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Abstract. We present a theoretical study of the thermodynamics of a one-dimensional electron gas in 

the presence of a single attractive finite square-well. The bound-state spectrum of the well is obtained 

by solving the even and odd parity matching conditions for the wavefunctions, while the continuum 

of scattering states is treated using a phase-shift method to account for its contribution to the density 

of states. From this analysis we construct the well contribution to the grand thermodynamic potential, 

which in turn allows us to calculate excess thermodynamic quantities (per well) such as the entropy 

and heat capacity in the fixed-number ensemble. Our results show that the presence of the well 

induces qualitative changes in the thermodynamic behavior: in particular, we find a pronounced peak 

in the heat capacity as a function of temperature due to the presence of the well. This heat-capacity 

anomaly is a direct consequence of the bound states and their interplay with the temperature 

dependence of chemical potential.  
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1. Introduction  

Impurities in low-dimensional quantum systems can have an outsized impact on the host 

material’s properties. In one-dimensional (1D) electron gases, in particular, even a single 

impurity (a localized potential perturbation) can markedly affect transport and thermodynamic 

characteristics. An attractive impurity potential in 1D is capable of supporting several bound 

states and also modifies the phase of scattering states. These spectral changes due to the 

impurity will alter thermodynamic observables of the electron gas. Understanding impurity-

induced thermodynamic changes is not only of fundamental interest in statistical physics but 

also relevant for interpreting experiments on quasi-1D conductors and analogous systems (such 

as cold atom gases in tight waveguides) where controlled impurity potentials can be introduced. 

 

2. Calculating spectrum 

We consider a single attractive square well of width a  and depth 0V  embedded in an 

otherwise free 1D electron gas. In this section we solve the time-independent Schrödinger 

equation for this potential to obtain all energy eigenstates. We find the discrete bound-state 

energies and the phase shifts for continuum (scattering) states, which will be needed for the 

thermodynamic analysis. 

The Hamiltonian of the system has the following form 
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The time independent Schrödinger equation ( ) ( )H x E x =  has a discrete spectrum for 

0E   (bound states), and continuous spectrum for 0E   (unbound states). As the Hamiltonian 

commutes with space inversion operator ( ) ( )I x x = −  we can assign the eigenstates a parity 

(even or odd). The following notations are used in the calculations bellow 
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For 0E  , the solutions decay outside the well (bound states), while for 0E  , we have 

scattering solutions characterized by phase shifts. We treat these two cases separately. 

2.1 Bound states 

Let 0 0V E−    and 2 2 / (2 )E m= − . The Schrödinger equation transforms to 
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The even and odd wave functions have the form
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Above we have already used the boundary condition at infinities ( ) 0x → = . The 

equations on   follow from the continuity of logarithmic derivative 
/d dx


 at the boundaries 

/ 2x a=  . 

Let 2 2( ) ( ) / 2x va a= −  and / 2y a= . The equations on the energy levels take the form 
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Solving the equations above numerically yields the spectrum of bound states. The number of 

even and odd bound states can be calculated analytically by formulas 
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Note, that the only parameter affecting the discrete spectrum is the combination va . 
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2.2 Unbound states 

Let 
2 2 / (2 ) 0E k m=  . The Schrödinger equation transforms to 
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Let ( ) 2 2k k v = + . The even and odd wave functions have the form 
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The boundary conditions are the same - continuity of logarithmic derivative at the 

boundaries / 2x a=  . The resulting phase shifts are 
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The last terms containing floor function in the expressions above is present to ensure 

continuity of phase shifts as a function of the wavenumber k . Note that 
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in accordance to Levinson's theorem for 1D Schrödinger equation [1]. Also note that only the 

parameter va  affects the phase shifts, which means that the whole spectrum is controlled only 

by this parameter. 

 

2.3 Density of states via phase shifts 

To calculate thermodynamic properties, we need the density of energy levels. We use the 

phase shift method to separate the density of states into the free-particle part and the well-

induced part. To do so, we put our system in a box ranging from x L= −  to x L=  with zero 

boundary conditions. 
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Total density of states ( ) ( ) ( )e oE E E  = +  takes the form 
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where ( )0 E  is the density of states of the host in the absence of the well, and ( )w E  is the 

change caused by the well. 
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3. Thermodynamics 

We assume an ideal gas with Fermi statistics. The grand potential is given by expression [2]  
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For our system the grand potential takes the form ( ) ( ) ( )0, , ,wT T T   = +  with 
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where ( )0 ,T   is the grand potential in the absence of the impurity. Above we have 

simplified the expression for the contribution of the well to the grand potential ( ),w T   using 

integration by parts. 

 

To calculate the heat capacitance for fixed number of particles, we need to perform 

Legendre transform from grand potential ( ),T   to free energy ( ),F T N . 
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Let ( ) ( ) ( )0, , ,T N T N T N  = + . The expansion of N  in terms of   is 
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The ( )1O  coefficients must cancel out, which leads us to 
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As we see, the shift of chemical potential   caused by adding the well vanishes in the 

limit of big L . Expanding (17) by   gives us the free energy of the well in the leading order 

 ( ) ( )( )0, , ,w wF T N T T N=  (20) 

where ( )0 ,T N  is given implicitly in terms of particle concentration ( )/ 2n N L=  by 

expression 
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The changes in entropy and heat capacity caused by the well for fixed N  are 
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4. Results 

The parameters which define the behavior of our system are va  (depth of the well), na  

(concentration of electrons) and 0E , which we will use as our energy scale. 

On Fig. 1 we see the dependence of heat capacity from temperature for a well with 

7,  0.01va na= =  and the contribution of each term in eq. (23) to it. We note, that the low 

temperature peak ( 4

0/ 1.4 10T E −  ) is entirely due to the term containing 2 2/d dT . The peak 

arises due to the maximum of the function ( )T  at ( )0.94 0T   [3]. The exact position of 

the heat capacity peak is slightly shifted due to the term being multiplied by other functions of 

the temperature, but it is proportional to ( ) ( )
2

00 E na = . For ( )0T   the host gas may be 

considered non-degenerate. 

The consequent peaks are mostly the result of the term containing 2 2/wd d−  . As the 

temperature rises, the chemical potential becomes more negative. /w wN d d= −   is the 

number of particles trapped by the well. If 0T = , wN  is the number of states with energy 

below 0 , which means that as the chemical potential becomes more negative, wN  decreases 

with sharp integer steps as   crosses the energies of the bound states. The derivative of those 

steps are seen as peaks of the function 2 2/ /w wd d dN d −  = . If the temperature is finite, the 

peaks become less pronounced as the temperature increases, and might merge together. 

On Fig. 2 we can see the temperature dependences ( )N

wC T  for different values of va  and 

na . It can be seen that as the concentration increases, the peaks shift to the right and become 

less pronounced. If we look at the dependence of the chemical potential from temperature in 

the non-degenerate approximation 
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we see the following - the chemical potential is more negative for the lower values of na . This 

means, that for lower values of na  the chemical potential crosses the energy values of bound 

states at lower temperatures, which leads to taller and more pronounced peaks, as the 

temperature doesn't smear the steps of the function ( ),wN T   as much compared to higher 

values of na . 

Figure 1: The contributions to heat capacity of each term in eq. (23). 

The parameters of the well are va 7,na 0.01= =  
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(a) va 7=  

 

(b) va 10=  

 

(c) va 15=  

 

(d) va 20=  

Figure 2: Calculated heat capacities 
N

wC  for 4 different values of va 7,10,15,20= . The values of na  are noted 

on the plots. 

 

5. Conclusions 

In conclusion, we have investigated the thermodynamics of a one-dimensional electron gas 

in the presence of a single attractive finite square-well. By exactly solving the quantum well 

problem for bound and scattering states and employing the phase-shift formulation of the 

density of states, we obtained the well-induced change in the grand potential of the system. 

This approach enabled us to calculate excess entropy and excess heat capacity attributable to 

the well, with careful attention to the fixed particle number constraint. The analysis confirms 

that even a single quantum well can produce a measurable thermodynamic effect: the 

additional localized energy levels and the altered continuum states lead to enhanced entropy at 

intermediate temperatures and, notably, a peak in the heat capacity as a function of 

temperature. Our results are quantitatively specific to the square-well potential, but they 

illustrate a general principle that applies to any localized impurity in a Fermi gas – namely, 

that new energy scales (such as a binding energy) introduced by the impurity will imprint 

themselves on thermodynamic curves. 
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