XIV

1951

МАТЕМАТИКА

М. М. Джрбашии

О представимости и единственности аналитических функций

(Представлено А. Л. Шагиняном 18 IX 1951)

Задача о единственности тех или иных классов аналитических функций при задании их последовательных производных на некотором счетном множестве точек $\{\alpha_n\}$ впервые исследовалась В. Л. Гончаровым. Им были введены особые интерполяционные ряды (ряды Абеля—Гончарова), при этом установление критериев разложимости функций в ряды такого вида по значениям их последовательных производных на последовательности точек $\{\alpha_n\}$ сводилось к точной оценке некоторых кратных интегралов (1,2).

Опираясь лишь на аппарат ряда Тейлора и на теорию бесконечных систем линейных уравнений, представляется возможным указать общий критерий для разложимости некоторых классов аналитических функций в интерполяционный ряд типа Абеля—Гончарова. Из этого результата следует ряд теорем единственности. В настоящей заметке нами за неимением места эти результаты приводятся без доказательства.

 1° . Отнесем к классу $A_{\lambda}(\rho, \sigma)$ все целые функции порядка ρ и типа меньшего σ , которые в окрестности z=0 представлены рядом Тейлора вида:

$$f(z) = \sum_{n=1}^{\infty} a_{\lambda_n} z^{\lambda_n}$$
 (1)

где $\{\lambda_n\}$ — произвольная последовательность возрастающих натуральных чисел $(\lambda_1 \geqslant 0)$.

Пусть μ_n — любая другая последовательность натуральных чисел, причем $\mu_n \leqslant \lambda_n < \mu_{n+1}$ ($n=1,\ 2,\ \dots$).

Полином степени др вида

$$Q_{p}(z) = \sum_{i=1}^{p} C_{i} z^{\lambda_{i}}$$

$$(2)$$

единственным образом определяется из условий

$$Q_{p}^{(\mu_{k})}(\alpha_{k}) = \begin{cases} 0 & \text{при } k = 1, 2, ..., p-1 \\ 1 & \text{k} = p \end{cases}$$
 (3)

для любой последовательности комплексных чисел $\{\alpha_k\}$. Нетрудно видеть, что в явной форме полином $Q_p(z)$ напишется в следующей интегральной форме

$$Q_{p}(z) = \int_{0}^{z} dz_{1} \int_{0}^{z_{1}} dz_{2} \cdots \int_{0}^{z_{\mu_{1}-2}} dz_{\mu_{1}-1} \int_{0}^{z_{\mu_{1}-1}} \int_{0}^{z_{\mu_{1}}} dz_{\mu_{1}+1} \cdots$$

$$\int_{0}^{z_{\mu_{i}-2}} dz_{\mu_{i}-1} \int_{\alpha_{i}}^{z_{\mu_{i}-1}} dz_{\mu_{i}} \int_{0}^{z_{\mu_{i}}} dz_{\mu_{i}+1} \cdots \int_{0}^{z_{\mu_{p}-2}} dz_{\lambda_{p}-1} \int_{0}^{z_{\mu_{p}-1}} dz_{\mu_{p}} \int_{0}^{z_{\mu_{p}+1}} dz_{\mu_{p}+1} \cdots$$

$$\int_{0}^{z_{\lambda_{p}-1}} dz_{\mu_{i}} \int_{0}^{z_{\mu_{i}-1}} dz_{\mu_{i}+1} \cdots \int_{0}^{z_{\mu_{p}-1}} dz_{\lambda_{p}} \int_{0}^{z_{\mu_{p}-1}} dz_{\mu_{p}} \int_{0}^{z_{\mu_{p}+1}} dz_{\mu_{p}+1} \cdots$$

$$\int_{0}^{z_{\mu_{p}-1}} dz_{\lambda_{p}} \int_{0}^{z_{\mu_{p}-1}} dz_{\mu_{p}} \int_{0}^{z_{\mu_{p}-1}} dz_{\mu_{p}+1} \cdots$$

$$\int_{0}^{z_{\mu_{p}-1}} dz_{\lambda_{p}} \int_{0}^{z_{\mu_{p}-1}} dz_{\mu_{p}} \int_{0}^{z_{\mu_{p}-1}} dz_{\mu_{p}+1} \cdots$$

$$\int_{0}^{z_{\mu_{p}-1}} dz_{\mu_{p}-1} \int_{0}^{z_{\mu_{p}-1}} dz_{\mu_{p}-1} \int_{0}^{z_{\mu_{p}-1}} dz_{\mu_{p}-1} \cdots$$

$$\int_{0}^{z_{\mu_{p}-1}} dz_{\mu_{p}-1} \int_{0}^{z_{\mu_{p}-1}} dz_{\mu_{p}-1} \int_{0}^{z$$

Заметим, что при $\lambda_k = \mu_k = k-1$ ($k=1, 2, \ldots$) полином $Q_p(z)$ представляет собой полином Абеля—Гончарова.

Обозначим:

$$I_{k}(d) = \frac{\left(\lambda_{k} - \mu_{k}\right)!}{\left(d\lambda_{k}^{1 - \frac{1}{\rho}}\right)^{\lambda_{k}}} \sum_{n=1}^{\infty} \frac{\left(d\lambda_{n+k}^{1 - \frac{1}{\rho}}\right)^{\lambda_{n+k}}}{\left(\lambda_{n+k} - \mu_{k}\right)!} |\alpha_{k}|^{\lambda_{n+k} - \lambda_{K}}$$

$$(5)$$

где $d = (\sigma \rho e)^{\rho} e^{-1}$. Имеет место

Теорема І. Если

$$\lim_{k \to \infty} \sup_{\kappa} I_{\kappa}(d) < 1 \tag{6}$$

то для любой функции $f(z) \in A_{\lambda}$ (p, s) имеет место равномерно сходящееся в любой замкнутой части плоскости разложение вида

$$f(z) = \sum_{p=1}^{\infty} f^{(\mu_p)}(\alpha_p) Q_p(z).$$
 (7)

Отметим, что условие (6), вообще говоря, необходимо для справедливости разложения (7).

Именно можно построить последовательности $\{\lambda_k\}$, $\{\mu_k\}$, $\{\alpha_k\}$ и функцию $f_1(z) \in A_{\lambda}(\sigma, \rho)$ таким образом, чтобы имело место

$$\limsup_{k \to \infty} I_k (d) = 1, \quad f_1(z) \neq \sum_{p=1}^{\infty} f_1^{(\mu_p)}(\alpha_p) Q_p(z).$$

Следствие: Если $f(z) \in A_{\lambda}(\rho, \sigma)$, $f^{(\mu_p)}(\alpha_p) = 0$ ($\rho = 1, 2, ...$), то для $f(z) \equiv 0$ достаточно и, вообще говоря, необходимо, чтобы имело место условие (6).

При справедливости разложения (7) условимся называть $\{\alpha_n\}$ множеством разложимости и единственности.

2°. Установлен следующий результат о существовании целой функции с заданной системой значений ее производных на множестве единственности.

Теорема II. a) Если $\lim_{k\to\infty}$ Sup I_k (d) < 1 и для последовательности I_k | bk |

$$\lim_{k\to\infty} \sup \frac{\left(\lambda_{k} - \mu_{k}\right)! \left|b_{k}\right|}{\left(d_{1}\lambda_{k}^{1 - \frac{1}{\rho}}\right)^{\lambda_{k}} \left|\alpha_{k}\right|^{\lambda_{k} - \mu_{k}}} < +\infty$$
(8)

где $0 < d_1 < d$, то существует единственная функция $f(z) \in A_{\lambda}$ (р. σ), удовлетворяющая условиям $f^{(\mu_k)}(\alpha_k) = b_k (k = 1, 2, ...)$.

6) Если lim Sup I_k (d) $<+\infty$, тодля любой функции $f(z) \in A_{\lambda}$ (ρ , σ).

$$\lim_{k\to\infty} \frac{\left(\lambda_k - \mu_k\right)! \left| f^{(\mu_k)}\left(\alpha_k\right) \right|}{\left(d\lambda_k^{1-\frac{1}{\rho}}\right)^{\lambda_k} \left|\alpha_k^{\lambda_k} - \mu_k\right|} < + \infty$$

 3° . Из вышеприведенного критерия разложимости в интерполяционный ряд вытекает ряд следствий при частных предположениях о распределении последовательностей $\{\lambda_n\}$ и $\{\mu_n\}$. Предположим, что при целом $\rho \gg 1$

$$\mu_n = pn + r \ (0 \leqslant r \leqslant p-1), \ \lambda_n = pn + q \ (r \leqslant q \leqslant p + r-1),$$
 тогда имеет место

Теорема III. Если для последовательности (a)

$$\lim_{k\to\infty} \sup_{k\to\infty} k \frac{1-\frac{1}{\rho}}{|\alpha_{\kappa}|} < \frac{\eta_{\rho}}{|\alpha_{\kappa}|} p^{\frac{1}{\rho}} - 1$$

$$(9)$$

где пр — корень трансцендентного уравнения

$$\sum_{i=0}^{p-1} \omega^{-} q^{-r} e^{\omega^{i} \eta_{p}} = \frac{2p \eta_{p}^{q-r}}{(q-r)!} \left(\omega = e^{\frac{2\pi}{p} i} \right), \quad (10)$$

то $\{\alpha_n\}$ является множеством разложимости и единственности для класса A_{λ} (р, σ).

Следствие. Если f(z) целая функция порядка ρ и типа $<\sigma$, удовлетворяющая условиям вида $f^{(k)}(\alpha_k) = 0$ ($k = 0, 1, 2, \dots$), где

$$\limsup_{k \to \infty} k \frac{1 - \frac{1}{\rho}}{|\alpha_k|} < \frac{\log 2}{\frac{1}{\rho}}$$

$$(05)^{\frac{1}{\rho}}$$

To $f(z) \equiv 0$.

Заметим, что результат следствия при $\rho = 1$ был получен ранее другим образом (3).

 4^{0} . Установлен также следующий критерий разложимости и единственности при предположении $\lim_{k\to\infty}(\lambda_{k+1}-\lambda_{k})=\infty$.

Теорема IV. Если при р ≤ 1

$$\lim_{k\to\infty} \sup \frac{|\alpha_k|}{\frac{1}{\rho}-1} < \frac{1}{(\alpha_{\rho}e)^{\frac{1}{\rho}}}, \qquad (12)$$

$$\lambda_{k+1} \frac{|\alpha_k|}{(\lambda_{\kappa+1}-\mu_{\kappa})} < (\sigma_{\rho}e)^{\frac{1}{\rho}}.$$

то $\{\alpha_{\kappa}\}$ будет множеством разложимости и единственности для класса A_{λ} (ρ, σ).

При дополнительных ограничениях, налагаемых на последовательности $\{\lambda_{\kappa}\}$ и $\{\mu_{\kappa}\}$, можно установить соответствующий результат для класса A_{λ} (ρ , σ), когда $\rho > 1$.

 5° . Отнесем к классу $B_{\lambda}(R)$ функции голоморфные в круге радиуса большего R и представимые рядом вида (1).

Обозначая

$$F_{\kappa}(R) = \frac{\left(\lambda_{\kappa} - \mu_{\kappa}\right)!}{\lambda_{\kappa}!} \sum_{n=1}^{\infty} \frac{\lambda_{n+\kappa}!}{\left(\lambda_{n+\kappa} - \mu_{\kappa}\right)!} \left(\frac{|\alpha_{\kappa}|}{R}\right)^{\lambda_{n+\kappa} - \lambda_{\kappa}},$$

имеем:

Теорема Γ Если $\lim_{\kappa \to \infty} \sup_{\kappa \to \infty} \Gamma_{\kappa}(R) < 1$, то для любой функции $f(z) \in B_{\lambda}(R)$ имеет место равномерно сходящееся в любой замкнутой части круга |z| < R разложение вида

$$f(z) = \sum_{p=1}^{\infty} f^{(\mu_p)}(\alpha_p) Q_p(z),$$

где полиномы $\{Q_p(z)\}$ имеют прежний смысл.

В случае распределения последовательностей $\{\lambda_n\}$ и $\{\mu_a\}$ как в 3°, имеет место

Теорема III¹. Если для последовательности {\alpha_n}

$$\lim_{k \to \infty} \sup_{\infty} |\alpha_{\kappa}| < R \frac{\eta_{n}}{p}.$$

где η_0 имеет тот же смысл, что и в 3^0 , то $\{\alpha_i\}$ является иножеством разложимости и единственности для класса функций $B_{\lambda}(R)$.

Следствие. Если f(z) голоморфна в круге радиуса большего R и $f^{(n)}(\alpha_n) = 0$ ($n = 0, 1, 2, \ldots$), где

$$\lim_{k\to\infty} \sup_{k\to\infty} |\alpha_{\kappa}| < R \log 2,$$

To $f(z) \equiv 0$.

Результат следствия был ранее установлен Какейя (4) другим способом.

В случае, когда $\lim_{k\to\infty} (\lambda_{\kappa+1}-\lambda_{\kappa})=\infty$, имеет место следующий результат.

Teopeмa IV1, Если

$$0 < \omega < \liminf_{k \to \infty} \frac{\lambda_k}{\lambda_{k+1}} \le \limsup_{k \to \infty} \frac{\lambda_k}{\lambda_{k+1}} < 2 < 1$$

И

$$\lim_{k\to\infty}\sup|\alpha_{\kappa}|< R(1-\Omega)\omega^{\frac{2}{1-2}},$$

то $\{\mathbf{z}_n\}$ является множеством разложимости и единственности для класса $B_{\lambda}(R)$.

Сектор математики и механики Академии наук Армянской ССР

u. u. alenasar

Անալիսիկ Ժունկցիաների ներկայացնել հության եվ միակության մասին

տրվում են ֆունկցիայի ածանցյալները կետերի հաչվելի ըազմության վրա։ տրվում են ֆունկցիաների որոշ դասերի ներկայացնելիության և միակության մասին, երբ

ANTEPATYPA--4PU4UUNIPBINIU

¹ В. Л. Гончаров, Ann. Ec. Norm., t. 47, pp. 1—78, 1930. ² В. Л. Гончаров— Усп. мат. наук, вып. 3, 113—143, 1937. ³ С. Такенака—Proc. Physico—Math. Soc. Japan, 529—542, 14, 1932. ⁴ С. Какейя, Proc Physico—Math. Soc. Japan. 14, 125—138, 1932.