12

МАТЕМАТИКА

В. А. Оганесян

Инвариантные и нормальные подсистемы симметрической системы частичных подстановок*

(Представлено А. Л. Шагиняном 12. II. 1955)

1. Инвариантные подсистемы. Статья относится к теории ассоциативных систем, которая в настоящее время активно разрабатывается В. В. Вагнером, Е. С. Ляпиным и другими.

Здесь изучается симметрическая система частичных подстановок, а именно: даются определения инвариантных и нормальных подсистем и доказываются некоторые теоремы, которые позволяют перечислить как все инвариантные, так и нормальные подсистемы симметрической системы частичных подстановок.

До перехода к основной задаче предварительно познакомимся с некоторыми понятиями и терминами, которыми будем пользоваться в данной статье.

Дано конечное множество $M = \{1, 2, ..., n\}$.

Взаимно однозначное отображение подмножества u множества M на подмножество v, того же множества, называется частичной подстановкой в множестве M, что можно написать в виде $t=\begin{pmatrix} u \\ v \end{pmatrix}$.

Число элементов в подмножестве u называется длиной, как для подмножества u, так и для частичной подстановки $t = \begin{pmatrix} u \\ v \end{pmatrix}$. Частичная подстановка t называется произведением x на y и обозначается через xy, если частичная подстановка t отображает все те и только те элементы α , для которых

 $t(\alpha) = y[x(\alpha)].$

Для частичной подстановки x, частичная подстановка x' называется обратной, если xx' есть тождественная подстановка и x, x', имеют одинаковую длину.

Частичная подстановка, отображающая пустое подмножество, называется пустой подстановкой и обозначается через О.

^{*} Статья представляет собой часть кандидатской диссертации, защищенно автором в МГУ 25. XII. 1953 г.

Частичная подстановка x длины k содержится, как часть, в частичной подстановке y длины m, если произведение xy^{-1} является единичной подстановкой длины k.

Множество частичных подстановок называется системой частичных подстановок, если оно замкнуто относительно умножения частичных подстановок и с каждой частичной подстановкой х содержитей обратную.

Множество R_k частичных подстановок длины k называется слоем, если,

- 1) с каждой частичной подстановкой x в R_k содержится частичная подстановка x^{-1} ;
- 2) если произведение двух подстановок из R_k имеет длину k, то оно содержится в R_k .

Число k называется номером слоя R_k .

Слой R_k называется *цепью*, если для любых двух частичных подстановок x, $y - R_k$ в R_k существует такая частичная подстановка z, что $xzy \in R_k$.

Впрочем легко видеть, что всякий слой состоит из одной или нескольких непересекающихся цепей, кроме этого, цепь является группоидом Брандта.

Легко доказать, что в цепи некоторого слоя с номером k существует одна или несколько групп подстановок степени k. Любая из максимальных групп этой цепи называется группой цепи, все группы цепи данной цепи изоморфны друг другу.

Совокупность всех частичных подстановок в множестве M = 1.2 - 1.2 является, очевидно системой частичных подстановок, (1), она называется симметрической системой и обозначается через Σ_n .

Из определения системы частичных подстановок следует, что система состоит из одного или нескольких слоев.

В дальнейшем слово частичная будем опускать и под словом подстановка будем понимать, как обычные, так и необычные подстановки; кроме этого, в дальнейшем под словом связь мы будем понимать необычные подстановки.

В теории групп нормальные делители или инвариантные подгруппы играют весьма нажную роль, поэтому естественно и в теорию систем частичных подстановок ввести аналогичное понятие. Мы в этой статье дадим определение инвариантной подсистемы и докажем несколько теорем, которые позволяют нам перечислить все инвариантные подсистемы симметрической системы, а также определим нормальные подсистемы и перечислим все нормальные подсистемы симметрической системы.

Если B есть система подстановок в множестве M, то n-ый слой этой системы, если он не пустой, представляет собой обычную груп-пу подстановок степени n.

Если S подстановка из n-ого слоя системы B, то, как это следует из определения системы, $S^{-1}BS \subset B$ и, так как для двух различных подстановок $x \in B$. $y \in B$ из

$$S^{-1}xS = S^{-1}yS$$

следовало бы: x = y, то $S^{-1}BS = B$.

Если S подстановка из k-ого слоя, где k < n, то, хотя $S^{-1}BS = \Box B$, но в этом случае $S^{-1}BS \neq B$.

Исходя из этих соображений введем понятие внутреннего автоморфизма системы подстановок.

Из $S^{-1}BS = B$ следует, что соответствие $S^{-1}S \to X$ является автоморфизмом. Этот автоморфизм порожден подстановкой S, где S принадлежит n-му слою системы B и называется внутренним автоморфизмом системы B.

Подмножество подстановок из системы B называется подсисте-мой системы B, если это подмножество само является системой.

Определение: подсистема $J \in B$ называется инвариантной подсистемой, если она при всяком внутрением автоморфизме отображается на себя.

Теорема 1. Если k-ый слой инвариантной подсистемы системы Σ_n содержит группу цепи G(u) на подмножестве $u \in M$, то в этом же слое инвариантной подсистемы на всяком подмножестве $v \in M$ длины k существует группа G(v), причем G(u) сопряжена с G(v).

Доказательство. Так как n-ый слой симметрической системы Σ_n содержит все возможные подстановки длины n, а эти подстановки обычные, то n-ый слой представляет из себя симметрическую группу степени n. Эта группа n-раз транзитивна, стало быть гранзитивна и k раз, где k < n. Из этого следует, что в n-ом слое системы существуют подстановки, переводящие подмножество $u \in M$ длины k во всякое подмножество $v \in M$ длины k. Поэтому, грансформируя группу G(u) с помощью любой из упомянутых подстановок n-го слоя системы Σ_n , мы получим группу G(v).

Теорема 2. Группа цепи k-го слоя инвариантной подсистемы системы Σ_n является нормальным делителем симметрической группы степени k.

Доказательство. В самом деле, если G(u) является группой цепи k-го слоя инвариантной подсистемы системы Σ_n , то., исходя из u, можно из симметрической группы степени n так выбрать k! различных подстановок, чтобы они на k элементах подмножества $u \in M$ действовали как симметрическая группа степени k. Например, таким выбором множества подстановок является множество различных подстановок n-го слоя, которые оставляют неподвижными элементы множества M, не входящие в подмножество u.

Если группу G(u) трансформировать с помощью так выбранных подстановок, то, так как эти подстановки переводят u на u, а G(u) является группой цепи, мы получим опять G(u). Последнее возможно однако лишь тогда, когда G(v) является нормальным делителем симметрической группы степени k.

Теорема 3. Если группа цепи k-го слоя инвариантной подсистемы системы Σ_n состоит лишь из четных подстановок, то при 1 < k < n-1 этот слой не может содержать связей.

Доказательство: допустим, что в k-ом слое инвариантной подсистемы Σ_n существует связь

$$t = \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \alpha_1 & \alpha_2 \cdots \alpha_k \\ \beta_1 & \beta_2 \cdots \beta_k \end{pmatrix};$$

обозначим пересечение u и v через w и пусть длина w равна l; так как t является связью, то $k-l \geqslant 1$. Рассмотрим отдельно случай: 1) k-l=1. 2) $k-l \geqslant 2$.

1. Из k-l=1 следует, что существуют такие элементы: $\alpha==\alpha_l\in u,\ \beta=\beta\in v.$ что $\alpha\in v,\ \beta\in u.$ Далее из k< n-1 и k-l=1 следует. что в M существует такой элемент δ , который не входит ни в u, ни в v.

Кроме того, из k > 1 и k - l = 1 следует, что l > 1, т. е. пересечение w не пустое. В таком случае, взяв подстановку $S = (\alpha \alpha' \beta \delta)$ из n-го слоя системы Σ_n , где $\alpha' \in w$, и трансформируя связь t с помощью S, получим в инвариантной подсистеме подстановку $t = S^{-1}t S = \binom{n_2}{n_2}$, но так как $u = w + \alpha$, $v = w + \beta$, то

$$u_2 = u - \alpha + \beta = w + \alpha - \alpha + \beta = w + \beta = v$$

$$v_2 = v - \alpha' + \delta.$$

Тогда

$$t_2 = t \cdot t_1 = \begin{pmatrix} u \\ v \end{pmatrix} \cdot \begin{pmatrix} u_2 \\ v_2 \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix} \begin{pmatrix} v \\ v_2 \end{pmatrix} = \begin{pmatrix} u \\ v_2 \end{pmatrix}$$

является связью в этом же слое инвариантной подсистемы.

Так как v_2 получается от v заменой элемента $\alpha' \in w$ через δ , а последний не входит в подмножество u, то пересечение u и v_2 содержит l-1 элементов.

Таким образом, в k-ом слое инвариантной подсистемы Σ_n из существования связи $t=\left(\begin{array}{c} u\\v\end{array}\right)$. где пересечение содержит l=k-1 эле-

ментов, следует существование связи $t_2 = \binom{u}{v_2}$, где пересечение u и v содержит уже l = k-2 элементов. Этим доказательство сведено ко второму случаю.

2. Пусть $t=\begin{pmatrix} u \\ v \end{pmatrix}$ есть такая связь, что пересечение u и v содержит $l\geqslant k-2$ элементов. Тогда существуют такие элементы $\alpha_1\in u$, $\alpha_2\in u$, что $\alpha_1\in v$, $\alpha_2\in v$. В этом случае, взяв подстановку $S=(\alpha_1\alpha_2)$ из n-го слоя системы Σ_n и трансформируя t с помощью S, мы получим:

$$t_1 = S^{-1}tS = \begin{pmatrix} \alpha_2 \alpha_1 \alpha_3 \alpha_4 \cdots \alpha_k \\ \beta_1 \beta_2 \beta_3 \beta_4 \cdots \beta_k \end{pmatrix}$$

однако

$$t_2 = t(t_1)^{-1} = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \cdots & \alpha_k \\ \alpha_2 & \alpha_1 & \alpha_3 & \cdots & \alpha_k \end{pmatrix},$$

а эта подстановка нечетная и принадлежит *k*-му слою инвариантной подсистемы — что согласно условию теоремы невозможно, тем самым теорема доказана.

При k=n-1 существует инвариантная подсистема, которая в своем k=n-1 слое содержит связи, тогда как группа цепи k-го слоя содержит только четные подстановки

Teopema 4. Если группа цепи k-го слоя инвариантной подсистемы системы Σ_n есть единичная группа, то k-ый слой инвариантной подсистемы системы Σ_n не может содержать связей при n>4, k>1.

Доказательство: докажем теорему для случая k=n-1, ибо для k < n-1 теорема следует из теоремы 3.

В рассматриваемом случае связи могут быть только двух следу-ющих типов:

a)
$$t = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \cdots & \alpha_{n-2} & \xi \\ \alpha_1 & \alpha_2 & \alpha_3 & \cdots & \eta & \alpha_{n-2} \end{pmatrix}$$

Н

$$6) t = \begin{pmatrix} \alpha_1 \alpha_2 \alpha_3 \cdots \alpha_{n-2} \xi \\ \alpha_1' \alpha_2' \alpha_3' \cdots \alpha_{n-2}' \eta \end{pmatrix},$$

где $\eta \neq \xi$ а $\alpha_1, \alpha_2, \cdots, \alpha_{n-2}$ и $\alpha_1, \alpha_2, \cdots$ совпадают с точностью до расположения элементов.

Длина подстановки t больше трех, так как n > 4.

Если связь t типа (a), то мы можем взять из n-го слоя системы Σ_n подстановку $S=(\alpha\,\alpha_{n-2})$, где элемент α является одним из элементов α_1 , α_2 , α_{n-3} .

Трансформируя связь t с помощью подстановки S, мы получим подстановку $t_1 = S^{-1}tS$, нижняя и верхняя строки которой соответственно составлены из тех же элементов, из которых составлены нижняя и верхняя строки подстановки t. По этой причине подстановка $t_2 = tt_1^{-1}$ является обычной подстановкой, принадлежащей n-1-му слою. Но подстановка t_2 не единичная подстановка, так как она переводит элемент α_{n-2} в α , а это противоречит условию теоремы.

Если подстановка t типа (б) и она не тождественна на элементах α_1 , α_2 , \cdots , α_{n-2} , то, как следует из условия $n-1 \gg 4$, подстановка t должна иметь такой вид

$$t = \begin{pmatrix} \cdots \alpha_r \cdots \alpha_i \cdots \alpha_j \cdots \xi \\ \cdots \alpha'_j \cdots \alpha_j \cdots \alpha'_j \cdots \eta \end{pmatrix}.$$

Выбирая из n-го слоя системы Σ_n подстановку $S = (\alpha, \alpha_n)$ и трансформируя подстановку t с помощью S, получим

$$t_1 = S^{-1}tS = \begin{pmatrix} \cdots \alpha_j \cdots \alpha_i \cdots \alpha_r \cdots \xi \\ \cdots \alpha_j \cdots \alpha_r \cdots \alpha_r \cdots \eta \end{pmatrix}.$$

Подстановка $t_2 = t_1^{-1}t$ является обычной подстановкой, принадлежащей n-1-му слою инварантной подсистемы системы Σ_n . Подстановка t_2 переводит элемент α_i , в элемент α_i , т. е. не является единичной подстановкой, а это опять прогиворечиг условию теоремы.

Остается предположить, что подстановка t на элементах $\alpha_1, \alpha_2, \ldots, \alpha_{n-2}$ тождественна. В таком случае подстановка t имеет такой вид:

$$t = \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_{n-2} & \xi \\ \alpha_1 & \alpha_2 & \dots & \alpha_{n-2} & \eta \end{pmatrix}$$
,

тогда, взяв из n-го слоя системы Σ_n подстановку $S = (\alpha_{n-2}\eta \xi)$ и грансформируя подстановку t с помощью S, мы получим подстановку

$$t_1 = S^{-1} t S = \begin{pmatrix} \alpha_1 & \alpha_2 \dots \eta & \alpha_{n-2} \\ \alpha_1 & \alpha_2 \dots \eta & \xi \end{pmatrix}.$$

Произведение $tt_1 = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_{n-2} & \xi \\ \alpha_1 & \alpha_2 & \alpha_n \end{pmatrix}$ есть подстановка типа (а), которая, согласно доказанному выше, не может принадлежать инвариантной подсистеме, что и требовалось доказать.

При n=4 существует инвариантная подсистема симметрической системы степени 4, группой цепи которой служит единичная группа $e_3=\begin{pmatrix}1&2&3\\1&2&3\end{pmatrix}$ и третий слой которой содержит связи; это же верно для $n=2,\ 3.$

В дальнейшем будет полезно следующее определение:

Определение. Слой называется полным, если он содержит всевозможные подстановки длины k.

Теорема 5. Если группа цепи k-го слоя инвариантной подсистемы системы Σ_n при 1 < k < n содержит знакопеременную группу, то k-1-й слой полный.

Действительно, если в k-ом слое содержится знакопеременная группа, то, согласно теореме I, этот слой содержит всякие знакопеременные группы, подстановки которых имеют длину k, и поэтому этот слой содержит все единицы длины k. Отсюда следует, что k-1-ый слой содержит все единицы длины k-1, следовательно k-1-ый слой содержит части длины k-1 всех подстановок k-го слоя. Поэтому при k>2, k-1-ый слой содержит связи. Согласно теореме k0 это возможно лишь тогда, когда k-1-ый слой содержал и нечетные подстановки, а по теореме k-10 группа цепи k-11 слоя должна быть симметрической.

Так как k ый слой инвариантной подсистемы содержит всякие знакопеременные группы и каждая знакопеременная группа транзитивна, то в k-ом слое инвариантной подсистемы существует обычная подстановка длины k, переводящая подмножество $u \in M$ длины k-1 в подмножество $v \in M$ длины k-1, если только пересечение u и v имеет длину k-2.

Часть длины k-1 эгой подстановки, которая переводит u на v, является связью в k-1-ом слое. Иными словами, между любыми двумя симметрическими группами k-1-го слоя, единицы которых имеют k-2 общих элементов, в k-1-ом слое существует связь.

Пусть $S^{(1)}$, $S^{(2)}$, ..., $S^{(m)}$ некоторые симметрические группы из k-1-го слоя расположены так, что единицы любых двух соседних симметрических групп имеют k-2 общих элементов и пусть подстановка t_i является связью между $S^{(i)}$ и $S^{(i+1)}$, где i=1,2,...,m-1. Тогда $t=t_1t_2...t_{m-1}$ есть связь между симметрическими группами $S^{(1)}S^{(m)}$. Так как все симметрические группы k-1-го слоя можно расположить так, чтобы единицы любых двух соседних симметрических групп имели k-2 общих элементов, то между любыми двумя симметрическими группами S' и S'' k-1-го слоя существует связь t', поэтому существуют и все связи между этими двумя группами. Эти связи суть S't' и $S''(t')^{-1}$.

Легко доказать следующие три теоремы.

Teopema 6. Если подстановка t длины n-1 является частью четной подстановки T знакопеременной группы A_n степени n, то A_n и t порождают систему $\{A_n, t\}$ для которой n-1-ый слои неполный.

Teopeма 7. Если система содержит A_n и подстановку t длины (n-1), не являющуюся частью ни одной из подстановок A_n , то при n>2 ее (n-1)-ый слой полный.

Tеорема 8. Если система содержит A_n и подстановку t длины k < n-1, то ее k-ый слой полный.

Теоремы 1—8 позволяют полностью перечислить все инвариантные подсистемы симметрической системы.

11. Нормальные подсистемы. Определение. Подсистема N системы R называется нормальной подсистемой, если для всяких $x \in R$. $y \in R$, $S \in N$ подстановки xSy и xy одновременно принадлежат или не принадлежат подсистеме N.

Доказано, что нормальная подсистема является нормальным делителем, если система является группой; кроме этого, для группы понятие нормального делителя и инвариантной подсистемы совпадают. Для системы частичных подстановок это далеко не так, а именно: для симметрических систем верна следующая теорема.

Теорема 9. Симметрическая система Σ_n обладает четырьмя и только четырьмя нормальными подсистемами.

 \mathcal{L} оказательство: легко проверяется, что единичная подгруппа $E=e_n$, знакопеременная группа A_n степени n, симметрическая группа

S, степени и и сама симметрическая система степени и являются нормальными подсистемами симметрической системы.

Так как n-ый слой симметрической системы является симметрической группой S_n , то n-ый слой нормальной подсистемы должен быть нормальным делителем симметрической группы S_n . Допустим, что нормальная подсистема N отлична от нормальных делителей симметрической группы S_n , следовательно, согласно вышеизложенному, нормальная подсистема N содержит подстановку t длины k < n, тогда $e_k = tt^{-1} \in N$.

Если подстановка $S \in S_m$ то $S^{-1}e_kS = e_k \in N$. так как $S^{-1}S = e_k \in N$. Если S пробегает все подстановки симметрической группы S_n , то e_k пробегает все единицы длины k, поэтому в N содержится произведение всех этих единиц, т. е. пустая подстановка O.

Для всякого $x \in \Sigma_n$ подстановки

$$O = xOe \text{ if } x = xe$$

одновременно принадлежат или не принадлежат N, т. е. всякий $x \in \mathbb{Z}_+$ принадлежит N.

Этим теорема доказана.

Армянский государственный заочный педагогический институт

Վ. Ա. ՀՈՎՀԱՆՆԻՍՅԱՆ

Մասնակի տեղագրությունների սիմետրիկ սիստեմի ինվարիանտ եվ նորմալ ենթասիստեմները

մասնությունների կրորական ըրկանություն արդանությունները և արևարություն է հատկանությունները և արևարում է հատկանություն է հատկանությունները և արևարում է հատկանությունները և արևարում է հատկանությունները և արևարի արևարի արևարությունների կանարությունների և արևարի արևարությունների կանարությունների և արևարի արևարությունների և արևարի արևա

Այդ երկու ասկացողուն ունները խմինի համար համինկնում են, իսկ արտեղ այդպես և ասնակի տեղադրությունների սիմետրի սիստեմը ունի բաղմաթիկ ինվարիանտ ենթասիստեմներ և ընդամենը՝ 4 նորմալ ենթասիստեմ։

ЛИТЕРАТУРА— ТРИЧИТАТОВАТЬ