ФАРМАЦЕВТИЧЕСКАЯ ХИМИЯ

А. Л. Миджоян, академик АН Армянской ССР, Г. Т. Татевосян и С. Г. Агбалян

Исследование в области производных замещенных уксусных кислот

Сообщение XIV. Аминоэфиры 1-фенилциклопентан-1-карбоновой кислоты

(Представлено 2. 11. 1958)

Исходя из высокой спазмолитической активности производных уксусных кислот, рядом авторов (1—3) были синтезированы амино-эфиры замещенных уксусных кислот, в которых а-углеродный атом кислоты является частью полиметиленового кольца

$$R-C-COOR_1$$

В 1947 году Тильфорд, Кампен и Шелтон (4) синтезировали обширный ряд эфиров циклоалканкарбоновых кислот. Наиболее активными из них были эфиры 1-замещенных циклоалкан-1-карбоновых кислот, имеющие от четырех до шести углеродных атомов в карбоциклическом ядре; R и R₁ варьировались довольно широко.

Наиболее эффективным препаратом оказался хлоргидрат диэтиламиноэтилового эфира 1-фенилциклопентан-1-карбоновой кислоты (пентафен). Выявилось, что замещения в его фенильном ядре недостаточно повышают или даже снижают спазмолитическую активность. Изменение аминоспиртовых компонентов приводит к некоторым колебаниям спазмолитической активности. Однако на основании имеющихся немногочисленных и разрозненных данных трудно сделать какие-либо выводы относительно влияния величины и строения аминоспиртовой части молекулы на спазмолитическую активность аминоэфиров 1-фенилциклопентан-1-карбоновой кислоты.

Для того, чтобы выяснить влияние "утяжеления" и изменения строения аминоспиртовой части молекул аминоэфиров данного ряда на их смазмолитическую активность, было решено синтезировать ряд новых, а также повторить синтез нескольких известных аминоэфиров 1-фенилциклопентан-1-карбоновой кислоты.

Первоначально было решено синтезировать 1-фенилциклопентан-1-карбоновую кислоту по методике, ранее разработанной нами для

получения гомологического ряда диалкилфенилуксусных кислот (⁶), т. е. конденсацией соответствующей бромкислоты с бензолом в условиях реакции Фриделя-Крафтса.

Реакция между бензолом и циклопентен-1-карбоновой кислотой была изучена в 1935 году Неницеску и Гават (6), которые сообщили, что в присутствии хлористого алюминия в мягких условиях происходит миграция двойной связи и образование 3-фенилциклопентан-1-карбоновой кислоты,

Позже Бэкер и Лидс (¹) нашли, что в жестких условиях (при кипячении бензола) могут образоваться различные продукты, в том числе 2- и 3-фенилциклопентан-1-карбоновые кислоты.

Выяснилось, что при конденсации бензола с 1-бромциклопентан-1-карбоновой кислотой, синтезированной по следующей схеме

под влиянием хлористого алюминия также происходит миграция атома брома и вследствие этого образуется смесь изомерных кислот

Исходная 1-фенилциклопентан-1-карбоновая кислота была получена по методике, разработанной во ВНИХФИ и заключающейся в алкилировании цианистого бензила 1,4-дибромбутаном в присутствии едкого натра, в отличие от Гейса (8), проводящего алкилирование амидом натрия,

$$-CH2CN+Br(CH2)4Br$$

$$-C-CN$$

с последующим омылением нитрила в кислоту.

Описанные в данном сообщении аминоэфиры синтезированы конленсацией хлорангидрида 1-фенилциклопентан-1-карбоновой кислоты с соответствующими аминоспиртами, полученными по известным в литературе методикам.

Пентафен был получен ранее, переэтерификацией этилового вфира 1-фенилциклопентан-1-карбоновой кислоты с диэтиламиноэтанолом (4), а также взаимодействием кислоты с хлоридом аминоспирта в присутствии едкого натра.

Экспериментальная часть. Взаимодействие 1-бромциклопентан-1-карбоновой кислоты с бензолом. В трехгорлую круглодонную колбу, снабженную мешалкой с ртутным затвором и обратным холодильником с хлоркальциевой трубкой, помещают 64 г (0,33 моля) 1-бромциклопентан-1-карбоновой кислоты с т. пл. 70° (8) в 300 мл абсолютного бензола и при охлаждении холодной водой и перемешивании прибавляют в несколько приемов 88,1 г (0,66 моля) хлористого влюминия. После десятичасового кипячения на водяной бане и обычной обработки полученое вещество перегнано в вакууме. Получено 23 г продукта, кипящего в интервале 166—176°/4 мм. После второй перегонки получено 14 г вещества с т. кип. 166—168°/4 мм.

 d₄²⁰ 1,1126;
 n_D²⁰ 1,5410.

 MR_D найдено
 53,71

 вычислено
 53,35

 0,1184 г вещества:
 0,3304 г СО₂; 0,0800 г Н₂О.

Найдено [°]/_о: С 76,10; Н 7,50

С₁₂Н₁₄О. Вычислено ⁰/₀: С 75,77; Н 7,42

Молекулярная рефракция и анализ соответствуют элементарному составу 1-фенилциклопентан-1-карбоновой кислоты, однако по литературным данным эта кислота кристаллическая (т. пл. 158—159°), а полученный нами продукт— жидкость, частично закристаллизовавшаяся при длительном стоянии.

Амид кислоты, имеющей состав С₁₂Н₁₄О₂. Амид получен взаимодействием бензольного раствора хлорангидрида кислоты с газообразным аммиаком. Выпавшее кристаллическое вещество перекристаллизовано из воды; т. пл. 115°, что, согласно литературным данным, соответствует точке плавления смеси амидов 2- и 3-фенилциклопентан-1-карбоновых кислот (⁷).

2,040 ле вещества: 0,157 мл N₂ (24°, 660,3 мл)

Найдено ⁰/₀: N 7,68,

C₁₂H₁₅ON. Вычислено ⁰/₀: N 7,40.

Нитрил 1-фенилциклопентан-1-карбоновой кислоты. В одноигровую четырехгорлую колбу, снабженную механической мешалкой, термометром, капельной воронкой и обратным холодильником, загружают 180 г измельченного едкого награ и 164 г перегнанного цианистого бензила, затем перемешивают. При температуре 20—25 прикапывают 300 г 1,4-дибромбутана с такой скоростью, чтобы температура реакционной смеси не превышала 50—55. Через 30 минут после окончания прибавления 1,4-дибромбутана начинают поднимать температуру реакционной смеси и за час доводят до 80—90; при этой температуре выдерживают ее 8—10 часов. Затем, охладив реакционную массу до 30—35°, добавляют в колбу 150 мл воды и 150 мл дихлорэтана, перемешивают и переносят в делительную воронку.

Верхний дихлорэтановый слой отделяют, а воднощелочной экстрагируют 3 раза дихлорэтаном порциями по 50 мл. Дихлорэтановые экстракты промывают 2-3 раза водой до исчезновения щелочной реакции на фенолфталени и сущат над прокаленным сернокислым натрием. При перегонке в вакууме получают 190 г (80,1%) нитрила с т. кип. 135-142%/10 мм.

1-Фенилциклопентан-1-карбоновая кислота. В 1-литровый автоклав из нержавеющей стали, снабженный мешалкой и термометром, загружают 60 г нитрила 1-фенилциклопентан-1-карбоновой кислоты и 600 мл 20% едкого кали. Нагревают реакционную массу до 130—140 и выдерживают ее при перемешивании от 20 до 24 часов. Затем автоклав охлаждают, содержимое переносят в делительную воронку (жидкость не должна расслаиваться) и экстрагируют дихлорэтаном следы неомыленного нитрила и амида. Водный раствор калиевой соли 1-фенилциклопентан-1-карбоновой кислоты подкисляют до кислой реакции на конго. Выпадает кислота в виде белого кристаллического осадка, который через 5—6 часов отфильтровывают и отмывают водой до исчезновения кислой реакции на конго.

Выход 60 г (90 $^{\circ}$ / $_{\circ}$); т. пл. 155-157 $^{\circ}$. Полученная кислота доста-

точно чиста для получения хлорангидрида.

Хлорангиорид 1-фенилциклопентан-1-карбоновой кислоты. В круглодонную колбу, снабженную обратным холодильником с хлор-кальциевой трубкой, помещают 42,5 г (0,25 моля) 1-фенилциклопентан-1-карбоновой кислоты и 31.2 г (0,26 моля) хлористого тнонила в 100 мл абсолютного бензола. После шестичасового кипячения, обычной обработки и перегонки в вакууме получено 42 г (80,6%) хлорангидрида с т. кип. 115% мм.

Взаимодействие хлорангидрида 1-фенилциклопентан-1-карбоновой кислоты с аминоспиртами. В круглодонную колбу, снабженную холодильником с хлоркальциевой трубкой, помещают 10,4 г (0,05 моля) хлорангидрида 1-фенилциклопентан-1-карбоновой кислоты в 50 мл абсолютного бензола.

К раствору хлорангидрида медленно прибавляют 0,06 моля аминоспирта в 20 мл абсолютного бензола. Реакционную массу кипятят 8—10 часов, охлаждают и обрабатывают насыщенным раствором соды после чего несколько раз экстрагируют эфиром для извлечения аминоэфира. Соединенные экстракты сушат над прокаленным сульфатом

		Точка в С	Давление в жж	d ₄ ²⁰	20 nD	MR D		Анализ в º/o Температура плавления солей в °С								лей в °C	
D	Выход в 0/0							N!		(C		H_		7		EI O
R						вычис-	наидено	Вычислено	наидено	вычис-	наидено	вычис-	найдено	хлоргид	нодмети	НОДЭТИ ЛАТОВ	питрат
-CH ₂ -CH ₂ -N CH ₃	92,0	150	4	1,0366	1,5123	75,88	75,69	5.36	5,04	73,5	3 73,41	8,10	8,56	116—117	176	106-107	101 103
-CH2-CH2-N C2H5	88,6	166 – 168	7	1,0358	1,5150	85,12	84,25	4 8	4,72	74,69	74,79	9,40	9,30	145	136	_	123-124
-CH2-CH2-CH2-NCH3		162 - 163										}			177	132	127
-CH2-CH2-CH2-N C2H5	81,2	168	4	1,0190	1,5093	89,74	88,96	4,62	4,28	75.2	75,16	9,64	9,54	138—139	99-100	-	117
-CH2-CH2-CH2-N C2H5 -CH-CH2-CH2-N CH3 -CH-CH2-CH2-N CH3	87,7	168—170	4	1,0067	1,5040	85,12	85,13	4 .84	4,70	74,69	74 45	9,40	9,72	140	186	156—157	105 - 107
CH ₃ CH ₃ CH ₃ CH ₄ CH ₅ C ₂ H ₅ C ₂ H ₆ CH ₃	72,4	179	5	0,9920	1,5005	94,35	94,50	4,41	4,33	75,68	75,39		9,69	116	127	-	125

-CH-CH-CH₃-N CH₃ 66,0 156 3 0,9991 1,5030 89,74 CH₃ CH₃ CH₃ -CH-CH₂-N C₂H₅ 62.0 171 C₂H₅ CH₃ CH₃ CH₃ 3 0,9877 1,4990 98,97 CH₃
-CH₂-C-CH₂-N
-CH₃
-CH₃
-CH₃
-CH₃ 78,5 176—177 5 CH₃
-CH₂-C-CH₂-N
-C₂H₅
-C₃H₅ 75,0 180 $-CH\left(CH_{2}-N\left\langle \begin{array}{c} CH_{3} \\ CH_{3} \\ \end{array} \right)_{2}$ $-CH\left(CH_{2}-N\left\langle \begin{array}{c} C_{2}H_{5} \\ C_{2}H_{5} \\ \end{array} \right)_{3}$ 76,0 185—186 4 [1,0133]1,5060 93,67 64.0 | 193 - 194 | 3 | 0,9929 1,5015 112,15

89,78	4,62	4,39	75,21	75,26	9,64	9,56	115	~		86 – 87
98,54	4,22	4,01	76,08	76,31	10,03	9,76	109-110	-	110	79—80
1	4,62	4,75	75,21	75,48	9,64	9,51	141	134—135	86	85—86
-	4,22	4,38	76,08	75,98	10,03	10,01	119	135	140	-
93,37	8,80	8,98	71,64	71,53	9,56	9,42	226	223—225		_
111,23	7,48	7,72	73,76	73,85	10,23	9,76	125—126	140—141	135—136	-

натрия, отгоняют растворитель и перегоняют в вакууме. Выходы и температуры кипения полученных аминоэфиров приведены в прилагаемой таблице. •

Необходимые для биологических испытании четвертичные соли, хлоргидраты и цитраты получены по той же методике, что и в сообщении IX (6).

Выводы: 1. Осуществлен синтез ряда новых, а также ранее описанных аминоэфиров 1-фенилциклопентан-1-карбоновой кислоты с целью сравнительного фармакологического изучения их спазмолитической активности в зависимости от измененяя аминоспиртового компонента.

- 2. Выяснено, что взаимодействие 1-бромциклопентан-1-карбоновой кислоты с бензолом в условиях реакции Фриделя-Крафтса сопровождается изомеризацией и приводит к образованию смеси изомерных 2-и 3-фенилциклопентан-1-карбоновых кислот.
- 3. Аминоэфиры 1-фенилциклопентан-1-карбоновой кислогы получены конденсацией хлорангидрида кислоты с соответствующими аминоспиртами.

Институт тонкой органической химии Академии наук Армянской ССР

Ա. Լ. ՄՆՋՈՅԱՆ, Գ. Տ. ԹԱԴԵՎՈՍՅԱՆ ԵՎ Ս. Գ. ԱՂԲԱԼՅԱՆ

Հիտագոտություն աեղակալված քացախաթթուների ածանցյալների բնագակառում

Հաղորդում XIV: 1-ֆենիլցիկլոպենտան-1-կարբոնաթթվի ամինոէսբերները։

1-ֆենիլցիկլոպենտան-1-կարբոնաԹԹվի ամինոէսԹերների ամինոսպիրտային մասի «Ժանրացման» և նրա կառուցվածքի փոփոխման ազդեցությունն սպազմոլիտիկ ակտիվության վրա սլարգելու նպատակով սինթեզված են այդ ԹԹվի մի շարք ամինոէսԹերներ, որոնցից մի քանիսը նկարադրված են եղել դրականության մեջ։

Փորձ է կատարված սին թեզել 1-ֆեն իլցիկլոպենտան-1-կարթոնա թթուն 1-րրոմցիկլոպենտան-1-կարթոնա թթվի փոխադդեցությամբ րեն գոլի հետ Ֆրիդել-Կրաֆասի
ռեակցիայի պայմաններում։ Պարզված է, որ փոխադդեցության ընթացթում բրոմցիկլոպենտան կարրոնա թթուն են թարկվում է իզոմերի զացման, որի հետևան ում գուանում է
2- և 3-ֆեն իլցիկլոպենտան-1-կարթոնա թթուների խառնուրդ։

Սլանյութ հանդիսացող 1-ֆենիլցիկլոպենտան-1-կարբոնաթթուն սինթեզված է
BHIIXΦII-ում մշակված հղանակով բենզիլցիանիդի կոնդենսացումով 1,4-դիբրոմբուտանի
հատ և ստացված նիտրիլի հիդրոլիզով։ Այդ թթվի բլորանհիդրիդի փոխազդեցությամբ մի
արբամինոսաի ուների հետ ստացված և աղտուակում նկարագրված ամինոէսթերները։
Մինթեզված ամինոէսթերների բնորոշման և բիոլոգիական ուսումնասիրության առատոսված են նրանց բլորհիդրատները, ցիտրատները և չորրորդային աղերը։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ М. Рубин, Г. Вышинский, J. Am. Chem. Soc. 68, 828 (1946). ² А. В. Вестон. J. Am. Chem. Soc. 68, 2345 (1946). ³ Р. Доменьёз, Schweiz. med. Wochenschr., 76, 1282 (1946). ⁴ К. Г. Тильфорд, М. И. Ван-Кампен, Р. С. Шелтон, J. Am. Chem. Soc. 69, 2902 (1947). ⁵ А. Л. Миджоян, Г. Т. Татевосян, С. Г. Агбалян, ДАН АрмССР. М. II (1957). ⁶ К. Д. Неницеску, И. Г. Гават, Lieb. Ann. 519, 260 (1935). ⁷ В. Бэкер, В. Г. Лидс, J. Chem. Soc. 974 (1956). ⁸ Ф. Г. Гейс, J. Am. Chem. Soc. 56, 715 (1934).