VIII

1948

MATEMATHKA

C. H. Meprease

О неноторых квазианалитических классах функций

(Представлено А. Л. Шагиняном 31 XII 1947)

Через E_n (f.) обозначим отклонение полинома наилучшего приближения степени п непрерывной функции f(x) от f(x) на отрезке [0,1], т. е. нижнюю грань величин

$$\max_{0 \le x \le 1} |f(x) - P_n(x)|$$

относительно всевозможных полиномов степени < п.

Введенный акад. С. Н. Бернштейном квазианалитический класс функций, обладающий тем свойством, что совпадение двух его функций на каком-либо отреже $[x_1, x_2]$, $(x_1 > 0, x_2 < 1)$ ведет к их совпадению везде на [0,1], характеризуется в терминах наилучшего приближения тем, что для некоторых целых чисел $\Pi_1, \Pi_2, \ldots, \Pi_k, \ldots$ и постоянной k < 1

$$E_n(f) < k^n \quad n = n_1, n_2, ...$$

Ниже мы имеем в виду привести аналогичные результаты, касающиеся некоторых других квазианалитических классов функций.

Пусть $\varphi(\delta) > 0$ ($\delta > 0$ — монотонная функция, убывающая к нулю при $\delta \to 0$ быстрее любой степени аргумента, т. е. при всяком п > 0

$$\lim_{\delta \to 0} \frac{\varphi(\delta)}{\delta^{n}} = 0).$$

Квазианалитический класс функций, определенных на [0,1], обладающий тем свойством, что из неравенства

$$|f_1(x)-f_2(x)| < \varphi(|x-x_0|),$$

выполняющегося для двух любых его функций f_1 и f_2 и какой-нибудь точки \mathbf{X}_0 следует, что $f_1(\mathbf{X}) \equiv f_2(\mathbf{X})$, обозначим через $\mathbf{Q} \approx \mathbf{0}$.

Теорема 1. Если для некоторых целых чисел пр. пр. . . .

$$E_n(f) = 0 \{ \varphi(\delta_n) \}$$
 $n = n_1, n_2, \dots$

где δ_n — корень уравнения $(c\delta)^n = \varphi(\delta)$ при любой фиксированной постоянной c > 0, то $f(x) \in Q_{\epsilon}$.

Пример. Пусть $\varphi(\delta) = \exp(-\delta^{-1})(\lambda > 0)$. В этом случае если для некоторых $\Pi_1, \ \Pi_2, \ldots, \ \epsilon > 0$

$$E_n(i) < \exp\left(-\frac{n \ln n}{\lambda - \epsilon}\right)$$
 $n = n_1, n_2, \dots$

и при $0 < x_0 < 1$

$$|f(x)| < \exp(-|x-x_0|^{-\lambda}),$$

to f(x)=0.

Пусть М означает бесконечное замкнутое множество точек, рас-положенных на отрезке [0,!].

Квазианалитический класс функций, определяющийся тем обстоятельством, что из совпадения двух любых его функций на множестве М следует их тождественность везде на [0,1], обозначим через U_M.

Класс Uм объединяет, следовательно, те функции, для которых множество М является "множеством единственности".

Теорема 2. Для любого бесконечного множества М можно указать такую положительную функцию $\varphi_{M}(n)$, что если для каких-либо целых n_1, n_2, \ldots

$$E_n(f) < \varphi_M(n), n = n_1, n_2, \dots$$

 $mo\ f(x) \in U_M$. В частности, если М состоит из точек $\left\{\vartheta + \frac{1}{m!^p}\right\}$ $0 < \vartheta < 1, p > 0, m = 1, 2, ..., то$

$$\varphi_{M}(n) = e^{-p n \ln n - cn}$$

где c>0 некоторая постоянная, если же M состоит из точек вида $\{\vartheta+q^m\}$ $m=1,2,3,\ldots,q<1,\ 0<\vartheta<1,$

$$\varphi_{M}(n) = q^{\frac{n(n-1)}{2}} \qquad u m. \partial.$$

За мечание. Можно доказать, что классы Q_{μ} и U_{M} не пусты, именно, существует несчетное множество недиференцируемых функций. отличных друг от друга не на аналитическую функцию, входящих в классы Q_{μ} и U_{M} .

Пусть теперь f(z) — регулярна в |z| < 1, непрерывна в |z| < 1, а $\rho(n)$ означает нижнюю грань *

$$\max_{|z| \le 1} |f(z) - P_n(z)|$$

по всевозможным полиномам степени < П.

Следующее утверждение, являющееся аналогом теоремы 2, относится к предложенной проф. А. Л. Шагиняном задаче изучения совокупности нулей аналитической функции f/z), расположенных на границе области регулярности f(Z) в предположении, что f(Z) непрерывна в замжнутой области.

Теорема 3. Для любого бесконечного множества М точек, расположенных в $|z| \le 1$, существует положительная функция $\Psi_{M}(n)$, такая, что если

$$\rho(n) < \Psi_M(n)$$
 $n = n_1, n_2, \dots$

u f(t) = 0 $\partial \Lambda R$ $t \in M$, mo $f(z) \equiv 0$.

Замечание. Следует отметить, что в классы Q_{ϕ} и U_{M} входят функции недиференцируемые с как угодно плохим (в смысле медленности убывания) модулем непрерывности. То же относится и к классу функций, регулярных в |z| < 1, непрерывных в |z| < 1, для которых какое-либо бесконечное множество M является множеством единственности

Пусть $\rho(n) < e^{-\frac{n}{\ln n}}$ и М означает множество нулей функции f(z).

Теорема 4. Если $f(z) \neq 0$, то множество M счетно, кроме того, если $M^{(n)}$ означает производное множество $M^{(n-1)}$, то ряд $M^{(0)} = M$, $M^{(1)}$, $M^{(2)}$, ... обрывается на некотором члене.

Рассмотрим теперь связь между свойствами f(z), скоростью убывания E_{n_k} (f) и полностью чисел (n_k).

Для любых целых чисел n_1, n_2, \ldots и скорости приближения можно установить зависящие от них свойства аппроксимируемой функции. Рассмотрим в качестве примера три случая.

Пусть

$$E_n(f) < \frac{1}{n^{p+\alpha}}$$
 $p+\alpha >$, $0 < \alpha < 1$, $n = n_1, n_2, ...$

Теорема 5. Если n_k = exp ck, то P-я производная функции f(x) удовлетворяет условию Липшица порядка α,

если
$$n_k = \exp \exp \operatorname{ck}$$
, то $\left[\begin{array}{c} p + \alpha \\ e^{\alpha} \end{array} \right]$ -я производная функции $f(x)$ удов-

летворяет условию Липшица порядка
$$\frac{p+\alpha}{e^c} - \left[\frac{p+\alpha}{e^c}\right] - \epsilon \ (\epsilon > 0);$$

если же $n_k = \exp\exp\exp\operatorname{ck}$, то f(x) может быть недиференцируемой, однако если $\omega(\delta)$ означает модуль непрерывности f(x), то

$$\omega(\delta)$$
 < Const e $-c_1\left(\ln\frac{1}{\delta}\right)^{e^c}c_1 > 0$.

Замечание. Последнее утверждение является в некотором смысле вполне точным, так как существуют функции, модуль непрерывности

которых удоваетворяет неравенству

$$\omega(\delta) > \text{const e}^{-\epsilon_0 \left(\ln \frac{1}{\delta}\right)^{\epsilon_0}}$$

н для которых

$$E_n(f) < \frac{1}{n} = \exp \exp exp ck, k = 1, 2, 3, ...$$

Сектор Математики и Мехапики Анадемии Наук Армянской ССР Ереван, 1947, ноябрь.

U. V. UEPAPLEUL

Կվազիանալիսիկ Հունկցիաների որոշ դասերի մասին

տեր, որոնք ընութագրվում են լավադում են կվազիանալիտիկ ֆունկցիաների մի բանի «հր, որոնք ընութագրվում են լավադում մոտավորության ահրմիններով։ Քննարկվում է նաև տնալիտիկ ֆունկցիաների գերոների բալևումը ֆունկրիայի անութության արթույթի նգրագծի վրա