МАТЕМАТИКА

В. С. Захарян

О некоторых граничных свойствах функций, аналитических в круге

(Представлено академиком АН Армянской ССР М. М. Джрбашяном 20/1 1964)

1°. Предельные свойства. Будем рассматривать ограниченные голоморфные функции следующего вида

$$B(z; \{a_n\}) = \prod_{n=1}^{\infty} b(z; a_n),$$

911

$$b(z; a) = \frac{|a|}{a} \frac{a-z}{1-\bar{a}z}$$
 (1)

$$0 < |a_n| < 1, \quad n = 1, 2, \cdots$$
 (2)

$$\sum_{1}^{\infty} (1 - |a_n|) < \infty. \tag{3}$$

 $B(z;\{a_n\})$ называется произведением Бляшке, а последовательность $\{a_n\}$, которая удовлетворяет условиям (2) и (3), — последовательностью Бляшке. Функция $B(z;\{a_{n_k}\})$ называется подпроизведением для $B(z;\{a_n\})$, если $\{a_n\}$ подпоследовательность для $\{a_n\}$.

Известно, что произведение Бляшке имеет радиальные предельные значения с модулем единица почти всюду на C=|z||z||=1. Тогда в точках, где существуют радиальные граничные значения, бу-

Мы рассмотрим вопрос о касательных пределах для произведения Бляшке. Прежде дадим хорошо известное определение касательного предела.

Пусть имеем множество точек г

$$R(m, \vartheta, \gamma) = \{z: 1 - |z| > m | \arg z - \vartheta|^{\gamma}; 0 < |z| < 1\},$$

тие за $|\arg z - -\vartheta|$ принимаем меньшую из дуг на C между $\frac{z}{|z|}$ и $e^{i\vartheta}$.

Если функция f(z) определена на $D=\{z:|z|<1\}$, мы скажем, что f(z) имеет T_{γ} — предел в точке $e^{t\vartheta}$, если существует такое L_{γ} что для каждого m (m>0), $f(z)\to L$ при $z=e^{t\vartheta}$ и $z\in R$ (m, ϑ , γ).

Легко видеть, что T_1 - предел существует в том и только в том случае, когда существует классический угловой предел. При $_{7}$ ситуация изменяется. В работе (2) показано, что для каждого существует произведение Бляшке, для которого не существует T_{7} -предел нигде на C

Вопросы о T_1 - пределах для произведений Бляшке рассмотрены в недавней работе Г. Карго (3). В частности, им получены следующие результаты.

Теорема А. Пусть | а_п последовательность Бляшке такая, что

$$\sum_{n=1}^{\infty} (1 - |a_n|)/|e^{i\vartheta} - a_n|^{\gamma} < \infty \tag{4}$$

для некоторого фиксированного γ ($\gamma \geqslant 1$). Тогда $B(z; \{a_n\})$ и все его подпроизведения имеют T_γ -предел с модулем единица в точке $e^{i\vartheta}$.

Теорема В. Пусть $\{a_n\}$ последовательность Бляшке, для которой удовлетворяется (4) для некоторого фиксированного γ ($\gamma > 1$). Тогда, если $\gamma > 2k$ для некоторого целого положительного k, то производная порядка k от $B(z; \{a_n\})$ и от каждого подпроизведения $B(z; \{a_n\})$ и меет $T_{\gamma, 2k}$ -предел в точке $e^{i\vartheta}$.

Мы здесь приведем одну теорему, которая является прямым обобщением другой теоремы Γ . Карго и при $h(t)=t^{-1}(0) \leqslant 2 \leqslant 1)$ совпадает с ней.

Для формулировки этой теоремы нам понадобятся некоторые предварительные понятия.

Пусть h(r) — непрерывная вещественная функция, не убывающая при r > 0 и h(0) = 0. Пусть E — произвольное ограниченное множество, покрытое некоторой последовательностью кругов $\{c_i\}_1^\infty$ с раднусами $\{c_i\}_1^\infty$ С определим меру

$$M_h(E) = \inf \sum_{i=1}^{\infty} h(r_i)$$

для всех таких $\{c_v\}$.

Эта мера будет равна нулю в том и только в том случае, когда равна нулю соответствующая мера Хаусдорфа.

В работе (4) дано следующее определение выпуклой емкости принадлежащей К. Темко.

Пусть $\{\lambda_n\}$ — выпуклая последовательность и $\lambda_n \to 0$, тогда

$$Q(x) = \sum_{0}^{\infty} \lambda_n \cos nx$$

неотрицательная и интегрируемая по Лебегу функция. Следовательно 200

$$Q(r, x) = \sum_{n=0}^{\infty} \lambda_n r^n \cos nx$$

как пуассоновская сумма от $Q(\lambda)$ удовлетворяет условию Q(r, x) > 0 при $0 < x < 2\pi$ и 0 < r < 1.

Определение 1. Измеримое по Борелю множество $E \subset [0, 2\pi]$ ниеет положительную выпуклую емкость относительно последовательности $\{\lambda_n\}$, если существует мера μ , сосредоточенная на E, для которой функция

$$v(x, r) = \int_{0}^{2\pi} Q(r, x-t) du(t)$$

остается равномерно ограниченной по x при $r \to 1$.

В случае отсутствия такой меры μ , считаем ¦выпуклую емкость относительно $\{\lambda_n\}$ равной нулю.

Определение 2. Условимся говорить, что непрерывная на 0 < t < 1 функция $H(t) \gg 0$ принадлежит классу C_H , если $H(0) = \infty$,

$$tH(t)\downarrow 0$$
 при $t\to 0$, $\int \frac{dt}{tH(t)} < \infty$ и $\lim_{x\to 0} \frac{1}{xH(x)} \int_0^x H(u) du = c$, где $c\neq 0$, ∞ .

Докажем следующую лемму.

Лемма. Если $h(t) = \int_0^t H(u) du$ и множество B и чеет h(t)

меру нуль $\gamma \gg 1$ и $h(t) \gg t$, то выпуклая емкость множества B относительно последовательности

$$\lambda_n = \sum_{k=n}^{\infty} \frac{1}{k^{2-7}H(k^{-7})}$$

равна нулю, если НЕСн-

Доказательство. Пусть
$$\lambda(u) = \int_{u}^{\infty} \frac{du}{u^{2-1}H(u^{-1})}$$
, тогда $\lambda_n - \lambda(n)$

и множества с нулевой выпуклой емкостью для этих последовательностей совпадают.

По теореме Салема (4) при $x \to 0$

$$Q(x) = \sum_{n} \lambda_{n} \cos nx \sim \int_{0}^{\frac{1}{x}} u |\lambda'(u)| du = \int_{0}^{\frac{1}{x}} \frac{du}{u^{1-1}H(u^{-1})} > \frac{1}{7x^{1}H(x^{1})}.$$

В работе (5) доказано, что если для множества E мера $h(x^1) = \frac{1}{Q(x)}$ нуль, то емкость $|\lambda_B|$ тоже нуль. Так как $h(x^1) > \frac{c}{\gamma} \frac{1}{Q(x)}$, то лемма доказана.

Будем предполагать, что для любого 0 < x, $y \le 1$ удовлетворяется следующее условие

$$h(xy) \leqslant ch(x) h(y). \tag{5}$$

Для этого достаточно, чтобы при предположении существования про- изводных удовлетворялось условие

$$\frac{d^2}{dx^2} \ln \frac{1}{h(x)} \geqslant 0, \tag{6}$$

так как при условии (6) функция $\varphi(y) = \frac{h(xy)}{h(y)}$ получает свой максимум при y = 1.

При выполнении условия (5) скажем, что $h \in C_h$, если $H \in C_{H_1}$

где
$$h(x) = \int_{0}^{x} H(u) du$$
.

Теорема 1. Пусть (a_n) последовательность Бляшке, для которой

$$\sum_{n=1}^{\infty} h\left(1 - |a_n|\right) < \infty$$

для некоторого $h \in C_h$. Тогда для каждого $\gamma (\gamma \gg 1)$ и $h(t^{\gamma}) \gg t$ множество

$$E_{\gamma} = \left\{ e^{i\vartheta} : \sum_{n=1}^{\infty} \frac{(1-|a_n|)}{|e^{i\vartheta}-a_n|^{\gamma}} = \infty \right\}$$

имеет выпуклую емкость нуль относительно последовательности

$$\lambda_n = \sum_{k=n}^{\infty} \frac{1}{k^{2-\gamma} H(k^{-\gamma})}.$$

Доказательство. Доказательство проводится аналогично доказательству Γ . Карго для случая $h(t) = t^2$.

Пусть $\gamma \gg 1$ фиксированная. Для каждого n через O_n обозначим открытую дугу на C с центром в $\frac{a_n}{|a_n|}$ и длиной $(1-|a_n|)^m$. Пусть

$$G_n = \bigcup_{k=n} O_k$$

и $F_n = C - G_n$. Ясно, что $\prod_{n=1}^{\infty} F_n$ и $\prod_{n=1}^{\infty} G_n$ не имеют общих точек на C и их соединение совпадает с C. Пусть

$$E_{\tau} \cap F_n = f_n$$
 и $E_{\tau} \cap \left(\bigcap_{n=1}^{\infty} G_n\right) = G$.

Докажем, что $h(t^{T})$ мера G равна нулю.

 $\bigcap_{n \in \mathcal{N}} G_n$ и для каждого \mathcal{N}

$$\lim_{N\to\infty}\sum_{k=1}^{\infty}h\left(1-|a_k|\right)=0,$$

10 утверждение очевидно.

Теперь покажем, что $\lambda_n = \sum_{k=n}^{\infty} \frac{1}{k^2 - H(k^{-1})}$ емкость f_n равна

пулю. Пусть $e^{i\vartheta}$ любая точка F_n для $k \gg n$

$$|e^{i\theta}-a_k|> -\frac{1}{\pi}\left(1-|a_k|\right)^{1/\tau}$$
 или $\left(1-|a_k|\right)/|e^{i\theta}-a_k|^{\tau}<\tau^{\tau}.$

Предположим, что λ_n емкость f_n больше нуля. Тогда существует такое единичное распределение $\mu(\theta)$ на f_n что

$$\int \frac{d\mu(\theta)}{|e^{i\theta}-z|^{\gamma}H(|e^{i\theta}-z|^{\gamma})} < M$$

M<∞ для всех z.

В частности, для k > n будем иметь

$$\int_{f_n} \frac{1 - |a_k|}{e^{i\vartheta} - |a_k|^{\intercal}} d\mu(\vartheta) \le c \int_{f_n} \frac{h(1 - |a_k|)}{H(1 - |a_k|)} \frac{d\mu(\vartheta)}{|e^{i\vartheta} - |a_k|^{\intercal}} \le f_n$$

$$\leqslant ch (1 - |a_k|) \int \frac{H(|e^{i\vartheta} - a_k|^{\intercal})}{H(1 - |a_k|) |e^{i\vartheta} - a_k|^{\intercal} H(|e^{i\vartheta} - a_k|^{\intercal})} d\mu (\vartheta) \leqslant f_n$$

$$< ch (1-|a_k|) \int_{a_k} H\left(\frac{1-|a_k|}{|e^{i\theta}-a_k|^T}\right) \frac{d\mu(\theta)}{h(|e^{i\theta}-a_k|^T)} < c_0 h(1-|a_k|).$$

Так что

$$\int_{\mathbb{R}} \left[\sum_{k=n}^{\infty} \frac{\left(1-|a_k|\right)}{e^{i\vartheta}-a_k} \right] d\mu\left(\vartheta\right) \leqslant c_0 \sum_{k=n}^{\infty} h\left(1-|a_k|\right) \leqslant \infty.$$

которое противоречит условию

$$\sum_{k=1}^{\infty} \frac{(1-|a_k|)}{|e^{i\theta}-a_k|^7} = \infty$$

 $\mathbb{E}_{1}f_{n}$

Имея в виду доказанную лемму, доказательство теоремы завер-

Из сопоставления теоремы 1 с теоремами А и В получим теоремы 2 и 3.

Теорема 2. Пусть (ап) последовательность Бляшке, от которой

$$\sum h(1-|a_n|)<\infty$$

для некоторого $h\in C_h$. Тогда для кансдого $\gamma>1$, $h(t^{\gamma})>t$ есть

множество
$$E_{\gamma}$$
, выпуклая $\lambda_n = \sum_{k=0}^{\infty} -\frac{1}{H(k^{-1})}$ емкость которого

нуль, так что $B(z; \{a_n\})$, и все его подпроизведения имеют T. предел с модулем единица в каждой точке С--Е.

При $\gamma = 1$ теорема получена в работе (5).

Теорема 3. Пусть $\{a_n\}$ последовательность Бляшке, для которой

$$\sum h\left(1-|a_n|\right)<\infty,$$

для некоторого $h \in C_n$. Тогда для каждого $\gamma \geqslant 2k$, $h(t^{\eta}) \geqslant t$, где hцелое положительное число, существует некоторое множесты

$$E_{-}$$
, выпуклая $I_{n} = \sum_{k=n}^{\infty} \frac{1}{k!} \frac{1}{H(k)}$ емкость которого нуль, так что

производные от $B(z; \{a_n\})$ и от любого подпроизведения порядка к имеют $T_{7/2k}$ -предел в кансдой точке $C-E_7$.

2. О сегментном изменении. Говорят, что аналитическая в единичном круге функция имеет конечное сегментное изменение в точко $e^{i\theta}$ при условии, что прямая, которая соединяет любую внутреннюю точку круга с точкой $e^{i\theta}$, отображается этой функцией на спрямляемую кривую.

В работе Γ . Карго (6) доказано, что в точке $e^{i\vartheta}$ произведение Бляшке $B(z; |a_n|)$ и любое его подпроизведение имеют конечное сегментное изменение в том и только в том случае, если выполняется условие (4). Имея в виду это утверждение и теорему 6 из [5], мы можем сформулировать следующую теорему.

Теорема 4. Пусть последовательность Бляшке (ап) удов

летворяет условию

$$\sum h(1-|a_n|)<\infty$$
,

для некоторого h, где $h' \in C_H$. Тогда $B(z; \{a_n\})$ и любое его nodпроизведение имеет конечное сегментное изменение в каждо точке С. кроме, быть может, некоторого множества д, внешня h-хаусоорфовская мера которого нуль.

30. Об одном классе голоморфных функций с конечным обоб щенным интегралом Дирихле. Пусть $f(z) = \sum a_n z^n$ аналитично в и f(0) = 0, для которого

$$\int_{0}^{12\pi} \int_{0}^{2\pi} h(1-p)|f'(pe^{i\theta})|^2 dpd\theta < \infty, \tag{7}$$

 $f \in C_h$, тогда скажем, что $f \in S_h$. Так как легко видеть, что

$$\int_{0}^{1} h\left(1-\varrho\right)\varrho^{2n-1}\,d\varrho = O\left(\frac{1}{n}\,h\left(\frac{1}{n}\right)\right)$$

по условие (7) эквивалентно условию

$$\sum_{1}^{\infty} |a_n|^2 H\left(\frac{1}{n}\right) < \infty. \tag{8}$$

В работе () показано, что произведения Бляшке $B_h(z)$, для ко-

$$\sum_{1}^{\infty} h(1-|a_n|) < \infty, \tag{9}$$

 Φ надлежат классам функций S_h .

Значит, если последовательность $\{a_n\}$ такая, что удовлетворяет условию (9), то существует функция f класса S_n с нулями на этой оследовательности и $f \neq 0$.

Множество точек $\{a_n\}$, скажем, является множеством единствентоги для класса S_h , если из того, что $f(a_n) = 0$ и $f - S_h$, вытекает, то $f \equiv 0$.

В работе (7) Г. Шапиро и А. Шильдса решен следующий вопрос: огда последовательность $\{a_n\}$ будет множеством единственности для ункций класса S_h при $h(t) = t^*$ ($0 \le \alpha < 1$), и получен исчерпываю-

почти произвольные коэффициенты c_n , вопрос не решен.

Легко видеть, что для классов S_n доказательство приведенное

('), полностью проходит, и мы получим следующую теорему.

Теорема 5. Если $\varphi(t)$ некоторая непрерывная функция, для томорой $\varphi(0) = 0$, $\varphi(t) > 0$ (t > 0), то существует множество един-

$$\sum_{n=1}^{\infty} h(1-|a_n|) \circ (1-|a_n|) < \infty.$$

Академии паук Армянской ССР

Շրջանում անալիթիկ ֆունկցիաների եզբային որոշ հատկությունները

նննադրենը ունենը z կնտերի հետևյալ ըազմությունը

$$R(m, \vartheta, \gamma) = \{z: 1 - |z| \ge m | \arg z - \vartheta_{|}^{\gamma}, 0 < |z| < 1\},$$

որտեղ որպես $|\arg z-\theta|$ ընդունում ենք C միավոր շրջանազծի վրա ընկած աղեղներից փոքրադույնը, որը միադնում է z' z' և $e^{i\theta}$ կնտերը։ Եթե f(z)-ը որոշված է |z|<| նում կասենը, որ f(z)-ը $e^{i\theta}$ կետում ունի T_{γ} -սահման, եթե կա այնպիսի L, որ ցանկագած m(m>0) համար f(z)- L երը $z-e^{i\theta}$ և $z(-R(m,\theta))$

Unquegregione & Shortjul Phopholes

Թող (an) Բլյաբկեի հաջորդականությունը բավարարի հետևյալ պայմանին

$$\sum h\left(1-|a_n|\right)<\infty,$$

որտեղ և ֆունկցիան ըավարարում և որոշ պայմանների։ Ապա յուրաբանչյուր վել հա-

ուսակությունը դևրո է, այնպես որ այդ ¦ ռո կ հաջորդականության համար կաղմու Բլյաշկեի արտադրյալը ունի T--սահման C—E-ըաղմության յուրաբանչյուր կետում։ Ստացված են նաև այլ ընույթի արդյունքներ։

ЛИТЕРАТУРА — ԳРԱԿԱՆՈՒԹՅՈՒՆ

¹ И. И. Привалов, Граничные свойства аналитических функций. М.—Л., 1950.

² А Лоуатер и Г. Пиранян, Ann. Acad. Sci. Fenn. Ser. A. I., 239 (1957). ³ Г. Карго, Сападіа п Journal of mathematics, vol. XIV, № 2, (1962), 334—348. ⁴ Н. Бари, Тригонометрические ряды. М., 1961. ⁵ В. С. Захарян, Изв. АН СССР, серия матем, 27, 4 (1963). ⁶ Г. Карго, Duke mat. journal, vol. 30, № 1, (1963), 143—149. ¹ Г. Шапиро и А. Шилдс, Маth. Zeitsphr. 80, 217—229 (1962).