1949

MATEMATHKA

3

С. Н. Мергелян

Об интегрировании аналитических функции в областях комплексного переменного

(Представлено А. Л. Шагиняном 28 III 1949)

Пусть D представляет какую-либо односвязную конечную область в плоскости комплексного переменного z, a f(z) — функция, аналитическая в D и непрерывная в замкнутой области D.

В случае, когда граница Г области D -- спрямляемая кривая, неопределенный интеграл от функции f(z) является функцией так же, как и f(z) непрерывной в D.

Ниже мы имеем в виду показать, что если рассматривать области с неспрямляемой границей, то может представиться случай, когда

$$F(z) = \int f(t) dt$$
 (a $\in D$) разрывная и неограниченная в D функция, т. е.,

вообще говоря, интегрирование некоторой аналитической функции f(z) может привести к функции худшей, нежели сама f(z).

Теорема 1. Существует жорданова область D и аналитическая в D и непрерывная D функция f(z), так, что F(z) стремится к $+\infty$ при приближении г по произвольному пути к любой точке некоторого всюду плотного на границе Г множества Е Е Г.

Замечание. Какова бы ни была область D, всегда очевидно существует всюду плотное на границе D множество точек, достижимых изнутри спрямляемыми кривыми, так, что для любой D существует плотное на Г множество граничных точек, при приближении к которым по любым путям F(z) стремится к определенным конечным пределам.

Доказательство теоремы. Пусть $\{k_n\}$ $(n=1,2,\ldots)$ — некоторая моследовательность целых чисел, $\alpha_1 > \alpha_2 > \cdots > \alpha_n \to 0$, $y_1 > y_2 >$ > у де последовательности чисел.

Положим

$$x^{(n)} = \frac{1}{2^n} + \frac{i}{2k_n} \frac{1}{2^n}$$

под $[z_1; z_2]$ будем понимать отрезок в плоскости z с концами в точ-ках z_1, z_2

Обозначим

$$l_{n} = \sum_{p=1}^{k_{n}-1} [x_{2p}^{(n)} + i\alpha_{n}; x_{2p+1}^{(n)} + i\alpha_{n}] + \sum_{p=1}^{2k_{n}} [x_{p}^{(n)} + i\alpha_{n}; x_{p}^{(n)} - i\alpha_{n}] + k_{n}$$

$$+\sum_{p=1}^{k_n} \left[x_{2p-1}^{(n)} - i\alpha_n ; x_{2p}^{(n)} - i\alpha_n \right] + \left[2^{-n} + i\alpha_n ; 2^{-n} + i\alpha_n \right] + \left[2^{-n} + i\alpha_n ; 2^{-n} + i\alpha_n \right] + \left[2^{-n} + i\alpha_n ; 2^{-n} + i\alpha_n ; 2^{-n} + i\alpha_n \right] + \left[2^{-n} + i\alpha_n ; 2^{-$$

$$+\frac{1}{k_{n-}}2^{-n+1}+i\alpha_{n-1}$$

(при n=1 в состав l_1 последний член не входит). Точку z=0 вместе со всеми l_n обозначим через l.

Очевидно, l представляет жорданову кривую, имеющую z=0 одним из своих концов.

Непрерывную функцию $\varphi(z)$ определим на кривой l следующим образом:

$$\varphi(z) = y_n \quad \text{при} \quad z \in [x_{2p}^{(n)} + i\alpha_n \; ; \; x_{2p}^{(n)} + i\alpha_n \;]$$

$$p = 1, 2, \ldots, \; k_n$$

$$\varphi(z) = -y_n \quad \text{при} \quad z \in [x_{2p-1}^{(n)} + i\alpha_n \; ; \; x_{2p-1}^{(n)} - i\alpha_n \;]$$

$$\varphi(0) = 0$$

На остальных отрезках кривой l функцию $\varphi(z)$ определяем линейной интерполяцией по ее известным значениям на концах отрезков.

Пусть $\epsilon > \epsilon > \epsilon_n \to 0$ — некоторая последовательность чисел. Через d_n обозначим множество точек, отстоящих от l_n на расстояние, меньшее ϵ_n .

В силу того, что $\varphi(z)$ непрерывна на l_1 , можно найти полином $P_1(z)$, приближающий $\varphi(z)$ на l_1 достаточно хорошо:

$$\max_{z \in l_1} | P_1(z) - \varphi(z) | < \eta_1,$$

где $\eta_1 > \eta_2 > \eta_n \to 0$ — некоторая последовательность чисел. ϵ_1 выберем настолько малым, чтобы

$$\max_{z \in \overline{d_1}} |P_1(z)| < y_1 + 2\eta_1.$$

Через Z_{π} обозначим точку пересечения границы области d_n с l_{n+1} . Число z_1 можно выбрать, кроме того, настолько малым, чтобы

$$|P_1(z_1) - \varphi(z_1)| < 2\eta_1.$$

Часть l_{n+1} , расположенную вне d_n , обозначим l_{n+1} .

 $\mathcal{L}_3, \ldots, \mathcal{L}_4$ — жордановы дуги, без общих точек, каждая из которых

имеет с замыканием B не более одной общей точки, а $\mu(z)$ — функция, определенная B B и λ , аналитическая B B и непрерывная на сумме $B+\sum_{i=1}^{q}\lambda_{i}$. Для любого $\epsilon>0$ найдется полином $\Pi(z)$, удовлетворяющий неравенству

$$\max_{z \in \overline{B} + \sum_{i=1}^{q} \lambda_i} |\Pi(z) - \mu(z)| < \epsilon.$$

Действительно, в силу теоремы Vолша для любого i < q можем подыскать полином Π_i (z), так, чтобы

$$\max_{z \in \lambda_i} |\Pi_i(z) - \mu(z)| < \frac{\varepsilon}{2},$$

а также полином $\Pi_0(z)$, для которого

Каждую из дуг λ_i покроем жордановой областью B_i , граница которой проходит через общую точку w_i дуги λ_i с границей B; все остальные точки λ_i расположены строго внутри B_i .

Области Ві можно выбрать таким образом, чтобы их границы попарно не пересекались и имели с границей В по одной общей точке Wi. Полиномы

$$\Pi_{i}(z) - \Pi_{i}(w_{i}) + \Pi_{0}(w_{i}),$$

а также $\Pi_0(z)$ принимают в общих граничных точках областей B_i с B_i равные значения, поэтому, в силу одной теоремы Шагиняна. можно найти полином $\Pi(z)$, приближающий с любой степенью точности в $B - \Pi_0(z)$, а в $B_i - \Pi_i$ (z).

Применим лемму к области d_1 кривой l_2' и функциям $P_1(z) - P_1(z_1) + \varphi(z_1)$ (в d_1) и $\varphi(z)$ (на l_2'). В силу леммы, найдется полином $P_2(z)$, для которого выполняются неравенства

1.
$$\max_{z \in l_2} |P_2(z) - \varphi(z)| < \eta_2$$
, 2. $\max_{z \in d_1} |P_2(z) - P_1(z) + P_1(z_1) - \varphi(z_1)| < \eta_2$.

Число го выбираем так, чтобы

$$\max_{z \in d_2} |P_2(z)| < y_2 + 2\eta_2.$$

Обозначим $d_1 + d_2 = D_2$. Допустим, что область D_n и полином $P_n(z)$ уже построены так, что

1.
$$\max | P_n(z) - P_{n-1}(z) | < \eta_{n-1}$$

 $z \in \overline{D}_{n-1}$

2.
$$\max_{z \in I_n} |P_n(z) - \varphi(z)| < \eta_n$$

3.
$$\max_{z \in \overline{D}_{n} - D_{n-1}} |P_{n}(z)| < y_{n} + 2\eta_{n}$$

Определим D_{n+1} и $P_{n+1}(z)$. В силу леммы можно найти полином $P_{n+1}(z)$, удовлетворяющий неравенствам

1.
$$\max_{z \in \overline{D}_n} |P_{n+1}(z) - P_n(z)| < \eta_n$$

2.
$$\max_{z \in I_{n+1}} (z) - \varphi(z) | < \eta_{n+1}$$

Число ε_{n+1} выбираем так, чтобы $\max |P_{n+1}(z)| < y_{n+1} + 2\eta_{n+1}$ и полагаем $D_{n+1} = D_n + d_{n+1}$ $z \in \overline{D}_{n+1} - D_n$

Таким образом, области D_n и полиномы P_n(z) определены для любого

$$n=1,2,3,\ldots$$
 Положим $D=\sum_{n=1}^{\infty}D_n$ $f(z)=\lim_{n\to\infty}P_n\left(z\right);\ f(0)=0;$

легко видеть, что область D жорданова, граница ее проходит через

$$z = 0$$
, а $f(z) - функция непрерывная в \overline{D} , так как ряд $P_1(z) + \sum_{n=1}^{\infty} [P_{n-1}(z) - p_{n-1}(z)]$$

$$-P_n(z)$$
] при условии $\sum_{n=1}^{\infty} \eta_n < \infty$ равномерно сходится в любой из D

и его сумма, определенная таким образом везде вне z=0, стремитс. к нулю при $z\to 0$. Легко видеть, что соответствующим подбором чисел

$$\{k_n\}$$
, $\{\eta_n\}$, $\{\epsilon_n\}$, $\{y_n\}$, $n=1,2,3,\ldots$,

можно добиться того, чтобы
$$\int\limits_{a}^{z}f(t)\,dt\to +\infty$$
 при $z\to 0$, $z\in \overline{D};$

для этого достаточно рассматривать значения z на кривой l и за путь интегрирования принять часть l от a до z. Для завершения доказательства применяем метод сгущения особенностей.

Так как построенная функция f(z) непрерывна, то ее можно равномерно аппроксимировать в \overline{D} полиномами, откуда, используя полученное свойство f(z), имеем.

Следствие. Существует последовательность полиномов { Q_n(z)} такая, что

$$\max_{z \in \overline{D}} |Q_n(z)| \to 0$$
 при $n \to \infty$

однако

$$\max_{z \in \overline{D}} \left| \int_{a}^{z} Q_{n}(t) dt \right| \to \infty.$$

$$n \to \infty.$$

Теорема 2. Пусть D — конечная область со связным дополнением, d — ее диаметр, $P_n(z)$ — полином степени n. Если

то, при любом $\varepsilon > 0$,

$$\max_{z \in \overline{D}} \left| \int_{a}^{z} P_{n}(t) dt \right| < \pi e \ dMn(1+\epsilon), \quad n > n(\epsilon).$$

Действительно, если L_{ϵ} — образ окружности $|w|=1+\epsilon$ при конформном отображении |w|>1 на дополнение к \overline{D} , осуществляемом с помощью функции $z=\psi(w)$, то, используя оценку модуля производной однолистной функции, получаем

An.
$$L_{\epsilon} < \frac{d}{\epsilon} 2\pi (1 + \epsilon)$$
.

Легко видеть, что в области D_{ϵ} , ограниченной кривой L_{ϵ} две любые точки могут быть соединены спрямляемой кривой, лежащей в D_{ϵ} и по длине не превышающей $\frac{\pi d}{\epsilon}$ $(1+\epsilon)$.

Как известно, при условии (*) имеем

$$\max_{z \in \overline{D}_{\epsilon}} |P_n(z)| < M(1 + \epsilon)^n$$

пусть $\varepsilon = \frac{1}{n}$; тогда имеем

$$\left|\int\limits_{a}^{z}P_{n}\left(t\right)\,dt\,\right|\leqslant M\left(1+\frac{1}{n}\right)^{n}\pi\,dn\left(1+\frac{1}{n}\right)< M\pi e\,dn\left(1+\epsilon_{1},$$

где путь интегрирования расположен в D_1____

Таким образом, для того, чтобы у непрерывной в \overline{D} функции f(z) неопределенный интеграл был бы также непрерывным в \overline{D} , необходимо накладывать некоторые дополнительные ограничения на f(z), как, например, следующее.

Теорема 3. Пусть En (f) означает отклонение от f(z) полинома

наилучшего приближения f(z) в D степени п.

Если

$$E_n(f) < \frac{Const}{n^{1+\epsilon}}, \epsilon > 0,$$

$$F(z) = \int_{a}^{z} f(t) dt$$

непрерывна в D.

В самом деле, при этих условиях из теоремы 2 следует, что ряд

$$\int\limits_{a}^{z}P_{1}dt+\sum\limits_{a}\left[\int\limits_{a}^{z}P_{n+1}(t)dt-\int\limits_{a}^{z}P_{n}\left(t\right)dt\right],$$

представляющий в D F(z), равномерно и абсолютносходится в \overline{D} , т. е. F(z) непрерывна в \overline{D} .

Сектор математики и механики Академии Наук Армянской ССР Ереван, 1949, февраль.

U. U. UEPAFLEUV

Կոմպլենս թիրույթներում անալիջիկ Շունկցիաների ինջեգոման մասին

րթև–ղի փաստ, սևն Հուրի ին չարժու յրն ինտվար փոփսխակարի ֆուրինիայիան ֆուրինիտ ֆուրինիայության իրարժնումին կանով բր ոտանվել խմվամ որ – ղի փաստ, սևն Հուրի ին չարժու յրն ինտվար փոփսխակարի ֆուրինիայի ֆուրինիայի միանեսում։

Գնածատելով թաղվանդամի ինտեղրալի մաքսիմում մոդուլը նրա՝ տիրույթի եղրագծի վրա տված մաքսիմում մոդուլի օգնությամր, ստացվում է անորոչ ինտեղրալի փակ տիրույթում անընդհատության հետևյալ պայմանը,—

bpь E, (f)-ը լավագույն ժոտարկող п-րդ աստիճանի բազժանդաժի հղումն է f(2)

ֆունկցիայից փակ $\mathbb D$ տիրույթեում և $\mathbb E_n$ $(\widehat{\mathfrak l})<\frac{\operatorname{Const}}{n^{1+\epsilon}}$, ապա $\int\limits_{z_n}^z \widehat{\mathfrak l}(t)\mathrm{d}t$ ինտեզրալը անընդ-

Sum & what D infipmes Hand: