1

MATEMATHKA

Э. А. Мирзаханян

Бесконечномерные гомотопические группы

(Представлено чл.-корр АН Армянской ССР Р. А. Александряном 2 11 1966)

В заметке строятся гомотопические группы конечного индекса для множеств, лежащих в действительном гильбортовом пространстве H. Первоначальное их определение зависит от выбора некоторого ортонормированного базиса в H; в дальнейшем показывается независимость построенных групп от выбора базиса и их коммутативность. Основной результат заметки заключается в том, что гомотопическая группа индекса k единичной сферы S пространства H изоморфиа стабилизировавшейся группе индекса k конечномерных сфер (т. е. группе π_{k+n} (S^n) при больших n).

1. Построение гомотопических групп. Пусть e_1 , e_2 — некоторый ортонормированный базис пространства H. Обозначим через H_1 подпространство, натянутое на векторы e_1, e_2, \cdots , e_n , а через H_2 — его ортогональное дополнение. Далее, выберем в пространстве H_1 , натянутом на векторы e_2, \cdots , e_n , единичный (n-1)-мерный куб K, а в пространстве H_2 — некоторый выпуклый многогранник M (например, в смысле заметки (1)), имеющий H_2 своей несущей плоскостью. Тогда в пространстве $H = H_1 + H_2$ определено топологическое (прямое) произведение P многогранников K и M, являющееся многогранником дефекта 1 в H. Многогранник P будем называть призмой (дефекта 1) в H; размерность n подпространства H_1 будет в дальнейшем предполагаться достаточно большой.

Предположим теперь, что фиксирован некоторый класс F отображений гильбертова пространства H в себе. (Ниже мы сформулируем те требования, которым класс F должен удовлетворять). Пусть $X \subset H$ —некоторое множество и $x_0 \in X$ — фиксированная его точка Отображение $f: P \to X$ назовем сфероидом индекса k множества X в точке x_0 ($k=0,1,2,\cdots$), если выполнены следующие два условия:

- 1) отображение f переводит всю границу P многогранника P в гочку x_0 ;
- 2) существует такое отображение что отображение f совидает с отображением I^{-1} р (рассматриваемым на P), где через I^{-1} в бозначено линейное отображение $H \rightarrow H$, переводящее векторы $B_1 \cdots B_n$ в нуль, а вектор e_i в вектор e_i в вектор e_i совотображение e_i в вектор e_i в векто

Во множестве $F(X, x_0)$ всех таких сфероидов мы следующим образом введем отношение эквивалентности: $f \sim g$ если существует такая гомотопия $h_t: P \rightarrow X$, $0 \le t \le 1$, что $h_0 = f$, $h_1 = g$ и $h_t \in F$ (X, x_0) для всех $t \in I$. Множество получающихся классов эквивалентности мы обозначим через $\pi_t(X, x_0)$.

Как видно из этого определения, множество $=(X, x_0)$ зависит пока от выбора базиса e_1, e_2, \cdots и призмы P.

Пусть $\alpha, \beta \in \pi_k(X, x_0)$ и f, g—сфероиды, принадлежащие классам α и β соответственно.

Определим сфероид h соотношением

$$h(0, x_2, \cdots) = \begin{cases} f(0, 2x_2, x_3, \cdots) & \text{при } 0 \le x_2 \le \frac{1}{2} \\ g(0, 2x_2 - 1, x_3, \cdots) & \text{при } \frac{1}{2} \le x_2 \le 1 \end{cases}$$
 (1)

(координаты берутся относительно базиса $l_1, l_2 \cdots$). Отображение h непрерывно.

Перво гребование на класс F заключается в том, чтобы отображение h снова принадлежало множеству $F_k(X,x_0)$, т. е. также было сфероидом. Оказывается, что класс γ сфероида h не зависит от выбора представителей f и g, а полностью определяется классами α и β ; мы положим: $\gamma = \alpha + \beta$.

Относительно введенной таким образом операции сложения множество $\pi_k(X, x_0)$ представляет собою группу, которую мы и назовем гомотопической группой индекса k множества $X \subset H$. Обычным образом доказывается, что эта группа всегда коммутативна. (При этом новых требований на класс F накладывать не приходится).

II. Инвариантность гомотопических групп. Следующее утверждение представляет собой второе требование, накладываемое на класс F.

Пусть P и P' — два многогранника (дефекта 1) в H. Тогда существует отображение $\varphi \in F$, голоморфно отображающее многогранник P и P' и переводящее границу \dot{P} на границу \dot{P}' . Любые два отображения указанного вида гомотопны между собой (в классе F) на P.

Третье требование заключается в том, чтобы композиции I^{-k} о J^k и J^k о I^{-k} принадлежали классу F, где I^{-k} построено в ортонормированном базисе l_1, l_2, \cdots (как указано выше), а линейное отображение J^k определяется в некотором другом ортонормированном базисе e_2, e_2, \cdots формулой

$$J^{k}(e_{i}) = e_{i+k}, i-1, 2, \cdots$$

При выполнении этих требований удается доказать, что определенные выше гомотопические группы $\pi_k(X, x_0)$ не зависят от выбора призмы P и базиса l_1, l_2, \cdots

Указанным выше требованиям удовлетворяют разные классы отображений F и, прежде всего, класс всех непрерывных отображе-

ний. Однако этот класс оказывается неинтересным, поскольку, например, все гомотопические группы единичной сферы S пространства Н оказываются равными нулю. Иными словами, класс всех непрерывных отображенй оказывается слишком широким для построения содержательной бесконечномерной гомотопической теории. Напротив, значительное сужение класса отображений F позволяет установить некоторые содержательные результаты, к изложению которых мы и переходим.

III. Гомотопические группы сфер. Наконец, мы предположим дополнительно, что класс F позволяет построить понятие степени отражения (2,3), а также обладает тем свойством, что существует отображение $\varphi \in F$, отображающее шар E_1 дефекта 1 на единичную сферу пространства H, причем вся граница E_1 переходит в одну точку $x_0 \in S$, а внутренность шара E_1 гомеоморфно отображается на $S \setminus x_0$. Всем этим требованиям удовлетворяет, например, класс отображений, локально имеющих вид M + A, где M + A гождественный оператор. M + A положительное число (зависящее от точки M + A), а M + A почти конечномерный оператор. Некоторые другие классы отображений определены M + A0. С. Рышковым (4).

При указанных требованиях, наложенных на класс F, справедлива следующая

Теорема. Пусть S-единичная сфера дефекта l в H (т. е. единичная сфера в плоскости дефекта l-l). Тогда группа π_k (S, x_0) изоморфна стабилизировавшейся группе индекса k+l-1 конечномерных сфер, т. е. группе $\pi_{n+k+l-1}$ (S^n) при больших n.

В частности, если S — единичная сфера пространства H, то группа τ_k (S, x_0) изоморфна стабилизировавшейся группе τ_{n+k} (S^n).

Автор выражает глубокую благодарность В. Г. Болтянскому, под руководством которого выполнена эта работа.

Институт математики и механики Академии наук Армянской ССР

է. Ա. ՄԻՐՋԱԽԱՆՅԱՆ

Անվերջ շափանի հոմոտոպիկ խմբեր

որվածում տրվում է իրական Գիլբերտյան տատածության ննթարազմությունների անվերծ չափանի հոմոտոպիկ խմրերի կառուցումը, ապացուցվում է այդ խմբերի ինվարիանտությունը տարածության րազիսի ընտրության նկատմամը ու նրանց կոմուաստիվությունը։

հատասի հատասան արդյունքը կայանում է հետևյա *թեորեմի ապացույցի մե*ջ. և որ ե մ, Եթե Տ-ը նանդիսանում Իիլբերայան տարածության միավոր սֆերան, ապա Տ-ը սֆերայի և ինդերսի ճունոտոպիկ է (Տ, Հ₀) խումբը իզոմորֆ է վերջավոր ավանի սֆերայի և ինդերսի կայունացված խմբին։

ЛИТЕРАТУРА— ЧРИЧИБИТР ЗИТЬ

1 В. Г. Болтянский, ДАН СССР, 105, № 6 (1955). 2 М. А. Красносельский, Топологические методы в теории нелинейных интегральных уравнений. Гостехиздат, 1956. 3 Ж. Лерэ, Ю. Шаудер, Топология и функциональные уравнения. УМН, 1, вып. 3—4, стр. 71—95. 4 С. С. Рышков, ДАН СССР, 114, № 5 (1957).