МИНЕРАЛОГИЯ

3. О. Чибухчян

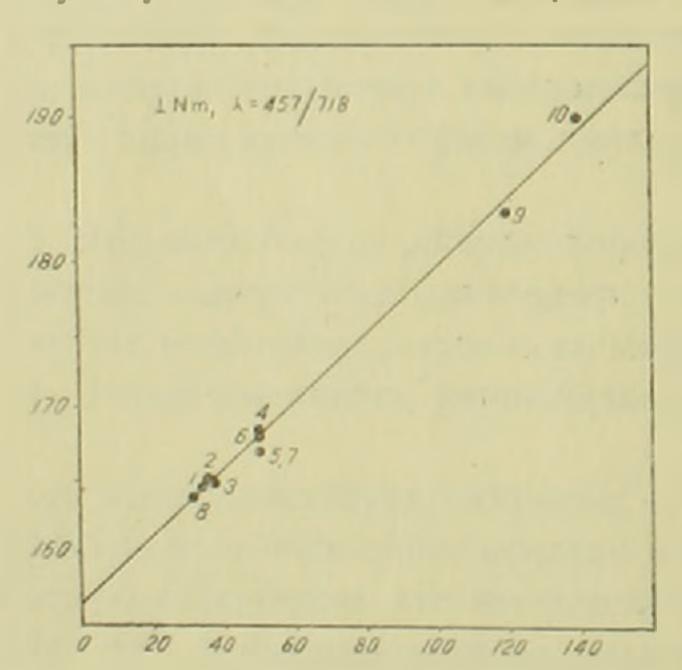
Об определении абсолютного возраста плагноклазов методом сравнительной дисперсии двупреломления

(Представлено академиком АН Армянской ССР С. С. Мкртчяном 29/1 1963)

Определение абсолютного возраста минералов и горных пород приобветает большое значение в практике геолого-петрографических исследоваші. Наиболее распространенными являются калий-аргоновый, рубидийтронциевый и др. методы. Все они основаны на использовании радиоакцивного распада элементов. а соответствующие изотопы определяются часс-спектральным анализом. Краткая характеристика этих методов датся в работе А. И. Тугаринова (1). В нашу задачу не входит разбор этих четодик и их применимость. Рассмитривается возможность приложения четода сравнительной дисперсии двупреломления к решению вопроса оппеделения абсолютного возраста минералов в шлифах горных пород чистоптическим путем.

Метод сравнительной дисперсии двупреломления, разработанный Е. А. музнецовым (2), выявил возможность определения химического состава инералов оптическим путем, основанным на сопоставлении силы двупреомления минералов одной группы с содержанием различных компоненюв, входящих в их состав.

При исследовании свявей «состав — дисперсия двупреломления» разичных минералов Е. А. Кузнецовым и автором настоящей статьи была
иявлена высокая чувствительность определения тех компонентов, котоне встречаются в небольших количествах в составе минералов. Это прино к выводу о возможности определения незначительных количеств арона в целях применения метода сравнительной дисперсии двупреломленя к определению абсолютного возраста минералов (3 в процессе раоны над биотитами Е. А. Кузнецов (3) пришел к выводу, что « зависиость между дисперсией двупреломления и элементами возрастных опревлений биотитов лунше выявляется, если сравинвать изменение дисперпрямо с калий аргоновым отношением».


Таким образом выясняется, что существуют ряды (соответствующие пределенным длинам волн), которые отражают непосредственно калинам возраст минерала.

Понытка применить выявленную закономерность и была предпринята на плагиоклазах. Исследования дали вполне положительные результаты, как в смысле точности определений, так и быстроты измерений.

Выбор плагиоклаза в качестве объекта исследований преследовал определенную цель. Как калиевые полевые шпаты (анортоклазы), так и биотиты являются одним из существенных, но далеко не во всех породах развитых, минералов. В этом смысле выбор плагиоклаза, который в качестве главной составной части участвует в сложении подавляющего большинства горных пород, позволяет применить этот метод в широких масштабах, а не ограничивать их количество небольшими группами пород.

Отношение, отражающее возраст плагиоклаза, улавливается в сечении $\pm Nm$ при длине реагируемой волны $\lambda = 457m\mu$ при стандартном светофильтре $\lambda = 718m\mu$. В нашем случае нельзя ничего определенного говорить о калий-аргоновом или каком-либо другом соотношении, поскольку за исходные данные брались пе результаты изотопного анализа, а только возраст анализированной породы. Важно лишь одно — существует рядкоторый отражает абсолютный возраст. В дальнейшем, видимо, можно будет путем эксперимента, сравнивая эти данные с результатами исследований изотопного анализа в масс-спектрометрической лаборатории, выяснить этот вопрос.

Переходя непосредственно к результатам наших исследований, можно констатировать довольно высокую чувствительность метода и соответствующую точность. На диаграмме (фиг. 1) видно, что максимальные от-

Фиг. 1. Диаграмма связи "дисперсия пвупреломления абсолютный возраст". По оси абсцисс возраст в млн. лет, по оси ординат—коэффициенты дисперсин

клонения исследованных эталонных образцов равны 4—5 млн. лет. От самого возраста ошибка составляет лишь 8% (для точек 5 и 7). Подобная неточность довольно незначительна, если учесть, что при калий аргоновом изотопном анализе точеность определений составляет ± 10%

В табл. 1 приводятся данные по эталонным образцам.

Образцы, взятые в качестве эталонных, не соответствуют тем, по которым непосредственно определялся возраст радиологический мегодом. Поскольку нас интересуют данные не содержаний кала Ага и др., а лишь возраст пород

то подобная замена образцов, взятых из того же интрузива, не могле существенно влиять на результаты наших исследований. В целях боль шей убежденности в правильности полученных данных в некоторых случаях из каждой породы бралось по два образца. Все это в определенной степени усредняет данные и полученная диаграмма связн

дисперсия двупреломления — абсолютный возраст вполне может

служить в практических работах.

Как видно из табл. 1, возраст отдельных пород колеблется в довольно значительных диапазонах. Усредненные данные, служащие отправными точками в наших исследованиях, це точно соответствуют «средним» значениям возраста интрузивов, а лишь несколько приближаются к ним. Так что наблюдаемый разброс точек на диаграмме (фиг. 1) отнюдь не свидетельствует о неточности и приближенности диаграммы.

			Τασ Λυμα Ι		
Ne Ne II/II	Номера	Место взятия образца	Данные ра- диологиче- ских иссле- дований в млн. лет	Средн. дан- ные в млн. лет	Лит. источ-
1	501,187	Анкаванский гранитоидный интрузив.	32-41	34	(+)
2	405/158	дайка гранодиорит порфира Ахавнадзорский интрузив, гранодио- рит	30-36	36	(*)
3	150/78	замзачиманский интрузив, порфиро- видный сиенито-гранит	31 41	37	(5,6)
4 .	410/158	Ахавнадзорский интрузив, гранодио-	48-52	50	(4)
5	362/148 421/160	Атарбекянский интрузив, гранодио-	48—52 47—52	50 50	(4) (4)
7 8	424/161 605	Суботанский интрузив, граноднорит	47—52	50 32*	(4)
9	20	Шнохский участок Шпох-Кохпского массива, эплит		120	(4)
10	8/5	Тавушский интрузив, граночнорит	140	140	(5,6)

Примечание: Эти давные получены автором статьи методом сравнительной лиспер-

Разработка диаграмм «дисперсия двупреломления—абсолютный возраст» для минералов нескольких групп имеет, как нам кажется, не только теоретическое, но и практическое значение, поскольку это позволяет контролировать полученные данные сразу по нескольким минералам полобно радиологическим методам (калий-аргоновый, рубидий-стронциевый др.).

Автор считает своим приятным долгом выразить глубокую благодарюсть Е. А. Кузнецову за ценные советы при выполнении настоящей раюты.

Институт геологических наук Акалемии наук Армянской ССР

ያ 2 ዓኑԲበኑ ከ ዓ 3 ሀ ኔ

Երկրեկման համեմառական գիսպերսիայի միջոցով պլագիոկլազների բացարծակ հասակի որոշման մեթողի մասին

Միներալները երկրեկման Համեմատական դիսպերսիայի մեթողով ուսումնասիրելի և Ա. կուղնեցովը և Հեղինակը (2) ի հայտ են բերել այն կոմպոնենտների որոշման բարձր զգայ

րացարձակ Հասակի որոշման մեզ (3)։ ման երկրեկման ռամեսատական դիսպերսիայի մե<mark>քիոպր «ծնարավոր է կիր</mark>առել նաև մինհրալներ,

Ե Ա Կուզնեցովը (3) բրիոտիտներն ուսումնասիրելիս պարզել է, որ դոլություն ունե, չարբեր (Համաատասխան որոշ ալիքային երկարություն), որոնք արագրոկլազների վրա, որը արտաշարբեր (Համատասխան հնարաբերությանը և գիտիտն է,
որ կարիությունը ինչպես եշտության, առնպես է, պարիումների արադ որոշման Հար.

JIHTEPATYPA-PPRILLER BREEF

А. И. Тугаринов, Геологу—в методах определения абсолютного возраста горных пород. Госгеолтехиздат, 1961. - Е. А. Кузнецов, Метод сравнительной дисперсии двупреломления (новый метод анализа химического состава кристаллических веществ). Госгеолтехиздат, М., 1962. ³ Е. А. Кузнецов, З. О. Чибухчин. Советская геология, 2, 1963. ⁴ Г. П. Багдасарян. Р. Х. Гука ян и др., Труды X сессии комиссии по определению абсолютного возраста геологических формаций, АН СССР, М.—Л., 1962. 3. О. Чибухчян, К вопросу о возможности определения абсолютного возраста калиевых полевых шпатов методом сравнительной дисперсии двупреломления, Госгеолтехиздат, Сб. докладов, М., 1963. ⁶ Р. Н. Абдуллаев, Докл. АН АзССР, т. 14, 3, 1958.