ՀԱՅԿԱԿԱՆ ՍՍՌ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԴԵՄԻԱՅԻ ՉԵԿՈՒՅՑՆԵՐ доклады академии наук армянской сср

1958

XXVII

АСТРОФИЗИКА

Г. С. Бадалян

О генезисе межзвездного нейтрального водорода и галактических цефеид

(Представлено В. А. Амбарцумяном 15. XI. 1957)

В нашей предыдущей работе (1) была исследована связь между пространственным распределением межзвездного нейтрального водорода и галактическими цефеидами. Было показано, что на днаграмме радиальная скорость, галактическая долгота, галактические цефенды распределены, главным образом, в местах значительной плотности нейтрального водорода. На основании полученных результатов мы пришли к выводу о возможности генетической связи между нейтраль-

ным водородом и галактическими цефендами.

Аналогичный результат получается для распределения нейтрального водорода и цефеид в Магеллановых Облаках. В настоящен работе делается попытка дополнить и несколько уточнить результаты первой работы. Для уточнения результатов предыдущей работы мы ввели вместо наблюдаемых интенсивностей нейтрального водорода интенсивности, исправленные за эффект дифференциального вращения Галактики. С другой стороны, нами приводится сопоставление распределений нейтрального водорода и цефеид, в зависимости от галактической широты и лучевых скоростей.

§ 1. Поправка величины интенсивностей нейтрального водорода за эффект дифференциального вращения Галактики. В работе (1), при определении плотности атомов нейтрального водорода п некоторой точке Галактики, которая имеет по отношению к околосолнечному центроиду скоростей некоторую определенную лучевую скорость, мы принимали, что эта плотность просто пропорциональна интенсивности излучения в соответствующей точке 21-сантиметровой ЛИНИИ.

Однако при сравнении разных направлений между собой следует учесть, что производная лучевой скорости по расстоянию для разных направлений различна. Поэтому плотность водорода р при том же предположении об отсутствии самообращения можно считать пропорциональной интенсивности / в соответствующей точке контура,

помноженной на sin 2 (*l* – *l*₀), поскольку производная лучевой скорости по расстоянию в первом приближении пропорциональна sin 2 (*l* – *l*₀):

$$\rho = I \sin 2 \left(l - l_0 \right). \tag{1}$$

Эта формула может быть применена лишь к не очень дале им частям Галактики.

Кроме того, необходимо отметить, что уравнение [1] не применимо в случае, когда $l - l_0 = 0^\circ$ и $l - l_0 = 90^\circ$. Дело в том, что в этих случаях определенное значение может иметь дисперсия скоростей межзвездных облаков. Ее роль в формировании профиля линии в этих случаях гораздо больше роли эффекта вращения Галактики.

Для количественного сравнения распределения нейтрального водорода с распределениями галактических цефеид и звезд других типов, мы вычисляли, используя данные первой таблицы работы Оорта, Ван-де Хюлста и Мюллера (²), средневзвешенные значения плотности по следующим формулам:

Для нейтрального водорода;

$$\rho_{\rm H} = \frac{\int I^2 \sin 2(l - l_0) \, ds}{\int I \, ds} = \frac{\Sigma I^2 \sin 2(l - l_0)}{\Sigma I}$$
(2)

а для галактических цефеид и звезд других типов среднее взвешенное значение околозвездной плотности межзвездного водорода

$$-\frac{1}{\rho_{\rm cep}} = \frac{\sum I \sin 2 (I - I_0)}{n}.$$
 (3)

Полученные результаты среднего значения плотности межзвездного нейтрального водорода приведены в табл. 1.

Таблица 1

Название объектов	P	Ī	n
Нейтральный водород	34.6	54.1	1369
Галактические цефенды	38.0	60.3	146
Звезды тина сG	36.1	56.0	70
Звезды типа О	32.9	54.8	103
Долгопериодические переменные	26.4	40.0	119
Короткопериодические цефеиды	23.4	30.9	16

Как видно из таблицы, после учета эффекта дифференциального вращения средневзвешенные плотности нейтрального водорода уменьшились примерно в полтора раза, однако относительные их значения дают почти такую же картину, какая получалась в первой работе. Полученные результаты вновь подтверждают, что действительно галактические цефенды распределены в уплотненных местах межзвездного нейтрального водорода.

Мы вычисляли эти средние значения плотностей межзвездного газа для каждого пятиградусного интервала галактических долго l = 220 до l = 320 по данным работы Оорта и других. Для тех же интервалов нами были вычислены средние плотности для мест, где находятся галактические цефеилы. На рис. 1 дано распределение этих усредненных плотностей нейтрального водорода, в зависимости от галактических долгот. Сплошная кривая соответствует нейтральному водороду, а пунктирная — галактическим цефеидам. Из рисунка видно, что амплитуда средней плотности ρ для цефеид гораздо больше, чем для самого водорода, и максимумы для цефеид гораздо более резки.

Эго сопоставление является еще одним аргументом в пользу того, что цефеиды расположены в плотных областях межзвездного нейтрального водорода.

§ 2. О связи между распределения ми межзвездного нейтрального водорода и цефеид по галактической широте. Как в нашей первой работе, так и в первом параграфе настоящей статьи речь шла о сравнении распределения плотностей атомов `неитрального водорода и галактических цефеид, в зависимости от галактических долгот. Целесообразно произвести аналогичное сравнение распределений неитрального водорода и цефеид в зависимости от Галактических широт.

Для этой цели мы использовали результаты Хелфера и Тейтела (³) относительно монохроматического радиоизлучения атомов ней-

трального водорода по галактическим широтам для $l = 50^{\circ}$ и $l = 90^{\circ}$.

Указанные авторы посредством наблюдения радиоизлучения нейтрального водорода определили распределение его плотностей в зависимости от радиальных скоростей и от галактических широт, представив свои результаты в виде таблиц температур антенны.

Из табл. 1 и 2 Хелфера и Тейтела мы нашли соответствующую температуру антенны для нейтрального водорода, находящегося в окрестности цефеид.

Плотность нейтрального водорода в низких широтах Галактики сравнительно велика, особенно в интервале $b = \pm 5^{\circ}$, далее начинает сильно падать, примерно до $b = \pm 10$, после чего изменения становятся более медленными.

Интересен тот факт, что распределение нейтрального водорода в направлениях $l = 50^{\circ}$ и $l = 90^{\circ}$ почти симметрично по отношению к галактическому экватору, с той лишь разницей, что в направлении $l = 90^{\circ}$ низким широтам соответствует меньшая температура антенны, чем при $l = 50^{\circ}$. Это обстоятельство, вероятно, связано с тем, что по направлению $l = 50^{\circ}$ концентрация водородных облаков, по-видимому, велика.

Поскольку цефенды в основном расположены в низких широтах Галактики (табл. 2), представляет значительный интерес сравнение распределений межзвездного газа и цефенд по галактическим широтам. Были использованы цефенды, имеющие известные радналь-

Рис. 3.

ные скорости и находящиеся на галактической долготе в интервале от 47 до 55 и от 87 до 93. Из них в каждом направлении оказалось шесть и пять цефенд соответственно. Для каждой из этих цефеня, на основании их галактических широт и радиальных скоростей, по данным табл. 1 и 2 Хелфера и Тейтела, мы нашли соответствующую температуру антенны для нейтрального водорода, находящегося в окрестности цефеид.

Мы попытались далее сделать (таким же методом, как в первой работе количественное сравнение между средней температурон антенны нейтрального водорода и соответствующей средней температурой антенны для водорода в окрестностях данных цефеид.

Для средних значений температуры антенны нейтрального водорода Т_и и цефенд T_{cep} в области l = 50 получается:

Таблица 2

Распределение известных цефенд по поясам галактической широты

Ь	n
$0^{\circ}-\pm 5^{\circ}$	363
$\pm 5 10$	87
$\pm 10 - \pm 15$	38
±15-20	26
$\pm 20 - \pm 25$	5
$\pm 25 - \pm 30$	9

$$\overline{T}_{\mu} = \frac{\Sigma T_{\mu}^{2}}{\Sigma T_{\mu}} = 60 \cdot 16.$$
(4)
$$\overline{T}_{cep} = \frac{\Sigma T_{cep}}{85 \cdot 25, }$$
(5)

а в области $l = 90^{\circ}$ получается:

$$\overline{T}_{\rm H} = 39.06,$$

 $\overline{T}_{\rm cep} = 39.00.$

Взвешенные средние значения температур антенны для нейтрального водорода и цефеид обеих направлений равны:

$$\overline{T}_{\rm H} = 51 \cdot 69,$$
$$\overline{T}_{\rm cep} = 62 \cdot 12.$$

Таким образом, количественное сравнение, основанное на данных. полученных посредством наблюдения радноизлучения нейтрального водорода из равных широт Галактики, дает такой же результат. какой получился в нашей первой работе из данных по галактическим долготам. Этот результат заключается в том, что средняя плотность нейтрального водорода в окрестностях цефенд превосходит плотность нейтрального водорода, усредненную по его атомам.

На рис. 2 и 3, представляющих контуры 21-сантиметровой линии нейтрального водорода для l = 50° и l = 90°, по данным Хелфера и Тептела, мы нанесли в соответствии с их радиальными скоростями усредненные значения из вычислении Джоя и Паренаго, исправленные за движение Солнца.

Галактические координаты и исправленные радиальные скорости этих цефенд приведены в табл. 3.

Таблица З

Цефенды				Цефенды			
VX Cyg	50, 0	- 1 2	+1.3	TU Cas	86 9	-11 2	-11.3
VY Cyg	50.7	-5.3	+8.5	AP Cas	88.6	+ 0.4	- 33.5
MZ Cyg	51.9	-9.5	-29.8	XY Cas	90.5	2.4	- 32.0
SZ Cyg	52.1	+3.3	-4.5	VW Cas	92.1	- 0.7	-48.2
TX Cyg	52.1	-2.9	6.1-	BP Cas	93.0	+ 3.1	-32.8
BZ Cyg	52.5	+0.8	+3.9	UZ Cas	93.2	- 1.2	-40.3
V ₃₈₆ Cyg	53.3	-5.5	+4.6				
				L	1		

Как видно, цефеиды, за исключением двух (MZ Cyg и BP Cas) ложатся на области максимумов плотностей нейтрального водорода. Этот факт также подтверждает, что цефеиды и по галактическим широтам в основном распределены в плотных местах нейтрального водорода.

Если считать, что межзвездный водород распределен в первом приближении в Галактике плоско-параллельными слоями, то, пренебрегая самообращением, мы должны иметь:

$$T_{\rm H} = T_{\rm H_s} \operatorname{cosec} |b|, \tag{6}$$

 $\log T = \log T \qquad \log \sin |b| \qquad (7)$

$$\log r_{\rm H} = \log r_{\rm H} - \log \sin |\theta|,$$
 (7)

где T_н-интегральная температура антенны нейтрального водорода для разных широт Галактики, а T_н,—температура антенны нейтрального водорода в полюсе Галактики.

По данным работы Хелфера и Тейтела мы вычислили интегральную интенсивность радиоизлучения нейтрального водорода по всей линии 21 см в зависимости от галактической широты в промежутке -25 < b < +25 и радиальной скорости в том случае, когда l = 50. и в промежутке -40 < b < +30, когда $l = 90^{\circ}$.

Рис. 4

Полученные результаты приведены в табл. 4. Зависимости log T_H от log sin |b| для обеих направлений (l = 50 и l = 90) представлены графически на рис. 4 и 5, соответственно, где по оси абсцисс отложены log sin b|, а по оси ординат логарифмы

температуры антенны нейтрального водорода. На рисунках 4 и 5 крестики относятся к положительным широтам, а кружки — к отрицательным широтам.

Как видно из рисунков, зависимость между логарифмами температуры антенны и log sin b представляется прямой и поэтому можно определить интегральную температуру антенны нейтрального водорода, соответствующую высоким широтам Галактики и. в частности. в полюсе Галактики.

Оказалось, что по данным для $l = 50^{\circ}$ и $l = 90^{\circ}$ интегральная температура антенны нейтрального водорода в полюсе Галактики равна 100 и 158 соответственно.

Данные, приведенные в табл. 4, дают представление о количетве атомов межзвездного нейтрального водорода в зависимости от галактических широт. Из этих данных видно, например, что количество атомов нейтрального водорода на экваторе (при *l*=50) Галактики примерно в 26 раз больше, чем в полюсе Галактики.

Исходя из полученных результатов, можно сделать вывод, что деиствительно генетическая связь между нейтральным водородом и галактическими цефеидами реальна, с той точки зрения, что цефеиды. вероятно, образовались в уплотиенных областях межзвездного неитрального водорода.

В заключение считаю приятным долгом выразить глубокую благодарность академику В. А. Амбарцумяну за ценные замечания и советы.

Таблица 4

<i>l</i> = 50				l = 90'					
b	Т _н	log T _H	log sin b	$\frac{T_{\rm H}(b)}{T_{\rm H}(90)}$	[)	T _H	log T _H	log sin b	$\frac{T_{+}(b)}{T_{H}(90)}$
- 25	313	2.50	-0.38	3.13	- 40	232	2.52	÷ 0 .19	2.10
20	215	2.33	0.47	2.15	35	222	2.34	0.25	1.40
15	403	2.61	0.59	4,03	30	277	3.44	0.30	1.75
12.5	315	2.50	0.68	3.17	27 7	233	2.38	0,34	1.50
10	3 92	2.59	0.77	3.92	25	240	2,38	0.38	1.51
7.5	686	2.84	0.89	6.86	20	120	2 62	0.17	2.65
5	1278	3.11	1.05	12.78	15	596	2.78	0.59	3.77
2.5	2645	3.42	1.40	26,45	12.5	737	2,89	0.68	4.66
+1.25	2157	3.39	+1.53	24.57	10	593	2.77	0.77	3.75
0	26 0 0	3.41	∞	26.00	7.5	75 9	2.88	0.89	4,80
-1.25	2211	3.34	± 1.53	22.11	5	1735	3.24	1,05	11.0!
2.5	2137	3.32	1.40	21.37	- 2.5	1608	3.21	+1.40	10.17
5	1210	3.03	1.05	12.10	0	1678	3.22	Ň	10.62
7.5	714	2.85	0.89	7.14	-2.5	947	2.98	+1.40	5.63
10	371	2.57	0.17	3,71	5	971	2.99	105	6.14
12.5	3 3 1	2 .5 2	0.68	3.31	7.5	911	2.96	0,89	5.76
15	286	2.46	0.59	2,86	10	598	2.78	0.77	3.73
20	3 09	2.49	0.47	3.09	12.5	374	2.57	0,68	2.35
-25	497	2.70	-0.38	4.97	15	338	2.53	0.59	2.13
					17,5	335	2.52	0.52	2.12
					20	315	9.50	0.47	1.99
					22.5	299	2.47	0.42	1.89
					25	461	2.66	0.38	2.91
		1			-30	344	2.54	+0.30	2.17

Бюраканская астрофизическая обсерватория Академии наук Армянской ССР

Z ሀ. ԲԱԴԱԼՅԱՆ

Միջասողային չեզոջ ջրածնի և զալակտիկական ցեՖհիդների գենեգիսի մասին

Ներկա աչխատությունում ստացված արդյունըները բերում են այն ճետևության որ միջաստղային չեզոք ջրածնի և դալակտիկական ցեֆեիդների միջև դենետիկ կապը ռևա է, նաև բստ նրանց ալակտիկական լայսության բաշխվածության, այն տեսակետից որ ցեֆեիդների առաջաղումը ավանաբար ձևավորվում է չեզոր ջրածնի խիտ տիրույթ ներում։

ЛИТЕРАТУРА — ԳРԱԿԱՆՈՒԹՅՈՒՆ

¹ Г. С. Бадалян. Сообщения Бюр. астрофиз. обс., вып. 17, 1956. ² Дж. Г. Оорт, Г. С. Ван-де Хлюст, С. А. Мюллер, В. А. N., 12, 452 (1954). Г. А. Хелфер. Г. Е. Тейтел, Ар. J., 121, 3, 585 (1955). ⁴ П. П. Паренаго, Бюллетень, Пз. 6, № 3,

102 (1947). ⁵ А. Г. Джон, Ар. J., 89, 3, 356 (1939).