XXII 1956

ФАРМАЦЕВТИЧЕСКАЯ ХИМИЯ

А. Л. Мяджоян, действ. чл. АН Армянской ССР, и А. А. Дохикян

Исследование в области производных п-алкоксибензойных кислот

Сообщение XIII. 2-метил-7-диалкиламинопропиловые эфиры п-(β-алкоксиэтилокси) бензойных кислот и их четвертпчные соли

(Представлено 24. VIII. 1953)

Многосторонние исследования фармакологических свойств некоторых аминоэфиров п-алкоксиэтилоксибензойных кислот (1) и их четвертичных аммонийных солей(1) (2)

наряду с другими биологическими свойствами показали также их способность действовать на холинореактивные структуры нервной системы.

Следует отметить, что наиболее распространенным строением для холинолитических соединений является аминоэфирная структура.

В эфирах, в частности холинолитического действия, в качестве аминоспиртового остатка чаще всего используются производные β-аминоэтанола.

Опыт работ нашей лаборатории показывает, что использование у-амино-а-метилпропилового спирта. с точки зрения обеспечения холинолитических свойств, не менее эффективно.

В связи с этим нам представлялся интересным синтез и изучение α-метил-γ-диалкиламинопропиловых эфиров п-β-алкоксиэтилоксибензойных кислот (3).

R	Выход в 0/0	Температу- ра кипения в °С	Давление в мм	M	d 20	upo
CH ₃ -CH ₃ -	85,6	200—201	12	3 09	1,0320	,5025
CH ₃ -CH ₂ -CH ₂ -	87,3	195 196	12	323	1,0188	,49 91
CH ₃ CH—	77,2	157—158	13	323	1,0115	,50 09
CH ₃ -CH ₂ -CH ₂ -CH ₂ -	81,9	211-212	10	337	0,9966	,4958
CH ₃ CH—CH ₂ —	86,7	204—205	12	337	0,9958	,4944
CH ₃ CH ₂ -CH ₂ -CH ₂ -CH ₂ -	٤0,2	185—186	12	351	0,9978	, 4980
CH ₂ —CH ₂ —CH ₂ —	89,2	194 — 195	10	351	0,9924	,49 52

$$RO-CH_2-CH_2O = C$$

R	Выход в %	Температу- ра кипения в °С	Давление в мм	M	d20 n20
CH ₃ -CH ₃ -	70,4	211-212	12	337	1,0158 1,4997
CH ₃ —CH ₂ —CH ₂ —	91,0	208—209	12	351	1,0025 1,4963
CH ₃ CH—	70,9	195—196	13	351	0,9971 1,4973
CH ₃ -CH ₂ -CH ₂ -CH ₂ -	76,3	223 – 224	10	365	0,9874 1,4962
CH ₃ CH—CH ₉ —	84,3	216—217	12	365	0,9819 1,4927
CH ₃ CH ₂ CH ₂ CH ₂	80,2	199-200	12	379	0,9829 1,4957
CH ₃ . CH – CH ₂ —CH ₂ —	86,0	203—204	10	379	0,9804 1,4938

M	RD								
211			C		E	1	1	1	
вычислено	найдено	Эмпириче- ская фор- мула	вычислено	найлено	Вычислено	нзйлено	вычистено	найдепо	Температура плавления пикратов в °C
85,99	88,56	C ₁₇ H ₂ ,NO ₄	66,02	65,75	8,73	8,45	4,53	4,37	108—109
90,61	93,22	C ₁₈ H ₂₉ NO ₄	66,89	67,18	8,98	8,85	4,33	4,40	102—103
90,61	94,18	C ₁₆ H ₂₉ NO ₄	66,89	6 6, 5 6	8,98	8,89	4,33	4,97	99—100
95,23	98,86	C ₁₉ H ₃₁ NO ₄	67,65	67,40	9,19	8,96	4,16	4,40	89— 90
95,23	98,71	C ₁₉ H ₃₁ NO ₄	67 ,6 5	67,73	9,19	3,08	4,15	4,12	100101
99,85	103,23	C ₂₀ H ₈₃ NO ₄	68,38	68,42	9,40	9,15	3,99	4,00	104105
99,85	133,80	C ₂₀ H ₈₈ NO ₄	68,38	68,56	9,40	9,33	3,99	4,30	

O-CH-CH₂--CH₃-N/CH₂-CH₃
CH₂-CH₃
CH₂-CH₃

Таблица 2

M	RD			Aı	нал н	3 B	0/0		
			C		F	1	1	V	Температура
вычислено	найдено	Эмпириче- ская фор- мула	вычислено	пайдено	вычислено	найдено	вычислено	найдено	плавления
95,23	97,64	C ₁₀ H ₃₁ NO ₄	67,65	67,35	9,19	8,96	4,15	4,37	68— 69
99,85	102,45	C ₂₀ H ₃₂ NO	68,38	68,77	9,40	9,33	3,99	4.02	
99,85	103,18	C ₂₀ H ₃₃ NO	68,38	68,76	9,40	9,24	3,99	4,27	105—106
104,47	108,14	C ₂₁ H ₃₅ NO	69,04	69,00	9,58	9,48	3,84	4,00	94— 95
104,47	108,09	C ₂₁ H ₃₅ NO ₄	69,04	69,11	9,58	9,50	3,83	4,06	82— 83
109,09	112,72	C ₂₂ H ₃₇ NO	69,66	69,54	9,76	9,73	3,70	4,00	89— 90
109,09	112,62	C ₂₂ H ₃₇ NO	69,66	70,05	9,76	9,75	3,70	4,00	-
			2 4 18	IDDS	10	-			

RO-CH2-CH2O $= CO-CH-CH2-CH2-N$ $= 0 CH3$	CH ₈
RO-CH2-CH2O CO-CH-CH2-N	-K
+	CH
O CH J	CH ₃
0 0	

R	R'	Выход в ⁰ / ₀	Температура плавления	M	Эмпирическая	Анали	3 B ⁰ / ₀
		B 7/0	в °С		формула	вычислено	найдено
CH ₃ -CH ₂ -	CH ₃ —	98,2	94- 95	451	C ₁₈ H ₃₀ O ₄ NJ	28,15	27,87
CH ₃ -CH ₂ -	CH ₃ -CH ₂ -	98,5	121-122	465	C19H32O4NJ	27,31	27,63
CH ₃ -CH ₂ -CH ₃ -	CH ₃ —	96,4	120—121	465	C ₁₀ H ₃₂ O ₄ NJ	27,31	27,50
CH ₃ -CH ₂ -CH ₂ -	CH ₃ -CH ₂ -	95,9	128—129	479	C20H34O4NJ	26,47	26,68
CH ₃ CH	CH ₃ —	93,1	168-169	165	C ₁₈ H ₃₂ O ₄ NJ	27,31	27,71
CH ₃ CH-	CH ₃ -CH ₂ -	92,3	134—135	479	C ₃₁ H ₃₄ O ₄ NJ	26,47	27,01
CH ₃ -CH ₂ -CH ₂ -CH ₂ -	CH ₃ —	91,6	127 -128	479	C2 H34O4NJ	26,47	27.01
CH ₃ -CH ₂ -CH ₂ -CH ₃ -	CH ₃ -CH ₂ -	90,8	124-125	493	C ₂₁ H ₃₆ O ₄ NJ	25,76	26,29
CH ₃ CH-CH ₂ -	CH ₃ —	91,0	132—133	479	C20H34O4NJ	26,47	26,23
CH ₃ CH_CH ₂ —	CH ₃ -CH ₂ -	90,2	106—107	493	C ₂₁ H ₃₆ O ₄ NJ	25,76	25,96
CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -	CH ₃ —	88,8	132-133	493	C ₂₁ H ₃₆ O ₄ NJ	25,76	27,22
CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -	CH ₃ -CH ₂ -	87,6	111—112	507	C22H38O4NJ	25,05	25,40
CH ₃ . CH—CH ₂ - CH ₂ -	CH ₃ —	89,1	125- 126	493	C ₂₁ H ₃₆ O ₄ NJ	25,76	25,87
CH ₃ CH-CH ₂ CH ₂	CH ₃ —CH ₂ —	88,5	95 96	507	C22H3=O4NJ	25,05	25,25

R	R'	Выход	Температура плавления	M	Эмпирическая	Анализ в ⁰ / ₀		
		B 0/0	в°С		формула	вычислено	найденс	
CH ₃ - CH ₂ -	СН3-	98,0	85 — 86	479	C ₂₀ H ₃₄ O ₄ NJ	26,47	26,45	
CH ₃ - CH ₂	CH ₃ -CH ₂ -	98,2	99 100	493	C21H30O4NJ	25,76	25,68	
CH ₃ -CH ₂ -CH ₂ -	CH ₃ -	95,2	83— 84	193	C21H36O4NJ	25,76	25,63	
CH ₃ CH ₂ - CH ₂ -	CH ₂ CH ₂	94,3	101-102	507	C22H35O4NJ	25,05	25,47	
CH ₃ CH-	CH ₃ —	93,7	103—104	493	C21H36O4NJ	25,76	26,01	
CH ₃ CH -	CH ₃ CH ₂	92,9	131—132	507	C22Ha,O4NJ	25,05	24,79	
CH ₃ -CH ₂ -CH ₂ -CH ₂ -	CH ₃ —	91,4	93- 94	507	C22H,BO4NJ	25,05	24,98	
CH ₃ -CH ₂ -CH ₂ -CH ₂ -	CH ₃ -CH ₃ -	91,7	116—117	521	C23H40O4NJ	24,36	24,72	
CH ₃ CH - CH ₂ -	CH ₃ -	90,1	88— 89	507	CaaHa,O4NJ	25,05	24,76	
CH ₃ CH-CH ₂ —	CH ₃ -CH ₂ -	88,6	83 — 84	521	C ₂₃ H ₄₀ O ₄ NJ	24,36	24,54	
CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -	CH ₈ —	87,7	92- 93	521	C23H40O4NI	24,36	24,88	
CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -	CH ₈ - CH ₂ -	85,4	99-100	515	C ₂₄ H ₄₂ O ₄ NJ	23,92	23,72	
CH ₃ CH-CH ₂ CH ₃ -	CH ₃ —	86,9	65 66	521	C23H40O4NJ	24,36	25,01	
CH ₂ CH-CH ₂ -CH ₂ -	СНа-СНа-	85,8	89 90	535	C24H42O4NJ	23,92	21,10	

где R =от метила до H -амила, включая и радикалы изостроения. R' =метилу, этилу.

На примере этой новой группы соединений мы имели бы возможность при синтезах холинолитических соединений выяснить вопрос преимущества γ-амино-α-метилпропиловой группировки по сравнению с β-аминоэтиловой. Попутно нас интересовало также установление роли и значения второго эфиробразующего кислорода (4) в деле обеспечения биологических свойств по сравнению с однозначными производными п-алкоксибензойных кислот(2) (5).

$$R(CH_2)_x - O - (CH_2)_x - O$$

$$(4)$$

$$R(CH_2)_x - O$$

$$(5)$$

$$CO - R$$

$$CO - R$$

В табл. 1, 2, 3 и 4 приведены краткие данные физико-химических свойств полученных α-метил-γ-диалкиламинопропиловых эфиров п-алко-ксиэтилоксибензойных кислот и их солей: нодметилатов, нодэтилатов, хлоргидратов.

Подробные описания методов получения и результаты биологических испытаний будут опубликованы отдельно.

Лаборатория фармацевтической химии Академии наук Армянской ССР

Ա. L. ՄՆՋՈՅԱՆ ԵՎ Ա. Z. ԴՈԽԻԿՅԱՆ

Հետազոտություն թ–ալկօքսիբենզոական թթուների ածանցյալների սինթեզի բնագավառում՝

Հաղուղում XIII. p-[β-ալկօքսիէրիլօքսի]-բենզոական թթուների γ-դիալկիլամինո-α-մեթիլ պոոպիլ էսթեոները և նոանց չուրուդային աղեր

որևժսևցընսե որևվային չվաշովացիի խոնինանրախարվ ոտևաշխասբարևի վետ։
վաց չև։ սև տվո զիտдաշթյաշրորևն տվ չտախաթվաւթյանի չրա վրիաբմ։ Արմաշրտի բր
քակտիտը չտախաթվաշրորնի զարևտղառը աշտությասինաւթյաւրորևի ևյւխտվեսող անևնհեսարի տղիրաբերինընթին (1) բ րետրը չսևեսևմտիտը տղարիտիտիին ամբևիչ(5) և խաՈրև դախանվ տշխատորնըրևուղ ընտևտմեվաց և-տնիշեսիքիինոսիերըմստիտը

Հայտնի է, որ ինչպես խոլինոմիմետիկ, այնպես էլ խոլինոլիտիկ հատկությունները, մեծ մասամը բնորոշ են դանաղան օրդանական թթուների ամինոէսթերների համար։

յասին, որ ոչ պակաս էֆեկտիվ են նաև չ-ամինո-2-մեթիլպրոսլանոլի ածանր ատացման Հատին, որ ոչ պակաս էֆեկտիվ են նաև չ-ամինո-2-մեթիլպրոտների ածանր ատացման

Միաժամանան մեզ հնտաքրքրում էր նաև, Թե էսԹերի ԹԹվային մնացորդում երկրորդ էԹ բայի՝ ԹԹվածնի մուտքը ինչպիսի աղդեցություն (۱) կունենա բիոլոգիական ների համապատասխան ածանցյալների համեմատ- (5)։

Ստացված էս Թերների և թանց աղնրի մի քանի ֆիզիկոքիմիական հատկությունները և էլեմենտայ անալիզի տվյալները րերված են 1, 2, 3 և 4 աղյուսակներում։

Ասանձին միացությունների սինթեզին վերաբերող մանրամասն տեղեկությունները ինչպես նաև ստրուկաուբայի ու բիոլոզիական հատկությունների միջն եղած կապի վերուծման տվյալները, կհրապարակվեն առանձին։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ ДАН АрмССР, т. XIX, 3 (1954); ДАН АрмССР, т. XIX, 4 (1954); ДАН АрмССР, т. XIX, 5 (1954); ДАН АрмССР, т. XXI, 2 (1956). ² ДАН АрмССР, т. XVIII, 1 (1954); ДАН АрмССР, т. XVIII, 2 (1954); ДАН АрмССР, т. XVIII, 3 (1954).