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ABetucsiH Apa C., Kazapsaun Kapen b., Map3okka Ilbep
H3ruénbie Ko1e0aHUs YACTUYHO MOKPBITOI Mbe303JIEKTPHYECKOli HAKJIAIKOI 0aJIKH,
onuparomeiicsi Ha MEPHOINIECKH PACIOJI0KEeHHbIe BHELITHHE OTOPBI

KnioueBsbie ciioBa: cBOOOIHEIE KONEOAHUS, TIHE30ICKTPHISCKIH HAKIIQJHOM AJIEMEHT, MaTPUYHBII
METO/, HAKOIJICHUE SHEPTUH, TeHepalys 3JEKTPUUECKOTO HaNPsDKEHUS, JIOKAIU3aLusl.

PaccmarpuBaroTcss cBOOOAHBIE KONEOAHUS OalKé, 4acTh OAallKd OMHPAETCS Ha TMEPUOJHYECKU
pacIoyoKEeHHbIe BHEIIHHE OMOpPHI M YaCTHYHO ITOKPHITA WACATBHO MPHUKICCHHON Mhe303IeKTpHIe-
ckoii Hakiamkoi. Ha ocHoBe Teopuum Oanok Oitnepa—bepHymmm m Meroma MaTpuibl TEepeHOCa
MOJy4YeHBbl OOIIMe pelleHHus B INepHoAndYeckoid uacth Oanmku. [lokazaHo, YTO HpPH COBMAJCHUU
COOCTBEHHBIX YacTOT CBOOOJHBIX KOJIeOaHUiT OaJIKH C MOJIOCOi 3aIPpeTHBIX YacTOT COOTBETCTBEHHOM
OecKoHeYHOW Oanku, MPOMCXOJUT CHIbHAS JIOKAIM3alMsi HAKJIOHOB M MOMEHTOB Oallki Ha HEepBOM
uHTep(elice NepuoANYECKOi YacTn Oalky. DIEKTPUUECKOE HANpPSKEHUE, TeHEPHPYEMOE IbE30IeK-
TPUYECKOH HAKJIagKOW, MPOTOPIMOHATGHO HAKJIOHAM IIEPUOIUYECKON CTPYKTYpHI Oaimku. Makcu-
MaJIbHO€ HAKOIUIEHHWE >HEPTUH NPOHCXOJUT HAa COOCTBEHHBIX YacCTOTAaX B TIOJIOCE YAaCTOT 3aJCpiKH-
BaHUS, IPH KOTOPBIX MIPOUCXOANT CHIIbHAS JIOKATH3AINS HAKJIOHa OalKu.
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A beam flexural vibrations are considered, part of the beam rests on periodically located external
supports and is partially covered with a perfectly glued piezoelectric patch. Based on the Euler—
Bernoulli beam theory and the transfer matrix method, general solutions in the periodic part of beam
are obtained. It is shown that when the eigenfrequencies of the beam free vibrations coincide with the
stopband frequencies of counterpart infinite beam, a strong localization of beam slopes and moments
occur at the first interface of the periodic part of beam. The electrical voltage generating by the
piezoelectric patch is proportional to the slopes of the beam periodic structure. The maximal
harvesting energy occurs at stopband eigenfrequencies, at which the beam slope strong localization
takes place.

Introduction. Vibration-based energy harvesting is a growing modern area for generating
low-power electricity to use in wireless electronic devices, such as portable electronics and
wireless sensors. In recent years efficient electrical energy generation and harvesting have
become one of the most practical topics in engineering research. Energy storage devices
come in many designs, with piezoelectric energy storage being especially common. These
devices utilize the property of piezoelectric materials to generate an electric field when
mechanical force is applied. Vibration-based energy harvesting is a modern method for
generating low-power electricity for portable electronics and wireless sensors. The
fundamental research [1] provides a comprehensive study of electromechanical modeling
for piezoelectric energy harvesting, including extensive case studies with experimental
validations. It covers various applied models of beams with piezoelectric patch, forms of
excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving
loads. The paper [2] provides an extensive review of contemporary piezoelectric energy
harvesting techniques. It examines methods for optimizing the energy harvested from
piezoelectric materials [2-8] and emphasizes successful applications [9-12]. A new type of
arch beam piezoelectric stack energy harvester for railway systems is studied in paper [13].
Through simulation analyses and experimental verification of the energy harvester, the
influences of external resistance, load, pre-stress, and load frequency on the energy
harvesting performance of the piezoelectric energy harvester are discussed. In [14], the
proposed energy harvesting device is designed as a piezoelectric cantilever beam utilizing
various piezoelectric materials in both bimorph and unimorph configurations. The
analytical model is derived from Euler-Bernoulli beam theory and its performance is
validated against existing experimental results of piezoelectric energy harvesters in
different configurations.

In work [15], an electromechanical coupled distributed-parameter model of the cantilever
energy harvester is established based on Hamilton’s principle, linear constitutive equations
of magneto strictive material, and Faraday’s law of electromagnetic induction. In [16], a
piezoelectric energy harvester composed of a buckled beam and an extended beam with a
tip mass is proposed. This study develops a mathematical model and a prototype of the
energy harvester. A comprehensive overview of the application of metamaterials and
phononic crystals in energy harvesting is provided in [17]. Energy harvesting from
structural vibrations using multifunctional resonators based on locally resonant materials is
demonstrated in [18]. These structures exhibit a stop band for elastic wave propagation,
with the band gap frequency determined by the microstructure’s local resonance frequency.
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Paper [19] presents a multifunctional structural combining superior mechanical wave
filtering properties and energy harvesting capabilities. It is based on the ability of periodic
structures to block elastic waves within phononic bandgaps. Energy is harvested by
converting localized kinetic energy into electrical energy through the piezoelectric effect.
The study presented in reference [20] employs the generalized Bloch theorem to model
piezo-embedded negative mass metamaterials, demonstrating their dual functionality. It
estimates power harvested by internal resonating units using resistive and shunted inductor
energy harvesting circuits for a finite number of these units. The study in [21] examines the
energy input/output of a composite plate with piezoelectric patches used as sensors,
actuators, or energy harvesters. It concludes that there is always an optimal patch location
for maximum energy transfer, regardless of frequency. For vibrational loading, energy
transfer is highly sensitive to whether the operating frequency is below or above the
system's resonance frequency.

This paper addresses the free vibrations of cantilever or clamped beams with periodically
arranged external supports, partially covered by bonded piezoelectric patches. The periodic
supports turn the multi-span beam into a collector of piezoelectric energy. Significant
localization of beam slopes and moments occurs when eigenfrequencies fall within the
bandgaps of a counterpart infinite beam. Energy harvested by the piezoelectric patch is
highly dependent on the operating frequency, with "stopband"” eigenfrequencies yielding
much greater energy than "passband" frequencies.

The dynamics and stability of finite or infinite beams, supported by periodically arranged
external supports analyzed by using the Euler-Bernoulli beam theory, are explored in
several works by the authors of this article [22-26].

Statement of the problem
Consider a Euler- Bernoulli homogeneous beam of L length in X € (0, L) . The beam in

the region Xe(a;L), L=a+Nd is rested on N intermediate external supports
periodically arranged at points X=a+(n-1)d, n=212;..N. In the region
X e (a;a+nd) the beam on its traction free surface is partially covered by the perfectly

bonded piezoelectric patch of Nd length. The beam end X =0 is clamped or free, the end
X =L is clamped, Fig. (1)
patch
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Fig 1. Beam with periodically arranged N intermediate external supports and piezoelectric
patch
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The equation of mation of Euler- Bernoulli beam can be cast as
El O'W, oW W,
——+2¢ t—=
pA OX ot ot

where W, (X,1) is the deflection of the beam, E is the elastic modulus, | is the moment

0; )

of inertia, p is the bulk density and A is the cross-sectional area of the beam, ¢ is the
internal dumping coefficient , subscript j =1 denotes the region X € (0,a), subscript
J =2 denotes the region X € (a,L).

For the beam clamped at X =L

w,L=0, MLYH_, @
OX

two alternative boundary conditions at X =0 will be considered
AW, (0,t)

W, (0,t) =0 =0, 3)
OX
W W
0 l(zo,t):Q 0 l(;),t)zo @
OX OX

Assuming W, (x,t)=U (X)-exp(—at)-cos(t o —¢° ) where U, (X) is the
amplitude function, ® is the vibration frequency we get

d‘U. Ap(oz
—1 4U i = 01 N = ’
dx e P El (5)

U, (x)=C,;sin(px)+C, sinh(px) +C,, cos(px) + C,, cosh( px)

At the beam interfaces where the external supports are placed the beam deflections are
equal to zero, the moments and slopes are continuous.
At the beam interface X = a we have the following conditions

W (a,t)=0, W,(a,t)=0 (6)
OW,(a,t)  0°W,(a,t) oW, (a,t) oW, (a,t) 0
ot Xk x X

The solutions (5) in region X € (O, a) satisfying (6) and (3), (4) for clamped or cantilever
beams, can be written as follows

U,(x)=C, (sinh(ap) sin(px) —sin(ap)sinh( px)) +

+C,, (sinh(ap) (cos(px) +7 cosh( px) ) —sinh( px) (cos(ap) +y cosh(ap))) ®
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Here and hereinafter, y =1 corresponds to the cantilever beam, y =—1 to the clamped
beam.

Solutions in the periodic structure, transfer matrix approach
In the periodically arranged structure we consider solutions in the basic unit cell

Xe(Bn—l’Bn); Bn:a+nd, n:l.Z,N (9)
interface conditions at points where the supports are located can be cast as
2
U,(B,) =0, {M}:O, dUB) | "
dx dx

Here [*] is a jJump of a function across the interfaces.

In the basic unit cell, the solutions for the amplitude functions (5) that satisfy the conditions
(10) can be determined as follows:

U.()=C sin(p(B,,— X))+ N
BT +sin(dp) - cosh ( p(B, —x))—cosh(dp)-sin( p(B, —x)) (11)
+C,, [ sinh(dp)sin ( p(B, — x))—sin(dp)sinh (p(B, —x))]

Since the interface contact conditions are imposed on the beam
slope y(X) and moment pi(X)

w(x):%,

it is appropriate to introduce the following column vector.
y(x)

U,(x)= ( . (13)
n(x)

Considering vector U, (X) at points X=0,; X=,, the following conditions are

d’U,(x)
n(x) = d# (12)

valid

U,(B,-d)=QC,  U,(B,)=PC; ”
U,(B,-d)=QC, U,(B,)=PC;’

where
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g cos(dq) cosh(dq) —sin(dqg) sinh(dqg) —1] q[sin(dq) cosh(dqg) —cos(dq) sinh(dq)]
Q :( 2472 sin(dg) cosh(dq) ~2¢? sin(dq) sinh(dq) j
. (15)
F)_(q[cos(dq) cosh(dqg) —sin(dq) sinh(dq) +1] q[sin(dq)cosh(dq)—cos(dq)sinh(dq)]]
29° sin(dq) cosh(dq) —2q? sin(dq) sinh(dq)
Eliminating the vector C from (14), the relation linking vector field values within the unit
cell can be found as follows:

. -1
U, (B) =MU, (B.,): M=P(B,)P™(B,)- (16)
The unimodal propagator matrix M herein connects the field vectors at the end points of
the n-th cell.

sin(dp) cosh(dp) — cos(dp) sinh(dp) 1-cos(dp) cosh(dp)
M sin(dp) —sinh(dp) p(sin(dp) —sinh(dp)) an
- 2 psin(dp)sinh(dp) sin(dp) cosh(dp) — cos(dp) sinh(dp)
sin(dp) —sinh(dp) sin(dp) —sinh(dp)

Repeating this procedure N times determines the propagator unimodal matrix M" .

The matrix M" forany n=1;2;...N links the vectors at points of the beam
U,(a+nd)=M"U,(a). (18)
Taking into account that M""U, (a+nd)=U,(a+Nd)=U, (L) we can link the

vectors at beam X =L and X=a+d(n—21) points in the following way

U,(L)=M"""U,(a+d(n-1)). (19)
At the clamped edge X = L we have

0
U,(L)= . (20)

Here p(L) is uncertain value of the beam moment at the clamped end.
According to Sylvester's matrix polynomial theorem [27] for 2x 2 matrices the elements

of the n-th power of an unimodal matrix M" can be cast as
Mn :(Mll(n) MlZ(n)j
MZl(n) M22 (n)
My, (n) =m,S, (M) =S, ,(M), M, (n) =m,,S, ;(n), (21)
M, (n) =myS, ; (M), My, (n) =m,,S, (M) =S, ,(n)

where S, (n) are the Chebyshev polynomials of second kind, namely
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s, (n) sin((n+1)arccos(n)) .
)= sin (arccos(n) )
On the other hand, according to Bloch equation

cos(kd) =n(w) (22)

— (M)

the function n(w) defines the frequencies of bandgaps of the counterpart infinite beam,
K is the Bloch wave number [26].
From (22) it follows that conditions |n(co)| <1, |r|(oa)| >1 define passband” and

stopband frequencies in the counterpart infinite beam, respectively.
In vector notations we can write the interface condition at point X =a as

U,(a)=U,(a) (23)
Using (8), we can find
pC,, (cos(ap)sinh(ap) —sin(ap) cosh(ap) ) -

—pC,, (sin(ap)sinh(ap) +cos(ap) cosh(ap) +7v)

U,(@)= (24)

—2p?sinh(ap)(C,, sin(ap) +C,, cos(ap))
Considering equations (16) and (23), we obtain the following matrix equation that
determines the unknown constants C,;,C,,

(Mll(N) MlZ(N)

M(N) MZZ(NJUZ(&):UZ(L) @)

Taking into account (18) and solving this matrix equation we find constants Cll, C12

C(L)-My, (N)- [sin(ap) +7 csch(ap) + cos(ap) coth(ap) | ~

Ch= 2 :
2p*(ysin(ap) +sh(ap))
_ 2pi(L)-M,,(N)cos(ap) 26)
2p?(ysin(ap) +sh(ap)) '
c - H(L)(—MM(N)(COS(aP) —sin(ap) coth(ap)) + 2 leZ(N)Sin(ap))

2p’(ysin(ap) +sh(ap))
Here p(L) is an uncertain moment constant.

Substituting (26) into (24) gives us the beam slope and moment at a point X =a clamped
and cantilever beams
Substituting (26) into (24) gives the beam slope and moment at a point X =a
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y(@) =u(L)M,(N),

. (27)
u(a) = H(L)Mzz(N)
On the other hand, as It follows from (19) that for any n=1;2;...N
(V) (M, s
HBm) ) (Mg (m)u(L)

Based on (25) and (26), the relative slope and moments at any unit cell of the periodic part
of the beam can be defined as follows.

_ y(a+d(N-n+1)) Mp,(N-n+1) S, (n)

' v(a) M,, ( N ) Sna (n) 29)
_ p(a+d(N-n+1)) _ M,, (N —n+1) :Tmel(T])
’ u(a) M., (N) T, (n)

where T (n) is the Chebyshev polynomials of first kind.
From non-triviality condition of eigenfunctions (M(L) # O) and boundary conditions (2)

and (3) at X=0 that have not yet been used, we derive the following the following
different equations defining eigenfrequencies for clamped and cantilever beams

A (“)) =M, (N) (y csch(ap) +cos(ap) coth(ap)) +
+ pM,, (N)(cos(ap) —sin(ap) coth(ap))

Here, as previously indicated y =1 corresponds to the cantilever beam, whereas y =—1

(30)

to the clamped beam,
For a of beam without periodic supports (d —0) of length &, the eigenfrequency
equations for clamped and cantilever beams can be derived from the following equation

A, (®) = (y csch(ap) +cos(ap) coth(ap) ) (31)

Piezoelectric patch under flexural vibration of the beam
The equations and relationships for a piezoelectric patch perfectly bonded with elastic beam
provided here are based on [1].

A uniform composite Euler—Bernoulli covered in the region Xe(a,a+ nd) by a

perfectly bonded uniform piezoelectric patch, which the top and bottom surfaces are
metalized by thin electrodes of negligible thicknesses. The electrodes bracketing the
piezoelectric layers are connected to a resistive electrical circuit.

The piezoelectric patch is operating in (31) mode which means that the poling direction of
the piezoelectric material of patch is perpendicular to the beam centerline, “1” and “3”
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directions are coincident with X and Z directions, respectively “1” is the direction of axial
strain and “3” is the direction of polarization.
The constitutive relations for piezoelectric patch in (31) mode are

& (x2,t)=Y"o,(x,2,t)+dy,E (X, 2,t) (32)
D;(x,z,t) =dy0, (X, 2,t) +e5E, (X, Z,t) (33)
Here il(x,z,t),csl(x, Z,t) are the axial strain and stress arising in the patch due to
bending of beam, E3(X, Z,t) the electric field, D3(X, Z,t) the electric displacement,

d31 is the piezoelectric coefficient, 8;3 is permittivity in direction of the polarization axis

measured at constant mechanical stress, Y is the Young’s moduli of patch material.
From (36) the expression for the stress o, (X, Z,t) can be written as

o, (% 2,t) =Y (& (X 2,t)—dy,E (X, 2,1)) (34)
Substituting (34) in (33) yields
D, (X, z,t) =€, (X 2,t)+e5E, (35)

where e, =Yd,,, &5, = (8;3 —d31e31) €5, is the permittivity of piezoelectric material

measured at constant strain.
The average bending strain in the in uniform piezoelectric patch can be expressed as
oW (x,t
al(x,z,t):—hc%, (36)

where W (X,'[) is transverse displacement of the beam’s centerline, hC is the distance of

the center of the piezo layer in thickness direction to the beam centerline.
Taking into account that the uniform electric field in terms of the electric potential
difference is

E,=v(t)/h, . (37)

where V(t)is voltage across the resistive load I, h_ is the thickness of patch the and

P
using (35) the following equation can be obtained
oW x,t) &
D3(x,z,t):—e31hc#—ﬁv(t). (38)
Ox h,
Assuming that the electrodes of the piezoceramic patch are connected to a resistive

electrical load r , the integral form of Gauss’s law can be applying as

d v(t)
—| | DndA |=—=.
o [ { n ) r (39)
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Here, D is the vector of electric displacement, n is the unit outward normal, and the
integration is performed over the electrode area A of the piezoceramic patch.
Since in our case contribution to the inner product of the integrand in equation (39) is

D, (X, Z,t) we can rewrite (39) as

d a+nd d V(t)
a(.[DndAJ:b J. E(DS(X,Z,t)dX:T, (40)

a
where a+nd is the length and b is the width of the patch.
From (37) and (40) we get the following equation for voltage function v(t)

v+ 1 d\(/j_f(t):_g(aw(a+nd,t)_aW(a,t)]:

oxot oxot
:gFOetf(\/mz—esin(t m2—6)+eCOS(t 032—6)) (41)
S
F,=y(a+nd)-y(a); f =%;9 = ey Nbr
p

The solution for function V(t) under condition V(0) =0 can be find as
F,g ( fo’ —¢’ Sin(t o —& )+( fe—(o?‘)cos(t o’ —& ))e’St

f2_2fe+w’

v(t) =

(42)
Fog( fs—o)z)e’ft
f?-2fe+ o’

From (42) it follows that the electrical voltage generated by the piezoelectric patch is

proportional to the function FO that depends of the slopes of the beam’s periodic part.

Analysis and conclusions.
From (22) it follows that condition|n| >1 defines the bandgaps of counterpart infinite

beam.

The Fig.2 shows the deviation function |n(Q)| versus non-dimensional frequency

Q=wd?\(El)"pA inthe region |n(Q)|Zl,0<Q<160
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Deviation function | n(Q)|

20 40 60 80 100 120 140 160
Non-dimensional frequency Q

Fig 2. The graphs of the deviation function versus of non-dimensional frequency

The curves define first gap Qe(22.37,39.43), the second and third gaps
Qe (61.62, 88.73) and Qe (120.78, 157.75) , respectively. Black points on the axes

|n(Q)| =1 mark the boundaries of the gaps. Points on the first bandgap curve correspond
to minimal eigenfrequencies in the first gap (QC =34.9; n(QC)zl.SY) ,
(Qf =27.9; n(Qf)=1.32) of clamped and cantilever beams when a=5d,
respectively .

The relative slope is given by the formula \, =S, _, (T])/SN_1 (m):

In Fig. 3 the graphs of relative discrete slope function S, versus of the number of supports
are presented in the case a=5d; N =5; N =10. The blue plots are calculated for
clamped beam at eigenfrequency €2, ,while the red plot is calculated for clamped beam at

beam at eigenfrequency €2, (see Fig.2).

Evidently, similar graphs can be plotted for relative slopes and moment functions at any
stopband eigenfrequency.
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n

2 4 6 8 10

Fig.3 The graphs of discrete slope functions §n within first band gap versus support

numbers

Analysis of these curves reveals that the localization of beam slope significantly increases
with increasing number of supports. The results demonstrate that flexible waves, defined by
beam slopes and moments, are unable to propagate through periodic structures at
frequencies within the bandgaps of a counterpart infinite beam. Instead, they localize near
the first periodic cell, reaching a maximum value at X =a. This effect is noticeable at

N=5.
Fig. 4. confirms that localization of the slope and moments does not occur at the
eigenfrequencies outside of the bandgaps.
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5

Fig 4. The graph of discrete slope function §n outside of bandgaps

Figures 5 and 6 display the graphs of the function A(Q) whose zeros determine the

eigenfrequencies. The black markers on the axis €2 represent the boundaries of the gaps
The graphs of the function A(Q) are presented within the range 0<Q <200 for

N =10 and N =30 for clamped (blue curves) and cantilever (red curves) beams when

a=5d. Figures 5 and 6 demonstrate that adding more supports increases
eigenfrequencies outside bandgaps but does not affect the zero locations within bandgaps.

Few eigenfrequencies exist within these gaps. When a < 5d , here are no zeroes of the

function A(Q) in bandgaps, the eigenfrequencies remain outside the bandgaps.
In Fig.7 the graphs of function A(Q) of the clamped and cantilever beams presented

within the range of first bandgap , when a=5d; N =10.
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Fig.5 The graphs of function A(Q) of the clamped beam presented within the range
0<Q<200, a=5d; N=10; N =30.
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Fig.6 The graphs of function A(Q) of the cantilever beam , presented within the range
0<Q<200, a=5d; N=10; N =30,

According (42) the electrical voltage generated by the piezoelectric patch of Nd length due
to beam vibration is proportional to function F,, =(y(a)—y(a+nd)).

When the beam eigenfrequencies are within the bandgaps, the function \p(a+ nd)at

these frequencies approaches zero monotonously at N —> N (See Fig.3). Therefore, the

function F,, =(y(a)—w(a+nd)) is maximal when n=N .
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Fig 7. The graphs of function A(Q) of the clamped(blue) and cantilever (red) beams

This indicates that the maximum impact of the piezoelectric patch occurs when a patch of
length L covers the entire periodic part of the beam.

Considering (27), the function FOn versus beam flexural frequency can be expressed as

. (1 cos(\/_)cosh(\/_)) a))-s. (n(
01( ,) \/_(sm(\/_) smh(\/_))( ( ( J)) N*Z( ( J)))

where € j are the beam eigenfrequencies.

For estimation of the effect of the beam slope on harvesting energy, consider the following
relative function

FOl (Ql)
I:Ol (QZ )

Here €, = 27.9 is the “stopband” eigenfrequency of cantilever beam in the first gap,

F*N (Ql’QZ) =

Q, =21.5 isthe nearest to (2, the “passband” eigenfrequency.
At these eigenfrequencies when @ =5d, N =5, N =10, N =20 we have respectively
F.~22.2, F,~4405, F,, ~1410.8.

The same estimation applies to any stopband and passband eigenfrequencies. The generated
harvesting energy depends heavily on the operating frequency, with greater effects at
stopband frequencies than at passband. More supports significantly increase the harvesting
energy values.
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The main results can be summarized as follows:

1. In the case of free vibration of a beam with periodically arranged supports, significant
localization (maximization) of the beam slopes and moments occurs when the
eigenfrequencies of the beam are within the bandgaps of the counterpart infinite beam.

2. Localization occurs even with a few periodically arranged supports.

3. The flexible wave of supported beam cannot travel freely through a periodic structure at
frequencies within bandgaps of counterpart infinite beam and are practically localized at
the neighborhood of the first periodic cell interface.

4. The number of periodically arranged supports significantly increases the number of
eigenfrequencies outside of the bandgaps without changing this number within the gaps.

5. The electric voltage output of a piezo patch under beam bending is significantly
influenced by the dynamic behavior of the beam's periodic structure and is proportional
to the beam slopes at the locations of the periodic supports.

6. The energy harvested by a piezoelectric patch strongly depends on the operating
frequency. The harvesting energy at stopband eigenfrequencies incomparable greater
than at passband eigenfrequencies.
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