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Abstract. We study quantum gravitational states of ultracold hydrogen atoms in a combined potential consisting 

of H – 4He surface interaction potential and gravitational potential of the Earth. The key feature of this system is 

the dramatic separation of spatial (~104) and energy (~10-9) scales between potential components. We show that 

due to this separation, the influence of H – 4He surface interaction on gravitational states can be described with 

high accuracy by a boundary condition at zero, expressed through the scattering length. Our main result is the 

analysis of the near-resonant case, where the scattering length becomes large, revealing pronounced effects on 

gravitational states and highlighting the novel physical regimes accessible in this system. 

Keywords: quantum states, ultracold hydrogen, gravitational potential, helium surface, scattering length  

DOI: 10.54503/18291171-2025.18.3-25 

1. Introduction 

Let us consider the quantum-mechanical description of a hydrogen atom of mass m  in the 

gravitational field of the Earth above a perfectly reflecting surface. Unlike a classical particle, which 

inevitably falls and bounces off the surface, a quantum system exhibits a fundamentally different 

picture [1, 9]: the Earth's gravitational attraction and the hard reflection from the ideal mirror form a 

triangular potential that supports a discrete spectrum of stationary states localized near the surface. 

If the mirror is located at height 0z = , the Schrödinger equation in this potential takes the form: 

 ( ) ( ) ( )
² ²

2 ²

d
z mgz z E z

m dz
  − + =  (1) 

with the boundary condition ( )0 0z = = , where ( )z  is the coordinate-space wave function of 

the hydrogen atom. 

It is convenient to introduce characteristic length and energy scales for the quantum gravitational 

states of a particle of mass m : 
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which serve as natural units for the problem. 

For atomic hydrogen, the numerical values are: 
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 6 ,   0.6g gl m E peV   (4) 

With these notations, the general solution of the equation can be expressed in terms of Airy 

functions: 

 ( ) ( ) ( )/ / / /g g g gz C Ai z l E E C Bi z l E E =  − +  −₁ ₂  (5) 

where ( )Ai z  and ( )Bi z  are the Airy functions of the first and second kind, respectively, and 1C , 

2C  are arbitrary constants. 

From the normalizability condition of the wave function as z→ , it follows that 2 0C = . The 

boundary condition at 0z =  leads to energy quantization: 

 0n

g
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Thus, the wave functions and energies of the n -th gravitational level are given by: 

 ( ) ,n
n n

g g

Ez
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l E
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where n  are the negative zeros of the Airy function satisfying ( ) 0nAi − = . 

 

2. Interaction of a Hydrogen Atom with the Surface of Liquid Helium 

A hydrogen atom near the surface of 4He experiences a complex interaction, which can 

conveniently be decomposed into two fundamentally different components [2, 4]: 

1. Short-range adsorption potential ( )adsV z  is characterized by a depth of about 5K and a 

characteristic spatial scale of approximately 10Å. This component forms a single adsorption level: 

the atom “sticks” to the surface without penetrating into the liquid. The binding energy of this level 

is approximately -1K. 

2. Van der Waals–Casimir–Polder potential ( )vdWV z  dominates at distances of tens to hundreds 

of angstroms compared to ( )adsV z  and determines the long-range characteristics of the interaction. 

A key physical factor is the large separation in both energy and spatial scales between the 

adsorption and gravitational levels: their energy ratio is on the order of 910 , and the spatial ratio is 

about 410− . This extreme scale separation makes it possible to replace the complex short-range 

potential with an effective boundary condition at the surface. The real part of this boundary 

condition determines the overall shift of all gravitational levels, while the imaginary part accounts 

for their finite widths. 
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Figure 1: Effective potential of a hydrogen atom above helium [2] 

The adsorption potential is traditionally described by the Morse model [4, 5], and at distances of 

about 10Å it is smoothly matched to ( )vdWV z : 
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The Van der Waals potential exhibits a characteristic asymptotic behavior determined by the 

relationship between the distance and the characteristic wavelength of atomic transitions: 
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where 121 nmA   is the characteristic wavelength of transitions in the hydrogen atom. For the H–

He interaction: 
3 0.0045,HeC =  

4 1.55HeC =  (in atomic units). 

It has been shown that over the entire range of distances, the Van der Waals potential can be 

approximated with high accuracy by the expression [8, 10]: 
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3. Boundary Conditions for Gravitational States 

The concept of long-lived gravitational states of quantum particles was first experimentally 

confirmed in the work of V.V. Nesvizhevsky and co-authors through the observation of quantum 

gravitational states of neutrons [1]. These studies demonstrated that light quantum particles can be 

bound by a combination of the gravitational potential and the particle–surface interaction potential, 

possessing sufficiently long lifetimes to be observed experimentally. 

Subsequent theoretical works predicted the existence of long-lived gravitational quantum states 

of (anti)hydrogen, whose characteristics are practically independent of the short-range atom–surface 
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interaction due to the phenomenon of quantum reflection [3]. The extreme separation of scales 

between the gravitational potential ( 6gl m ) and the atom–surface potential (

500 . . 26vdWl a u nm  ) allows one to describe the interaction of the atom with the surface via a 

boundary condition in the intermediate region
0vdW gl z l . This boundary condition connects the 

asymptotic behavior of the wave function in the region dominated by the atom–surface interaction 

with that in the region dominated by the gravitational potential. 

In the atom–surface interaction region, the asymptotics of the wave function for 0 vdWz l  takes 

the form: 

 ( )0 0
/

z z z a
d dz




=  −  (13) 

where a  is the complex scattering length, fully determined by the atom–surface potential. 

In the gravitational region, the wave function is described by the Airy function: 
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l
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Matching these solutions leads to the equation for the eigenvalues of gravitational states: 
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For typical scattering length values 
ga l , one can use the wave function expansion: 

 ( )0 0
/

E
z z z

d dz mg






= = −  (16) 

where E  is the energy shift of the gravitational state due to the change in the boundary condition 

compared to the zero boundary condition at the origin. 

For hydrogen, the corresponding scattering length is real (neglecting inelastic interactions with 

ripplons [6, 7]). For a helium film, numerical results show that the scattering length is: 

 18.406 . .Ha a u= −  (17) 

and the gravitational level shift is: 

 1610HE eV−   (18) 

The obtained results show that the shift of the gravitational levels is small and the same for all states 

for typical scattering length values for the /H H –liquid He  potential. 

 

4. Zero-Energy Resonance Case 

If it becomes possible to modify the helium surface potential in such a way that a bound state is 

tuned exactly to the threshold, a zero-energy resonance will occur. As is well known from scattering 

theory, in this situation the scattering length formally diverges: 
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where bE  is the binding energy of the near-threshold state. 

To study the situation ga l , it is convenient to rewrite equation (15) in the form 
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The requirement that the solution be independent of the matching point 0z  leads to the condition: 

 ( )
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'
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−
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From equation (20) it follows that in the case of a zero-energy resonance ( )/ 1ga l , the 

boundary condition for the eigenvalues of gravitational states takes the limiting form 

 ( )' 0nAi − =  (22) 

which means a complete restructuring of the gravitational spectrum. A comparison of the energy 

levels in the ordinary and resonant cases is given in the Table 1: 

Level Ordinary case n  Resonant case n  

1 2.338 1.407 

2 4.088 2.461 

3 5.521 3.324 

4 6.787 4.086 

Table 1: Comparison of the energy levels in the ordinary and resonant cases 

Using the properties of the Airy function, we obtain an expression for the shift of eigenvalues 

near resonance in the form of an expansion in the small parameter /gl a : 
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5. Conclusion 

We have analyzed the quantum gravitational states of ultracold hydrogen atoms in the presence 

of a combined potential consisting of the Earth's gravitational field and the H – He  surface 

interaction. The extreme separation of spatial and energy scales between the two potential 

components allows the complex short-range atom–surface interaction to be replaced by an effective 

boundary condition characterized by a single complex scattering length. This approach yields a 

simple and accurate description of the gravitational spectrum and its small shifts induced by the 

surface interaction.  

For hydrogen above liquid helium, the calculated scattering length leads to an energy shift on the 

order of 10-16 eV, which is the same for all gravitational states. In the case of antihydrogen, the 

scattering length acquires a significant imaginary part, leading to finite state lifetimes, but the 

magnitude of the energy shifts remains extremely small. Such negligible perturbations confirm that 
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the gravitational states are robust and largely unaffected by the microscopic details of the adsorption 

potential, except in near-resonant cases where the scattering length becomes large. 

Importantly, in near-resonant cases where the scattering length becomes large, the gravitational 

states are significantly affected, demonstrating a novel physical regime not previously analyzed. 

These results demonstrate that ultracold (anti)hydrogen above a liquid helium surface represents a 

promising system for precision measurements of gravitational quantum states, and potentially for 

tests of fundamental symmetries in physics. 
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