ФАРМАЦЕВТИЧЕСКАЯ ХИМИЯ

А. Л. Миджоян, академик АН Армянской ССР, О. Л. Миджоян и А. Н. Григорян

Исследование в области производных замещенных уксусных кислот

Сообщение XXII. Некоторые диалкиламиноалкиловые эфиры бензил-алкил и дибензилуксусных кислот

Настоящая работа является частью программы (1,2) исследований в области аминоэфиров замещенных уксусных кислот, предусматривающей изучение влияния на спазмолитическую активность изменения состава и строения аминоспиртовой части молекулы аминоэфиров бензил-алкил и дибензилуксусных кислот.

С этой целью синтезированы соединения следующей общей формулы:

Замещенные уксусные кислоты получались из соответствующих малоновых и ацетоуксусных эфиров. \$,\$ и а,\$-диметил-ү-диалкиламино-пропанолы синтезировались реакцией Манниха из метилэтилкетона и соответственно изобутилового альдегида. а,а-Диметил-ү-диалкиламино-пропанолы получены взаимодействием метил, \$-диалкиламиноэтил-кетонов с метилмагнийбромидом (3). Реакцией хлорангидридов указанных кислот и аминоспиртов в среде абс. бензола получены аминоэфиры, которые вместе с их основными физико-химическими константами и выходами сведены в табл. 1, 2, 3, 4, 5, 6, 7.

Предварительные фармакологические исследования хлоргидратов синтезированных соединений свидетельствуют о спазмолитическом и сосудорасширяющем действии этих соединений.

Экспериментальный анализ произведен сотрудниками аналитического отдела ИТОХ С. Н. Тонаканян и Р. А. Мегроян.

Экспериментальная часть. В качестве примера приводится получение а, в-диметил-у-диэтиламинопропилового эфира этилбензилуксусной кислоты.

К раствору 12 г хлорангидрида этил-бензилуксусной кислоты в 25 мл абсолютного бензола при охлаждении льдом и солью добавлялся

-				1			MI	Ro		Ан	а л и	3 B	1/0	
		0	Trem	a			0 11				ŀ	1	N	
	R	Выход в	Т. кип. в °С	Давление в жж	d ₄ ²⁰	n _{D} ²⁰	Вычислено	найдено	вычис-	найдено	вычис-	найдено	лено	найдено
	CH ₃ N-CH ₂ -CH ₂ -C- CH ₃ CH ₃ CH ₃	74,0	130-132	1	0,9681	1,4820	82,69	81,68	73,64	73,45	9.74	9,46	5,01	4,94
	C ₂ H ₅ N-CH ₂ -CH ₂ -C - C ₃ H ₅ CH ₃ CH ₃	70,0	133-135	1	0,9586	1,4850	91,93	91,32	74.75	74,93	10,13	10,08	4,59	4.80
	CH ₃ N-CH ₂ -C-CH ₂ - CH ₃ CH ₃	80,0	130132	1	0,9582	1.4810	82,69	82,35	73,64	73.43	9,74	9,90	5,01	5,00
	C ₂ H ₅ N-CH ₂ -C-CH ₂ - C ₂ H ₅ N-CH ₂ -C-CH ₃	78,0	124—125	0,5	0,9506	1,4800	91,93	91,28	74,75	74,47	10,13	10,04	4,59	4,51
	CH ₃ CH ₃		125-127	0,5	0,9586	1,4810	82,69	82,35	73,64	73,49	9,74	9,89	5,01	4.82
	C ₂ H ₅ N-CH ₂ -CH-CH- C ₂ H ₅ N-CH ₃ -CH ₃ CH ₃	65,0	123-130	0,5	0,9879	1.5110	91,93	92,62	74,75	74.56	10,13	9,78	4,59	4,92

			ie			MI	RD		Ан	а л н	3 B	0,0	
R	B 0/	Т. кип.				НО			C	H			N
	Выход 1	Т. кип. в °С	Давление в жж	d ₄ ²⁰	n 20	вычислено	найдено	вычис-	найдено	вычис-	найдено	вычис-	найдено
CH ₃ N-CH ₂ -CH ₂ -C CH ₃ CH ₃	70.0	136—138	1	0.9635	1.4895	87,317	87.371	74.23	74,30	9,96	9,73	4,85	4.81
CH ₂ C ₂ H ₃ N-CH ₂ C C ₃ H ₄ CH ₄ CH ₃	70.0	134—136	0,5	0.9733	1,4990	96,553	96,383	75.23	74,93	10,34	9.74	4,32	4,38
CH, N-CH ₂ C-CH, CH, CH,	84.2	125—126	0.5	0,9671	1.4860	87,317	86,515	74,23	74,93	9,96	10,01	4.91	4,81
CH, C ₂ H, N CH ₂ —C—CH ₂ — C ₄ H, CH,	75.0	138 — 140	0,5	0.9618	1.4880	96,553	95.698	75,23	75,37	10.34	10,24	4,58	4.33
CH N-CH ₂ -CHCH- CH, CH, CH,	85.0	125 – 126	0.5	0,9636	1.4865	87,317	88.420	74.23	74,48	9,96	10.20	4.92	4,81
CH, N-CH ₂ -CHCH- CH,	85.0	141—142	0.5	0.9512	1.4840	96.553	96.090	75.23	75.34	10.34	10,44	4,24	4.33

		Т. кип. в °С	N. N.			MF	RD		Ана	ли	3 n	0/0	
	B %		e B			лено		C		Н		1	٧
R	Выход		Давление	d ₄ ²⁰	n _D ²⁰	Вычисле	найдено	пычис-	найдено	яычис-	найдено	вычис-	пайдено
CH ₃ N-CH ₂ -CH ₂ -C- CH ₃ CH ₃ CH ₃	62,0	140—143	2	0,9622	1,4710	91,834	88,72	74,75	74,45	10,16	9,97	4.59	4.82
C_2H_5 $N-CH_2-CH_2-C C_2H_5$ CH_3 CH_3 CH_3	65,8	131—134	0,5	0,9683	1,4815	101,07	98,00	75.07	76,42	10.51	10,04	4,50	4.48
CH ₃ N-CH ₂ -C-CH ₂ - CH ₃ CH ₃	75,0	150—153	1	0,9570	1,4670	91,834	88,56	74,75	74,68	10,16	10,49	4,59	5,02
C ₂ H ₅ N-CH ₂ -C-CH ₂ - C ₂ H ₅ N-CH ₂ -C-CH ₂ - C ₁ CH ₃	81,8	158—160	1	0,9519	1,4660	101,07	97,022	75,07	74,78	10,51	10,42	4,50	4,32
CH ₃ N-CH ₂ -CH-CH- CH ₃ I CH ₃ CH ₃	84,3	138—140	1	0,9562	1,4670	91,834	88,63	74.75	74,45	10,16	10,01	4,59	4.54
C ₂ H ₅ N-CH ₂ -CH-CH- C ₂ H ₅ CH ₃ CH ₃	83,7	133—135	0,5	0,9528	1,4650	101,070	96.76	75,07	75,62	10,51	10,65	4,50	4,60

	- PO					ME	CD C		Ан	а л и	3 B	0/0	
	0/0	d y a	Давление в ж.и			01		C /			H N		
R	Выход в	Выход в °/о Температура кипения в °С		d ₄ ²⁰	n _D ²⁰	Вычислено	пандено	вычис-	нандено	вычи с-	наидено	пычис-	наидено
CH ₃ N-CH ₂ -CH ₂ -C- CH ₃ CH ₃ CH ₃	77,0	139—141	2	0,9870	1,4870	105,78	102.06	75,23	76,09	10,34	9,95	4,38	4,08
C_2H_5 $N-CH_2-CH_2-C C_2H_5$ C_2H_5 C_2H_5 C_2H_5 C_3 C_4 C_4 C_5 C_7 C_8	78,0	166—168	2	0,9738	1,4780	105,78	102,06	76,05	76,29	10,66	10,89	4,03	4,18
CH ₃ N- CH ₂ -C-CH ₂ - CH ₃ CH ₃	79,0	162-163	2	0,9545	1,4660	96,55	92,69	75,23	75,65	10,34	10.57	4.38	4.42
C ₂ H ₅ N-CH ₂ -C-CH ₂ - C ₂ H ₅ N-CH ₂ -C-CH ₂ - C ₁ CH ₃	81.0	166—167	2	0,9474	1,4662	105.78	101,63	76.05	75,94	10,66	10,80	4.03	
CH ₃ N-CH ₂ -CH-CH-CH ₃ CH ₃ CH ₃	78,0	152-153	2	0,9630	1,4820	96,55	94,57	75,23	75,09	10.34	10.30	4.38	4.17
CH ₃ N-CH ₂ -CH-CH- CH ₃ CH ₃ CH ₃ CH ₄ CH ₂ CH-CH- CH- CH ₂ CH ₃ CH ₃ CH ₃	84,0	156157	2	0,9529	1,4670	105.78	101.19	76,05	75.99	10,66	10.67	4,03	4.36

				1 -1			MF	D		Ана	и л и	3 В	0/0	
	R		ry p	a)			ОН				F	1	N	V
	R	Выход в	Температура кипения в °С	Давление в жж	d ₄ ²⁰	n _D ²⁰	вычислено	найдено	вычис-	пайлено	вычис-	найдено	лено	найдено
CH	N-CH,-CH,-C-CH,	78.0	164—166	2	0.9414	1,4815	101,17	100,90	75.97	75.79	10,51	10,38	4.20	4.07
C ₂ H	CH ₃ N-CH ₂ -CH ₂ -C- CH ₃	69.0	155—157	1	0.9451	1,4868	110,30	109,98	76,45	76.23	10,80	10.44	3.87	3.98
CH	CH ₃ N-CH ₂ -C-CH ₂ - CH ₃	80.0	162—163	2	0.9335	1,4782	101,17	101,16	75,97	75,76	10,51	10.37	4,20	4.03
	CH ₃ N-CH ₂ -C-CH ₃ CH ₃	76.0	163	1	0,9282	1.4782	110.30	110.21	76,45	76.50	10,80	10,74	3,87	
CH ₁	N-CH ₂ -CH-CH- CH ₃ CH ₃	78,0	167—168	1-2	0.9348	1.4800	101,17	101,34	75,97	75,35	10,51	10.50	4,20	4,20
C ₂ H	N-CH ₂ -CH-CH- CH ₃ CH ₃ N-CH ₃ -CH-CH- CH ₃ CH ₃	74.0	164 — 165	1	0,9287	1.4780	110,30	110.20	76.45	76.34	10,80	10.50	4,20	4.11

					0								
		_e O				M	RD		Ана	л и з	3 B	0/0	
	. 0	тура в С	o l			10		C		H		1	V
R	Выход 0/	Температ	Давление в жм	d ₄ ²⁰	n ²⁰ _D	вычислено	наидено	лено	найдено	пычис-	найдено	лено	наидено
CH ₃ N-CH ₂ -CH ₂ -C-CH ₃ CH ₃	78,0	155—157	2	0,9423	1,4730	101,17	99,28	75,97	75,90	10,51	10,23	4,20	4,32
C ₂ H ₅ N-CH ₂ -CH ₂ -C- C ₂ H ₅ N-CH ₂ -CH ₂ -C- C ₁ CH ₃	76,0	153—155	1	0,9566	1,4770	110,40	106,79	76,45	76,39	10,80	10,49	3,87	4.11
CH, N-CH, CH, CH, CH, CH, CH, CH, CH, CH, CH,	79,5	180—182	2	0,9390	1,4640	101,17	98,36	75,97	75,90	10,51	10,66	4,20	3,98
C ₂ H ₅ N-CH ₂ -C-CH ₂ -CH ₃ C ₂ H ₅ N-CH ₂ -C-CH ₂ -CH ₃	78,0	184-185	2	0,9319	1,4650	110,40	107,25	76,45	76,60		11,16	3,87	
CH ₃ N-CH ₂ -CH-CH- CH ₃ CH ₃ CH ₃	75,0	174—176	2	0,9412	1,4672	101,17	98,35	75,97	75,49	10,51	10,42	4,20	4.25
CH ₃ N-CH ₂ -CH-CH- CH ₃ CH ₃ CH ₃ CH ₃ CH ₄ CH ₂ CH-CH- C ₂ H ₅ N-CH ₂ -CH-CH- CH ₃ CH ₃ CH ₃	77,4	178—180	2	0,9249	1,4670	110,40	108,46	76,45	76,24	10,80	10,44	3,87	3,99

$$C_6H_5-CH_2$$
 $CH-C-O-R$
 $C_6H_5-CH_2$

		20				MF	SD (1)		Ан	а л н	3 B	3 B V/0		
	0/0	Typ.	e e			-01		. 0		Н		N	V	
R	Выход в	Температура кипения в °С	Давление в мм	d ₄ ²⁰	n _D ²⁰	вычислено	пайдено	пынис-	найлено	вычис-	найдено	вычис-	найлено	
CH ₃ N-CH ₂ -C- CH ₃ CH ₃ CH ₃	70,0	188 - 150	1	1.037	1.5150	166.80	102.81	78.21	78.16	8.78	8.64	3.96	4.25	
C_2H_5 $N-CH_2-CH_2-C C_2H_3$ C_2H_3 C_2H_3 C_2H_3	72.0	190 – 192	1	1.0421	1,5280	113.04	112.84	78.71	78.70	9,18	8.96	3.67	3,23	
CH ₃ N-CH ₂ -C-CH CH ₃ CH ₃	74.3	194 — 195	1	1,0104	1,5000	106.80	104.06	78.21	78.37	8.78	9,02	3.96	3,89	
C ₂ H ₅	75.6	198 200	1	1 007	1.5010	113,04	111.76	78,74	78,72	9.18	9.11	3.67	3,49	
CH ₃ -CH ₂ -CH-CH- CH ₃ CH ₃	77.2	196—197	1	1,0005	1.5090	106,80	105.57	78.21	78.04	8.78	8,98	3,96	4.28	
CH ₃ CH ₃ CH ₄ CH ₅ CH ₆ CH ₇	74,0	198 – 199	1	1,009	1.5055	113,04	112.06	78,74	78,76	9.18	8.8	3.67	3.71	

раствор 15 г 2,3-диметил-7-диэтиламинопропанола в 25 мл абсолютного бензола. Реакционная смесь кипятилась в течение 6 часов, затем обрабатывалась насыщенным раствором углекислого калия и экстрагировалась бензолом. Бензольный экстракт высушивался над обезвоженным сульфатом натрия. Растворитель отгонялся, а остаток перегонялся в вакууме. Т. кипения 141—142°/0,5 мм.

Выход 16 г 85% от теоретического количества.

B ы в о д ы. С целью изучения фармакологической активности, получено и охарактеризовано 42 неописанных в литературе α , β , α , α и β , β -диметил- γ -диалкиламинопропиловых эфира, дибензил- и алкил, бензилуксусных кислот.

Институт тонкой органической химии Академии наук Армянской ССР

u. L. ՄՆՋՈՅԱՆ, Z. L. ՄՆՋՈՅԱՆ ԵՎ Ա. Ն. ԳՐԻԳՈՐՅԱՆ

Հաղորդում XXII. Քենզիլ-ալկիլ և դիբենզիլըացախաթթուների մի քանի դիալկիլամինոալկիլ էսթերները

Ստացված 42 ամինոէսներները, որոնց մի քանի է երկա-քիմիական կրանությունը իրև ընտակում, ան ներվել են համապատասխան ննանր և իրև բարանությունը և համապատասխան ննանրի և բարանությունը և համապատասխան ննանր և հանակատասխան ների և բարանությունը և համապատասխան ների և հանակատասխան ների և հանական և հանակատասխան ների և հանական և հա

Ֆարմակոլոգիական հախհական ուսումնասիրությունների ավարհեր առահ այս մասին, որ ստացված ամինոէսթերներն ոժտմած են հատկատես արյունատար անոթ-Հերը լայնացնող հատվությամբ:

Մանրամասն ուսումեասիրությունների տվյայները կչաղորդվեն առանձին։

ЛИТЕРАТУРА— ЧРИЧИВОТРОЗПЕТ

¹ А. Л. Миджоян, О. Л. Миджоян, ДАН АрмССР, ХХ, 1, 17 (1955). ² А. Л. Миджоян, Г. Л. Папаян, ДАН АрмССР, ХХ, 2, 55 (1955). ³ А. Л. Миджоян, В. Т. Африкян, А. Н. Оганесян, ДАН АрмССР, ХХІV, З, 105 (1957).