XV

1952

)

ФИЗИЧЕСКАЯ ХИМИЯ

О. А. Чалтыкян, Е. Н. Атанасян и А. С. Саркисян

Кинетика реакции перекисей с аминами

II. Кинетика взаимодействия перекиси бензоила с диэтиловым амином в ацетиновом растворе Эффект самоторможения продуктом реакции

(Представлено Г. X. Бунятяном 23 III 1952)

Как известно, ацетон с диэтиламином не образует стабильных соединений при комнатной температуре. С другой стороны, перекись бензоила в ацетоне в тех же условиях не разлагается (1). Поэтому было интересно и удобно исследовать кинетику реакции перекиси бензоила с диэтиловым амином в ацетоне, как растворителе со значительно большей диэлектрической постоянной, чем диэтиловый эфир, примененный нами в наших предыдущих исследованиях (2,3).

Ацетон оказался удобным растворителем также и потому, что за ходом реакции во времени можно проследить не только по убыли концентрации амина, но и довольно просто и легко по убыли концентрации перекиси и по возрастанию концентрации образующейся в результате реакции

бензойной кислоты.

Ацетон, взятый нами в качестве растворителя, был несколько раз перегнан над перманганатом калия в перегонном аппарате с дефлегматором и каплеуловителем. Все части перегонного аппарата были собраны на шлифах. На чистоту ацетон проверялся по показателю преломления, определенному при постоянной температуре с точностью +0,0002.

В отобранных время от времени пробах перекись бензоила определялась иодометрически по методу Гелиссена и Германса (4), а амин и бензойная кислота определялись кондуктометрическим тит-

рованием, используя установку с ламповым звуковым генератором и трехламповым усилителем.

Таким образом, произведенные анализы отобранных проб показали, что в пределах погрещностей анализов количества вошедших в реакцию амина и перекиси строго эквивалентны друг другу и что количество образующейся бензойной кислоты эквивалентно вошедшей в реакцию перекиси, т. е. уравнение (1) правильно передает суммарный химический процесс также и в ацетоновом растворе.

Однако, несмотря на это, оказалось, что в отличие от эфирного раствора, в ацетоновом растворе скорость той же реакции не описывается простым уравнением бимолекулярных реакций. Константа скорости реакции, рассчитанная по уравнению

$$k = \frac{2,303}{t(A-P)} \lg \frac{P}{A} \cdot \frac{(A-x)}{(P-x)}$$
 (2)

(A-число молей амина, P-перекиси, а x-число молей, вошедших в реакцию амина или перекиси), систематически падала со временем, что видно из значений "констант" скорости реакции диэтилового амина с перекисью бензоила при $\sim\!20^\circ$ С в ацетоновом растворе в различные моменты времени.

$$(A = 5,05 \cdot 10^{-2} \text{m/A}, P = 2,5 \cdot 10^{-2} \text{m/A})$$

т серия с	ПРПОВ	II cep	ия опытов	III серия опытов					
время в мин.	k×10 в л/м мин.	в мин.	k×10 в л/м мин.	воемя в мин.	k×10 в л/м мин.				
30,0	3,28	55	3,2/	61	2,94				
61,5	2,75	123	2,50	113	2,35				
90,0	2,44	197	2,22	164	2,19				
120.0	2,26	285	1,92	217	2,00				
150,0	2,19	384	1,73	270	1,86				
180,0	2,09	507	1,51	348	1,72				
210,0	2,03		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						

Систематическое замедление реакции диэтиламина с перекисью бензонла в ацетоновом растворе, естественно, было объяснить связыванием части змина бензойной кислотой, выделившейся в результате реакции:

$$(C_2H_5)_2NH + PhCOOH = (C_2H_5)_2NH_2^{\dagger} + PhCOO.$$
 (3)

Образовавшийся диэтиламмониевый ион, не будучи способным вступать в реакцию радикального типа, выходит из строя, умень-шая концентрацию реакционно-способнего амина.

Для проверки этого предположения нами была измерена скорость рассматриваемой реакции, предварительно внося в раствор

бензойную кислоту в количестве, эквивалентном взятому для реакции амину. Действительно, скорость реакции резко снизилась.

Ниже приведены бимолекулярные "константы" скорости реакции диэтилового амина с перекисью бензоила в ацетоновом растворе, содержащем бензойную кислоту.

$$A = 5,052 \cdot 10^{-2} \, \text{m/n}, \quad P = 2,518 \cdot 10^{-2} \, \text{m/n}, \quad E = 5,050 \cdot 10^{-2} \, \text{m/n}.$$

Время	ł	В	J	111	н.											ŀ	<	10	00	В	л/м	мин.
56	5,			•	•	•			•		•	•	•			•	•	•			3,51	
																					2,94	
197	7.			•	•	•		•			•	•						•	•	-	2,68	
285	5 ,	•	•		•			•		٠	•	•	•			•		٠	•	•	2,41	
383	3.	•	•		•	•	•		•	•	. 1		•	-	•	•	-	•	•		2,17	
458	3	•	•	•	•		•	•	•	•		•								•	2,09	

Как видим, реакция, хотя изначительно замедленная (~10 раз), все-таки имеет место, несмотря на то, что начальная концентрация бензойной кислоты эквивалентна таковой амина. Это говорит за то, что амин связывается с бензойной кислотой обратимо.

Для описания скорости автотормозящихся реакций обычно применяют уравнения типа.

$$\frac{dx}{dt} = k \frac{(A-x)(P-x)}{x} \tag{4}$$

или

$$\frac{dx}{dt} = k \frac{(A-x)(P-x)}{a+bx}. (5)$$

Эти уравнения, однако, не удовлетворяют данным наших измерений и не отражают механизма самоторможения изучаемой нами реакции.

Для вывода уравнения скорости изучаемой нами реакции в ацетоновом растворе допустим, что из образовавшихся x молей бензойной кислоты αx молей связывается с оставшимся амином.

Тогда количество молей активного амина в данный момент времени равно не A-x, а $A-x-\alpha x=A-(1+\alpha)x=A-\beta x$, и уравнение скорости примет вид

$$\frac{dx}{dt} = k (A - \beta x)(P - x), \tag{6}$$

после интегрирования которого получим

$$\lg \frac{A - \beta x}{P - x} = k \frac{(A - 2P)}{2,303} t + \lg \frac{A}{P}. \tag{7}$$

При наличии большого избытка амина и при достаточно высоком значении константы электролитической диссоциации бензоата диэтиламмония (реакции 3)

$$\beta = \text{пост.} = 2.$$

При таком допущении следует ожидать почти прямолинейную зависимость величины $\lg \frac{A-2x}{P-x}$ от времени, с тангенсом угла на-

клона
$$\operatorname{tg} \varphi \cong \frac{\operatorname{k} (A - 2P)}{2,303}$$
 .

Построив график по данным наших опытов без предварительной добавки бензойной кислоты в раствор, мы получили следующие значения tgp:

Инт	гервал вр в .иин	e s	не	HH										tg	9	==	k($\frac{(A-2P)}{2,03}$. 10
	55—123			•	٠	•	٠	•	•	•	•		•		•			. 2,03	
	123—197		•			•	•			•				•	•	•	•	. 1,62	
	197 - 285	•	٠			٠	٠	٠			٠	•	•		•	٠	٠	. 1,60	
	285384					•	•						•	•				. 1,82	
	384 - 507		•	•											•	•		. 1,50	

Как видим, tgc изменяется в очень узких пределах, т. е. \$ действительно близко к 2 (но изменяется с изменением концентрации амина).

При среднем значении $tg\phi=1,75\cdot10^{-4}$ и начальных концентрациях амина $A=5,052\cdot10^{-2}$ м/л и перекиси $P=2,463\cdot10^{-2}$ м/л, для константы скорости реакции (1) получается значение

$$k \approx \frac{1,75 \cdot 10^{-4} \cdot 2,303}{(5,052-2\cdot 2,463)\cdot 10^{-2}} \approx 3,20.10^{-1} \Lambda/M MUH.,$$

что очень близко к начальному значению константы скорости, $3,27.10^{-1} \, n/m$ мин. (II серия опытов).

Уравнение (7) оказалось справедливым также и для опытов с предварительной добавкой бензойной кислоты в раствор. В этом случае $\lg \varphi \cong 1,6 \cdot 10^{-6}$ (опять при $\beta \cong 2$) и для константы получилось значение

$$k \approx \frac{1,6 \cdot 10^{-6} \cdot 2,308}{(5,050 - 2 \cdot 2,518) \cdot 10^{-2}} = 2,3.10^{-2} \Lambda/M MUH.,$$

что близко к начальному значению константы замедленной реакции. Выводы. 1. Исследована скорость реакции диэтиламина с перекисью бензоила в ацетоновом растворе при 20°С.

- 2. Обнаружен эффект самоторможения реакции одним из продуктов—бензойной кислотой—благодаря образованию соли и электролитической диссоциации последней в ацетоне.
- 3. Из кинетических данных реакции диэтиламина с перекисью бензоила заключено, что степень электролитической диссоциации бензоата диэтиламмония в ацетоне близка к единице (т. е. β≈2).
 - 4. Выведено уравнение скорости реакции диэтиламина с пере-

кисью бензонла с учетом образования соли и электролитической диссоциации последней.

Это уравнение (6) правильно передает эффект самоторможения реакции продуктом.

Ереванский государственный университет им. В. М. Молотова Кафедра физической химии

Z. Z. ՉԱԼՔԻԿՅԱՆ, Ե. Ն. ԱՔԱՆԱՍՅԱՆ ԵՎ Z. Ս. ՍԱՐԳՍՅԱՆ

Պեւօքսիդների ու ամինների փոխազդեցության կիներիկան

11. ԲԵՆԶՈՅԻԼ ՊԵՐՕՔՍԻԴԻ ԵՎ ԴԻԷԹԻԼԱՄԻՆԻ ՌԵԱԿՑԻԱՅԻ ԿԻՆԵՏԻԿԱՆ ԱՑԵՏՈՆԱՅԻՆ ԼՈՒԾՈՒՅԹՈՒՄ ԻՆՔՆԱՐԳԵԼԱԿՄԱՆ ԷՖԵԿՏ ՌԵՍԿՑԻԱՅԻ ՊՐՈԴՈՒԿՏՈՎ

- 1. Ուսումնասիրված է դիթեիլամինի և բենպոյիլ-պերօքսիդի փոխագդեցության արադությունը ացետոնային լուծույթում 20°-ում։
- 2. Հայտնարերված է ռեակցիայի ինդնարդելակման Էֆնկտ։ Դրա պատճառը ռեակցիայի պրոդուկտ՝ բենդոական ԹԹվի և մնացած ամինի միջև տեղի ունհցող նրկրորդային ռեակցիան էւ որի շնորհիվ ամինի մի մասը ինակտիվ է դառնում հիմնական ռեակցիայի համար։
- 3. Բենզոյիլ-պերօրսիդի և դիէԹիլամինի փոխազդեցուԹյան կինետիկայի տվյալներից եզրակացված է, որ դիէԹիլամմոնիումի բենզոտտի էլեկտրոլիտիկ դիսոցման աստիձանը ացետոնային լուծույթում մոտ է մեկին (այսինըն՝ 3=2)։
- 4. Արտածված է ինքնարդելակումով ընթացող ռնակցիայի արադության հավասարում (6), որը ճիջտ է նկարադրում փորձի տվյալները, հաշվի առնելով աղաղոյացումը և վերջինիս էլեկտրոլիտիկ դիսոցումը։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ Кензие Нозаки и П. Д. Бартлет, J. ат. Ch. Soc., Vol. 68, 1686 (1946). ² О. А. Чалтыкян, Изв. Гос. университета ССР Армении, № 5, 253, 1930. ³ О. А. Чалтыкян, Е. Н. Атанасян и А. С. Саркисян, ДАН АРМ. ССР. XV, № 1, 1952. ⁴ X. Гелиссэн, X. Германс. Вет, 59, 68, 1927.