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SURFACE SH WAVES ON AN INTERFACE OF HOMOGENEOUS
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This paper investigates the existence of elastic SH wave surface modes near the interface between a bi-material
periodic multilayer elastic half-space in perfect elastic contact with a homogeneous piezoelectric half-space. The
results demonstrate that surface wave modes are present when the shear wave velocities of the elastic materials are
lower than that of the piezoelectric material.
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Kimouesble c1oBa: MHorocsoiinas nepuoudeckas cTpyKTypa, IOBEpXHOCTHAs BOJIHA, BoHa bmocreiina.

N3yuaercst mpodiema CyIIeCTBOBAaHHs MOBEPXHOCTHOH SH BOJNHBI Ha TpaHMIE ABYXCIOWHOTO YHPYroro MOIy-
IPOCTPAHCTBA, HAXOJAIIETOCH B HICATbHOM YHPYTOM KOHTAKTE C OJHOPOJHBIM IbE303ICKTPUUECKUM MOIyIpO-
crpancTBoM. [TokazaHo, 4TO MOBEPXHOCTHAS BOJIHA CYIIECTBYET TOJNBKO TOIJA, KOTJA CKOPOCTH C/IBHTOBBIX BOJH
YIPYTHX MaTepHaioB MEHBIIE CKOPOCTH CBUTOBOH BOJHBI ITbE309JICKTPUUECKOTO MaTepHaa.
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Introduction

Surface acoustic waves in phononic structures have garnered significant scholarly
interest over the past several decades. The existence and properties of one-dimensional
transverse acoustic waves in semi-infinite, periodic bi-material media has investigated in
[1,2].

The propagation of surface waves was examined [3] in a semi-infinite superlattice
composed of periodic bi-material piezoelectric-metallic layers, topped with a piezoelectric
layer.
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The paper [4] discusses surface acoustic waves propagating in half-infinite one-
dimensional piezoelectric phononic crystals with general anisotropy.

The propagation of shear horizontal polarization acoustic waves in infinite and semi-
infinite superlattices composed of two piezoelectric media is examined using a Green’s
function method [5].

In [6] an analytical method is presented for studying shear horizontal surface acoustic
waves in semi-infinite piezoelectric/metal superlattices.

The existence of surface acoustic waves is discussed semi-infinite one-dimensional
piezoelectric phononic structure consisting of perfectly bonded generally anisotropic layers,
which are arranged in a symmetric unit cell.

The surface wave modes on traction-free or clamped surfaces have been identified in a
cubic symmetry piezoelectric homogeneous half-space with periodically arranged, non-
equidistant electrodes, as reported in [8]. In [9] shear elastic surface wave modes are
investigated in a semi-infinite medium with periodically oriented stacks of interfaces of
elastic imperfect bonded contact. It has been shown that this periodic structure supports the
propagation of surface waves.

The studies in [10] examine various aspects of surface wave propagation in
piezoelectric composites with both perfect and imperfect electro-elastic interfaces.

Various methods and models of imperfectly bonded interfaces in elastic and electro-
magneto-elastic composite structures, as well as problems based on these models, are
discussed in [11-15].

This paper presents an analytical and numerical investigation of surface shear waves at
the interface between a homogeneous elastic bi-metal half-space with periodic elastic
sublayers and a homogeneous half-space composed from hexagonal piezoelectric crystals.

Statement of the problem
In Cartesian coordinate system (X, Y,Z) we consider bi-material layered elastic half-
space in contact with homogeneous piezoelectric half-space. Layered elastic half- space

(xe (0,00), y| <0,

alternative sub-layers of widths d1 R d2 made from different elastic metal materials A1 5 Az .

Z| <) is constituted by an infinite number of repeated two

X

.5 P

Fig.1. Bi-material layered elastic half-space in contact with homogeneous piezoelectric
half-space.
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y| <o,

We consider also the semi-space (Xe(—oo,()), Z|<oo) from the

homogeneous piezoelectric material A) of hexagonal 6 MM symmetry, the polling axis of
the piezoelectric crystals is aligned along. At the interface X =0, the semi-spaces are
perfectly bonded, ensuring continuity of both elastic displacements and stresses.

Multi-layered bi-material elastic half-space

Consider SH wave propagation in a multi-layered elastic bi-material half-space
constituted by an infinite number of repeated two sub-layers consisting from different

elastic materials. Each of these sub-layers of widths dl, d2 and materials are labelled by
the index (S) = 1,(8) =2 within the elementary unit cell labelled by the index
nn=12,3...), xe ((n —l)d,nd), d=d, +d,. Each of the two sub-layers is

assumed to be perfectly bonded to the adjoining sub-layers.
The elastic displacements and stresses obey to the anti-plane equations of motion and
Hooke’s law.

ou, o, U, "
oy

Here U, (X, y,t) is the displacement in Z — direction, G, (X, y,t),GyZ (X, y,t) are

c,, =G
OX

the shear stresses.
We consider harmonic wave travelling along the Y direction,

UZ(X,y,t):U(X)exp[i(ky—mt)], )

where ® is the wave angular frequency, K is the wave number.

The solutions of (1) for functions Urss) (X) within each material A, A, domains of
the sub-layer material can be found as
Ut (x)= ocEfi) exp(ig,X) + ocEfr) exp(—ig,X) 3)

n

Here materials are labelled by the index (S) =1, (S) =2 within the elementary unit
cell are labelled by the index N(N=1,2,3..)), Xe ((n—l)d,nd), d=d +d,,

o’ G, . , . ,
q, =k e —1,C, =, [— is the material shear wave velocity, G is the shear
CS pS

5) o,

ni >~ nr

modulus, P, is the bulk density of materials, o are the complex amplitudes of

plane waves.
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Introducing field vector

U (x)
San (%)

we can establish the link between U rss) ((n - 1) d ),U rss) (nd ) at the elementary unit cell

edges as [16],

2)(nd)=MU£I)((n—1)d) (5)

Herein M is the unimodal propagator matrix for SH wave field, which links the field
vectors at the at edges of elementary unit cell N -th cell.

The explicit expressions of the unimodal propagator matrix M elements be derived
as [16]

) “4)

G . .
m, = cos(dlql)cos(dzqz)—sl—lsm(dlql)sm(dzqz),
22
_ cos(d,q, )sin(d,q,) . cos(d,q, )sin(d,q,)
. qZGZ q]G ’
m,, =—0,G, cos(d,q, )sin(d,q,)—0,G, cos(d,q,)sin(d,q, ) (6)

G, . .
m,, = cos(d,q, )cos(d,q, ) - (;262 sin(d,q, )sin(d,q, ).
11
Using formality of the Floquet theory [16] we have

U (nd)=20"((n-1)d)
un2>(nd)=x“un>(o) @
where A = exp(ipd), p is the Bloch-Floquet wave number.

In the case of the real A (complex P) if |7\,| <1 according to (7) we have the

exponentially damped solution corresponding to the surface waves.
Taking into account (7) the following matrix equation can be obtained

(M-an)u’((n-1)d)=0 ®)

Where I is the identity matrix.
Using this equation for the N =1 unit cell, we come to the matrix equation

[mll_;L m, ] Ul(l)(o)

=0 )
m,, m,, — A E(Z)n (0)
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(s)

In the case of the traction free surface O,

(0) =0, from the non-trivial solutions of

9) Ul(l) (0) # 0 one can find

m, =0; m;-A=0 (10)
The equation
m,, (©,k)=0 (11)

for a given wave number K defines the countable set solutions of ® 0 (k), ji=12,..,

determining the surface wave frequencies if

xz|m“(oo(k))|<1 (12)
Considering (11) we can obtain that
- cos(dlql)
cos(d,q,)

in full accordance with results of [2].

Homogeneous semi-infinite piezoelectric half space
We consider the anti-plane problem #or hexagonal 6 MM symmetry piezoelectric

material. In quasi- static set of Maxwell equations [10,17] we have the following equations
and constitutive relations

V, =V, (% y)i0=0(xy)
an + aDy anz aGYZ a2VZ
ox oy

0
Ow = &(Cuvz + e15(P) s Gy, = _(C44Vz +els(p) (13)

Tox oy Lo

X

Qoo

0
b =&(_811(P+elsvz) D, = (e 0 +eV,)

In (13) 6,,6,,D,,D,,V,,¢ are shear stresses, electric displacements, elastic

xzo 2 yz?
displacement and electric potential, respectively and C,,,€5,€,, and p are the shear

modulus, piezoelectric constant, permittivity and bulk density of the material, respectively.
Taking solutions (13) in the form of harmonic wave travelling along the Yy direction

(2), for the displacement and the electric field potential decaying at X — —00

V, (X) = 0,0, (x) >0 (14)
we get solutions for V0 (X) NON (X) ,O, (X) as

V, (x)=C, exp(rx),

83



(pO(X)=C2 exp(kx)+Cle'—Sexp(rX) (15)
811

G0 (0) =0, (X)=C,ke * +C G re”
Here Cl,C2 are arbitrary constants, I' = k 1—1’]2 ;GO =Cyy +e125 /811, C, = 1/GO /p;
n= (0/ kC0 , M 1is the dimensionless phase velocity of electro-elastic vibrations.

Applying condition @, (0) =0 at metalized surface we get C, =—C, e, /¢,
Finally, for the field vector at X = 0 we have

v, (0 1
o {0 g

elS

Here y = is the electromechanical coupling constant.

€
0C11
In the case of the traction free surface G, (0) =0 we get from (16) the equation

defining the dimensionless phase velocity of the Bluestein wave [17]
4
No =+1-%

Bi- material layered elastic half- space in contact with
homogeneous piezoelectric half- space.

On the interface of bi-material layered elastic and homogeneous piezoelectric half-
spaces X =0 we have continuity condition for displacements and elastic stresses

U (0) ) _(Ve(0)
20 o0)

Considering (16) we obtain the following matrix equation

)

mn_7L m,, ! -0 (18)
m,, m,, —A Gok(\ll_n2 _Xz)

From (18) the set of equations determining phase velocity M and localization parameter

A can be cast as

7»=m”+km12(\/1—n2 —)(2)60 (19)
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mzl_k(mn_mzz)(\/l_n2 _XZ)GO+k2m12(_1+n2+29(2\/1_n2 _X4)Go2 =0

The matrix elements (6) M, (qs), m, (qs ), m,, (qs), m,, (qs ) , are functions from 1,

since
2.2

CM
2

CS

q, =k -1; (20)

If solutions of (19) exist, such as M <1, 7\.|<1, these solutions describe coupled

electro-elastic surface waves that decay exponentially at X — 100 from the interface
x=0.

The positive A <1 corresponds to the Bloch-Floquet wave numbers

pd =ip, +27m,p, >0,m=0,12... (21)

the negative A > —1 corresponds to the wave numbers
pd =ip, +m(2m+1),p, >0,m=0,1,2. (22)

Numerical results, discussions and results

Numerical analysis of equations (19) shows that this equation have solutions
corresponding to surface wave if the shear velocities of elastic materials are less than the

shear velocity of piezoelectric material, C; < C; . This condition for the existence of surface

waves is, in certain respects, analogous to the criteria for surface wave propagation
described in the classic Love problem.
The numerical calculations have been carried out for piezoelectric material PZT-4

(Go =51GPa,c = 2600m/sec) and metals: copper
(G, =45GPa,c, =2240m/sec) , platinum (G, = 61GPa,c, =1640m/sec)

where the shear velocities are lower than those of the piezoelectric material.
Numerical analysis of equations (19) shows that when K <4 the surface wave does
not exist. For fixed value B and K there exist only one surface wave in range

ne(0.94,0.98) at K=5 and ne(0.82,0.98)at K =10.
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Fig.2 Plots of the localisation coefficients versus the filling coefficient

On Fig.2 the plots of localisation coefficients are presented versus filling coefficient
B= d1 /d . As it follows from plots of Fiq.2 surface wave does not exist for some values

of B.
For the PZT-4 material the dimensionless phase velocity of the Bleustein wave velocity
is equal 1, =0.86.

The main results can be formulated as follows:

The phononic structure including a two-component, layered periodic bi-material elastic
half-space and a homogeneous piezoelectric half-space, which are perfectly bonded at their
interface, can support a coupled surface wave whose amplitudes attenuate with increasing
distance from the interface. The existence of this wave is due to the condition that the shear
velocities of elastic materials are less than the shear velocity of piezoelectric material.
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