XXXXIX

1964

МАТЕМАТИКА

Ю К Герасимов

О теореме Фрагмена—Линделефа для функций обобщенной неположительной кривизны

(Представлено академиком АН Армянской ССР М. М. Джрбашяном 21/11 1964)

- С. Н. Бернштейну (1) принадлежит доказательство одной геометрической теоремы для функции двух переменных, рассматриваемой во всей плоскости. В статье (2) Г. М. Адельсон-Вельский вводит понятие обобщенной неположительной кривизны и показывает, что теорема С. Н. Бернштейна остается справедливой при меньших ограничениях на рассматриваемую функцию. В настоящей заметке рассматривается вопрос о поведении функции обобщенной неположительной кривизны в полуплоскости. Показывается, что аналогичный факт не верен в пространстве большего числа измерений.
- 1. Определение. Поверхность G, заданная уравнением $\omega = f(x, y)$, имеет обобщенную неположительную кривизну, если для любой плоскости γ открытые множества G -точек плоскости γ , лежащих выше поверхности G, и G -точек плоскости γ , лежащих ниже поверхности G, не имеет ограниченных связных компонент.

Мы говорим, что функция f(x, y) растет медленнее любой линейной функции, если

$$\lim_{V \to +y^2 \to \infty} \frac{|f(x, y)|}{|V \times x^2 + y^2} = 0.$$

Теорема 1. Если функция f(x, y) непрерывная, обобщенной неположительной кривизны и $f(x, 0) \le 0$, тогда в полуплоскости $y \ge 0$ имеет место один из трех возможных случаев:

- 1) $f(x, y) \leq 0$,
- 2) f(x, y) pacmem не медленнее, чем линейная функция,
- 3) f(x, y) цилиндрическая с образующей, параллельной оси ох при значениях $y \gg Y$, где $Y \gg 0-$ конечное число.

Доказательство. Предположим, что не выполняются случай 1) нли случай 2), тогда докажем, что будет иметь место случай 3). Итак, пусть функция f(x, y) растет медленнее линейной и имеется точка (x_0, y_0) такая, что $f(x_0, y_0) > 0$. Построим плоскость

$$\psi = \frac{f(x_0, y_0)}{2y_0} y.$$

Рассмотрим связное замкнутое множество $S:[f(x,y)-\psi(y)>0,(x_0,y_0)\in S]$ на плоскости $y\geqslant 0$. Такое множество найдется и из определения обобщенной неположительной кривизны следует, что оно будет неограниченым при $x\to +\infty$, либо при $x\to -\infty$. Пусть для определенности это множество неограничено при $x\to +\infty$ и ограничено при $x\to -\infty$. Доказательство аналогично, если мы предположим, что множество S неограничено при $x\to -\infty$ и ограничено при $x\to +\infty$. Доказательство несущественно изменится, если предположить, что множество S неограничено как при $x\to +\infty$, так и при $x\to -\infty$. Рассмотрим функцию $v(x,y)=f(x,y)-\psi(y)$ в S. Пусть x_1 — фиксированное число и $x_1\geqslant x_0$. Функция v(x,y) имеет максимум по y. Рассмотрим теперь функцию $V(x)=\max v(x,y)$.

Поскольку функция f(x, y) может расти с увеличением x только медлениее линейной, то и функция V(x) может расти с увеличением x тоже только медлениее линейной. Пусть функция $V(x) = C_1$ при x = x' ($x' \geqslant x_0$) и пусть $V(x) = C_2$ при x = x'', где x'' > x' и $C_2 < C_1$. Тогда плоскость

$$\psi_1 = \frac{f(x_0, y_0)}{2y_0} y + C_2$$

срезает с поверхности z = f(x, y) "шапочку". Пусть теперь функция $V(x) = C_3$ при x = x", где $C_3 > C_1$. Тогда плоскость

$$\psi_2 = \frac{f(x_0, y_0)}{2y_0} y + \frac{C_3 - C_1}{2(x'' - x')} (x - x') + C_1,$$

срезает с поверхности z = f(x, y) "шапочку". Это противоречит тому, что поверхность z = f(x, y) обобщенной неположительной кривизны, поэтому функция V(x) = const. Огсюда, в частности, заключаем, что множество S неограничено и при $x \to -\infty$. Далее покажем, что в тех точках замкнутого множества $S_0 \subset S$, где v(x, y) = V(x), поверхность z = f(x, y) линейчатая с образующей параллельной оси ox, поскольку в противном случае с поверхности z = f(x, y) можно было бы срезать "шапочку". Действительно, предположим, что поверхность z ==f(x, y) не линейчатая в точках множества S_0 . Тогда найдутся такие три точки (x_2, y_1) , (x_3, y_3) , (x_4, y_4) , принадлежащие границе связной компоненты $s \subset S_0$, не лежащие на одной прямой, и такие, что если отрезок, соединяющий две крайние точки (x_2, y_2) и (x_4, y_4) , обозначить через в и часть границы множества s, которая соединяет точки (x_1, y_2) , (x_4, y_4) и проходит через точку (x_3, y_3) , обозначить через Γ , то множество β \cap Γ состоит только из двух точек (x_2, y_2) и (x_4, y_4) . Точки (x_2, y_2) , (x_3, y_3) , (x_4, y_4) удовлетворяют еще следующему условию: точки множества s, не принадлежащие Г, и такие, что их можно соединить непрерывной кривой с одной из внутренних точек

непрерывной кривой Г, не пересекая отрезка в (если таковые имеются). находятся внутри множества ограниченного отрезком в и кривой Г. Но тогда можно провести плоскость $\delta = \delta(x, y)$, проходящую через точки $(x_2, y_2, f(x_3, y_3))$ и $(x_4, y_4, f(x_4, y_4))$ и такую, что $f(x_3, y_3) >$ $> \delta(x_3, y_3)$. Поворачивая плоскость $\delta = \delta(x, y)$ около прямой, проходящей через точки $(x_2, y_2, f(x_2, y_2))$ и $(x_4, y_4, f(x_4, y_4), мы мо$ жем удовлетворить следующему условию: множество $S_1 \subset S_0$, где f(x, y) - o(x, y) > 0 ограничено, т. е. с поверхности z = f(x, y) срезать "шапочку". Предположение, что на поверхности z = f(x, y) могут быть прямые линии, не параллельные оси ох, отпадает в силу того, что поверхность z = f(x, y) на бесконечности растет медленнее линейной функции. Итак, мы доказали, что найдется такое Y = const, что Z = f(x, Y) есть прямая на поверхности z = f(x, y), параллельная оси ох. Далее, нетрудно доказать, что вообще при $y \ge Y$ поверхность z = f(x, y) цилиндрическая. Действительно, рассмотрим поверхность $z_1 = f_1(x, y) = f(x, y) - f(x, Y)$ в полуплоскости $y \geqslant Y$.

Так как $f_1(x, Y) \equiv 0$, то независимо от того, сохраняет знак или меняет знак функция $f_1(x, y)$ при y > Y, повгоряя предыдущие рассуждения, мы докажем, что найдется такое $Y_1 > Y$, что $Z = f(x, Y_1)$ — прямая линия, параллельная оси ox. Рассмотрим полосу $Y \leqslant y \leqslant Y_1$. Проведем через параллельные прямые Z = f(x, Y) и $Z = f(x, Y_1)$ плоскость $\alpha = \alpha(x, y)$. Вышеприведенными рассуждениями установим, что на поверхности $\lambda = f(x, y) - 2(x, y)$ имеется прямая линия при $y = Y_0$, где $Y < Y_0 < Y_1$, т. е. найдется прямая линия $Z = f(x, Y_0)$ на поверхности z = f(x, y), где $Y < Y_0 < Y_1$. Повторяя подобные рассуждения, мы можем в любой полосе и любой полуплоскости (границы которых параллельны оси ox) при значениях $y \gg Y$ найти прямую линию на поверхности z = f(x, y). Поэтому мы можем утверждать, что при у У поверхность цилиндрическая с образующей параллельной оси ox. С другой стороны, поверхность z = f(x, y) при $0 \leqslant y \leqslant Y$ может быть устроена таким образом, что не является линейчатой. Следовательно, мы можем только утверждать, что найдется такое Y, что при $y \geqslant Y$ поверхность z = f(x, y) — цилиндрическая с образующей параллельной оси ох. Теорема 1 доказана.

2. В этом пункте покажем, что теорема 1 не распространяется на случай большого числа измерений. Рассмотрим в полупространстве городифференциальное уравнение в частных производных эллиптического типа:

$$(1+e^{y})\frac{\partial^{2}u}{\partial x^{2}}+2\frac{\partial^{2}u}{\partial x\partial y}+e^{-y}\frac{\partial^{2}u}{\partial y^{2}}+e^{2(x-e^{y})}\frac{\partial^{2}u}{\partial z^{2}}=0.$$

Функция $u(x, y, z) = \sin(z - \frac{\pi}{4})e^{-e^{x-e^{y}}}$ — решение этого уравнения,

u < 0 при z = 0, u > 0 при $z = \frac{\pi}{2} |u| < 1$ в полупространстве z > 0.

Но функция u(x, y, z) не цилиндрическая, т. е. теорема 1 в пространственном случае неверна.

Автор выражает глубокую признательность Е. М. Ландису за руководство работой.

Ереванский политехнический институт им. К. Маркса

3nh 4 ዓեቦሀሀኮሆበՎ

Ընդհանrացված ոչ-բացասական կուություն ունեցող ֆունկցիայի համաւ Ֆւագմեն-Լինդելոֆի թեուեմի մասին

րաչափության հետւ Ցույց է տրված, որ այդ փաստը երեր փոփոխականի դեպրում իրավացի չկւ

ЛИТЕРАТУРА— ЧРЦЧЦ V П Р В Я Р V

¹ С. Н. Бернштейн, Об одной геометрической теореме и ее применениях к уравнениям в частных производных эллиптического типа, УМН, вып. VIII (1941), 75 - 81. ² Г. М Адельсон-Вельский, ДАН СССР, 49, № 6 (1945).