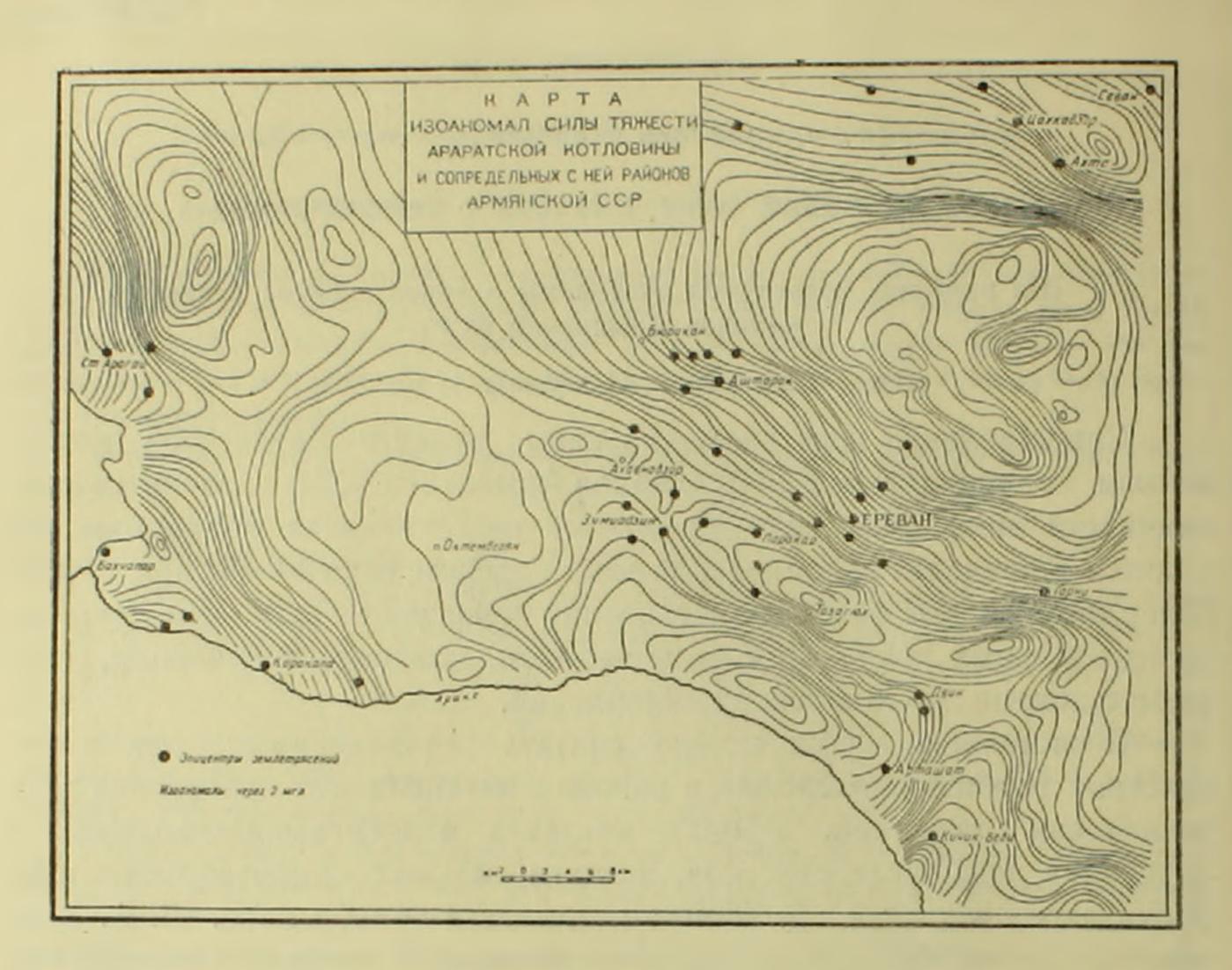
ГЕОФИЗИКА

Ш. С. Оганисян

Связь аномалий силы тяжести с сейсмичностью


(На примере Араратской котловины и сопредельных с ней районов Армянской ССР)

(Представлено А. Г. Назаровым 1. 10. 1957)

Сопоставление карт аномалий силы тяжести Араратской котловины и сопредельных с ней районов Армянской ССР с данными сейсмичности показывает, что почти вся исследованная территория находится в пределах сейсмической зоны, превышающей 7 баллов, и наиболее интенсивные очаги землетрясений совпадают с районами крупных горизонтальных градиентов силы тяжести, которые, в основном, связаны с зонами тектонических нарушений.

В настоящее время можно считать установленным, что землетрясения вообще происходят в районах интенсивного проявления тектонических движений, в зонах контакта относительных поднятий и опусканий различных участков, и очаги сильных землетрясений приурочиваются к зонам глубинных разрывов в земной коре. Л. А. Варданянц (1) связывает землетрясения Кавказа с зонами тектонических нарушений и по этому признаку выделяет шесть типов землетрясений. И. Е. Губин (2) пришел к заключению, что "...в пределах большинства сейсмических областей результаты изучения разрушительных землетрясений на месте свидетельствуют о связи последних не просто со структурой, а с зонами дифференцированных движений (разрывами). Это является тем основным фактором, который дает возможность превратить сейсморайонирование в конкретное сейсмогеологическое картирование". В. В. Белоусов, И. В. Кириллова и А. А. Сорский (3) пришли к выводу, что эпицентры сильных землетрясений приурочиваются к зонам, разграничивающим области поднятия и опускания, а также к поперечным поясам, совпадающим с поперечными антиклинальными перегибами в общей структуре Кавказа. По Г. П. Горшкову "подавляющее число всех землетрясений относится именно к категории так называемых тектонических. Землетрясения возникают именно в тот момент, когда в земле наблюдаются перемещения отдельных участков вдоль линий разрывов. По наблюдениям сейсмических станций, эпицентры землетрясений лежат на каких-то тектонических структурах (4).

На исследованной территории главнейшими группами сейсмических очагов являются Араратская группа и группа очагов Ахтинского района. Первая группа, охватывающая левобережную часть р. Аракс, является наиболее интенсивной. В состав этой группы входят Ереванские, Эчмиадзинские, Аштаракские, Арташатские, Шаварутские и Арагацские эпицентры землетрясений.

На представленной карте нанесены эпицентры, определенные Е. И. Бюсом (5) в результате обработки инструментально зарегистрированных землетрясений за период с 1912 по 1950 гг. Кроме них, на карте указаны пункты, в районах которых произошли в прошлом разрушительные землетрясения. Из-за отсутствия подробных данных за возможные эпицентры условно приняты указанные разрушенные пункты. Таким, например, является Двин, который, по данным армянских историков, был разрушен в 854, 858, 869, 893 гг. (6).

Представленная карта позволяет сделать заключение, что все пункты очагов землетрясений располагаются в зонах больших горизонтальных градиентов силы тяжести. Ереванские, Аштаракские и часть Эчмиадзинских эпицентров находятся в полосе интенсивного убывания силы тяжести шириной около 10 км, начинающейся на СЗ, в районе Бюракана, и протягивающейся на ЮВ. Эта полоса, резко меняя направление в районе Гарии, простирается затем на восток. Величина горизонтального градиента силы тяжести достигает 4 мгл/км, а на некоторых участках 5 мгл/км. Не исключена возможность, что

эта зона больших горизонтальных градиентов силы тяжести обусловлена Ереванским глубинным разломом, который, по А. Т. Асланяну, служит границей двух крупных тектонических комплексов Малого Кавказа—Приараксинского на юго-западе и Армянского на севере-востоке" (7).

Арташатская группа очагов расположена также в пределах зоны больших градиентов, достигающих 4-5 мгл/км. Наиболее вероятной причиной, вызывающей общее падение силы тяжести, можно считать погружение кровли докембрий-палеозойских пород под мезозойские и кайнозойские отложения. Погружение на километр расстояния равно 300-500 м с углом падения $17-27^{\circ}$.

Это погружение, очевидно, не может происходить без дизъюнктивного нарушения сбросового типа. Положительным, косвенным указанием служат мощные накопления травертинов и ониксовидных мраморов в этих районах, являющихся отложениями термальных углекислых источников, приурочивающихся вообще к зонам разломов.

Эпицентры землетрясений Шаварутского района расположены в области гравитационного уступа между сс. Шаварут и Октемберян, который, по-видимому, осложнен крупным разломом, о чем свидетельствует очень резкий горизонтальный градиент силы тяжести 4 мгл/км. По А. Т. Асланяну, в этом районе наблюдается сброс СЗ—ЮВ простирания. Структуры левобережья р. Аракс отделены от правобережных крупным сбросом, проходящим вдоль реки, в результате чего юго-западная часть района опустилась на значительную глубину. Смещение это определяется достаточно хорошо у с. Хербеклу. По-видимому, этот сброс имеет региональный характер и является зоной между региональным максимумом и предполагаемым минимумом.

Эпицентры, расположенные в районе ст. Арагац, пространственно совпадают с зонами больших горизонтальных градиентов силы тяжести, достигающих 4 мгл/км. Эти большие градиенты обусловлены погружением на большую глубину более плотных пород, которые, вероятно, сопровождаются дизъюнктивными нарушениями сбросового типа.

Группа очагов Ахтинского района совпадает с так называемой Ахтинской зоной больших градиентов силы тяжести, достигающих 4,5 мгл/км. В тектоническом отношении эта группа, по-видимому, приурочена к Мисханской антиклинали, осложненной разрывом. По гравиметрическим исследованиям в этом районе намечается крупный сброс широтного простирания.

Подытоживая вышеизложенное, можно прийти к выводу, что сейсмически наиболее активные зоны исследованной территории одновременно являются зонами больших градиентов силы тяжести, которые в основном, связаны с зонами тектонических нарушений. Эта закономерность открывает перспективы разработки метода использования гравиметрических данных при сейсмическом районировании данной территории.

Институт геологических наук Академин наук Армянской ССР

Շ. Ս. ՀՈՎՀԱՆՆԻՍՅԱՆ

Ծանրության ուժի անուքալիայի կապը սեյաքիկականության հետ

(Հայկական ՍՍՈ Արարատյան ճովտի և նրան կից շրջանների օրինակի վրա)

Ուսումնասիրելով Արարատյան հովտի և նրան կից շրջանների դրավիտացիոն դաշտր և համեմատելով ստացված տվյալները դրանցված երկրաշարժային օջախների հետ. հեղինակը դալիս է այն եզրակացության, որ երկրաշարժային ավելի դործուն ղոտիները միաժամանակ հանդիսանում են նաև ծանրության ուժի հորիզոնական մեծ դրազիննտների դոտիներ, որոնը հիմնականում կապված են տեկտոնական խախտման դծերի հետ։ Նշված օրինաչավությունը ստեղծում է հեռանկարներ դրավիմետրական տվյալների օգտագործելու մեթողի մչակման համար տվյալ շրջանի սելսմիկական շրջայնացման ժամանակ։

ЛИТЕРАТУРА — ԴՐԱԿԱՆՈՒԹՅՈՒՆ

¹ Л. А. Варданянц, Сейсмотектоника Кавказа, Труды Сейсмического института Академии наук СССР. № 64 (1935). ² И. Е. Губин, "Изв. АН СССР". Серия геофизическая. № 2 (1955). ³ В. В. Белоусов, И. В. Кириллова, А. А. Сорский, "Изв. АН СССР". Серия геофизическая. № 5 (1952). ⁴ Г. П. Горшков, Землетрясения на территории Советского Союза. Гос. изд. географической лит-ры. М., 1949. ⁵ Е. И. Бюс, Сейсмические условия Закавказья, Изд. АН ГССР, Тбилиси, ч. І, 1948, ч. ІІ, 1952. ⁵ В. А. Степанян, Краткая хронология наиболее значительных землетрясений в исторической Армении VI в прилегающих районах. Изд. Армянского филиала Академии наук СССР, Ереван, 1942. † А. Т. Асланян, Глубинный разлом у гор. Еревана, Сборник аннотаций докладов VI научно-технической конференции профессорско-преподавательского состава ВТУЗ-ов Закавказья, Изд. Ереванского гос. университета, Ереван, 1955.