
Mathematical Problems of Computer Science 62, 52–58, 2024.

doi:10.51408/1963-0120

UDC 519.2

On Sub-Gaussianity in Banach Spaces

George J. Giorgobiani, Vakhtang V. Kvaratskhelia and Vazha I. Tarieladze

Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University,
Tbilisi, Georgia

e-mail: giorgobiani.g@gtu.ge, v.kvaratskhelia@gtu.ge, v.tarieladze@gtu.ge

Abstract

We show that if X is a Banach space and a weakly sub-Gaussian random element
in X induces the 2-summing operator, then it is T−sub-Gaussian, provided that X
is a reflexive type 2 space. Using this result, we obtain a characterization of weakly
sub-Gaussian random elements in a Hilbert space which are T−sub-Gaussian.
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1 Introduction

Let (Ω,A,P) be a probability space. Following [8], we call a real-valued measurable function
ξ : Ω → R a sub-Gaussian random variable if there exists a real number a ≥ 0 such that for
every real number t the following inequality is valid

E etξ ≤ e
1
2
a2t2 ,

where E stands for the mathematical expectation.
To each random variable ξ, there corresponds a parameter τ(ξ) ∈ [0,+∞] defined as

follows (we agree inf(∅) = +∞):

τ(ξ) = inf
{
a ≥ 0 : E etξ ≤ e

1
2
a2t2 , t ∈ R

}
.

A random variable ξ is sub-Gaussian if and only if τ(ξ) < +∞ and Eξ = 0. Moreover, if ξ
is a sub-Gaussian random variable, then for every real number t

E etξ ≤ e
1
2
τ2(ξ)t2
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and (
Eξ2
) 1

2 ≤ τ(ξ) .

If ξ is a Gaussian random variable with Eξ = 0, then ξ is sub-Gaussian and(
Eξ2
) 1

2 = τ(ξ) .

Remark 1.1 [3, Example 1.2]. If ξ is a bounded random variable, i.e., if for some constant
c ∈ R with 1 ≤ c < +∞, we have |ξ| ≤ c a.s. and Eξ = 0, then ξ is sub-Gaussian and
τ(ξ) ≤ c.

Denote by SG(Ω,A,P), or in short, by SG(Ω) the set of all sub-Gaussian random variables
defined on a probability space (Ω,A,P). SG(Ω) is a vector space over R with respect to the
natural point-wise operations; moreover, the functional τ(·) is a norm on SG(Ω) (provided
that random variables that coincide almost surely are identified) and (SG(Ω), τ(·)) is a
Banach space [2]. For ξ ∈ SG(Ω) instead of τ(ξ) we will write also ∥ξ∥SG(Ω).

More information about the sub-Gaussian random variables can be found, for example,
in [6].

Remark 1.2 [3, Theorem 1.3] (see also[14, Proposition 2.9]). For a sub-Gaussian random
variable ξ, we have

ϑ(ξ) = sup
n≥1

(E ξ2n)1/2n

n1/2
< +∞,

the functional ϑ is a norm on the vector space SG(Ω) and the norms τ and ϑ are equivalent,
i.e., there exist positive constants a1 and a2 such that for every ξ ∈ SG(⊗) we have

a1ϑ(ξ) ≤ τ(ξ) ≤ a2ϑ(ξ).

In an infinite dimensional Banach space there are several notions of sub-Gaussianity. The
aim of the paper is to show that these concepts are different in general. We also give some
sufficient conditions for their equivalence.

Let X be a Banach space over R with a norm ∥ · ∥ and X∗ be its dual space. The value
of the linear functional x∗ ∈ X∗ at an element x ∈ X is denoted by the symbol ⟨x∗, x⟩.

Following [15, p. 88], a mapping ξ : Ω → X is called a random element (vector) in X if
⟨x∗, ξ⟩ is a random variable for every x∗ ∈ X∗.

If 0 < p <∞, then a random element ξ in a Banach space X:

• has a strong p-th order, if ∥ξ∥ is a random variable and E ∥ξ∥p <∞;

• has a weak p-th order, if E |⟨x∗, ξ⟩|p <∞ for every x∗ ∈ X∗;

• is centered, if ξ has a weak first order and E ⟨x∗, ξ⟩ = 0 for every x∗ ∈ X∗.

To each weak second-order centered random element ξ in a separable Banach space X,
there corresponds a mapping Rξ : X

∗ → X such that

⟨y∗, Rξx
∗⟩ = E ⟨y∗, ξ⟩⟨x∗, ξ⟩, for every x∗, y∗ ∈ X∗,

which is called the covariance operator of ξ [15, Corollary 2 (p.172)].
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A random element ξ : Ω → X is called Gaussian, if for each functional x∗ ∈ X∗, the
random variable ⟨x∗, ξ⟩ is Gaussian.

A mapping R : X∗ → X is said to be a Gaussian covariance if there exists a Gaussian
random element in X, the covariance operator of which is R.

A random element ξ : Ω → X will be called weakly sub-Gaussian [13] if for each x∗ ∈ X∗,
the random variable ⟨x∗, ξ⟩ is sub-Gaussian.

A random element ξ : Ω → X will be called T−sub-Gaussian (or γ−sub-Gaussian [5])
if there exists a probability space (Ω′,A′,P′) and a centered Gaussian random element
η : Ω′ → X such that for each x∗ ∈ X∗

E e⟨x∗,ξ⟩ ≤ E e⟨x∗,η⟩ . (1.1)

Theorem 1.3 (a) If X is a finite-dimensional Banach space, then every weakly sub-
Gaussian random element in X is T−sub-Gaussian.

(b) If X is a infinite-dimensional separable Banach space, then there exists a weakly
sub-Gaussian random element in X, which is not T−sub-Gaussian.

Proof.
(a) See [14, Proposition 4.9].
(b) According to [13] (see also [14, Theorem 4.5]), we can find and fix a weakly sub-

Gaussian random element ξ in X, such that E∥ξ∥ = ∞. Such a random element cannot be
T−sub-Gaussian, because as stated in [5, Theorem 3.4] every such random element must be
“exponentially integrable”.

To every weakly sub-Gaussian random element ξ : Ω → X, we associate the induced
linear operator

Tξ : X
∗ → SG(Ω)

defined by the equality:

Tξx
∗ = ⟨x∗, ξ⟩ for all x∗ ∈ X∗.

Let X and Y be Banach spaces, L(X, Y ) be the space of all continuous linear operators
acting fromX to Y . An operator T ∈ L(X, Y ) is called 2-(absolutely) summing if there exists
a constant C > 0 such that for each natural number n and for every choice x1, x2, . . . , xn of
elements from X, we have(

n∑
k=1

||Txk||2
)1/2

≤ C sup
||x∗||X∗≤1

(
n∑

k=1

|⟨x∗, xk⟩|2
)1/2

. (1.2).

For a 2-summing T : X → Y , we denote the minimum possible constant C in (1.2) by π2(T ).
We say that a Banach space X has type 2 if there exists a finite constant C ≥ 0 such

that for each natural number n and for every choice x1, x2, . . . , xn of elements from X, we
have ∫ 1

0

∥∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥∥
2

dt

1/2

≤ C

(
n∑

k=1

∥xk∥2
)1/2

,

where r1(·), . . . , rn(·) are Rademacher functions on [0, 1]. An example of a type 2 space is a
Hilbert space as well as the spaces lp, Lp([0, 1]), 2 ≤ p < +∞.
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2 Main results

The following theorem is a slightly corrected version of [9, Theorem 1.7].

Theorem 2.1 Let X be a separable Banach space. For a weakly sub-Gaussian random
element ξ : Ω → X, consider the assertions:

(i) ξ is T−sub-Gaussian.

(ii) Tξ : X
∗ → SG(Ω) is a 2-summing operator.

Then:

(a) (i) =⇒ (ii);

(b) The implication (ii) =⇒ (i) is true provided that X is a reflexive Banach space of
type 2.

Proof.
(a) (i) implies that there exists a centered Gaussian random element η : Ω′ → X such

that for each x∗ ∈ X∗ the relation (1.1) holds. This implies that

τ(Tξx
∗) ≤ τ(Tηx

∗) for all x∗ ∈ X∗ .

Thus, as η is a Gaussian random element in X, the operator Tη is 2-summing (see, for
example, [4]). Hence, we conclude that (ii) holds.

(b) Since ξ is a weakly sub-Gaussian random element, for every x∗ ∈ X∗, we can write:

E e⟨x∗,ξ⟩ ≤ e
1
2
||Tξx

∗||2SG(Ω) .

Taking into account that the operator Tξ is 2-summing and X is reflexive, by Pietsch domi-
nation theorem (see [10] or [15, Theorem 2.2.2]), there exists a probability measure µ defined
on the σ(X,X∗)-Borel sigma-algebra of the unit ball BX ⊂ X such that

||Tξx∗||2SG(Ω) ≤ π2
2(Tξ)

∫
BX

⟨x∗, x⟩2 µ(dx), x∗ ∈ X∗ .

If we consider µ as a probability measure in X concentrated on BX , then for every x∗ ∈ X∗∫
BX

⟨x∗, x⟩2 µ(dx) =
∫
X

⟨x∗, x⟩2 µ(dx) = ⟨Rµx
∗, x∗⟩,

where Rµ is the covariance operator of µ. As µ is concentrated on the bounded set, it clearly
has a strong second order, and taking into account the fact that X is a type 2 space, we
obtain that Rµ is a Gaussian covariance (see [4, Theorem 3.1]). Denoting π2

2(T )Rµ = R, we
get

E e⟨x∗,ξ⟩ ≤ e
1
2
⟨Rx∗,x∗⟩, x∗ ∈ X∗,

and, thus, ξ is a T−sub-Gaussian random element as R is a Gaussian covariance.

Problem 2.2 Problem. Prove that the reflexivity condition for X in Theorem 2.1(b) can be
removed.
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Consider now the case when X = H, where H denotes an infinite-dimensional separable
Hilbert space with the inner product ⟨·, ·⟩. As usual we identify H∗ with H by means of the
equality H∗ = {⟨·, y⟩ : y ∈ H}.

From Theorem 2.1, we will derive now the following result, which is related to a similar
assertion contained in [1, Proposition 3.1].

Theorem 2.3 Let H be an infinite-dimensional separable Hilbert space. For a weakly sub-
Gaussian random element ξ : Ω → H, the following statements are equivalent:

(i) ξ is T−sub-Gaussian.

(iim) For each orthonormal basis (φk) of H,

∞∑
k=1

τ 2(⟨φk, ξ⟩) <∞ . (2.1)

Proof. The implication (i) =⇒ (iim) follows from Theorem 2.1 (a).
The implication (iim) =⇒ (i) follows from Theorem 2.1 (b) as H is a type 2 space and

according to [11], the condition (iim) implies that the condition (ii) of Theorem 2.1 is satisfied
as well.

In connection with Theorem 2.3, the following question naturally arises: is it possible to
replace the condition (iim) by the following (weaker) condition?

(iiw) There is an orthonormal basis (φk) of H such that

∞∑
k=1

τ 2(⟨φk, ξ⟩) <∞ .

In [1, Remark 4.3], it is claimed that the answer to this question is positive.
At the end, we pose another interesting question related to Theorem 2.3: does there exist

a bounded centered random element ξ in a separable infinite-dimensional Hilbert space H
such that

∞∑
k=1

τ 2(⟨ψk, ξ⟩) = ∞

for every orthonormal basis (ψk) of H?

3 Conclusion

We have shown that in an infinite dimensional Banach space, the notions of weak sub-
Gaussianity and T -sub-Gaussianity do not coincide. Sufficient conditions for their equiva-
lence in a general, infinite-dimensional Banach space is given in terms of 2-summing induced
operators.

The work was partially supported by the European Union’s HORIZON EUROPE Grant
Project GAIN.
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Àííîòàöèÿ

Ìû ïîêàçûâàåì, ÷òî åñëè X - áàíàõîâî ïðîñòðàíñòâî è ñëàáî ñóáãàóññîâñêèé
ñëó÷àéíûé ýëåìåíò â X èíäóöèðóåò îïåðàòîð 2-ñóììèðîâàíèÿ, òî îíî T ¤-
ñóáãàóññîâî ïðè óñëîâèè, ÷òî X - ðåôëåêñèâíîå ïðîñòðàíñòâî òèïà 2. Èñïîëüçóÿ
ýòîò ðåçóëüòàò, ìû ïîëó÷àåì õàðàêòåðèñòèêó ñëàáî ñóáãàóññîâñêèõ ñëó÷àéíûõ
ýëåìåíòîâ â ãèëüáåðòîâîì ïðîñòðàíñòâå, êîòîðûå ÿâëÿþòñÿ T ¤ ñóáãàóññîâûìè.

Êëþ÷åâûå ñëîâà: ñóáãàóññîâñêàÿ ñëó÷àéíàÿ âåëè÷èíà, ãàóññîâñêàÿ ñëó÷àéíàÿ
âåëè÷èíà, ñëàáî ñóáãàóññîâñêèé ñëó÷àéíûé ýëåìåíò, T ¤ ñóáãàóññîâñêèé
ñëó÷àéíûé ýëåìåíò, áàíàõîâî ïðîñòðàíñòâî, ãèëüáåðòîâî ïðîñòðàíñòâî.

Ø»Ýù óáõÛó »Ýù ï³ÉÇë, áñ »Ã» X-Á ´³Ý³ËÇ ï³ñ³ÍáõÃÛáõÝ ¿, ¨ ÃáõÛÉ »ÝÃ³·³áõëÛ³Ý
å³ï³Ñ³Ï³Ý ï³ññÁ X-áõÙ ³é³ç³óÝáõÙ ¿ 2-³Ù÷á÷Çã ûå»ñ³ïáñÁ, ³å³ ³ÛÝ
T ¤ »ÝÃ³·³áõëÛ³Ý ¿` å³ÛÙ³Ýáí, áñ X-Á é»ýÉ»ùëÇí 2 ïÇåÇ ï³ñ³ÍáõÃÛáõÝ ¿:
ú·ï³·áñÍ»Éáí ³Ûë ³ñ¹ÛáõÝùÁ, Ù»Ýù ëï³ÝáõÙ »Ýù ÃáõÛÉ »ÝÃ³·³áõëÛ³Ý å³ï³Ñ³Ï³Ý
ï³ññ»ñÇ µÝáõÃ³·ñáõÙ ÐÇÉµ»ñïÛ³Ý ï³ñ³ÍáõÃÛ³Ý Ù»ç, áñáÝù T ¤ »ÝÃ³·³áõëÛ³Ý »Ý:

´³Ý³ÉÇ µ³é»ñ` »ÝÃ³·³áõëÛ³Ý å³ï³Ñ³Ï³Ý Ù»ÍáõÃÛáõÝ Ý, ¶³áõëÛ³Ý

å³ï³Ñ³Ï³ÝÙ»ÍáõÃÛáõÝ, ÃáõÛÉ »ÝÃ³·³áõëÛ³Ý å³ï³Ñ³Ï³Ý ï³ññ, T ¤ »ÝÃ³·³áõëÛ³Ý

å³ï³Ñ³Ï³Ýï³ññ, ´³Ý³ËÇ ï³ñ³ÍáõÃÛáõÝ, ÐÇÉµ»ñïÇ ï³ñ³ÍáõÃÛáõÝ:
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