ISSN 0002-306X. Proc. of the RA NAS and NPUA Ser. of tech. sc. 2024. V. LXXVII, N3

UDC 621.3.049.77 MICROELECTRONICS
DOI: 10.53297/0002306X-2024.v77.3-331

A.A. GHAZARYAN
THE SKEW MINIMIZATION METHOD USING DIFFUSION MODELS

Integrated circuit (IC) functionality increases significantly, which force to have more
strict requirements, especially in fast systems. In digital methodology the clock tree
synthesis has crucial importance, which affects the IC’s performance. One of the clock tree
parameters is clock skew, which should be minimum, otherwise it will affect the IC’s
performance. Minimal skew development is the tradeoff between timing margins, routing
congestion, etc. Currently, there are different methodologies integrated in physical design
tools, which are aimed at parameters to find good trade-off points. Some of the algorithms
do not work properly in current processes, and human should act manually, which makes
electronic design automated tools work not automatically. Fix such issues, a skew
minimization method with the use of diffusion models is presented. With the proposed
method, the runtime has increased by 5% in respond to EDA tools integrated
methodologies, and decreased in terms of Al tools, and skew decreased by 28%.

Keywords. clock tree synthesis, skew, routing congestion, machine learning,
diffusion models.

Introduction. Clock tree synthesis (CTS) is a crucial component in IC
design that guarantees the performance and functionality of digital integrated
circuits. As seen in Fig. 1, the clock signal, also referred to as a chip's "heartbeat,"
synchronizes all the design's operations.

Fig. 1. The general view of a clock tree
331

One of the main objectives of clock tree synthesis is skew minimization,
which minimizes the variation in the arrival times of the clock signal at different
components. A clock skew example for two registers is shown in Fig. 2. The skew
is critical for maintaining synchronization and optimal performance in synchronous
digital circuits [1,2].

>
CLK(A) |— Clock delay CLK(B)
System
Clock
Voltage | :
! . ’ ‘ ‘ ‘ " Time
:
Voltage ¢ ,
1
1
1
'
1

%
—

| .

Clock Skew

Fig. 2. A clock skew

Even a small clock skew can cause serious timing problems in high-
frequency modern systems, such as setup and hold times. Therefore, attaining a
well-balanced clock tree is crucial to meet timing standards, which will become more
stringent as technology advances. CTS also has difficulties in controlling power
usage, routing congestion, and clock latency. Because clock networks frequently
consume a significant amount of integrated circuit power, performance and energy
efficiency must be carefully optimized and balanced [3].

To overcome these obstacles, the clock tree must be efficiently optimized
using techniques and tools that ensure all clocked elements receive the clock signal
at the same time, preserving synchronization and improving the system performance.
But there are trade-offs associated with each strategy that need to be considered.
The most widely used approaches, which can be found in the references are listed
below:

¢ Buffered clock tree synthesis.

According to the method, buffers (used inverter pairs) are used to balance
the delays and reduce the skew. By placing buffers, it is possible to achieve zero
skews while minimizing the total wire length, which improves timing performance.
The main picture of the buffered clock tree synthesis is shown in Fig 3.

332

Clock Source

L Balanced
Clock
Tree

Registers
Fig. 3. The balanced clock tree example

The buffers increase the overall power consumption of the clock network.
Additionally, the buffer insertion process can introduce routing congestion,
especially in dense designs [4].

o Buffer Resizing and relocation.

The method adjusts buffer sizes and positions to optimize the clock arrival
times, reduces the insertion delay and minimizes the skew. It enhances the timing
performance of design by improving the setup and hold time margins. An example
of design before and after optimization is shown in Fig. 4.

asra [g | gora [lgsane 6

Design before optimization Design after optimization
Fig. 4. Design before and after optimization

The method requires more resources in terms of routing and wire length
compared to pure tree-based structures. The corresponding will be a reason for
overlaps, as a result, the re-placement will be needed, in Fig 4, notably, replacement
after CTS optimization has been done. And, achieving the optimal buffer
configuration can be computationally expensive, especially for large designs [5].

o Mixed tree-mesh clock distribution networks

Fig. 5 illustrates an overview of those networks, which combine the benefits
of mesh and tree topologies to reduce the local clock skew and increase robustness
against the process shifts. Networks of the mixed tree-mesh are especially good at

333

minimizing the effects of manufacturing variations. Compared to completely tree-
based topologies, mixed tree-mesh networks demand higher wirelength and routing
resources. Because of the large mesh wiring, there may be a significant IR drop and
increased power usage. Furthermore, creating such networks is more complicated
and might not be appropriate for designs with limited resources [6].

[Input]
I

/ Congestion driven mesh network
construction

| Grid point generation |

| Sink connection |

| Grid point linking |

}

Top-level tree construction

| Merging |

| Embedding |
_ J

I

Output]

Fig. 5. The overview of mixed tree-mesh clock distribution networks

e DSO.ai — A distributed system to optimize the physical design flows.

In the method with DSO.ai, the distributed system has been built, for the
optimization of the physical design flows, and correspondingly for CTS optimization.
In the methodology, multiple iterations of parallel runs are used to optimize the
enormous design parameters search space. The methodology provides a Pareto
optimization opportunity, which opposes too long a runtime and a big CPU usage
in terms of memory and cores [7,8].

Proposed method. To decrease the skew and fix the issues described in
references, which are: routing congestion (result is short and opens), setup hold
margins and runtime, machine learning especially diffusion models have been
used. The main algorithm for the proposed method shown in Fig. 6.

334

DEF file reading
(Node positions extraction)

Dataset preparation
(Skew labeling)

Diffusion model training
(Optimal placement prediction)

Node position optimization
(Optimized layout prediction)

DEF file creation
(DEF file for optimized design)

Fig. 6. The proposed method’s algorithm

At the initial stages of optimization required to have the design’s DEF file
where CTS has been done without any optimization. During the DEF file reading
process, the design’s component placement has been extracted, at the end of the
methodology output, a DEF file has been generated for the optimized design, both
functions implemented with the help of python, and the implementation shown in
Fig. 7.

: : i imiz file(i £_path, f_path, optiniz itions):

def parse_def_file(def_file_path): def write_optinized def_file(input_def_path, output_def path, optimized_positions)
writes an optimized DEF file with new node placements.

Parses a DEF file to extract node placement.

with open(input_def_path, 'r') as infile:

node_positions = [] lines = infile.readlines()

node_lines = [] optimized_lines = copy.deepcopy(lines)
with open(def_file_path, 'r') as file: node_idx = @
for line in file:
if line.startswith('-') and 'PLACED' in line:
parts = line.split()
node_name = parts[1]

for 1, line in enumerate(optinized_lines):
if line.startswith('-') and 'PLACED’ in line:
parts = line.split()
- str(int(optimized_positions[node_idx)(e]))

x = float(parts[3]) a = str(int(optimized_positions(node_idx](1)))
y = float(parts[4]) optinized_lines(1] = * ".join(parts) + "\n’
node_positions.append((node_name, X, y)) podecide §
nde_Lines. append(line) with open(output_def_path, 'w’) as outfile:

return node_positions, node_lines outfile.uritelines(optimized_lines)

Fig. 7. The input DEF reading (a) and output DEF (b) creation

For Dataset preparation, the instances initialize as a class, and there is
generates random floats between 0 and 0.5 to simulate the skew, after this
Diffusion model has been defined. Diffusion models are a class of generative
models that transform simple noise distributions into complex data distributions
through an iterative process. They work by simulating a forward process, which

teaches to remove the noise step by step to generate realistic samples. The created
335

model is designed to encode input data, reconstruct it and predict a skew value
from the encoded representation. For diffusion model, a training function is
created, be using a dataset of node positions. The training epocha number specified
20 and the initialized total loss for epochs specified as 0, the 20 is a common
practice in machine learning, and 0 at the beginning of each epoch to accumulate
the loss over all batches within that epoch. This helps in monitoring the training
process by providing a measure of how well the model is performing after each
epoch. All above-described functions are shown in Fig. 8.

klass DiffusionModel(nn.Module):
def __infit_ (self):
super(DiffusionModel, self)._init_ ()
self.encoder = nn.Sequential(
nn.Linear(20, 64),
nn.ReLU(),
nn.Linear(64, 128),
nn.ReLU

)
3(4ax , dTypestorch.floatd2), torch.tensor(self.labels|iax), dTypestonch.floatil) self.decoder - nn.chuen:ialﬁ
a nn.Linear(128, 64),
nn.ReLU(),
def train_model(node_positions): nn.Linear(64, 20
dataset = ClockSkewDEF_Dataset(node_positions))
dataloader = Dataloader(dataset, batch_size-16, shuffle-True)

self.skew_predictor = nn.Linear(128, 1)

model = DiffusionModel()
optimizer = optim.Adam(model.parameters(), 1lr=0.801)
loss_fn = nn.MSELoss()

def forward(self, x):
x = x.view(x.size(2), -1)
encoded = self.encoder(x)

N reconstructed = self.decoder(encoded)
epochs = 20

N skew = self.skew_predictor(encoded)
for in range(epochs): - (-1 1 \
return reconstructed.view(-1, 18, 2), skew
total_loss = @
for nodes, skew in dataloader: c

optimizer.zero_grad()

» predicted_skew = model(nodes)
loss = loss_fn(predicted_skew.squeeze(), skew)
loss.backward()
optimizer.step()
total_loss #+= loss.item()

return model

b

Fig. 8. The dataset class (b), the diffusion model class (b) and the model training (c)
implementation

At the end of optimization, the result is the skew improved design’s DEF
file, whose generation part is shown in Fig. 7b.

Results. To provide the best and worst sides of the proposed method 3 test
designs have been implemented with different parameters and clock frequencies.
The results are shown in Table below.

Table
Results
Reference 1-3 methods Design with DSO.ai Proposed method
fre?]l:::cy Short Short Short
Runtime count/ Max skew Runtime count/ Max skew Runtime count/ Max skew
open count open count open count

Design1 ~600K 8G 2.7h 15/2 0.252 26.4h 0/0 0.201 2.79h 1/0 0.198
Design2 ~1.5M 16G 46.03h 169/3 0.546 142.42h 1411 0.430 47.5h 141/2 0.352
Design3 ~1.5M 20G 38.87h 781 0.601 121.28h 65/0 0.501 38.25h 67/1 0.402

336

Conclusion. Skew minimization is an important factor during the clock tree
synthesis. Current CTS optimization methods have trade-off between the runtime,
skew minimization and routing congestion. In the article, the skew minimization
method with the use of diffusion models of machine learning. With the proposed
method, the runtime has increased by ~5% in respond to EDA tools integrated
methodologies, and decreased in terms of Al tool usage, as a result skew decreased
by ~28%.

REFERENCES

1. Micheli G. D. Synthesis of Digital Circuits.- McGraw-Hill, 1994.

2. Raju Gorla. What is Clock Tree Synthesis (CTS), and why is it critical? - VLSI Web,
November 29 2024.

3. Peddi Anusha, K. Satish Babu. Clock Tree Synthesis Analysis and Optimization in
Physical Design Flow of Serial Peripheral Interconnect (SPI) // International Journal of
VLSI System Design and Communication Systems.- October 2014.- P. 465-471.

4. Anju Rose T., Gnana Sheela K. A Survey on Buffered Clock Tree Synthesis for Skew
Optimization // International Journal of Science and Research.- November 2014.- Vol. 3,
issue 11.- P. 659-666.

5. Minimizing Skew and Delay with Buffer Resizing and Relocation during Clock Tree
Synthesis / P. Punia, Rouble, Shuka Kr. Neeraj, et al / International Journal of
Computer Applications.- June 2014.- Vol. 95 No.23.- P. 30-35.

6. Local Clock Skew Minimization Using Blockage-aware Mixed Tree-Mesh Clock
Distribution Network / L. Xiao, X. Zignag, Z. Qian, et // Proceedings of the
International Conference on Computer-Aided Design.- Nov. 2010.- P. 458-462.

7. Piyush Verma. DSO.ai - A Distributed System to Optimize Physical Design Flows //
2024 International Symposium on Physical Design (ISPD '24). Association for
Computing Machinery.- New York, NY, USA, 2024.- P. 115-116,
https://doi.org/10.1145/3626184.3639780

8. What is Design Space Optimization (DSO)? — How It Works? | Synopsys

National Polytechnic University of Armenia. “Synopsys Armenia” CJSC. The material
is received on 14.01.2025.

U.U. 1UQU3UL

SUUSU3PL ULTULTULE CEOIUUL ONSPUULUSNRULC YhINPOPNL
UNYELLEP UPUNUUUR

Punbgpu ujubdwbph $niiljghniwnipiniip qquhnpbt Ukdwinud k, hyp unhynid
E niuktuy wydbtih fmhun vwhdwtuhwnudubp b guwhwgttp, hwnwljubu pupdp hwdwhiw-
Jubuyghtt hwdwlupgbpoud: BJuyhtt hnbkqpuy ujubdwibph twpwgsdwt wjnndwnwg-
Jws hnupninnid uhippnuqnuiipwh dweh uhipkqp hwinhuwind E Jupbnp Yhnkphg

337

Ublp, np kwwunpbb wqpnid £ hinkqpuy ujubdwitph yqwpwdbnptph Jpue: Swljnuwgh
wqnuiowih oknnudp uhippnuqpuiiowth Swnh uptiptqh npujujut ywpwdtnpbphg k,
nnp whwnp E htwpuwynptpu thopp 1hith, hwjwuwpwl nkypnd” wyt juqnh htnkgpuy upubdwgh
wpuwnwiph Ypu: Swjnnuhtt wmqputipwih obndwi tjuqugnyy wpdtph huynuwptpnudp
ubpuyugunud k dphpdhwgnidubph ninhubp swipwpbnujwénipjul, dudwtwuljuyht wyw-
owiputiph b Uh owpp wy wuwpwubnpkph thnjughedwt YhEwn: LEpunudu jub wnwuppkp dk-
ponukp, npnup hunkgpyus tu hqhujub twhiwgsdw gnpshpubipnud, npnup tyywwnwly
niukt yupwdbwnpbph dhol quniul] httwpwynphiiu owyinhuwy thnpughguwt YEwnbkp: Npno
wgnpphdubp pupwughl qnpépupwgutpmd dogphwn sk, husp unhymd E bwjuwgdnnhu
qnpét] wjunndwnwugdus hnupninnig noipu: Ldwb jutighpubpp snljbne hwdwp tbpluywg-
b1 £ ghdnighnt dnphjubiph oginugnpdiudp muljunnuyghtt wqnuiipwh snnudp wjwqugnyp
hwugubjnt dkpnn: Lyuwwnwluyht Ukpnnny gnpswpldwt dudwbwljy wykjugk) £ 75%-ny*
h wwwnwuhiwt EDA gnpshpubph htnbgpdusd dbpnpupwinipjub, b tjwqgl) & AI gnpshp-
ubph wnnudny, hul oknnidp Wjwuqk) k 728%-ny:

Unwigpuyhll punkp. uhtuppnuqnuiipwih dwinh uhliplq, mwljnughtt wgnuywih
otnnud, Spugsdwh Swupwpknujwdnipinil, dkphtuyulwh ntunignid, nhpnighnu dnnhkjukp

A.A. KA3APsH

METO/J MUHUMM3ALIAU IEPEKOCA C UCITOJ1b30BAHUEM
MOJEJEA TUDDY3UU

OyHKIMOHANBHOCTh HHTETpabHBIX cxeM (MC) 3HaunTenbHO BO3PACTaeT, YTo 3aCTaB-
JIIET MPEIBSIBIATE O0JIee CTpOrue TpeOOBaHuUs, OCOOCHHO K OBICTPBIM cHCTeMaM. B rudpo-
BOIl METOJOJIOTHH CHHTE3 JiepeBa TAKTOBBIX MMITYJIHCOB MMEET peIIaloliee 3HaYCHUE, YTO
BIHUAET Ha Tpou3BoauTenbHOCTh MC. OMHUM U3 TapaMeTpoB JiepeBa TAKTOBBIX UMITYJIbCOB
SIBIISIETCS] IEPEKOC TAKTOBBIX MMITYJIECOB, KOTOPHIH JOJDKEH OBITh MUHIMAIBEHBIM, B TIPOTHB-
HOM CJTy4ae - OH TOBJIHSCT Ha pou3BoauTensHOCTh MIC. MUHIMAITBHOE pa3BUTHE TIepeKoca -
9TO KOMIIPOMHCC MEXKAY 3armacaMi MO BPEMEHH, Ieperpy3Koil MapuipyTh3ainuu 1 T.4. B
HACTOsIIIEEe BpPEeMs CYIICCTBYIOT Pa3IMYHBIC METOJOJIOTHH, WHTECIPHUPOBAHHBIC B WHCTPY-
MEHTBI (PU3UUIECKOTO MPOSKTUPOBAHHS, KOTOPBIC CTPEMSATCS HANTH XOPOIIHE TOYKH KOMIIPO-
MHCCa MEX1y mapamerpamu. HekoTopbie U3 airOPUTMOB HE pabOTAIOT MOHKHBIM 00pa3oM
B TEKYILHUX IPOLIECCaX, U YEIOBEK JOJDKEH JCHCTBOBATh BPYUHYIO, UTO JieNaeT paboTy aB-
TOMAaTH3UPOBAHHBIX WHCTPYMEHTOB 3JIEKTPOHHOTO IPOEKTUPOBAHUS HEABTOMATH3HPOBAHHOM.
Jlis ycrpaHeHus TakuX MpobJeM MpeacTaBiIeH METO MUHIMH3AINH TIEPeKoca C UCIOIb30-
BaHHEeM Mozenei nudp¢ys3un. [Ipu HCIonp30BaHUN [ENEBOTO METOA BPEMs BBHITIOTHEHUS
YBEMYHIIOCH TIPUMEPHO Ha 5% B OTBET HAa HHTETPUPOBAHHBIC METOIOJIOTHH HHCTPYMEHTOB
EDA u cokpaTuiioch B OTHOLIEHHH UHCTpYMeHTOB U, a nmepekoc yMeHbIIIICS IPUMEPHO
Ha 28%.

Knrouesoble cnosa: cuHTte3 iepeBa CHHXPOCUTHANA, TIEPEKOC, TTeperpy3ka MapIipyTu-
3allKu, MalllnHHOE 00y4YeHue, Moaenu auddysuu.

338

