ФАРМАЦЕВТИЧЕСКАЯ ХИМИЯ

А. Л. Миджоян, академик АН Армянской ССР, О. Л. Миджоян и Э. Р. Багдасарян

Исследование в области производных фурана

Сообщение XXII: Некоторые диалкиламиноэтиловые эфиры фурив алкил. фурил п-алкоксифенил карбинолов

[Представлено 12.111 1959]

В одяом из предыдущих сообщений (1) были описаны некоторые аминоэфиры фурилалкил, фуриларил карбинолов и данные предварительных фармакологических исследований их оксалатов.

В дальнейшем при более детальном изучения, проводимом праводимом праводимом праводимом праводимом отделе нашего института, выяснилось, что четвертвичные аммониевые соли этих аминоэфиров, в незначительных дозах, снимают экспериментальный бронхоспазм, вызванный прозерином: так, например, нодметилат диэтиламиноэтилового эфира фурилбутил карбинола в дозе 0,1 мг/кг веса полностью снимает бронхоспазм, вызванный прозерином.

Это обстоятельство и послужно основой для дальнейшего развития синтеза новых аминоэфиров фурилалкил, арил карбинолов, которые описываются в настоящей статье и относятся к инжеследующей общей формуле:

где

$$R=IC_3H_7$$
; C_4H_9 ; iC_5H_{11} , $H-C_5-H_{11}$, $R-O$
 $R''=CH_9$, C_8H_5 , C_9H_7 , C_4H_9 , C_5H_{11}
 $R'=CH_9$, C_9H_9

Аминоэфиры были получены взаимодействием соответствующих аминхлоридов и фурилалкил, арил карбинолов в присутствии щелочных конденсирующих агентов.

Необходимые фурилалкил карбинолы получались уже ранее описанным методом по реакции Гриньяра, а фурилалкоксифенил карби-

	0/0	-77-	0					MRD		Анализ в °/о			
R	8	epa	e	M	Общая	d ₄ ²⁰	n ₂₀	5	ОНа	C			
	Выход	Температу- ра кипения п °С	ра китени п С Ланление В м.и		формула		"D	вычис-	найдено	вычнсяено	найдено	вычислено	найдено
CH. CH,	65.0	73—75	10	140,2	C,H,2O,	1,0311	1,474	39.18	38,21	68,57	68,53	4,57	8,35
CH, CH-CH, CH,	72,7	80 82	8	154,2	C,H,O	1,0073	1,476	43,79	43,18	70,12	70,40	9,09	9,11
CH. CH-CH,-CH,	64,7	84-87	1	168,2	C ₁₀ H ₁₀ O ₂	0,9710	1,470	49,10	48,34	71,42	71,43	9,52	9,80
CH,-CH,-CH,-CH,	58.0	103 - 108	4	168,2	C,0H,00	0,9834	1.458	48,41	46.68	71,42	71,61	9,52	9,79

5H11 7	H, 8	H, S	H _s	H, 7	77		
77.8	89.2	94.2	85,0	76,2	Выход в %		
112-114	102-104	110-112	98-100	2	Температур плавления	H .:	
260,3	246.3	232.3	218,3	204,2	X		
C,,H2,O,	C15H11O3	C,,H,,O,	C,2H,10,	C,,H,,O,	Формула		
73,84	73,17	72,41	71,55	70,58	пычислено	0	
73,69	72,98	72,54	71,30	70,63	пайдено	AHAAH	
7,69	7,31	6,89	6,42	5.88	вычислено	3 n %	
7,59	7,30	7,14	6,63	5,91	найзено	7	

а)-жидкость при переговке разлагается.

E 5	5 5	CH					
-CH2-CH2-CH2	,-CH,-CH,						
CH, 80,5	83.0	80.4	Boxon n */a				
180-185	70-72	60-62	Температура ки- пения, пазвления в °С				
0 0	0.51	1	Лапление и мм				
258,3	230,3	202,2 C	3				
C,,H,,O,	C,,H,,O,	CaHaO,					
73,77	72,22	71,28	имчислено >				
73,01	72,10	71,19	изйлено за ж				
6,97	6.00	1,98	BIMARICHERIO				
7,05	5,35	5,27	найлено ==				

			a C		MRD		245	M	MRD	
R	R'	Выход в %	Температур кипения в	Температура кипения в °С Давление в м.		d ²⁰	nD	вычислено	нійдено	
iC,H,	CH,	63,1	75 - 78	1	211,3	0,9460	1,4579	61,71	50,93	
iC ₃ H ₇	C ₂ H ₅	62,5	88-91	1	239,3	0,9746	1,4559	70,94	70,35	
iC ₄ H ₉	CH ₃	52.7	89 – 94	1	225,3	0,9445	1,461	66,32	65,46	
IC ₄ H ₉	C ₂ H ₅	65.4	97 – 102		253,4	0,9379	1,4605	75,56	74,35	
iC ₅ H ₁₁	CH,	57.3	105 - 109	1	239,3	0,9342	1,4610	70,94	70,60	
iC ₅ H ₁₁	C ₂ H ₅	78,4	115 120	1	267,4	0 9197	1,4595	80,18	79.56	
H-C5H11	CH ₃	57,6	120—123	1	239,3	0,9244	1,4600	70,94	70,91	
HC,H,	C ₂ H ₅	72.0	134-138	1	267,4	0,9179	1,4610	80,18	74.94	

		Ан	али	3 B	Температура плавления солей в С					
			H		N			-		
Обіцая формула	вычислено	найдено	пычислено		вычислено		ОКСАЛИТЫ	нодметилать	нодэтилаты	
C12H21O2N	68,24	68,06	9,95	9,99	6,63	6,87	104 - 106	106-108	_	
C14H25O2N	70,29	70,04	10,45	10,16	5,85	5,98	91-83	182 - 184	205 - 207	
C13H23O2N	69,33	69,14	10,22	9,95	6.22	6,10		146 148	112-114	
C15H27O2N	71,14	70,95	10,67	10,87	5,53	5,42	78 - 80		73-75	
C14H25O2N								130 - 132		
C161120O.N	71,90	72,02	10,86	10,93	5,24	5,10	-	243 – 245	208-2.0	
C14H25O2N	70,29	70,41	10,46	10,31	5,85	6,00	107109	44	_	
C ₁₈ H ₂₈ O ₂ N	71,91	72.02	10,86	10,91	5,24	5,50	-	258 - 60	254 - 256	

							Анали	3 B º/o			Температур	а плавления
	0.0				C .	Н		3	N	Солен	нС	
	M	Общан формула	Вычис	найдено	лено	найдено	вычис-	найдено	нодметняат	нодътнаст		
CH,	CH,	71,6	275.4	C, H, O, N	69,81	70,02	7,63	7,49	5,09	4,85	124-125	95-96
CH,	C,H,	60,6	303.4	C, H, O, N	71,28	71,39	8,25	8,30	4,62	4,52	-	
C.H.	CH,	61,3	289,4	C,H,O,N	70,58	70,67	7,95	8,12	4,84	5,03	138-140	81-82
C.H.	C,H,	65,0	317.4	C, H, O, N	71,92	72,28	8,51	8,75	4,41	4,64	-	
C,11,	CH,	63,0	303,4	C, H, O, N	71,28	71,19	8,25	9,15	4,62	4,35	-	
C,H,	CaHs	81,6	331,5	C,H,ON	72,50	72,34	8,76	8,84	4.22	4,50		-
C.H.	CH,	60,1	317,4	C, H, O, N	52,29*	52,76	6,65	6.79	2,93	2,82	110-112	
C ₄ H ₄	C.H.	66,0	345,5	C _H H _M O _N N	73,04	72,92	8,97	8,84	4,05	4,24	132 134	-
C ₆ H ₁₁	CH,	75,5	331,5	C,H,O,N	72,50	72,37	8,76	8,82	4,22	4,08	85 – 87	
C ₅ H ₁₁	C,H,	70,0	359,5	C, H,,O,N	73,53	73,52	9,19	9,36	3,89	3,66		

⁻ Данные анализов нодметилата.

нолы восстановлением соответствующих кетонов с помощью цинковог пыли в спиртово-щелочной среде

Синтез п-алкоксифенилфурил кетонов был осуществлен по реакции фриделя-Крафтса по аналогии получения п-этоксифенилфурил кетона (2).

Диалкиламиноэтиловые эфиры п-алкоксифенилфурил карбинолов, которые были получены взаимодействием соответствующих диалкиламиноэтилхлоридов и п-алкоксифенилфурил карбинолов в присутствии металлического натрия, являются густыми маслообразными жидкостями, разлагающимися при перегонке, поэтому их очистка проводилась через соответствующие оксалаты.

Некоторые физико-химические константы полученных соединений приведены в табл. 1, 2, 3, 4 и 5.

Данные фармакологических исследований будут опубликованы отдельно.

Экспериментальная часть. Изопропил фурил карбинол. — Получение изопропилфурил карбинола осуществлено по способу синтеза н-пропилфурил карбинола (3) из бромистого изопропила и фурфурола. Температура кипения 73-75/10 мм. Выход 71.40/0 от теории.

Остальные алкил фурил карбинолы были получены этим же способом, некоторые физико-химические константы их приведены в табл. 1.

п-Пропоксифенилфурил кетон. К охлажденному льдом и солью раствору 42 г (0,32 моля) хлорангидрида фуранкарбоновой кислоты, 400 мл абсолютного бензола и 42 г (0,30 моля) пропоксибензола было прибавлено 42 г (0,30 моля) треххлористого алюминия в течение одного часа при непрерывном перемешивании смеси.

После добавления продолжалось перемешивание с охлаждением еще в течение 3 часов, затем смесь была оставлена на ночь при комнатной температуре, добавлено 100—120 г льда. Выделившийся при этом верхний слой отделялся, водный экстрагировался несколько раз бензолом. Соединенные бензольные слои промывались водой, высущивались сульфатом натрия. Бензол отгонялся, а остаток перегонялся в вакууме. Температура кипения 175—180 /0,5 мм, выход 61,5 г или 83,0/0 теории.

п-Пропоксифенилфурил карбинол. Смесь 35 г п-пропоксифенилфурил кетона, 30 г едкого натра, 300 мл 95% этилового спирта и 30 г цинковой пыли подвергалась перемешиванию в течение 2—3 часов. При этом температура смеси повышалась до 50—70°. После охлаждения до комнатной температуры огфильтровывалась, остаток на фильтре промывался ⁴0 мл спирта. К фильтрату было прибавлено 750 мл ледяной воды и подкислен соляной кислотой до кислой реакции на конго. Осажденный при этом п-пропоксифенилфурил карбинол перекристаллизовывался из смеси этилацетата и лигроина.

Температура плавления 110-.12, выход 33.2 г или $94,2^{0}/_{0}$ от теории.

Аналогичным способом были получены п-метокси, этокси. бу-токси и амилоксифенил фурил карбинолы (табл. 3).

В-Диметиламиноэтиловый эфир n-пропоксифенилфурил карбинола. К алкоголяту, полученному из 2,6 г металлического натрия, 26 г п-пропоксифенилфурил карбинола и 100 мл абсолютного толуола прибавляется раствор 12 г 3-диметиламиноэтилхлорида в 30 мл абсолютного толуола. Смесь кипятилась в течение 14—16 часов, промывалась водой, толуол отгонялся при уменьшенном давлении, остаток обрабатывался водным раствором щавелевой кислоты, экстрагировался эфиром. Из водного раствора аминоэфир выделялся с помощью 10%-ного водного раствора едкого натра, экстрагировался эфиром, высушивался карбонатом натрия, отгонялся эфир и избыток диметиламиноэтилхлорида, остаток .6,5 г или 63% теории. При попытке перегонки в вакууме разлагается. Остальные аминоэфиры получены аналогично.

Институт тонкой органической химии Академии наук Армянской ССР

Ա. Լ. ՄՆՋՈՅԱՆ. Հ. Լ. ՄՆՋՈՅԱՆ ԵՎ Է. Ռ. ԲԱՂԴՍՍԱՐՅԱՆ

Հետագոտություն ֆուբանի ածունցյալների բնագավառույք

Հաղորդում XXII. ֆուրիլ ալկիլ, 4-ալկօքսիֆենիլ կարբինոլների մի քանի դիալկիլամինոէրիլ էթերները

Այսպես օրինակ՝ ֆուրիլրութիլ կարրինոլի դիդթիլամինոէթիլ էթերի յոդմեթիլատը 0,1 մգկկ դոզայով լրիվ վերացնում է պրողերինի միջոցով առաջացրած բրոնխոսպազմը փատվի վրա փորձեյիս։

աևիլ փաևհիրությունը դաև ապիրություրը և ը րևարն չաևևսևմափար, ապարիափայիր, ամգևն։ դարևաղառը, սշոււղրասիևություրըն այս երավավասուղ, ոիրթենվել բը ֆուևիլ ակկիլ։ թ, րփատի, սշրբրակով այս չարվաղարեն ը ըսխատակ ուրբրակով փատաևթկու ավքլի

Ստացված միացությունների մի բանի ֆիզիկա-քիմիական դաստատուները թերված Խն համապատասխան ազյուսակննրում։

Ֆարմակոլողիական ուսումնասիրությունների տվյալները կչագորդվեն առանձին։

ЛИТЕРАТУРА — ԳРЦЧЦЪПЪР ЗПЪЪ

¹ А. Л. Миджоян, О. Л. Миджоян и Э. Р. Багдасарян, ДАН АрмССР, т. XXIII, № 4, 175 (1956); ² Г. Гильман, П. Б. Диккей. Rec. trav. chim, 52, 389—94 (1933); С. А. 27, 5073¹ (1933); Вин Ноі, Rec. trav. chim, 68, 759—80 (1949); С. А., 44, 4445¹⁶ (1950); ³ О. Л. Миджоян, П. А. Бабиян, Синтезы гетероциклических соединений, 1, 44 (1956).