XXI 1955

ФАРМАЦЕВТИЧЕСКАЯ ХИМИЯ

А. Л. Миджоян, действ чл. АН Армянской ССР, В. Г. Африкян и А. А. Дохикян

Исследование в области производных п-алкоксибензойных кислот

Сообщение Х. 3-диалкиламиноэтиловые тиоэфиры п-алкоксибензойных кислот и их четвертичные соли

(Представлено 24 VIII 1953)

Имеющиеся литературные данные по изучению фармакологических и бактериостатических свойств различных производных и-алкоксибензойных кислот, а также результаты наших исследований большого числа аминоэфиров п-алкоксибензойных кислот и их солей показали, что эта группа соединений представляет значительный интерес.

В одном из предыдущих сообщений (1) нами были описаны некоторые γ-диалкиламинопропиловые тиоэфиры п-алкоксибензойных кислот.

$$R_{1}O = CS - CH_{2} - CH_{2} - CH_{2} - N R$$

$$(1)$$

Изучение фармакологических свойств этих соединений и сравнение полученных данных с их кислородосодержащими аналогами показало, что замена эфиробразующего кислорода на серу благоприятно отражается на их холинолитические и бактериостатические свойства.

Учитывая также, что работ по синтезу и изучению серусодержащих аналогов проведено мало, мы предприняли синтез диалкиламиноэтиловых гиоэфиров п-алкоксибензойных кислот следующего строения:

$$R_{1}O = CS - CH_{2} - CH_{2} - N R$$
(2)

В литературе описано несколько диэтиламиноэтиловых тиоэфиров п-алкоксибензойных кислот (2), полученных авторами с целью изучения анестетических свойств.

R	Выход в 0/0	Температура ки-	Давление в .и.и	M	d ⁴ 20	n Ďo	Вычислено	найдено
CH ₅ —	70,6	170—172	4	239	1,4147	1,5680	67,699	70,200
CH ₃ —CH ₂ —	79,2	178—180	3	253	1,0997	1,5588	72,317	74,644
CH ₂ —CH ₂ —CH ₂ —	61,5	180	5	267	1,5466	1,0735	76,935	78,930
CH ₃ CH—	70,1	182-184	5	267	1,0735	1,5484	76,935	79,104
CH ₃ —(CH ₂) ₃ —	62,7	210	4	281	1,0564	1,5385	81,553	83,981
CH ₃ CH—CH ₂ —	68,5	200	4	281	1,0581		81,553	
CH ₃ —(CH ₂) ₄ —	73,5	195—196	3	295	1,5432	1,0514	86,171	88,663
CH ₃ CH—CH ₂ —CH ₃ —	81,3	183—185	3	295	1,0444	1,5359	86,171	8 8 ,2 0 2

		KH-	7.				MRD	
R	Выход в 0/0	Температура пения в С	Давление в ил	M	q3,	n _D ⁰	вычислено	найдено
CH ₃ —	64,5	215	4	267	1,0788	1,5492	76,835	76,750
CH ₃ —CH ₂ —	72,3	186—188	4	281	1,0571		81,553	
CH ₃ -CH ₂ -CH ₂ -	70,0	188—190	4	295	1,0436		86,171	
CH ₃ CH—	63,0	195	5	295	1,0440		86,171	
CH ₃ —(CH ₂) ₃ —	63,6	188 – 190	3	30 9	1,0333	1,5340	90.789	93,744
CH ₃ CH—CH ₂ —	64,3	210-212	5	303	1,0343	1,5340		92,995
CH ₃ —(CH ₂) ₄ —	60.0	195	2	323	1,0229	1,5332	95.407	98_157
CH ₃ CH—CH ₃ —CH ₃ —	86,4	260	3	323	1,0355	1,5352		

		Анализ в 0/0									
88		C	ŀ	1	1	N		а пла			
Эмпирическая формула	вычислено	найдено	вычислено	найдено	вычислено	найдсно	вычислено	Пайдено	Температура вления хлорг ратов		
$C_1H_{21}O_2NS$	62,92	63,25	7.86	7.68	5,25	5,22	11,98	11,70	119°		
$C_{15}H_{23}O_2NS$	64,05	64,23	8.18	8.21	4,98	4,77	11,38	11,39	130°		
C ₁₆ H ₂₅ O ₂ NS	65,08	65,21	8.47	8,36	4,74	4,71	10,85	11,02	132—133°		
C ₁₆ H ₂₅ O ₂ NS	65,08	65,33	8.47	8,29	4,74	4,39	10,85	10,58	148—149°		
C ₁₇ H ₂₇ O ₂ NS	66,02	66,34	8,73	8,42	4,53	4,37	10,35	10,11	139°		
C ₁₇ H ₂₇ O ₂ NS	66,02	65,96	8,73	8,83	4,25	4,25	10,35	10.42	130—131"		
C ₁₈ H ₂₉ O ₂ NS	66,86	67,10	8 98	9,13	4,33	4,19	9,91	10,43	94°		
C ₁₈ H ₂₉ O ₂ NS	66,86	66,69	8,98	9,15	4,33	4,23	9,91	10,00	128—129*		

- CH₂ - N CH₃

		Анализ в 0/0									
Kaa		C		Н		N		а пла-			
Эмпирическая формула	Вычислено	найдено	вычислено	найдено	Вычислено	найдено	вычислено	найдено	Температура вления хлор- гидратов		
C, H, O NS	60,25	60,51	7,11	7,10	5,86	5,99	13.3	13,41	173°		
C ₁ H ₁₉ O ₂ NS	61,66	61,52	7,50	7,56	5,53	5,29	12,64	12,35	152°		
C ₁ H ₂₁ O ₂ NS	62,92	62,63	7,86	7,83	5,24	5,31	11,98	11.88	149		
C ₁₄ H ₂₁ O ₂ NS	62,92	62.68	7,86	7,75	5,24	5,45	11,98	11.69	129°		
C ₁₅ H ₂₃ O ₂ NS	64,05	64,15	8,18	8,16	4,98	4,91	11,38	11,67	142°		
C ₁₅ H ₂₃ O ₂ NS	64,05	64,37	8,18	8,41	4,98	5,29	11,38	11,10	148		
C ₁₆ H ₂₅ O ₂ NS	65,08	65 35	8,47	8,45	4,74	4,99	10,85	10,55	134		
C _{1t} H ₂₅ O ₁ NS	65,08	65,40	8,47	8,47	4,74	4,71	10,85	10,65	110		

$$RO$$
 $CS-CH_2-CH_2-N-R_1$
 $+$
 CH_3
 $+$
 CH_3

		.0	- i			А нализ в 0/0	
R	R ₁	8	e p a	M	Эмпиричес-		
	101	Выход	ра пл ния		кая формула	вычн- слено	най-
CH ₂ —	CH ₃ —	99,2	233—234°	381	C ₁₃ H ₂₀ O ₂ NSJ	33,33	32,90
CH ₃ —	CH ₃ -CH ₃ -	98,4	207-208	395	C14H22O_NSJ	32,18	31,94
CH ₃ —CH ₂ —	CH ₃ —	99.6	218-219	395	C ₁₄ H ₂ ,O ₂ NSI	32,18	32,22
CH CH ₂	CH ₃ CH.—	98,8	172-173	409	C ₁ H ₂₄ O NSJ	31,05	30,98
CH CH - CH -	CH _a	98,2	203	109	C ₁₅ H ₂₄ O ₂ NSJ	31,05	31,12
CH - CH - CH	CH ₃ -CH ₂ -	98,1	153-174	423	C ₁₆ H ₂₆ O ₂ NSJ	30,02	30,27
CH ₃ CH	CH	97,8	205-209	40.)	C ₁₅ H ₂₄ O ₂ NSJ	31,05	31,28
CH ₃ CH—	CH3-CH2-	96,9	157—156	423	C ₁₆ H ₂₆ O ₂ NSJ	30,02	29,71
CH ₃ -(CH ₂) ₃ -	CH ₃ —	97,2	201-202	423	C ₆ H ₂₆ O ₂ NSJ	30,02	29,84
CH ₃ -(CH ₂) ₃ -	CH ₃ —CH ₂	96,5	149—150	437	C ₁₇ H ₂₅ O ₂ NSJ	29,06	29,05
CH ₃ CH—CH ₂ -	CH ₃	95,5	212	423	C ₁₆ H ₂₀ O ₂ NSJ	30,02	30,24
CH ₃ CH – CH ₂ –	CH ₃ —CH ₂ —	94,9	150°	437	C ₁₇ H ₂₈ O ₂ NSJ	29,06	29,27
CH ₃ -(CH ₃) ₄ -	CH ² —	96,7	182—183°	437	C ₁₇ H ₂₈ O ₂ NSJ	29,06	29,17
CH ₃ -(CH ₂) ₄ -	CH ₃ -CH ₂ -	96,2	146 – 147°	451	C ₁₈ H ₃₀ O ₂ NSJ	28,15	28,36
CH ₃ CH—CH ₃ —CH ₃	CH ₃	94,8	166—167°	437	C ₁₇ H ₂ ,O ₁ NSJ	29,06	29,22
CH ₃ CH—CH ₄ — CH —	CH ₃ -CH ₂ -	94,2	125—126°	451	C ₁₈ H ₃₀ O ₂ NSJ	28,15	28,05

Располагая данными наших исследований по параллельному изучению анестетических и холинолитических свойств различных аминоэфиров п-алкоксибензойных кислот, мы пришли к выводу, что поиски выраженных холинолитических препаратов в ряду этих соединений могут представить практический интерес.

Наряду с этим изучение холинолитических свойств дало бы возможность судить о влиянии замены эфиробразующего кислорода на

$$CH_{2}$$
— CH_{3}
 CS — CH_{2} — CH_{2} — CH_{3}
 CH_{2} — CH_{3}
 CH_{2} — CH_{3}
 CH_{2} — CH_{3}
 CH_{2} — CH_{3}

		B 90	B.Te-			Анализ в %		
R	Ri	Выход	Темпера ра плав ния	M	Эмпиричес- кая формула	вычи-	най-	
CH ₃	CH ₃ —	98,3	193	409	C ₁₅ H ₂₂ O ₂ NSJ	31,05	31,38	
CH ₃ —	CH ₃ —CH ₄ —	98,0	153°	423	C ₁₆ H ₂₆ O ₂ NSJ	30,02	29,86	
CH ₃ —CH ₂ —	CH ₃ —	98,5	139°	425	C ₁₆ H ₂₆ O ₂ NSJ	30,02	30,23	
CH ₃ — CH ₂ —	CH ₃ CH ₋ -	98,1	135°	437	C ₁₇ H ₂₈ O ₂ NSJ	2.),06	28,72	
CH ₃ CH ₃ CH ₃	CH ₃ —	97,7	167-108	437	C ₁₇ H ₋₈ O ₋ NSJ	20,06	28,50	
CH ₃ —CH ₂ —CH ₂ —	CH ₃ —CH ₂ —	97,0	150-151	451	C ₁₈ H ₃₁ O ₂ NSI	28,16	28,33	
CH ₃ CH—	CH ₈ —	95,4	178—179	437	C ₁₇ H ₂₈ O ₂ NSJ	29,06	28,70	
CH ₃ CH—	CH ₃ —CH ₋ —	94,8	190°	451	C H ₃₀ O NSJ	23,16	28,58	
CH ₃ —(CH ₂) ₃ —	CH ₈ —	96,7	130°	451	C18H3 O2NSJ	28,16	28,05	
$CH_3 - (CH_2)_3$	CH ₃ CH	95,9	161-162°	465	C ₁₀ H ₃₁ O ₂ NSJ	27.51	27,71	
CH ₃ CH—CH ₃ —	CH ₃ —	96,4	174—175°	451	C ₁ LH ₃ ,O.NSJ	28,16	28,05	
CH ₃ CH—CH ₃ —	CH ₃ —CH ₂ —	95,8	181—182	465	C ₁ H O NSI	27,31	27,02	
GH ₃ (CH ₂) ₄	CH ₃ —	97.2	132-133	465	C ₁₉ H ₃₂ O ₂ NSJ	27,31	27,67	
CH ₃ —(CH ₃)—	CH ₃ -CH ₂ -	96,6	160	479	C. Ha,O.NSI	26,51	26,91	
CH ₃ CH-CH ₂ -CH ₃ -	CH ₃ —	95,5	170—171°	465	C ₁₉ H ₃₂ O NSI	27,31	26,97	
CH ₃ CH-CH ₃ -CH ₋ -	CH ₃ CH ₂	94,9	120-121°	479	C_uH,O_NSJ	26.51	27,00	

серу и утяжеления кислотного компонента аминоэфиров за счет радикала R_1 алкоксигруппы. В качестве аминоспиртовой цепочки мы решили использовать диэтил-и диметил-аминоэтаноловую, входящую в молекулу большинства применяемых холинолиликов.

Из синтезированных нами соединений, диэтиламиноэтиловые тиоэфиры п-этокси-, пропокси- и бутоксибензойных кислот описаны в литературе, остальные являются новыми соединениями.

Физикохимические константы полученных аминотиоэфиров приводятся в табл. 1 и 2.

Для изучения биологических свойств приготовлены их воднорастворимые соли. Те из солей, которые выделены в кристаллическом виде, приведены в табл. 3 и 4.

Подробные данные о способах получения и результатах биологических испытаний синтезированных соединений будут опубликованы отдельно.

Лаборатория фармацевтической химии Академии паук Арминской ССР

Ա. L. ՄՆՋՈՅԱՆ. Վ. Գ. ԱՖՐԻԿՑԱՆ ԵՎ Ա. Z. ԴՈԽԻԿՑԱՆ

Հետագոտություն թ–ալկոքսիբենգոական թթուների ածանցյալների բնագավառում

Հաղուդում X. թ-ալկոնսիբենցոական թթունելի թ-դեալկիլ ամինո էթիլ թիռէսթեւների և նշանց չուշույլային աղեւը

Մեր նախորդ հաղորդումներից մեկում(1) նկարադրված Վ-դիալկիլ ամինոպրոպիլ թիոէսթերների (1) ֆարմակոլոգիանան հատկությունների ուսումնասիրությունների ևստացված արդյունքները, նույն հարդի թթվածնավոր էսթերների հատվությունների ես տաացված արդյունքները, նույն հարդի թթվածնավոր էսթերների հատվությունների մեջ թթվածհությունների մրա։
Կությունների վրա։

Պատենտային գրականությունից երևում է, որ այս շարքին պատկանող թիոէսթերարևը սինթեզված են նղել երեք միացություններ(-), որոնց մոտ ստուզված են միայն անեստետիկ հատկությունները։

Մեր ետազոտություններից կատարված p-ալկօբսիրենղոական թթուների ամինոէսթերների ընագավառում, պարզված է, որ Մեստետիկ և Խոլինոլիտիկ հատկությունները հաձախ հանդես են դալիս դուղանեռ և որ այս երկու ֆարմակոլոդիական հատկությունների մեն դոյություն ունի որոշ օրգանական կապ։

Նչված չանդամանքները պատձառ անդիսացան խորացնելու մեր հետազոտություն» ները թ-ալկօրսիրենդոական թթուների թիոէսթերների ընտղավառում։

Ստացված են ու նկարադրվում են այս հաղորդման մե մի քանի թ-այկօքսիրենղոական թթունների - դիայկիլ ամինո էթիլ թիոէսթներներ (2), որոնց ֆիդիկական ու թիսիական հատկությունները ընտրուոց որոշ տվյալներ ըերված են 1 և 2 այր ասկներում։

ատացված միացությունների ֆարմակոլոգիական և խիմիոթերապետիկ հատկությունների լայն ուսուննասիրության ամար պատրաստված են մի չարը աղեր։

երիստալական վիձակում անջատված աղերի դասանենը ինչպես և նրանց ընտրոշող և թանի տվյայներ ընդան են 3 և 4 աղյուսակներում։

են արագարակվեն առանձին։ Արտագարակվեն առանձին։

ЛИТЕРАТУРА — ТРИЧИТИТЕ В ПРЕЗПРЕ

¹ А. Л. Миджоян и Э. Багдасарян, ДАН АрмССР, XIX, 2 (1954). ² Е. Гаррис и В. Брекер, И. S. 2, 342, 142, 1944.