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Electronic voting (e-voting) systems have emerged as a promising solution
for modernizing elections, offering convenience, accessibility, and potential cost
savings. However, such systems face significant challenges, particularly
regarding privacy, security, and verifiability. Among the critical areas of concern
is the protection of voter identity, especially in internet-based voting (i-voting)
systems where sensitive information could be vulnerable to re-identification
attacks. In prior research, an anonymization model using pixel shuffling was
proposed to distort voter images and safeguard privacy. This study investigates
whether these distorted images can be reversed, using techniques including
brute-force computation, Convolutional Neural Networks (CNNs), and
autoencoders, to assess the robustness of the anonymization. Experimental
results demonstrate that the randomization introduced by pixel shuffling
effectively prevents brute-force reconstruction due to its astronomical
complexity. Further attempts to reconstruct original images with CNNs and
autoencoders revealed the limitations of deep learning models in restoring
heavily randomized images, as the spatial coherence essential for accurate
reconstruction was lost. These findings underscore the strength of pixel shuffling
as a privacy-preserving method.
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In recent years, electronic voting (e-voting) systems have gained attention for
their potential to streamline elections, improve accessibility, and reduce costs. While
e-voting offers significant advantages over traditional voting methods, it also presents

unique challenges, especially concerning voter privacy, security, and the verifiability of
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election results. Among the various types of e-voting systems, internet-based voting (i-
voting) stands out due to its convenience, allowing citizens to cast ballots remotely.
However, this remote accessibility also opens doors to complex security threats,
necessitating advanced measures to protect voter information.

In the previous study[1], we explored an e-voting model that incorporated face
recognition and image distortion techniques to ensure voter authentication while
safeguarding voter privacy. A key component of this model was the anonymization of
voter images through pixel distortion, a process designed to prevent any potential
linkage between voters and their cast ballots. While this approach aimed to enhance
privacy, questions remain about the effectiveness and reliability of such distortion
methods in preventing image re-identification. Specifically, an adversary might attempt
to reconstruct the original voter image from the distorted version, potentially
undermining the privacy guarantees essential to a secure e-voting system.

This study seeks to address these concerns by investigating whether distorted
voter images in e-voting systems can be restored and, if so, under what conditions.
Through a series of experiments, we will explore different computational techniques,
including statistical analysis and machine learning methods, to determine the feasibility
of reconstructing original images from anonymized data. By assessing the robustness
of these anonymization techniques, this study aims to contribute valuable insights into
the resilience of privacy safeguards within e-voting systems, highlighting both
strengths and areas for potential improvement.

In this study, we hypothesize that while image anonymization techniques, such
as pixel distortion and randomization are designed to protect voter privacy within e-
voting systems, there may be potential vulnerabilities that could allow for partial or full
restoration of the original images. Specifically, we posit that with advanced
computational techniques, including machine learning and statistical analysis, it may
be possible to reconstruct a recognizable version of a voter’s face from the distorted
image. This hypothesis aims to assess the robustness of current anonymization
methods, testing their effectiveness in truly safeguarding voter identities against
potential reidentification attacks.

In this e-voting model, the image distortion process for anonymizing voter
faces begins by converting the original image to grayscale. Reducing the image to
grayscale simplifies it by collapsing it into a single channel of light intensity values,
which decreases data complexity and processing load, especially when working with
large numbers of images. Once the image is converted to grayscale, it is transformed

into a numerical array, where each element represents the intensity value of a pixel.
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At this stage, pixel shuffling is applied to the grayscale image. This process
involves randomly rearranging the pixel values in the array, effectively disrupting the
spatial coherence that gives the original image its recognizable structure. The result is
a highly distorted image that appears as noise, devoid of any facial features or
identifiable information. Without knowing the specific pattern of pixel rearrangement,
it would be nearly impossible to reconstruct the original face from the shuffled array.
After the shuffling, the randomized array is then converted back to an image format,
creating the anonymized grayscale version of the voter’s face. This distorted image is
subsequently used within the voting system to ensure that sensitive facial details are
concealed.

Although this model utilizes pixel shuffling to achieve image distortion, this
method could easily be replaced by alternative techniques, such as pixel block
randomization, Gaussian blurring, or pixel intensity modification, depending on
specific security requirements. However, for this study, pixel shuffling was chosen to
facilitate further experiments aimed at assessing the feasibility of reconstructing
original images and testing the limits of image anonymization in e-voting.

For a robust testing approach to assess the reversibility of distorted voter
images, we can consider a combination of computational and machine learning
techniques, along with a suitable dataset. Here’s a detailed plan for both the testing
methods and the data sources:

Testing Approach

Brute-Force and Combinatorial Analysis: Start with basic computational
methods, like brute-force pixel rearrangement or combinatorial techniques, to attempt
reconstructing small images. This method might be feasible on images with fewer
pixels, providing insight into the level of distortion needed to prevent reversibility for
images of varying resolutions. This would give a baseline for how computationally
intense such a reversion is[2].

Machine Learning Approaches: Deep Learning with Convolutional Neural
Networks (CNNs): Train a CNN model on paired datasets of original and shuffled
images to recognize patterns that could suggest plausible reconstructions. This could
involve creating a supervised model that learns to infer the likely locations of shuffled
pixels in an attempt to restore spatial coherence in the image.

Autoencoders for Reconstruction: Use autoencoders, which are effective at
reconstructing compressed or corrupted images. In this case, you can experiment with
a denoising autoencoder by training it on images that have been distorted in a similar
manner, then testing if the model can learn any patterns that could reconstruct the
original face[3,4].
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Generative Adversarial Networks (GANs): GANs could be explored to generate
approximations of the original faces by learning from a dataset of both shuffled and
original images. The generator could attempt to reconstruct original facial features
from shuffled images, while the discriminator would evaluate the authenticity of these
reconstructions|[5].

Statistical Analysis with Entropy Measures: Compare the entropy levels of
distorted images with their original counterparts to see if there is any detectable
pattern in the randomness. This approach could provide insights into whether certain
shuffling methods leave recognizable statistical traces that could make reconstruction
easier.

Dataset Selection

Face Image Databases:

e LFW (Labeled Faces in the Wild): LFW is a well-known dataset with over
13,000 images of faces from diverse individuals. It is suitable for research on
face recognition and would provide a range of faces to test shuffling and
reconstruction techniques|6].

o CelebA (CelebFaces Attributes Dataset): With over 200,000 celebrity face
images, CelebA offers a large, diverse set of faces. This dataset includes
multiple angles and facial expressions, which is beneficial for testing distortion
and reconstruction across varied images[7].

e FERET Database: This dataset was created for facial recognition research and
includes images of individuals taken at different times, with various facial
expressions, and under varying lighting conditions, making it ideal for
comprehensive distortion testing[8].

Alternatively, we could generate our own custom dataset of grayscale images
using a smaller, representative sample. By applying controlled shuffling patterns to
this dataset, we would not only be able to test the effectiveness of different distortion

techniques but also examine the potential for reversing these distortions. This
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Figure 1 Original and shuffled grayscale images
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controlled environment allows us to experiment with both the application of specific
distortion patterns and methods aimed at recovering the original images, whether
through statistical analysis or Al-based reconstruction techniques. For further
experiments, we captured an image using a computer webcam with an initial
resolution of 1816x1816 pixels(Figure 1). To optimize computational efficiency, we
downscaled the image to a resolution of 64x64 pixels. We chose to use a picture of my
own face in these tests to enhance interpretability in the recovery process, as it allows
us to more clearly assess how accurately any reconstructed images resemble the
original.

In designing our experiments, we aim to systematically test various methods
for reversing image distortion in a controlled environment. This experiment involves
multiple attempts using different computational and machine learning techniques to
assess the feasibility and quality of image recovery. Here is a detailed breakdown of
each method and its specific approach:

1. Brute-Force and Combinatorial Analysis

In this initial attempt, we apply brute-force methods and combinatorial analysis
to reverse the pixel shuffling on a downscaled 64x64 image. Brute-force
reconstruction involves generating all possible permutations of pixel positions in
search of the original configuration, which could theoretically reveal the original face.
The factorial growth of possible pixel arrangements, even for 64x64 images, limits
brute-force feasibility, particularly when high levels of shuffling have been applied.
This attempt helps establish the impracticality of brute-force for larger images, setting
a baseline for the limitations of purely computational approaches. Let us reduce the
scale of the picture one more time to 16x16 for simplicity of calculations.

To brute-force a 16x16 grayscale image, let us break down the calculations
involved and determine the resources needed. A 16x16 grayscale image has 256
pixels, each with a grayscale value from O to 255, representing 256 possible values for
each pixel. Steps to Calculate the Computational Resources:

Total Possible Combinations:

e Each pixel has 256 possible values (from 0 to 255).
e Since there are 256 pixels, the total number of combinations would be:
75256 = 72048
e This is an astronomical number, making brute-forcing extremely
computationally intensive.

Storage Requirements:
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e Storing all possible combinations would be infeasible. If each combination
(image) were stored as a 256-byte structure (1 byte per pixel), the storage
needed would be:

256x2%%%8 bytes

e This is vastly beyond any storage system available today.

Computational Power:

e Brute-forcing even 1% of these combinations would require a processing
capability far beyond today's supercomputers.

e A modern GPU can process a few teraflops (trillions of floating-point
operations per second), but brute-forcing 16x16 grayscale images would
require exaflops or higher to approach reasonable time frames.

A high-end GPU can process about 102 operations per second.
If each "operation” is generating one unique 16x16 image and comparing it.

Estimated time for brute-forcing:
22048

10 2images per second

This would still take longer than the age of the universe. Given the extreme
complexity, brute-forcing a 16x16 grayscale image by checking all possible
combinations is infeasible. Alternative methods, such as heuristic approaches or
machine learning techniques, would be more practical for solving specific image-
related problems or optimizations.

2. Deep Learning with Convolutional Neural Networks (CNNs)

For our next approach, we employ a deep learning model—specifically a
Convolutional Neural Network (CNN)—to learn patterns in pixel arrangements that
could facilitate reconstruction. The model is trained on paired images of original and
distorted (shuffled) faces to predict the original pixel positions.

The CNN model is provided with a dataset of original and distorted image
pairs, including my own face image, to learn a mapping between distorted and original
configurations. During training, the CNN attempts to identify and approximate the
correct pixel locations to recover the facial structure in a coherent way.

We use metrics such as Mean Squared Error (MSE) and Structural Similarity
Index (SSIM) to compare reconstructed images with their original versions. These

metrics help evaluate the quality and accuracy of each reconstruction attempt.
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Advantages and Limitations: CNNs have shown promise in reconstructing
structured distortions, especially where patterns can be learned. However, their
effectiveness depends on the training data and the model's ability to generalize across
different shuffling patterns. For training purposes LFW database was used.

The visualization of the training and validation loss (figure 2) suggests potential

issues in the model training process. From the outset, we observe that the training loss
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Figure 2 Visualization of the training
drops sharply to near zero, reaching a stable point almost immediately, while the
validation loss remains similarly flat and close to zero throughout the entire training
period.
Despite our attempts to train the model, it became evident that it was

impossible to reconstruct the original images from the shuffled versions with this
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Figure 3 Original, shuffled and reconstructed images using CNN
approach(figure 3). The inability to achieve reconstruction likely stems from the high
level of randomness introduced by pixel shuffling, which disrupts the spatial
coherence necessary for CNNs to learn meaningful relationships between pixels.
Without this spatial information, the model lacks the structure needed to reverse the
shuffling process, rendering it ineffective at generating a coherent image
reconstruction. This outcome suggests that highly randomized distortions, such as full

pixel shuffling, present a formidable challenge for deep learning models and highlight
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the limitations of current CNN architectures for tasks that require precise spatial
reordering.

3. Autoencoders for Reconstruction

Autoencoders, particularly denoising autoencoders, are another deep learning-
based approach that can be useful for reconstruction. We explore the potential of an
autoencoder to "denoise” the shuffled images by training it to recognize the original
pixel patterns. We train the autoencoder with pairs of original and shuffled images,
using the original image as the “clean” target. The autoencoder, which compresses
the image and then reconstructs it, learns to approximate the mapping back to the
original structure. The network attempts to decode or “denoise” the shuffled image
back to a recognizable face. We measure the quality of the output based on visual
accuracy and MSE to determine if the autoencoder effectively restores facial features.
Autoencoders excel at learning efficient representations, especially for compressed
data, but may struggle with high levels of random distortion. This experiment
highlights their strengths in controlled, structured distortions but may expose
limitations in generalized recovery. For training purposes LFW database was used.

Autoencoders training loss plot shows similar issues as the previous one. Both
the training and validation losses drop to near-zero right after the first epoch and
remain constant throughout the rest of the training. This pattern indicates that the
autoencoder model is likely not learning to perform meaningful reconstruction. Here
are possible explanations:

e The training loss dropping immediately to near zero suggests that the model is
finding a trivial solution, such as simply outputting a constant value or
memorizing an unintended pattern. This can happen if the model is not
receiving the correct input-target pairs or if there is a fundamental issue with
the data preparation.

e If the shuffling applied is highly randomized, the autoencoder might lack the
necessary complexity to reconstruct spatial information from completely
unstructured data. The model could converge on a near-zero error without
actually learning to reconstruct the original images properly, especially if the
shuffling is beyond its reconstructive capability.

Another option is to adjust the learning rate or model architecture (e.g.,
adding more layers or increasing the depth of the encoder-decoder) to see if this
changes the training dynamics which we have tried but there weren’t any obvious
differences. The current setup might be too challenging for the autoencoder due to
complete randomness in shuffling, making it impossible for the model to reconstruct
the original images. If the shuffling is highly randomized, even more complex
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architectures may struggle, as random shuffling disrupts the spatial information that
autoencoders rely on.

These 3 approaches - brute-force, CNNs, autoencoders allow us to evaluate
the effectiveness and challenges of each method for reversing image distortion. By
combining these methods, we gain a comprehensive view of both the feasibility and
limitations of reconstruction attempts. Each experiment contributes uniquely to
understanding the robustness of image anonymization in e-voting systems, particularly
regarding the reversibility of applied distortions.

Conclusion

In this study, we evaluated the feasibility of reversing pixel-shuffled voter
images in e-voting systems through a series of computational and deep learning
approaches, including brute-force methods, Convolutional Neural Networks (CNNs),
and autoencoders. Our experiments demonstrated that brute-force reconstruction is
impractical due to the exponential complexity of pixel arrangement possibilities,
making this approach computationally infeasible. CNNs and autoencoders, while
promising for structured tasks, struggled with the high level of randomness
introduced by pixel shuffling. Both models showed rapid convergence with negligible
loss improvement, indicating that they failed to learn meaningful representations for
image reconstruction. The inability of CNNs and autoencoders to restore the spatial
coherence disrupted by pixel shuffling suggests that such distortions effectively
prevent re-identification attempts through these methods.

Overall, the findings affirm the robustness of pixel shuffling as a method for
anonymizing images in e-voting systems, offering substantial resistance to
reconstruction attacks. This study contributes valuable insights into the limits of
current machine learning techniques in handling fully randomized distortions,
reinforcing the importance of carefully designed privacy safeguards in digital voting
environments. Future research could explore alternative anonymization methods or
hybrid approaches that combine shuffling with additional distortions to further
enhance voter privacy. Additionally, future experiments could investigate the use of
more complex or deeper neural networks, as well as various machine learning models
and architectural configurations, to assess if further advancements in model depth or

architecture could improve the ability to reconstruct voter images.

108



References

. Haroutunian M. E., Margaryan A. S., Mastoyan K. A., New Approach for Online
Voting Ensuring Privacy and Verifiability, ISSN 0361-7688, Programming and
Computer Software, 2024, Vol. 50, Suppl. 1, pp. S60-S68

. Reneta P. Barneva, Valentin E. Brimkov, Jake K. Aggarwal, Combinatorial
Image Analysis, 2012/

. Simonyan, K., Zisserman, A., Very Deep Convolutional Networks for Large-
Scale Image Recognition, 2014.

. Zhao H., Gallo Frosio |., Kautz, )., Loss Functions for Image Restoration with
Neural Networks, 2017, IEEE Transactions on Computational Imaging.

. Wang T. C,, Liu M. Y., Zhu J. Y., Tao A., Kautz )., Catanzaro, B., High-
Resolution Image Synthesis and Semantic Manipulation with Conditional
GANs, 2018, Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 8798-8807.

. Huang G. B., Ramesh M., Berg T., Learned-Miller E. Labeled Faces in the
Wild: A Database for Studying Face Recognition in Unconstrained
Environments. University of Massachusetts, Amherst, Technical Report, 2007,
07-49.

. Liu Z., Luo P., Wang X., Tang X., Deep Learning Face Attributes in the Wild.
Proceedings of the IEEE International Conference on Computer Vision (ICCV),
2015, 3730-3738.

. Phillips P. ]., Moon H., Rizvi S. A., Rauss P. )., The FERET Evaluation
Methodology for Face-Recognition Algorithms, |EEE Transactions on Pattern
Analysis and Machine Intelligence, 2000 22(10), 1090-1104.

109



UISLPNRE3UL AUSULU3SNRU: ELEUSMALUSPL LYBUNUNRI3UL
cuvuuursesrnhyu cusSrnabh MUSUErk ULULNRLUSU UL
<ESUMUrasLhNRk@E3UL FLULUSNhUL

UuusSn3ut uursu
<L FUU PUNP wuwyhpuwitin,
IN< nwuwpunu

E(thnuin' kmastoyan@gmail.com

Wu hnnqwdnud puuybp £ EGyunpnuwihtu pybGwpynipjuwu hwdwlwpgbpnid
whpubjubpny fuwnuwd puwmpnnubph ywwybpubph  hGwnwnwpddwu  huwpw-
ynpnipjniup’ oguwgnnpdtiing hwoynnulwu L funpp nwnigdwu dh owpp dnnb-
gnudubip, ubpwnyw| broot force, Ynuynpnighnt (hwpnypwiht) ubpnuwipu
guwugbipp (CNN)} W wywinnynnuwynphsubipp: Utip thnpdbpp gnyg U wviwjhu, np broot
force ybpwlwnnignidu wuppwgnpdtih £ whpubjubph wbnunpdwu huwpwyn-
pnipjniuttiph tpuwynubughw| pwpnnypjuwt wwwnwnny' wju dninbignidp hwgyn-
nwywunpbu wuhpwgnpdtih nwpdubiny: CNN-ubpp b autoencoder-ubpp, suwjwd
funuinnuduwihg Bu Yunnigwodpwiht wnwownpwupubph hwdwp, uwlwju unyu-
wbu pny| Gu ywwwhwlwunyejwu pwpdp dwwpnwyph nbd, npp ubpluwjwgyt &
whpububph fuwnudwu wpnniupnd: Bpyne dnnblubpu £ gnyg wdbght wpwg
Ynuytipgliughw' Ynpuwnh thnpp pwpbijwydwdp, npp gnyg £ wiwihu, np upwp sbu
Ywpnnwgt] unynpbp ywwybph yepwlunnigdwu hdwuwmwihg ubplwjwgnidubp:
CNN-ubph L wywnynnwynphsubph  wulwpnnnigyniup' Ybpwlwugubine vwpw-
swlhwu hwdwhnwugnipniup, npp fuwpwnyb] t whpubjubph fuwnudwu hGwuwu-
pnd, Jyuwynud £ wyu dwupt, np tdwtu wnwydwnndubpp wpryniuwybnnpbu Y-
funid U wwwlbph Ybpwlwugdwu thnpdbipp' oguwgnpdtiing wyu Jdbpnnubpp:
Cunhwunip  wndwdp  wpryniupubpp hwunwwnd GBu whpubjubph  fuwnudwu
Yuyniunipyniup' npuybiu ywwnybph wuwuniuwgdwu dbpnn bGYwnpnuwhu pdbwp-
Ynipjwu hwdwlwpgbpnd' qquih Yujnungpjniu wnweownlbing  bpwwugdwu
hwpdwynuubphtu: Wu nwnwduwuhpniginiup wpdbpwynp  wywunlbpwgnwdubp
wwihu dbpbuwjwlwu nwnigdwu pupwghl Jdbennubph uwhdwuwthwyndubph
Jepwpbpw|'  |pndpt ywwnwhwlwuwgdws nbwpbpp  Yupguwynpbine  hwdwp'
wdpwwunbiny pywiht pdtwpynigjwu dhowywipnd dowyhywsd qununuhnipjw
wwonwwuntpjwu Yuplunpnipiniup: <Gnwqw hbwnwgnunipiniuubpnd Yupnn Gu
nwuniduwuhpyb] wuwuniuwgdwt wyjpunpwupwiht dGennutpp Ywd hhpphnwihu
dnuinbignidubipp, npnup hwdwwnbinnud U fjuwnuwothnep [pwgnighs wnwywnnidubph
htwn' punpnnubiph quinunupnipjwu hbtnwgw pwpbwydwu hwdwn: Pwgh npwuhg'

110


mailto:kmastoyan@gmail.com

Ywpnn Gu nwnduwuhpb] wyblh pwpn wd funpp ubpnuwihu gwugbiph, huswbu
uwb Jdbpbuwjwlwu nwnigdwu wwppbp dnnbubph bW Swpnwpwwbunwlwu
ynudbhgnipwghwubph ogunwgnpddwu  huwpwynpnipiniuubpp' quwhwwnbnt, ph
wprynp dnnbih funpnpjwu Ywd dwpunwpwwbnnipjwt hGunwgw wnwopupwgp
Ywpnn £ pwpbijwyb) punpnnubph wwwybpubpp yGpwunnigbnt niuwynipiniup:

Pwbugh pwnbp' Elpppntughtt pdbwplnyspwl hwdwlwpgbp, ptigpnn-
ubph quinipupnieinit, wunpbiptbph wiwaniwgnid, nbdpp dwiwsnid, ppdjuwiiibnp
whdippwtignyaynili, whpubijuph wnwdwnnid, qunipbhnpput wwpypwwbinenid,
huppbpbtan pbwnynyeinii:

PA3OBJIAYEHUE KOHPUOEHLUWUANIbHOCTU: OLEHKA OBPATUMOCTU
AHOHUMM3ALLUU U3OBPAMEHWIA U3BUPATENEN B CUCTEMAX
ANEKTPOHHOIO I0JIOCOBAHUA

MACTOAH KAPEH
Acnupaum UTNA, HAH PA
lpenooasamens TY

aneKTpoHHaA noyta: kmastoyan@gmail.com

CucTembl 3neKTpOHHOro ronocoBaHuA (e-voting) cTanuM MHOroobeLlaroLMm
pelueHnemM [fAa MopepHusauun Bblbopos, oOecrednBasi yaobcTBO, AOCTYMHOCTb U
noTeHUManbHyto 3KoHomuio cpepcTB. OpHaKo TakuMe cUCTeMbl CTalKMBalOTCA CO
3HauYuTeNbHbIMM  Mpobnemamn, OCODEHHO B  OTHOLUEHWM  KOH(PUAEHLMANbHOCTU,
6esonacHocT ¥ npoBepAemocTU. Cpean KpUTUYECKUX MpobiemMHblXx obnactell —
3alWmTa JMYHOCTU u3bupaTeneil, ocobeHHO B CUCTEMAX WHTepHeT-rofocoBaHua (i-
voting), rae KoHduaeHUuManbHad WHdopMaLuAa MoxeT ObiTb yA3BUMa ANA  aTak
noBTOpHOW WAeHTUdpMKaumun. B npeppiayliux uccnegoBaHuAax 6bina npepnomeHa
MOfeNlb aHOHWMM3aLMU C WCMOJb30BaHWEM MEPETacoBKU MNUKCENeN [NA WCKameHUA
usobpameHUn usbupateneil U 3aWwmMTbl KoHduaeHuumanbHocTU. B paHHOl cTaTbe
paccMaTpuBaeTcA BO3MOMHOCTb BOCCTAHOBIEHUA TakUX WCKaMeHHbIX U306pameHuin ¢
UCNONb30BaHUEM METOLOB, TakMX KakK BblYMCIEHUA METOLOM Nepebopa, CBEPTOYHbIE
HelipoHHble cetu (CNN) u  aBTOKOLWMPOBLUMKKM, [LAA  OUEHKW  HAAEKHOCTU
aHOHUMU3aLWKU. DKCMepUMeHTalbHble pe3ynbTaTbl MOKasblBatoT, YTO paHAOMM3aLuA,
BBELEHHAA MepeTacoBKO NuKceneid, 3¢ppeKTUBHO NPefoTBpalLaeT PeKOHCTPYKLUIO
MeToJOoM Mepebopa M3-3a ee acTPOHOMUYECKOU CIOMHOCTU. [oMbITKM BOCCTaHOBAEHUA

UcXooHbIX u3obpameHnii ¢ nomowbto CNN U aBTOKOLMPOBLUMKOB  BbIABUAU
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OorpaHn4YeHunA MOJII,eJ'IeVI FJ'Iy6OKOFO O6y‘-IeHl/Iﬂ npun pa60Te C CUNbHO
PaHLOMN3NPOBAHHbIMU M306pa}KeHVIﬂMVI, NOCKOJIbKY NpocTpaHCTBEHHaA
KOrepeHTHOCTb, HeO6XOJ],VIMaﬂ Aana TOYHOM PEKOHCTPYKLNN, 6bina yTpadeHa. 21
pe3ynbTartbl noa4vepKnBaroT 3(b(beKTVIBHOCTb nepemeLwinBaHuA nUKcenen Kak METOa
CoXpaHeHuA KOHCbMﬂeHuMaﬂbHOCTM.

Knrouesbie cnosa: cucmembl 2/18KMPOHHO20 20/10COBAHUA,
KoHGbudeHyuansHocms usbupameneli, GHOHUMU3AUUA u306paxeHuli, pacnosHasaHue
nuy, bezonacHocme OGHHbIX, UCKAXeHUe nukcenel, 3aWuma KoHguoeHyuansHocmu,
UHMepHem-20/10co8aHue.
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