$$
.

Так как $s(N) \leqslant x$, то теорема доказана. Следствие. $f(N) = o(N^a)$ при любом $\alpha > 0$.

Ռ. Վ. ՀԱՄՔԱՐՉՈՒՄՅԱՆ

կետային կույտերի ուռուցիկ ենթակույտերի վեբաբերյալ

Կետային կույտ տվյալ հոդվածում մենք <mark>անվանում են</mark>ք հարβության վրա գտնվող կետերի ամեն մի վերջավոր րազմությունը։ Կույտը անվանում ենք ուռուցիկ, ենև տվյալ կույտ կաղմող կետերը կարող են ծառայել որպես մի ուռուցիկ բազմանկյան գագաններ։

կում 11-կետանի կույտերի համար դիտարկվում է մինիմաքսային խնդիրը՝ քանի կետ է պարունուֆունկցիան)։ Ցույց է տրվում, որ

$$f(n) = o(n^2)$$

டியரியரயடியு ம ம > 0 ப்பரியரா

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ А. Реньи и Р. Суланке, Über die konvexe Hulle von n zufällig dewähleten Punkten. Z. Wahrsheinlichkeits theorie 2. 75—84 (1963).