ОРГАНИЧЕСКАЯ ХИМИЯ

А. Т. Бабаян, чл.-корр. АН Армянской ССР, К. Ц. Такмазян и Э. С. Ананян

Воднощелочное расщепление 1,5-диаммониевых солен, содержащих кратную связь в 2,3-положении общей группы

(Представлено 30/ХТ 1963)

Четвертичные аммониевые соли, содержащие наряду с другими алкильными группами также и этильную, под действием водной щелочи подвергаются 1,2-отщеплению преимущественно за счет этильной группы. Картина меняется при наличии 3. 7-непредельной группы. имеющей водород в о-положении к азоту. Так, например, реакция расщепления солей общей формулы І и ІІ протекает за счет непредельной группы и приводит к 1,4-отщеплению с образованием соединения с сопряженными кратными связями (1):

$$-N$$
 $CH_2-C_-C_-CH_3 \xrightarrow{OH} CH_3$ $CH_4-C_5=CH_3$

$$(1)$$

$$-N-CH_3-C_5=CH_4$$

$$(1)$$

$$-N-CH_3-C_5=CH_4$$

$$(1)$$

$$CH_4-C_5=CH_4$$

$$CH_5=CH_5$$

$$CH_6-C_7=CH_7$$

$$CH_7-C_7=CH_7$$

$$CH_8-C_7=CH_7$$

Предпочтительное 1,4-отщепление перед 1,2- в этих солях согластется с представлением о том, что в реакции отщепления непредельного соединения из аммониевой соли решающим фактором является склонность к протонизации соответствующего водородного агома. В названных солях в этильной группе протонизации в Н способствует лишь отрицательный индукционный эффект положительного заряда аммониевого азота, в то время как в в, 7-непредельной группе протонизация д Н облегчается как названным эффектом, передаваемым через кратную связь (винилогия или этинилогия соответственно), так и отрицательным индукционным эффектом винильной или соответственно этинильной группы.

Нас интересовал вопрос, какой из путей 1,2-или 1,4-окажется предпочтительным при прочих равных условиях. С этой целью в качестве объекта исследования мы избрали соли 1,5-диаммонийнентина-2,

в которых аммонийные группы обоих положений отличались друг от друга. Строение общей группы в этих солях обеспечивало возможность обоих путей отщепления за счет протонизации одного и того же водородного атома. Кроме того, оно обеспечивало и другое необходимое условие. Уже заранее можно было уверенно сказать, что щелочное расщепление этих солей будет протекать ступенчато и что отщепление первой молекулы амина произойдет при значительно более мягких условиях, чем отщепление второй. Таким образом, проводя реакцию в мягких условиях, мы могли остановить ее на первой стадии расщепления и по природе отщепившегося третичного амина судить о направлении реакции:

Согласно литературным данным (2), термическое расщепление гидроокиси 1-триметиламмоний-3-(N-метил-4-'-диметилпиперидиний)-пропана протекает ступенчато, и в результате первой стадии реакции получаются: 1,4,4-триметилпиперидин и триметиламин, почти в эквимолекулярных количествах согласно схеме:

$$(CH_3)_3N-CH_2-CH_2-CH_2-N$$

$$\overline{OH}$$

$$CH_3$$

На этом основании мы надеялись, что и в нашем случае отличие отщепляющихся третичных аминов по 1,2- и 1,4- существенно не скажется на ходе реакции. Однако, как это видно из ранее приведенной схемы расшепления, выбранные нами соли общей формулы III имеют другой недостаток: в результате отщепления третичного амина по химизму 1,2- и 1,4- получаются моноаммониевые соли, в которых образовавшиеся в результате реакции отщепления непредельные группы имеют разное строение. Поэтому, наряду с этими солями, мы исследовали также и соли 1,5-диаммонийпентена-2, расщепление которых должно привести к моноаммониевым солям с одним и тем же пентадиенильным радикалом согласно схеме:

$$R_{3}N - CH_{2} - CH - CH_{2} - CH_{3} - CH_{4} - CH_{4$$

Следует признаться, что первоначально мы склонны были думать, что наличие гиперконъюгации между кратной связью и метиленовой группой, теряющей протон во время реакции, будет способствовать отщеплению по 1,4-, скрадывая преимущества краткости пути 1,2-. Однако, как это видно из полученных данных, приведенных в табл. 1, природа дала предпочтение крат найшему пути, т. е. 1,2.

Учитывая возможность влияния остальных радикалов на направление реакции, мы синтезировали и исследовали также и по одному примеру солей III и IV с обратным расположением аммониевых групп. Полученные данные приведены в табл. 1. Из этих данных видно, что природа остальных радикалов, входящих в состав аммониевого комплекса, имеет определенное влияние на направление реакции. Так, при наличии в положении 1-диэтилалкиламмониевой группы имеет место, правда в незначительном количестве. также и 1,4-отщепление.

Исходные диамины, нужные для получения солей III, были получены по реакции Манниха согласно прописи (3) по схеме:

1-диалкиламинобутины-3 в свою очередь были получены изомеризацией 1-диалкиламинобутинов-2 под действием металлического натрия (1). Каталитическим гидрированием ацетиленовых диаминов в присутствии палладия были получены диамины, нужные для синтеза солей IV. Данные относительно диаминов, описываемых впервые, приведены в табл. 2. Диаммониевые соли получались взаимодействием диаминов с соответствующими алкилгалогенидами.

Щелочное расщепление диаммониевых солей проводилось при комнатной температуре смешением аммониевой соли с четырехкратным молярным количеством 25% водного раствора едкого кали. Смесь оставлялась на ночь. В случае отщепления летучего амина реакционная колба соединялась с промывалкой, содержащей титрованный раствор соляной кислоты. На следующий день амин экстрагировался из реакционной смеси эфиром, сушился и подвергался разгонке.

Результаты расщепления 1.5-дизммониевых солей под действием $25^{\circ}/_{\circ}$ водного раствора едкого кали при 20-25

ику	Исходная соль	Общий вы- ход амина в г-молях на	Отщепившиеся амины (° л содер-	отщепления по		
№ по порядку		1 г-моль взятой соли	жания в смеси)	1,2	1,4	
1	$(CH_3)_3N - CH_2 - C = C - CH_2 - CH_4 - N(C_3H_3)_3$ $\overline{B}r$ $\overline{B}r$ $\overline{B}r$	0,85	$(C_2H_3)_2 - N - CH_1$ (100)	100	()	
2	$CH_{\bullet} = CH - CH$ $(CH_{\bullet})_{\bullet} N$ $CH_{\bullet} = C - CH_{\bullet} - CH$ Br Br $CH_{\bullet} = CH - CH_{\bullet}$ $CH_{\bullet} = CH - CH_{\bullet}$ $N(CH_{\bullet})_{\circ}$ Br	0,83	(CH ₃) ₂ N - CH ₂ - CH - CH ₃ (95) (CH ₄) ₂ N - CH ₃ - CH = CH ₃ (5)	95	5	
3	$CH_{2}-C_{1}H_{2}$ $CH_{3}-C_{1}H_{3}$ $CH_{3}-C_{1}H_{3}$ $CH_{3}-C_{1}H_{3}$ $CH_{3}-C_{1}H_{3}$ $CH_{3}-C_{1}H_{3}$ $CH_{3}-C_{1}H_{3}$	0,93	$(CH_3)_2N - CH_2 - C_6H_5$ (95,5) $(C_2H_2)N - CH_2 - C_6H_5$ (4,5)	95,5	4,5	
4	CH_{*} $-CH_{*}$ $-CH_{$	0,78	$(CH_2)_2N - CH_2 - CH = CH_1$ (95) $(C_2H_2)_2N - CH_2 - CH = CH_2$ (5)	95	5	
5	$CH_2-C_6H_3$ $(C_2H_3)_2N$ $CH_3-CH=CH-CH_3-CH_3$ CH_3	0,90	$(C_3)_2N-CH_2-C_6H_5$ (97) $(C_2H_3)_2N-CH_2-C_6H_5$ (3)	97	3	
6	$CH_2 - C_nH_5$ $CH_2 - C_H_5$ $CH_2 - CH - CH_5 - CH_5$ $CH_2 - CH - CH_5 - CH_5$ $CH_3 - CH_5 - CH_5 - CH_5$	0,82	(C ₃ H ₄) ₂ N -CH ₂ -C _n F ₁₅ (100)	100	0	

Данные	об	исходных	1,5-диаминах
--------	----	----------	--------------

		Typa B de			фор-							
	0/0					С		Н		N		12BJ
Амины		Темпера кипения (давлені в жм)	n _D	d ₄ ²⁰	Брутто	найд.	BIMT.	найл	BM4.	найд.	BM4.	Темп. пл
CH_{3} $N-CH_{2}-C=C-CH_{2}-CH_{-}N$ $C_{2}H_{5}$ $C_{2}H_{5}$	35	112-113	1,4589	0,8510	C11 H22 N2	72,00	72,53	12,20	12,10	15,20	15,37	151—152
C_2H_5 $N-CH_2-C=C-CH_2-CH_2-N$ CH_3 CH_3					C ₁₁ H ₂₂ N ₂	-						
CH_3 $N-CH_2-CH=CH-CH_2-CH_2-N$ C_2H_2 C_2H_3	90	100-104	1,4490	0,82804	C11H24N2	71,60	71,74	12,98	13,04	14,98	15,22	120-121
CH_3 $N-CH_2-CH=CH-CH_2-CH_2-CH_2-N$ C_2H_3 C_2H_5 C_2H_5 $N-CH_2-CH=CH-CH_2-CH_2-N$ C_2H_3 C_2H_3 C_2H_3 C_2H_3 C_2H_3 C_2H_3	90	88-90	1,4520	0,8280	C11H21N2	71,82	71,74	13.03	13,04	14,96	15,22	139—140

2.3-դիrքում չհագեցած կապ պաrունակող 1.5 եrկամոնիակային աղեւի ջբահիմնային ճեղքումը

Տարբևր ալկիլային խմբևրի թվում է թիլ խումբ պարունակող ամոնիակային աղևրը հիմբի ջրային լուծույթի ներկայությամբ հնթարկվում են 1,2 պոկման հիմնականում է թիլ խմբի հաւ վին։ Ամոնիակային կոմպլեքսում - Ն-ջրածին պարունակող 3,7-չհագևցած խմբի առկայության դնպքում դիտվում է այլ պատկնը, ձևղքումը հիմնականում դնում է 3,7-չհագևցած խմբի հայ- վին առաջացնելով 1,4-պոկման արդյունը հանդիսացող զուգորդված չհադեցած կապերով միաւ ցություն։ Սակայն այս օրինակննրը հնարավորություն չեն տալիս նախապատվություն տալ նշված ուղիներից որևէ մեկին, քանի որ ռեակցիայի ընթացքում պոկվող ջրածինները (3 և ունեն պրոտոնացման տարբեր հնարավորություններ։

Հետաթրքիր էր պարզել, ին Տավասար պայմանների դեպքում նշված ու<mark>զիներից որը կ</mark>գերա. Կշոիւ

Այդ նպատակով ուսումնասիրեցինք III և IV ընդհանուր ֆորմուլա ունեցող 1,5 երկամոնիակային աղնրը, որտեղ ամոնիակային խմբերը 1 և 5 դիրքերում միմյանցից տարբերվում են։ Ընդհանուր խմբի կառուցվածքը ասյահովում է նշված երկու ուղղություններով պոկման
հնարավորությունը և հաշիվ միևնույն ջրածնային ատոմի պրոտոնացման, ինչպես նաև ռեակցիայի աստիճանական ընթացքը։

քեակցիան տանևլով մեղմ պայմաններում մենք ի վիճակի ենք իրա<mark>կանացնել ձ</mark>եղքման միայն / աստիճանը և սլոկված երրորդային ամինի բնույթ<mark>ով զաղափար կաղմել պ</mark>ոկման ռեակցիայի 1,2-թե 1,4-քիմիզմով ընքանալու մասին։

ամոնիակային խմբերի մեջ եղած ոչ մեծ տարբերությունը էա<mark>կան նշանակություն չպ</mark>նտք ունենա ռեակցիայի ընթացրի վրա։

Ուսումնասիրման արդյունքներից պարզվեց, որ ռեակցիայի գերակչռող ուղղությունը հանդիսանում է 1,2-պոկումը (աղ. 1), երևում է նաև, որ ամոնիակային կոմպլեքսում պարունակվող ռադիկալները ունեն որոչակի աղդեցություն ռեակցիայի ուղղության վրաւ

Դիաժինները սինիեղված են դրականության մեջ հայտնի հղանակով (3, 4), տվյալները նրանց մասին զետեղված են աղյուսակ 2-ում։ Չորրորդայի<mark>ն ամոնիակային աղծրը ստ</mark>ացվ^ել են դիամինների և համապատասխան ալկիլ հալողենիդի փոխաղդեցությամբ։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

³ А. Т. Бабаян, Г М. Мкрян, И. Я. Зурабов, Изв. АН АрмССР (физ.-мат., естеств. науки), ІХ, 8, 25 (1956); А. Т. Бабаян, Ж. Г. Гегелян и М. Г. Инджикян, ЖОХ 31, 611 (1961). ² Я. Поспишек и Я. Траянек, Collect., 28, 463 (1963). ³ Я. Маршак и Р. Эпштейн, Bull. soc. chim. France, 952 (1953) ⁴ А. Т. Бабаян, Г. М. Мкрян и Н. Г. Вартанян, ДАН Армянской ССР, XIX, 3, 83 (1954); А. Т. Бабаян, Н. Г. Вартанян, ЖОХ, 26, 2789 (1956).