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Abstract

We show that if X is a Banach space and a weakly sub-Gaussian random element
in X induces the 2-summing operator, then it is T—sub-Gaussian, provided that X
is a reflexive type 2 space. Using this result, we obtain a characterization of weakly
sub-Gaussian random elements in a Hilbert space which are T'—sub-Gaussian.
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1 Introduction

Let (2, A, P) be a probability space. Following [8], we call a real-valued measurable function
¢ : 2 — R a sub-Gaussian random variable if there exists a real number a > 0 such that for
every real number ¢ the following inequality is valid

2

t& L1a2¢
Ee* <e2®",

where E stands for the mathematical expectation.
To each random variable &, there corresponds a parameter 7(§) € [0, +o0] defined as
follows (we agree inf()) = +o00):

7(§) = inf {a >0: Ee< e%azﬂ, te R} )

A random variable £ is sub-Gaussian if and only if 7(£) < 400 and E¢ = 0. Moreover, if &
is a sub-Gaussian random variable, then for every real number ¢

Eet€ < €%T2(§)t2
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and )
(E€?)® <7(¢).

If € is a Gaussian random variable with E£ = 0, then ¢ is sub-Gaussian and

(E¢)?

(&)

Remark 1.1 /3, Example 1.2]. If £ is a bounded random variable, i.e., if for some constant
c € Rwith1 < ¢ < 400, we have [§| < ¢ a.s. and E{ = 0, then £ is sub-Gaussian and

(&) <.

Denote by SG(€2, A, P), or in short, by SG(2) the set of all sub-Gaussian random variables
defined on a probability space (2, 4,P). SG(£?) is a vector space over R with respect to the
natural point-wise operations; moreover, the functional 7(-) is a norm on SG(2) (provided
that random variables that coincide almost surely are identified) and (SG(Q2),7(+)) is a
Banach space [2]|. For £ € SG(Q) instead of 7(&) we will write also ||£]|sg(q)-

More information about the sub-Gaussian random variables can be found, for example,
in [6].

Remark 1.2 /3, Theorem 1.5] (see also[14, Proposition 2.9]). For a sub-Gaussian random
variable £, we have
ny1/2n
_ o Ee
V(€)= iglif T +00,
the functional ¥ is a norm on the vector space SG(Q2) and the norms T and ¥ are equivalent,
i.e., there exist positive constants aq and ay such that for every & € SG(®) we have

a1d(§) < 7(€) < axd(§).

In an infinite dimensional Banach space there are several notions of sub-Gaussianity. The
aim of the paper is to show that these concepts are different in general. We also give some
sufficient conditions for their equivalence.

Let X be a Banach space over R with a norm || - || and X* be its dual space. The value
of the linear functional * € X* at an element = € X is denoted by the symbol (x*, z).

Following [15, p. 88], a mapping £ : 2 — X is called a random element (vector) in X if
(x*, &) is a random variable for every x* € X*.

If 0 < p < o0, then a random element £ in a Banach space X:

e has a strong p-th order, if ||£|| is a random variable and E ||£||” < oo;
e has a weak p-th order, if E|(z*, &)|P < oo for every z* € X*;
e is centered, if £ has a weak first order and E (z*,£) = 0 for every z* € X*.

To each weak second-order centered random element & in a separable Banach space X,
there corresponds a mapping R¢ : X* — X such that

(", Rex™) = E(y", §)(2",€),  for every 2%, y" € X7,

which is called the covariance operator of & [15, Corollary 2 (p.172)].
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A random element & : Q0 — X is called Gaussian, if for each functional z* € X*, the
random variable (z*, ) is Gaussian.

A mapping R : X* — X is said to be a Gaussian covariance if there exists a Gaussian
random element in X, the covariance operator of which is R.

A random element £ : Q — X will be called weakly sub-Gaussian [13] if for each z* € X*,
the random variable (z*, ) is sub-Gaussian.

A random element ¢ : Q — X will be called T'—sub-Gaussian (or y—sub-Gaussian [5])
if there exists a probability space ({2, A’",P’) and a centered Gaussian random element
n: Y — X such that for each z* € X*

Eele™ 8 < Eel™m (1.1)

Theorem 1.3 (a) If X is a finite-dimensional Banach space, then every weakly sub-
Gaussian random element in X is T'—sub-Gaussian.

(b) If X is a infinite-dimensional separable Banach space, then there exists a weakly
sub-Gaussian random element in X, which is not T'—sub-Gaussian.

Proof.

(a) See [14, Proposition 4.9].

(b) According to [13] (see also [14, Theorem 4.5]), we can find and fix a weakly sub-
Gaussian random element £ in X, such that E||£|| = co. Such a random element cannot be
T—sub-Gaussian, because as stated in [5, Theorem 3.4] every such random element must be
“exponentially integrable”. W

To every weakly sub-Gaussian random element & : 0 — X, we associate the induced
linear operator

Te: X — SG(Q)
defined by the equality:
Tex™ = (z*,§) for all z* e X™.

Let X and Y be Banach spaces, L(X,Y") be the space of all continuous linear operators
acting from X to Y. An operator T' € L(X,Y) is called 2-(absolutely) summing if there exists
a constant C' > 0 such that for each natural number n and for every choice x1, zo, ..., x, of
elements from X, we have

n 1/2 n 1/2
(Z HTa:kH2> <C sup (Z |(z*, xk>]2> . (1.2).
k—1 llz*||x+<1 \ 21

For a 2-summing 7" : X — Y, we denote the minimum possible constant C' in (1.2) by ma(T").
We say that a Banach space X has type 2 if there exists a finite constant C' > 0 such

that for each natural number n and for every choice 1, xs, ..., z, of elements from X, we
have
1l » 2 1/2 n 1/2
/ > r(t)an|| di <C (Z Ha:kHz) ,
0 k=1 k=1
where 71(+),...,7m,(-) are Rademacher functions on [0, 1]. An example of a type 2 space is a

Hilbert space as well as the spaces [,,, L,(]0, 1]),2 < p < +o0.
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2 Main results
The following theorem is a slightly corrected version of [9, Theorem 1.7].

Theorem 2.1 Let X be a separable Banach space. For a weakly sub-Gaussian random
element £ : Q — X, consider the assertions:

(1) € is T—sub-Gaussian.

(17) Te « X* — SG(Q) is a 2-summing operator.

Then:

(a) (i) = (ii);

(b) The implication (ii) = (i) is true provided that X is a reflexive Banach space of
type 2.

Proof.
(a) (i) implies that there exists a centered Gaussian random element 7 : ' — X such
that for each #* € X* the relation (1.1) holds. This implies that

T(Tex™) < 7(Ta") for all 2% e X™.

Thus, as n is a Gaussian random element in X, the operator T, is 2-summing (see, for
example, [4]). Hence, we conclude that (i7) holds.

(b) Since ¢ is a weakly sub-Gaussian random element, for every z* € X*  we can write:

Taking into account that the operator 7; is 2-summing and X is reflexive, by Pietsch domi-
nation theorem (see [10] or [15, Theorem 2.2.2]), there exists a probability measure y defined
on the o(X, X*)-Borel sigma-algebra of the unit ball By C X such that

||T§x*||§g(9) < W%(Tg) /<{L‘*717>2 Iu(dx), e X",
Bx

If we consider p as a probability measure in X concentrated on By, then for every z* € X*

[t 02 utde) = [0 ntdn) = (R0,

Bx X

where R,, is the covariance operator of . As p is concentrated on the bounded set, it clearly
has a strong second order, and taking into account the fact that X is a type 2 space, we
obtain that R, is a Gaussian covariance (see [4, Theorem 3.1]). Denoting 73 (T)R, = R, we
get

Ee(x*,{) < 6%(Rx’*,x*>, = X*,

and, thus, £ is a T'—sub-Gaussian random element as R is a Gaussian covariance. W

Problem 2.2 Problem. Prove that the reflexivity condition for X in Theorem 2.1(b) can be
removed.
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Consider now the case when X = H, where H denotes an infinite-dimensional separable
Hilbert space with the inner product (-, -). As usual we identify H* with H by means of the
equality H* = {(-,y) : y € H}.

From Theorem 2.1, we will derive now the following result, which is related to a similar
assertion contained in [1, Proposition 3.1].

Theorem 2.3 Let H be an infinite-dimensional separable Hilbert space. For a weakly sub-
Gaussian random element € : Q) — H, the following statements are equivalent:

(i) & is T—sub-Gaussian.

(14,,) For each orthonormal basis (x) of H,

> P (en ) : (2.1)

k=1

Proof.  The implication (i) == (ii,,) follows from Theorem 2.1 (a).

The implication (ii,,) = (i) follows from Theorem 2.1 (b) as H is a type 2 space and
according to [11], the condition (ii,,) implies that the condition (i7) of Theorem 2.1 is satisfied
as well. H

In connection with Theorem 2.3, the following question naturally arises: is it possible to
replace the condition (ii,,) by the following (weaker) condition?

(1iy) There is an orthonormal basis (py) of H such that

> P (en )

k=1

In [1, Remark 4.3], it is claimed that the answer to this question is positive.
At the end, we pose another interesting question related to Theorem 2.3: does there exist
a bounded centered random element ¢ in a separable infinite-dimensional Hilbert space H

such that
ZT (v, )) =

for every orthonormal basis (1) of H?

3 Conclusion

We have shown that in an infinite dimensional Banach space, the notions of weak sub-
Gaussianity and 7T-sub-Gaussianity do not coincide. Sufficient conditions for their equiva-
lence in a general, infinite-dimensional Banach space is given in terms of 2-summing induced
operators.

The work was partially supported by the European Union’s HORIZON EUROPE Grant
Project GAIN.
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O cyOrayccoBocTU B 6@HAaXOBEIX IIPOCTPAHCTBAX

leopruit A. 'mopro6buanu, Baxtaur B. KBapanxeausa u Baka M. Tapuenaapse
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AnHoTanuys

MBEI moKa3bslBaeM, 4TO eCAn X - 0@HAXOBO IIPOCTPAHCTBO U CAA0O0 CyOrayCCOBCKUM
CAyYaWHBIM 3AeMeHT B X HMHAYLUHpPYeT oOllepaTop 2-CyMMUpPOBaHHS, TO OHO 1™-
CyOrayccoBo IIpU YCAOBHUY, UTO X - pepAeKCUBHOEe IIPOCTPAHCTBO TUMa 2. VIcnoAb3y4d
3TOT Pe3yAbTaT, MBI IIOAyYaeM XapaKTEPUCTUKY CAA0O0 CyOrayCcCOBCKUX CAYYaMHBIX
SAE€MEHTOB B TMABOEPTOBOM IIPOCTPAHCTBE, KOTOPHIE BAGIOTCSA 1™ CyOraycCOBBIMHU.

KaroueBrie caoBa: cyOrayccoBcKas CAydalHasl BEAMUMHA, IayCCOBCKAas CAydaliHag
BEAMYNHA, CAa00O CyOrayCCOBCKHU CAYYaWHBIM 3AeMeHT, 1* cyOrayCccoBCKHU
CAyYaWHBIM 3AeMeHT, 6@HaXOBO IIPOCTPAHCTBO, TMABOEPTOBO IIPOCTPAHCTBO.
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