XVII 1953

АГРОХИМИЯ

Н. О. Авакян

О приложимости суспензионного эффекта в отношении ионов натрия для почвенных дисперсных систем

(Представлено Г. С. Давтяном 2 V 1953)

Для познания природы гетерогенных равновесий, в частности неравномерности распределения электролитов между твердой и жидкой фазами (влажная почва

выделенный из нее почвенный раствор), целесообразно рассмотреть изменяемость активности таких ионов, активность которых может быть легко измерена без нарушения существующего в системе равновесия.

Ряд исследователей (2) обнаружил так называемый суспензионный эффект Вигнера, согласно которому в зависимости от знака заряда коллоидных частиц величина рН ультрафильтрата, центрифугата или выделенного каким-либо методом почвенного раствора бывает больше или же меньше величины рН суспензии или влажной почвы. Был найден "кислый" эффект для кислых суспензий и "щелочной" — для щелочных суспензий.


Теорию суспензионного эффекта Вигнера наиболее полно и объективно, на уровне современной термодинамики, развили советские ученые (1, 3, 4, 6, 7, 8), привлекая для его объяснения частный случай общей теории равновесии Доннана.

В настоящей работе, пользуясь электродами из стекла специального состава с ярко выраженной натриевой функцией в целочной и нейтральной среде (9), мы поставили перед собой задачу исследовать поведение активностей натриевых ионов в почвенных дисперсных системах. Для этой цели нами были применены прочные копьеобразные стеклянные электроды конструкции П. А. Крюкова как с натриевой, так и с водородной функциями для измерений величин рNa и рH непосредственно в почвах и грунтах с естественной влажностью.

Объектами для наших исследований служили весьма богатые органическим веществом обнаженные почво-грунты бассейна озера Севан.

Почвенные растворы выделялись мотодом отпрессовывания в приборе конструкции П. А. Крюкова (5).

Измерения величин pH и pNa проводились потенциометрической установкой с ламповым усилителем. Для измерения pH и pNa в почво-грунтах с естественной влажностью, копьеобразные стеклянные электроды и насыщенный каломельный полуэлемент втыкались

Сосуд для определения величины pNa

Рис. 1. 1. Натриевый стеклянный электрод. 2. Насыщенный каломельный полуэлемент. 3. Испытуемый почвенный раствор. 4. Насыщенный раствор хлористого калия.

непосредственно в грунт. Для измерения величины pNa в отпрессованных почвенных растворах нами применялся сосуд, предложенный П. А. Крюковым и изображенный на рис. 1. Благодаря гидростатическому давлению вышерасположенного испытуемого почвенного раствора предотвращается влияние на стеклянный натриевый электрод ионов калия из насыщенного каломельного полуэлемента.

Измеренные в почво-грунтах с естественной влажностью величины рН и рNа были сопоставлены с величинами рН и рNa, измеренными в почвенных растворах, отпрессованных из этих же образцов почво-грунтов.

В таблице 1 приведены результаты это-го сопоставления.

Данные таблицы показывают, что и величины pH, и величины pNa в выделенных растворах всегда больше, чем в почвах с естественной влажностью из которых выделены эти растворы.

Идентичное изменение показателей активностей водородных и натриевых ионов хорошо согласуется с теорией мембранного равновесия Доннана и показывает, что эта теория праложама не только в отношении ионов водорода, но и ионов натрия.

Таким образом, установлено, что в отношении натриевых ионов имеет место эффект, аналогичный суспензионному эффекту Вигнера.

Таблица 1 Изменение активности водородных и натриевых ионов в почво-грунтах с естественной влажностью и в растворах, отпрессованных из этих почво-грунтов

Тип почво-грунта	Глубина взятия образца в см	pH			pN ₂		
		влажной почвы	почвен. раствора	ΔрΗ	влажной почвы	почвен.	ΔpNa
Сапропелевые (биогенно-мело- вые) отложения Севанской бухты	17—23 35—41 58—64 110—120	7,58 7,46 7,23 7,31	8,34 7,79 7,86 8,21	+0,76 $+0,33$ $+0,63$ $+0,90$	2,26 2,05 2,15 2,20	2,44 2,37 2,37 2,46	+0,18 $+0,31$ $+0,22$ $+0,26$

	Глубина взятия образца в см	рН			pNa		
Тип почво-грунта		влажной почвы	почвен.	ΔрΗ	влажной почвы	почвен.	ΔpNa
Торфянисто-лу-	0-10	7,23	8,33	+1,10	2,37	2,78	+0,41
почва (Мартуни)	40—48	7,10	7,65	+0,55	2,71	3,17	+0,45
Сапропелевые (биогенно-мело- вые) отложения Севанской бухты	27—33 46—52 52—58 100—110	7,67 7,24 7,77 7,36	7,81 7,87 8,01 7,54	+0.14 $+0.63$ $+0.24$ $+0.18$	2,38 2,17 2,30 2,27	2,52 2,24 2,47 2,38	+0,14 $+0,07$ $+0,17$ $+0,11$

Этими опытами намечается также путь к исследованию состава почвенных растворов непосредственно в почво-грунтах—без их выделения.

Лаборатория агрохимии АН Армянской ССР

4 2 0 1 11

Ն. Հ. ԱՎԱԳՅԱՆ

Հողային դիսպերս սիստեմներում՝ նատրիում իոների նկատմամբ սուսպենզիոն էՖեկտի կիրառելիության մասին

անուղ ունե ատերերություն ուտերան ուտերարդարույան աւրբը ատիները վեջություներ իներ ըշտրով։ Հայրի է սև չետիր իսրբերի տիտիկություն աւրբը ատիներ կեչություներ և ևրև Հայրի է սև չետիր իսրբերի տիտիկություն մասնարիչըերը (ԵՄ) միոտոնո սիոտեղ

Այս երևույթը չայտնի է որպես Վիդների սուսպինդիոն է հեկա, որի անսությունն Այս երևույթը չայտնի է որպես Վիդների սուսպինդիոն է հեկա, որի անսությունն

Միաժամանակ չափելով ընական խոնավություն ունեցող ծողում և այդ ծողից մամրված լուծույթում ջրածին և նաարիում իոների տկտիվության ցուցանիչների մեծուԹյունները՝ պարդվեց, որ ին ջրածին և թե նաարիում խոների ակտիվության ցուցանիչնավություն ունեցող հողում։

Հրածին և սատրիում կատիոնների ակտիվության նույնատիպ փոփոխությունը լավ համընկնում է Դոննանի հավասարակչոության տեսության հետ և ցույց է տալիս, որ այդ տեսությունը կիրառելի է ոչ միայն ծրածին, այլն նատրիում իոների նկատմամր։

Այսպիսով պարդվում է, որ հողային դիսպերս սիստեմներում նատրիում իոների

ЛИТЕРАТУРА-РРЦЧЦГПРЭЗПРГ

1 П. С. Васильев, Т. В. Гатовскоя, А. И. Рабинович, ЖФХ, т. VII, в. 5, 1936. 2 Г. Вигнер, Избранные работы. Огиз—СХГИЗ, 1941. 3 Т. В. Гатовская, П. С. Васильев, ЖФХ, т. VII, в. 5, 1935, стр. 697. 4 П. А. Крюков, О фазовых потенциалах, возникающих при отстаивании суспензии. Тр. Почв. института им. В. В. Докучаева, т. ХХV, 1947, стр. 274. 5 П. А. Крюков, Методы выделения поч-

венных растворов. Руководство для полевых и лабораторных исследований почв-Современные методы исследования физ.-хим. свойств почв., т. IV, в. 2, 1947, изд. АН СССР. ⁶ Б. П. Никольский, Почвоведение, № 9, 1935. ⁷ А. И. Рабинозич, П. С. Васильев, Т. В. Гатовская, ЖФХ, т. VII, в. 5, 1936, стр. 674. ⁸ М. Темкин, ЖФХ, т. XI, в. 5, 1938. ⁹ М. М. Шульц, Исследование натриевой функции стеклянных электродов. Автореферат диссертации, ЛГУ, 1951, Ленинград.

