IXXXI

1960

3

ФИЗИЧЕСКАЯ ХИМИЯ

Н. М. Бейлерян и О. А. Чалтыкян

Кинетика реакций персульфата калия с аминами в водных растворах

VIII. Влияние природы и строения аминов на кинетику
[Представлено академиком АН Армянской ССР Г. Х. Бунятяном 8. VI 1960]

Из данных исследования кинетики реакций вторичных аминов с перекисью бензоила в эфирных растворах (1,4) одним из нас было заключено, что с повышением основности амина скорость реакции с перекисью бензоила возрастает. Эта закономерность качественно хорошо соблюдается в случае сильно-основных алифатических вторичных аминов, вступающих в реакцию с перекисью бензоила, по-видимому, не по радикальному механизму.

Реакции весьма слабо-основных дифенил- и дибензиламинов осложняются, природа конечных стабильных продуктов иная и они отклоняются от упомянутой закономерности. По всем кинетическим и иным признакам последние амины, а также диметил-анилин (5) вступают в реакцию с перекисью бензоила по радикальному механизму.

Дальнейшие, как наши, так и других, исследования (6) показали, что, по-видимому, трудно говорить об исключительно одном механизме для одного и того же амина. Амино-перекисный промежуточный комплекс может распадаться параллельно и по радикальному и по ионному механизму. В случае сильно-основных аминов доминирует перадикальный (ионный) механизм, а в случае весьма слабо-основных аминов—радикальный механизм.

Помимо природы и строения амина на конкуренцию двух механизмов может влиять также среда (растворитель) и наличие в растворе различных веществ—кислот, оснований, ионов переменной валентности (7-9).

Во многих отношениях кинетическая картина реакций ПБ-амины в органических растворах и персульфат-амины в водных растворах оказалась сходной. Поэтому имел смысл установить характер влияния природы и строения аминов на реакции последних с персульфатом в водных растворах, так как такое исследование может дать более богатый материал.

В настоящей статье сведены результаты исследования кинетики реакций персульфата калия с группой аминов различной природы и строения в водных растворах. Так как в результате этих реакций образуется соль амина (за счет бисульфат-иона от персульфата) при наличии еще не прореагировавшего амина, то растворы автоматически буферируются во время реакции. Все опыты поставлены в строго одинаковых условиях при начальных концентрациях реагентов $|P|_0 = [A]_0 = 0.025$ моль/л. Методика работы описана ранее (9).

В табл. 1 сведены результаты определения скоростей реакций 12 аминов с персульфатом калия при 20°С.

В таблице приведены значения начальной скорости реакций $W_{\rm 0}$ (при t=0) по нашим данным и основность амина в отрицательных логарифмах константы диссоциации по литературным данным (10).

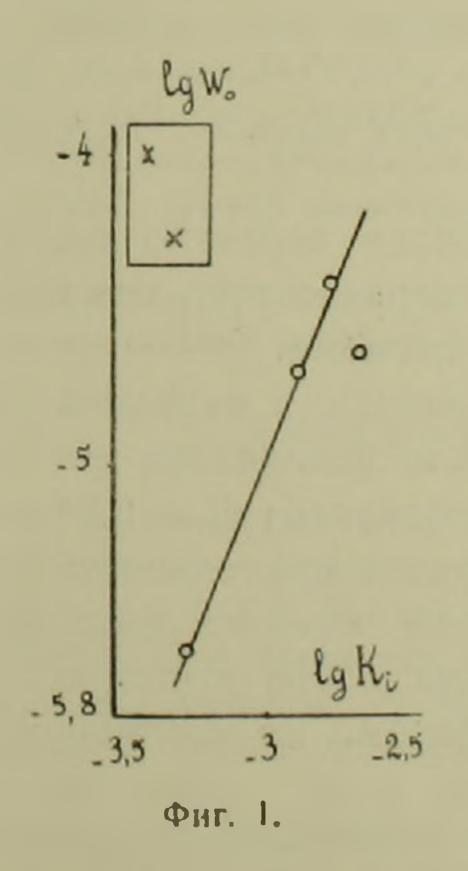
Таблица 1

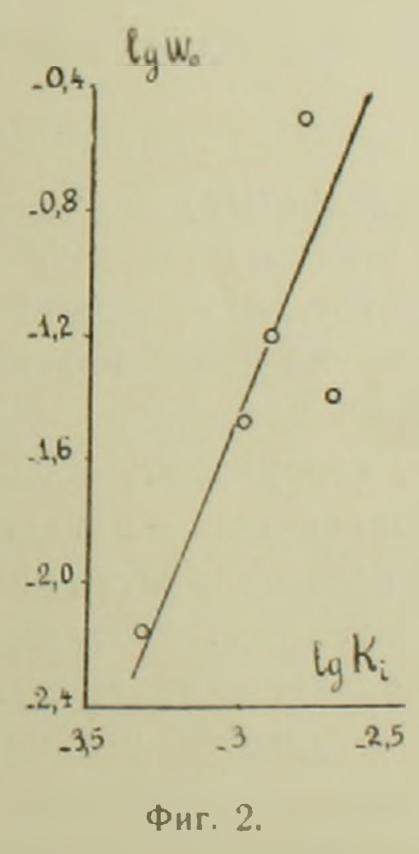
							Тиолица 1
Название амина	Формула	Порядок	W ₀ · 10 ⁵ В литр моль · мин.	log W _o	E (актив.) ккал/м.	pKi	Влияние КОН на скорость реакции при [КОН]=0,76 м/л
Диметил-	N CH,—H—CH ₃	Второй	5.30	-4,28	не опр.	3,29	Не изучено
	H C ₂ H ₅ —N—C ₂ H ₅	Второй	2.07	-4,68	16.8	2.90	W~[KOH]; по- рядок по [А]и[Р] не мен.
Ди-Н-бу- тиламин	$C_4H_9-N-C_4H_9$	Второй	2.34	4,63	не опр.	2,70	
Пиперидин	NH	Второй	3.80	-4.4 2		2,80	W~[KOH] [A] [P]
Этиламин	C ₂ H ₅ NH ₂	Второй	0.25	-5,60	21.5	3.25	Не изучено
Триметил- амин	$(CH_3)_3N$	Сложный	_		~14.2	4.28	Самоускорение
Триэтил- амин	$(C_2H_5)_3N$	Второй	9,50	245-6	16.0	4.28	Самоускорение
Ди-трет-бу- тиламин	$(CH_3)_3CN-C(CH_3)_3$	Сложный	9,00				Не изучено
Моноэтано- ламин	HOC ₂ H ₄ -NH ₂	Реакция не протекает				4,56	С 35° идет с са-
Диэтанол- амин	(HOC ₂ H ₄) ₂ NH	Второй	4,50		21	5.12	моускорением Самоускоряется
Триэтанол-	(HOC ₂ H ₄) ₃ N	Сложный				6,23	Самоускорение
Пиридин	N		ция не	протек	ает	9	до 40° реакция не протекает

При рассмотрении данных 3-го и 8-го столбцов таблицы, во-первых, бросается в глаза то, что амины в основном делятся на две категории. У первой категории аминов порядок скорости реакции с персульфатом (а также с ПБ) строго второй и он не меняется в при-

сутствии сильной щелочи, а только ускоряется пропорционально концентрации последней. У второй категории аминов порядок скорости сложный или становится сложным при добавлении сильной щелочи. Ко второй категории аминов относятся третичные амины и аминоспирты, а также ди-трет-бутиламин. Очевидо, что по механизму реакции амины названных двух категорий отличаются друг от друга. Амины второй категории, будучи более слабыми основаниями, несмотря на это сравнительно быстро реагируют с персульфатом. Из этого следует, что они подобно арил- и арилалкиламинам реагируют с перекисями преимущественно по радикальному механизму.

Влияние основности амина на скорость реакции с персульфатом (и другими перекисями) больше сказывается на аминах первой категории. Количественной мерой основности аминов (плотности электронного облака у атома азота) при постоянной температуре является log K_i, где K_i константа ионизации амина как основания:


$$R_2NH + H_2O = R_2NH_2^+ + OH$$
 (1)


Согласно Хаммету (11) при однотипных реакциях членов гомологического ряда (в данном случае аминов) с одним и тем же веществом (например, перекисью) должна быть справедливой зависимость

$$logK = \rho logK_i + A. \tag{2}$$

где К— константа скорости реакции, К_г— константа диссоциации амина как основания, с и А— постоянные для данного типа реакций.

На фиг. 1 приведен график в координатах logW—logK, для реакции персульфата с аминами первой категории и некоторыми аминами второй категории.

На фиг. 1 кружочки относятся к аминам первой, а крестики аминам второй категории. Интересно, что диметиламин также попадает к аминам второй категории.

С целью сравнения, на фиг. 2 приведен такой же график для реакции перекиси бензоила с диизобутил-, диэтил-, дипропил-, ди--H-бутиламинами и пиперидином в координатах $logK - logK_I$ по данным работ (1) и (3).

Из фиг. 1 и 2 ясно, что в случае реакций аминов первой категории как с персульфатом калия, так и с перекисью бензоила довольно хорошо соблюдается уравнение (2). Амины второй категории—дитретичный бутиламии (отмечен крестиком), третичные амины, аминоспирты (на графике не отмечены) резко отклоняются от зависимости (2).

Как из данных столбцов 7 и 4 видно, все амины второй категории, в особенности аминоспирты, являются значительно более слабыми основаниями, чем амины первой категории. Исключение составляет диметиламин, причину отклонения которого от зависимости (2) покатрудно объяснить.

Из данных тех же столбцов видно, что в пределах одной категории аминов скорость реакции возрастает от первичных к третичным аминам. Видимо экранирование атома азота водородными атомами препятствует либо образованию амино-перекисного комплекса, либо распаду этого комплекса на промежуточные или конечные продукты реакции. Если верно первое предположение, то это значит, что амино-перекисный комплекс образуется путем непосредственной связи атома азота с перекисным кислородом персульфата, а не через водородную связь (12). Второе предположение равносильно тому, что амино-перекисный комплекс через водородную связь более устойчив в случае первичных аминов. Если верно предположение образования амино-пе-

рекисного комплекса через водородную связь N-H...O..., то не понятна большая скорость реакций третичных аминов с персульфатом (и др. перекисями).

Из этих рассуждений следует, что более вероятно предположение о затруднении образования амино-перекисного комплекса при экранировании атома азота водородными атомами.

Весьма характерно поведение пиперидина и пиридина по отношению к персульфату калия. В гетероцикле пиперидина нет двойных связей, пиперидин—довольно сильное основание ($pK_i = 2,8$), скорость реакции с персульфатом большая и пиперидин принадлежит к аминам первой категории. В гетероцикле пиридина имеются двойные связи, стабилизирующие молекулу, пиридин весьма слабое основание ($pK_i = 9$) и он не вступает в реакцию с персульфатом. по крайней мере, до 40° C, а также с перекисью бензоила (13).

Выводы. 1. По кинетике реакции с персульфатом (и перекисью бензоила) амины можно делить на две основые категории.

2. Реакции первой категории (сильно-основных) аминов с персульфатом и перекисью бензоила удовлетворяют функции Хаммета.

- 3. Реакции аминов второй категории (слабо-основные) не удовлетворяют функции Хаммета. Их реакции сложного порядка и механизм другой.
- 4. Из данной категории аминов первичные амины наименее реакционноспособны по отношению к перекисям. Предположено, что причина этого—экранирование атома азота водородными атомами и затруднение образования промежуточного амин-перекисного комплекса.
- 5. В гетероциклическом амине-пиридине наличие двойных связей в гетероцикле делает молекулу не реакционноспособной по отношению к перекисям.

Ереванский государственный университет

Ն. Մ. ԲԵՅԼԵՐՅԱՆ և Հ. Հ. ՉԱԼԹԻԿՅԱՆ

Հրային լուծույթներում կալիումի պերսուլֆաո-ամիններ ռեակցիաների կիներիկան

VIII. Ամինների բնույթի ու կառույցի ազդեցությունը կինետիկայի վրա

- 1. Պերսուլֆատի և րենղոիլ պերօքսիդի չետ ռեակցիայի կինետիկայով ամինները կարկի է րաժանել 2 հիմնական խմբերի:
- 2. Առաջին (ուժեղ հիմնային) խմբի ամինների ռեակցիաները պերսուլֆատի և բենղոիլ պերօքսիդի հետ բավարարում են Համմետի ֆունկցիային.

որտեղ՝ K-ն ռեակցիայի արադության հաստատունն է Ki-ն ամինի հիմնային դիսոցման հաստատունն է, իսկ թ և A-ն տվյալ տիպի ռեակցիայի համար հաստատուններ են։

3. Երկրորդ (Թույլ-հիմնային) խմբի ամինների ռեակցիաները չեն բավարարում։

- հանսույր է։ գերարտնումը է ձևագրի տասղորևով ը տղիր-արևօճորմ իսղանենս աստճարտնու մգվաորմրրևի ընտաղաղը աղբրափաճևր է։ Օրխամեկագ է՝ սև մետ առաջասն տմսաի առողի 1. ջվյան խղեր աղիրըրևից աստչրայիր աղիրչըևի սբակցուրանությունը պերօճ-
- 5. Հետերոցիկլիկ ամինի՝ պիրիդիի մոլեկուլի մեջ կրկնակի կապերի առկայությունը

ЛИТЕРАТУРА— ԳՐԱԿԱՆՈՒԹՅՈՒՆ

1 О. А. Чалтыкян, Известия Гос. университета АрмССР, 5, 253 (1930). ² О. А. Чалтыкян, Сборник "Вопросы химической кинетики, катализа и реакционной способности", Изд. АН СССР, Москва, 1955, стр. 354. ³ О. А. Чалтыкян, Е. Н. Атанесян, А. А. Сарксян. Г. А. Мармарян, Д. С. Гайбакян, ЖФХ 32, 2601 (1958). ⁴ О. А. Чалтыкян, Е. Н. Атанесян, Н. М. Бейлерян, Г. А. Мармарян, ЖФХ 33, 36 (1959). ⁵ Л. Хорнер, Е. Швенк, Angew. Chemic 61. 411 (1949). ⁶ М. Имото и С. Шое, Ј. Роју. Sci. 15, 485, (1955). ⁷ О. А. Чалтыкян, Е. Н. Атанесян, А. С. Сарксян, ДАН АрмССР, 15, (2), 41 (1952). ⁸ О. А. Чалтыкян, Е. Н. Атанесян, Труды Ереван ун-та, 36, 29 (1952). ⁹ О. А. Чалтыкян, Н. М. Бейлерян, Изв. АН АрмССР (серия химическая), 9, 153 (1958). ¹⁰ Ландольт, Tabellen, Hw. II, 1120, Eg. I, 648, Eg. II b 1078. ¹¹ Л. П. Хамметт, Rhysical Organic Chemistry, N. Y. 1940. ⁴² Я. К. Сыркин, И. М. Моисеев, Успехи химин, 29, 425 (1960). ¹³ Л. Хормер и Е. Швенк, Апп. 566, 69 (1950).