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Introduction. Studies of the uniqueness of series in some classical
orthogonal systems occupy an important place in the theory of series in these
systems. In the theory of uniqueness of trigonometric series of fundamental
importance is Cantor’s theorem (see [1]), which says that if trigonometric series
converges to zero everywhere, then all the coefficients of this series are equal to
zero. Further, many authors were engaged in the study of the uniqueness of
trigonometric series.

The investigation of the uniqueness of series in the Haar system started
with the papers [6, 8, 9]. In these papers, a Cantor-type theorem is proved for
Haar series.

In [7] it is proved counterparts of the de la Vallée-Poussin theorem for
series in Haar and Walsh systems whose coefficients satisfy certain necessary
conditions.

Investigations of uniqueness for series in the Franklin system began
recently. The definition of the orthonormal Franklin system {f,,(xx)}=, will be
given below. In [3] the following theorem is proved.

Theorem 1. If the Franklin series converges to zero everywhere, then all
the coefficients of this series are equal to zero.

In [2] it is stated that any singleton is not a uniqueness set for Franklin
series, i.e. for any x, € [0,1] there exists a nontrivial Franklin series which
converges to zero everywhere except the point x,. The coefficients of these
series satisfy the relation a, = 0(~/n).

Z. Wronicz constructed a non-trivial Franklin series for which
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tim 0, £, = 0.x€ 0] W

n=0
In [4], the following problem was posed: Will all coefficients &, be equal

to zero if both (1) is satisfied and a,, = o(y/n)? In [11] Z. Wronicz gave a
positive answer to this question.

Theorem 2 (Z. Wronicz). If a, = o(y/n) and (1) is satisfied, then all
coefficients a,, are equal to zero.

In [5], using methods different from those used by Z. Wronicz , the
following theorem is proved.

Theorem 3. Let sup==:<oo and partial  sums

; n;

sl:f:'(xj = E::i:ﬁgk f(x) of the series Xi—pay fi(x), with coefficients

a, = o[»,fﬁ] converge in measure to a bounded function f. Then this series is

n

the Fourier-Franklin series of the function f.

Definition of the Stromberg system, its periodized version and
statements of the main results

In [10] J.O. Stromberg introduced spline wavelet system on IR™. Here we

recall the definition only on E.

Let 4, = Z, U{D}U%E_ and 4, = ADU{%}. A, splits B into intervals
{1z Joca, (@ is the left endpoint of I;). Let m € Z, and 55" be the subspace of
functions f in L*(IR) such that £ € C™(R) and is real polynomial of degree
m -+ 1 oneach I, o € 4,. Let 5/ be the corresponding subspace of L*(R)

o
with set 4, replaced by 4,. It is clear that $" is a subspace of 5" and has
codimension 1 in 5[ Therefore there is a function T in L*(R) that is a

uniquely defined up to sign by conditions T € 50

J-r[x)f[x)dx= 0, vfie sy )

Izllz=1

J.O. Stromberg proved that system {f; , (x)}; )<z defined by formula
fie(x) =2/%2(2/x k), jk€E, xR )



is a complete orthonormal system in L= (&) and unconditional basis in H¥ (),
p= ﬁ Recall that if the system defined by formulas (3) forms complete

orthonormal system in L* (&) the function 7 is called wavelet.
To prove the latter he obtained some inequalities for T and derivatives of .
We need the following inequality from [10]

t(x) < '™, ver, r € (0,1) and Cis a positive constant. )

From (2) and (4) it follows that T is integrable on & and _fj:r (t)dt = 0.

In (4) constants r and C depend on . In this paper m is arbitrary fixed non-

negative integer. Therefore we omit m and write C instead of C,,,.

In [10] J.O. Stromberg introduced another orthonormal system
{Fa(x)}7=o on [0,1].

Denote

F(x) = Z foo =D, jkEL.
IeX

It is clear that
F;(x) = Fjp(x + 1) and Fipsol (x) = F,(x).

For fixed j =0 there exist only 27 distinct functions F . (x),

k=0,1,...,27 — 1,
Denote
2k -1

fn=2+k jz0k=0..2" -1

FE {r) B F:‘:‘ U‘Jl'n: =

and Fy(x) = 1.
It follows from (4) that

IF,(x)| < €,2%r

H L3
L) P
e

< ¢, Vig™¥tal where g = T

The main results being announced in this article are the following
theorems:

Theorem 4. Let 7; be an increasing subsequence of natural numbers so
that

sup(ng,, —n,) =:M < 0. (5)



If the coefficients of the Stromberg series S(x) : =X"_, a, F,(x) satisfy
the condition

a” = G[\.‘lﬁ), (6)
2Mi-1

the partial sums § (x) : = X2

—— - a,, F,(x) converge in measure to 0
and

sup $7(x) « oo forx € B,where Bis acountable set, (7)

thena, =0 forn=0.

The following theorem is a generalization of the previous one.

Theorem 5. If an increasing sequence ; satisfies (5), the coefficients of
the Stromberg series Z;-—, a,, F,,(x) satisfy the condition (6), the partial sums
5':”(:(] converge in measure to a bounded function fand (7) holds, then this
series is the Fourier-Stromberg series of the function f.
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A uniqueness theorem for Stromberg series

Some unigueness theorems for series in the Stromberg’s periodized system
are proved in this work. In particular, if the partial sums

SW(x):= X271 a_ F,(x) of the Stromberg series 2=, a,, F,, (x) converge
in measure to a bounded integrable function £ and sup;|S"(x)| < e when
x & B, where B is some countable set, with a, =o(yn) and
sup; (1,5, —n;) =< oo, then this series is the Fourier-Stromberg series of the
function f.

Ujuntdhlnu ¢.Q. Finpgyut, U.U. Lhnjub, U.1N. Mnnnujuh
Uhwlynipjut pinptd Unpndptipgh owipptph hundwp

Uju wohimwnwpnid myugnigyusé tu Unpndpbpgh wuppbpulw-
twgwd hwdwlwupgh swpplph hwdwp dhwlnipjub npn2 phnphdhhp
Uwubwnpureglu, bk Unpnuplpgh gupph 5@ () := 2325 a,, £, (x)
Uwubwlh gnudwptbkpp 232, a,, F,(x), pun swihh, gqniquuhnnud f
uwhiwbwhwy hlunkgplh $oityghughtt b sup;|$'(x)| < o, tpp
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x € B, npntn B-u nplk hwoykh puqumipmb k a, =o(yn) U
supi[nHl — ni] < 00, www wju QWppp f dniuljghuyh dnipphk-Uwnpnd-
ptipgh pwippl k:

Axkanemuk I'.I'. I'eBopksin, K.A. Kepsin, MLIL. [Torocsin

Teopema exuHcTBeHHOCTH /151 psinoB CTpombepra

B pabote mokazaHbl HEKOTOPbIE TEOPEMBI €IMHCTBEHHOCTH UISL PSIIOB IO

nepuoanyeckor cucrteme CtpomOepra. B 4yacTHOCTH, €CliM YaCTHYHBIE CYMMBI
(i) L waTiog oa
S (x) = Xs =g - a, Fy(x) pana CTp0M6epF? Zn=ga, F,(x) cxonarcs mo
v [
Mepe K uHTerpupyeMoi bynkimu f u sup; |5 . (x)| < 00 mpu x€B, rne B -
-

HEKOTOpOe CYETHOE MHOYECTBO, npuyeM a,, = o(y\/n) u
sup;(n;., —n;) < 0, T0 >TOT pAn sABIAerca psagoM PDypbe-Ctpombepra
pynxuun f.
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