ISSN 0002-306X. Proc. of the RA NAS and NPUA Ser. of tech. sc. 2024. V. LXXVII, N3

UDC 621.3.049 MICROELECTRONICS
DOI: 10.53297/0002306X-2024.v77.3-367

A.G. MANUKYAN

DESIGN AND UVM BASED VERIFICATION OF FTL MEMORY
CONTROLLER

This paper presents the design and implementation of a memory controller based on
FIFO-to-FIFO transfer level (FTL) design methodology, which lifts the abstraction level
from RTL to value-passing semantics of FIFO to FIFO transactions, or mixed model where
global communication is done with FTL and local modules can be implemented with lower
level abstractions such as RTL. While FTL architectures provide a powerful framework for
handling complex data transactions, verifying these designs poses significant challenges
due to their intricate communication patterns and timing violations. For the functional
verification of such systems, a special testing environment is needed where the data
transfers with FIFO modules will be calculated. To create such a testing environment, the
Universal Verification Methodology (UVM) is used, which makes it possible to perform
testing that meets the modern requirements of digital circuits. The proposed method makes
it is possible to test the FTL memory controller by increasing the test coverage to 100%.

Keywords: functional verification, UVM testbench, Memory Controller, Random
access memory, FIFO-to-FIFO tranfer level.

UMYV. The Universal Verification Methodology is a standardized framework
for functional verification that provides a comprehensive approach to verifying
complex digital designs [1]. Developed to address the increasing complexity of
modern semiconductor designs, UVM is built upon the IEEE 1800 SystemVerilog
standard and incorporates the best practices in verification methodology. UVM
emphasizes key principles such as reusability, standardization, and automation,
making it a powerful tool for creating scalable and maintainable testbenches [2-5].

Introduction to FTL. FTL (FIFO to FIFO Transfer Level) transactions
represent a design model that specifies data transactions through sequential processes,
utilizing message-passing interfaces for non-blocking communication [6,7]. This
model is particularly suited for managing complex data flows in digital systems by
leveraging FIFO (First-In, First-Out) queues. In the FIFO Transfer Level (FTL)
abstraction, FIFO queues replace traditional registers to handle data storage and
transfer between various components. This design approach is advantageous in
scenarios where data flow must be managed sequentially, ensuring that data is
processed in the exact order it was received [8].

367

A key advantage of the FTL approach is its support for asynchronous data
transfer. When transferring data from one module to another, the initiating module
does not need to wait for a response from the receiving module. Instead, it can
simply push data into the FIFO queue and continue processing other transactions or
interacting with different modules. This asynchronous mechanism allows for
greater flexibility and efficiency in data management, as the module can proceed
with other tasks without being blocked by the data transfer process.

The use of FIFOs in the FTL abstraction streamlines data flow, enhances
modularity, and allows for scalable system design. It supports precise control over
data processing and reduces the risk of data corruption or loss, making it ideal for
complex systems requiring reliable and efficient data handling.

One more advantage of FTL is it's correct by constructions design pattern
where design functionality is separated from data communication, which gives strong
modularity to the design. Utilizing the FIFO-2-FIFO data transactions between the
modules gives flexibility in design customization at every stage [9].

FTL Memory Controller. The FTL Memory Controller is a crucial
component responsible for managing the flow of data between the system’s FIFO
(First-In-First-Out) buffer and the memory modules. It operates based on a finite
state machine (FSM) with six distinct states: IDLE, WAIT_ADDRESS_MODE,
GET_ADDRESS _MODE, WAIT _TO_PUSH_DATA, WAIT DATA, and
GET_DATA. The controller's primary functions include handling read and write
operations, setting appropriate control signals, and managing data flow to and from
the memory modules. The FSM diagram of FRL MEMORY CONTROLLER is
shown in Fig. 1.

pop =1 jo

' WAIT_ADDRESS

_MODE

GET_ADDRESS_

GET_DATA

pop!=1
]
pop 2] ‘/WA;_DATA

Fig. 1. FTL Memory Controller FSM

368

IDLE: The initial state where the controller inactivates MemoryEnable ports
for all memories and awaits the arrival of a packet in the RX FIFO. If the RX FIFO
is empty, the controller remains in the WAIT _ADDRESS_MODE state. Once the
RX FIFO contains data, the controller transfers to the GET_ADDRESS _MODE state.

WAIT_ADDRESS _MODE: In this state, the controller waits for the first
packet from the RX FIFO, which contains the MODE (either READ or WRITE)
and the target memory address. If the RX FIFO remains empty, the controller stays
in the WAIT _ADDRESS MODE state. Upon receiving the packet, it transfers to
the GET_ADDRESS_MODE state.

GET_ADDRESS_MODE: The controller processes the MODE and addresses
information from the first packet. Based on the MODE:

e WRITE Mode: The controller sets the WriteEnable signal for the target
memory module. If the RX FIFO has more data, the controller transitions to
GET_DATA. If the RX FIFO is empty, it transthers to the WAIT DATA state.

e READ Mode: The controller sets both MemoryEnable and ReadEnable
signals for the target memory module and will move to WAIT TO PUSH_DATA state.

WAIT_TO_PUSH_DATA: In this state if f the TX FIFO is full, the
controller stays in the WAIT_TO_PUSH_DATA state. When TX fifo becomes
not full controller will move to GET_ADDRESS MODE state if RX FIFO is not
empty or will move to WAIT_TO_PUSH_DATA when RX fifo is empty. Upon
receiving the packet, it transitions to the GET_ADDRESS_MODE state.

WAIT_DATA: If the RX FIFO is empty, the controller remains in the
WAIT_DATA state. Once the RX FIFO contains data, the controller transitions to
the GET_DATA state.

GET_DATA: In this state, the controller retrieves the data packet from the
RX FIFO for writing to the memory. After setting the MemoryEnable to 1, the
controller writes the data into the designated memory module. If additional data
packets are available in the RX FIFO, the controller transfers to the GET_
ADDRESS MODE state othervise controller transfers to the
WAIT_ADDRESS_MODE state.

Architecture of Memory Controller with multi memories. The memory
controller is designed to interface with o ROM module as Instruction register and
two RAM module as Stack and Data register of varying sizes and configurations:

e Instruction Segment: 128x8 ROM

e Stack Segment: 1024X32 SRAM

e Data Segment: 2048X32 SRAM

The memory controller is connected to the following tree ROM and RAM
memory modules, each with a unique configuration as shown in Fig. 2. Each of

369

these modules is independently controlled by the memory controller through
dedicated control signals such as MemoryEnable and WriteEnable. The architecture
is centered around efficiently managing read and write operations to these memory
modules, using a combination of an address decoder, control logic, and a FIFO
buffer to streamline data transactions.

FTL MEMORY
CONTROLLER

| X4 0414 |+{]
| X1 04l4 |1

MEMORY CONTROLLER

)

wJ

DI DOJ
Address
STACK
SEGMENT
1024x32

DI DO|
Address
DATA
SEGMENT
2048x32

WE
ME

WE

ME ME

Fig. 2. Architecture of Memory controller with multi memories

UVM Testbench Architecture for FTL Memory Controller. The proposed
testbench consists of an UVM environment and interface components to connect
with the RX and TX FIFOs of the memory controller. Within the environment, an
UVM Agent component is responsible for driving the verification process, which
includes a UVM Driver that sends data packets to the RX FIFO, a UVM Sequencer
that generates the sequences, and a UVM Monitor components that collects inputs
and outputs from the RX and TX FIFO interfaces as shown in figure. These
collected signals are then sent to the Scoreboard for comparison with expected data
and to the Coverage component to evaluate the test coverage using UVM analysis
ports.

The testbench is designed to generate random address and data sequences for
comprehensive memory testing. It creates sequences to write data into and read
data from memory, while also managing FIFO operations through push and pop
signals. To ensure thorough validation of all aspects of the memory controller’s
functionality, multiple sequencers are utilized. These sequencers are responsible
for managing the different types of memory operations and are started to
manipulate the ROM and RAM memories. In Fig.3, a UVM-based testbench
architecture of FTL memory controller is shown.

370

Environment

Agent

COVERAGE

FTL MEMEORY
CONTROLLER

Sequencer @===== Driver _-|

Monitor

INTERFACE

SCOREBOARD

Fig. 3. UVM Environment Architecture of Memory Controller

For simulation different packets were created to validate all RX and TX
FIFOs memory controller and sub memories. Using traditional methods to push
WRITE_ADDRESS, WRITE _DATA and READ_ADDTESS packets to RX FIFO
then pop read data from TX FIFO and compare with written data in scoreboard, we
can achieve about 40% present of coverage:

read_dataaddres(,v) = writte_dataaddres(,v).

To increase coverage by 20%, we used randomization to generate random
address and push WRITE _ADDRESS, WRITE DATA to RX FIFO multiple time
to write all addresses in memories, then pushed READ ADDRESS to RX FIFO
with randomly generated addresses, then pop read the data from TX FIFO and
compared with the written data kept in scoreboard. Using this techniques we can
cover only about 60%. The remaining 40% are the cases where RX and TX FIFOS
are full and the pushed data are in fifo queue:

Tead_dataaddres(N) = MEeMOTY core[address]-

The main challenge is to keep the written data in scoreboard for further
comparison during read operation taking into account the number of the sent
write/read packets to the DUT which can be data that can lead to overwritten of
data in the same address. To do this the new mechanism is developed in
scoreboard. The 2 dimensional SystemVerilog queue primitive was initiated with
N+1 bit data width and M address length to keep the written data of the
corresponding address in queue if the write packet has been sent or n+1 length of
sequence of 1s if the read packet has been sent. The illustration of 2 dimensional
SystemVerilog queue primitive is shown in Fig. 4.

371

Fig. 4. lllustration of data packet keeping in scoreboard

read_datQgqares(ny = MEMOTYoreladaress|[i)y tf ¢ + 1= READ.

When Pop is send to TX FIFO the poped data should be sent to the scoreboard
where it will be compared with the last WRITTEN after the last READ data from
the corresponding addres queue. The address is also sent to the scoreboard via
systemverilog queue primitive.

The simulation was conducted in edaplayground.com platform with
Synopsys VCS, leveraging various techniques tailored to different aspects of the
test cases. Random test cases are used to explore a broad spectrum of input
conditions and validate the robustness of the memory controller, while directed test
cases focus on specific scenarios to verify critical functionality and edge cases.
This mixed approach is ensured thorough validation of the memory controller’s
performance and accuracy across diverse operating conditions. The System Verilog
code of design and UVM implementation could be found in
edaplayground.com/x/GVWx link. The simulation results are shown in Fig. 5.

Fig. 5. Simulation Results

Table below shows a brief summary of features supported by ARMX
generator comparing with other generators.

Table
Summary comparison of coverage and spend time of the used method
METHOD NAME COVERAGE TESTBANCH CREATION TIME
Direct Inputs 40% VERY LONG
Randomization 60% LONG
Purposed Method 100% SHORT

372

Conclusion. Traditional verification methods often face challenges in
addressing stringent timing constraints and achieving comprehensive functional
coverage. In contrast, the proposed testbench effectively utilizes UVM's support
for constraint randomization to accelerate testing and achieve high functional
coverage in validation of FTL memory controller. By employing a combination of
random and directed test cases, our methodology ensures, thorough validation, the
FTL memory controller’s functionality. Our results demonstrate that this approach
not only meets verification requirements but also achieves 100% functional
coverage for FTL memory controllers. The application of UVM randomization and
its comprehensive framework significantly enhances both the reliability and
efficiency of the verification process.

REFERENCES

1. Universal Verification Methodology (UVM) Class Reference Manual. - June 2014,

2. Petrosyan O. and Manukyan A. Functional Verification of Multiport SRAM Memories
Based on UVM //2023 1EEE East-West Design & Test Symposium (EWDTS). — Batumi,
Georgia, 2023.-P. 1-4.

3. Melikyan V., Harutyunyan S., Kirakosyan A. and Kaplanyan T. Uvm verification
ip for axi // 2021 IEEE East-West Design & Test Symposium (EWDTS). - 2021.-P. 1-4.

4. Constructing Effective UVM Testbench by Using DRAM Memory Controllers /
R. Kabilan, R. Ravi, J.M. Esther, U. Muthuraman, et al // 2022 Second International
Conference on Artificial Intelligence and Smart Energy (ICAIS).-Coimbatore, India,
2022.—P. 1034-1038.

5. Khalifa K. and Salah K. Implementation and verification of a generic universal memory
controller based on UVM // 2015 10th International Conference on Design & Technology of
Integrated Systems in Nanoscale Era (DTIS).- Napoli, Italy, 2015. P. 1-2.

6. Supradeep Narayana. On-chip communication hardware resources for globally asynchronous
and locally synchronous systems // 8th International Symposium on Parallel Architectures,
Algorithms and Networks (ISPAN'05). - Las Vegas, NV, USA, 2005. - P. 6.

7. "Taming heterogeneity - the Ptolemy approach”" / Johan Eker, Jorn Janneck, Edward
A. Lee, Jie Liu, et al / Proceedings of the IEEE.- 91(1). - 2003. - P. 127-144.

8. Nagy L., Koscelansky J. and Stopjakova V. Design of a globally asynchronous locally
synchronous digital system // 2014 IEEE 12th IEEE International Conference on Emerging
eLearning Technologies and Applications (ICETA).- Stary Smokovec, Slovakia, 2014, —
P. 529-533.

9. Optimization of GALS CMP architecture with DCT as case study / A.S. Menon, J.R.
Gini, B. Aishwarya, C.C.G. Balaji, et al /2011 3rd International Conference on
Electronics Computer Technology. - Kanyakumari, India, 2011. - P. 330-333.

National Polytechnical University of Armenia. “Synopsys Armenia” CJSC. The
material is received on 07.10.2024.

373

U.Q. UUuNRhY3UL

FTL zbTUUULD YU UINCRD LUMUGONRUL B9 $NhLUSPNLUL
usSNraNhUC UVM UGLNTULULAREBUUR

Ukpuyugynid ku htippuyht pnidbpugynn muppkph hnppwbgdwt dwjuwppulng
(ZPSOU) twjuwgsdwt Ubpnpupwinipju Jpu hhdtdws hhpnnnipjut jupgquynphsh tw-
fuwgdnidp b hpwljwwgnidp, npp pupdpugunid £ nkghuwnpubph thnpwgdwt dwljupnu-
hhg (3®U) FIFO Unnnijukph Jpw hhutws thnjumbigdw Jkpuguljuinipjut dtwjwupgulp,
nputn qnpw) hwnppulgnipniup junwpynud L hEppuyht pniptipugunn wwppkpny, huy
nbquljul Unynuyibpmd’ tOU-n]: Ujuyghuh hwdwlupgkph $ntihghniug unniguwi hw-
dwp wihpudbon k hwnnly phunnugnpuwis dhpwduyp, npuntn hwpdupldus Yihuku ndjuy-
utiph mknuihnpjumpiniuutpp hippught poibtpugung dnnniyubpny: Uynyhuh phunwydnp-
dwb dhowquyp unbnstint hwdwp oquugqnpdyt) £ UVM dbpnnupwinipiniip, npp htiw-
puynpmiphynit £ wnwhu junwpk] pdughtt vubdwttph wpphwjut wwhweubphtt hwdw-
wuwwnwupwing phunwynpnud: Unwewpyws dbpnnp htwpwynpnipinit £ viwjhu unnt-
gt ZRSOU hhpnynipjul jupgquynphsp’ phunu]nplwi Swsynypp huugibing 100%:

Unwigpuyhl punkp. dniuljghntw) uinnignid, UVM plunwynpdwt dhowquyp, hh-
onnnipjul jupquynphs, oybpughnt hhpnnnipinil, FIFO-FIFO thnjuwbgdwi dwljwpnul:

A.I'. MAHYKAH

INPOEKTUPOBAHHUE U BEPUOUKALIUA KOHTPOJIJIEPA TTIAMATHU FTL HA
OCHOBE UVM

IIpencraBneHbl IPOEKT U peam3alisl KOHTPOJUIEpa MaMsITH Ha OCHOBE METOIOJIOTHU
mpoektupoBanns FTL (ypoens mepemaun FIFO-to-FIFO), xoTtopas mepeBOOUT ypOBEHBb
abcrpakunu ¢ RTL mo cemanTuku nepenaun 3HaueHwnid Tpau3akinuii FIFO-FIFO wmu cme-
[IAHHOW MOJIEIH, TJe Tio0anbHas CBA3b ocymiecTBisiercs ¢ momormipio FIFO, a nmokansHbie
MOJTyJIK MOTYT OBITh PEaIM30BAHBI C TIOMOIIbI0 a0CTpaKIuil OoJiee HU3KOTO YPOBHS, TAKHX
kak RTL. Xors apxurekrypsl FTL 00ecrieunBaroT MOIHYIO CTPYKTYPY U 00PaOOTKH CIIOXK-
HBIX TPaH3aKLHH, IPOBEPKa 3TUX KOHCTPYKIMH CO3/1aeT 3HAUUTENIbHBIE TPOOJIEMBI H3-3a UX
CJIOJKHBIX CXEM CBSI3M U MPOOJIEM CBOEBPEMEHHBIX TpaH3akMi. /st GyHKIMOHAIBHOI TIpo-
BEPKH TaKMX CHCTEM HEoOXOoIuMa CIielalbHasi TECTOBas Cpeaa, B KOTOPOH OyAyT paccuu-
TBIBATHCS Tlepeiadn JaHHBIX ¢ momonrsio Monyiei FIFO. [Ing co3manus Takod TecTOBOMH
cpernsl OplIa McTOIb30BaHa MeTonoiorus UVM, KoTopast MO3BOJISET BHIITOTHATH TECTUPO-
BaHHWE, OTBEYAOIIEE COBPEMEHHBIM TpeOoBaHUAM IH(PPOBEIX cxeM. [Ipeanaraemsrii MeTox
MI03BOJISIET TECTHPOBaTh KOHTposutep namsatu FTL, yBennunsas nokpeirue go 100%.

Knrouessle cnosa: hyHkumoHanbHas Bepudukanys, TectoBas cpena UVM, KOHTpOII-
Jep naMATH, onepaTuBHas namats, FTL.

374

