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This paper aims to develop simple graphical tests for analyzing stability robustness
of uniform control systems with respect to multiplicative uncertainties. The uniform
systems are multi-input multi-output (MIMO) feedback control systems having identical
transfer functions of separate channels and rigid cross-connections described by a square
numerical matrix. The exposition is based on the method of characteristic transfer
functions, which allows reducing the stability analysis of an interconnected MIMO system
with N and N outputs to the analysis of N fictitious independent systems with one input
and one output. The proposed robustness tests are in the form of N “forbidden” circles on
the complex plane of characteristic gain loci of the open-loop uniform system. A numerical
example illustrating application of the tests to the analysis of stability robustness of a three-
dimensional uniform system is given.

Keywords: multivariable control system, uniform system, multiplicative uncertainty,
stability robustness, characteristic transfer functions.

Introduction. The issue of robustness of multivariable or multi-input and
multi-output (MIMO) control systems with respect to external disturbances and
uncertainties has always been one of the central in modern feedback control [1-3].
The paper presents simple graphical tests for analyzing stability robustness to
multiplicative perturbations of a special class of multivariable feedback control
systems called uniform systems.

The uniform systems are MIMO systems with identical transfer functions of
separate channels and rigid cross-connections described by a square numerical
matrix. These specific structural features of uniform systems allow transforming
the well-known sufficient conditions of stability robustness of MIMO systems to a
very simple and visual graphical form, which is quite close to the sufficient
conditions for single-input, single-output (SISO) control systems. The exposition is
based on the method of characteristic transfer functions (CTFs) [4], which allows
reducing the stability analysis of an interconnected MIMO control system with N
and N outputs to the stability analysis of N fictitious, but independent SISO systems.
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The proposed graphical tests of stability robustness of uniform systems to
multiplicative perturbations or uncertainties are very similar to the corresponding
analysis of SISO control systems by the Nyquist criterion, in which the critical
point —1, jO is replaced by some “forbidden” circles or areas on the complex plane
of the characteristic gain loci of the open-loop uniform system.

Canonical representations and stability analysis of uniform MIMO systems.
The matrix block diagram of a linear uniform system with N inputs and N outputs
is shown in Fig. 1, where w(s) is a scalar (SISO) transfer function of identical separat-

e channels and R is an N x N numerical matrix of rigid cross-connections.

@(s) £(s) J(s)
R [ w(s)]

Fig. 1. The block diagram of a uniform MIMO system

The transfer matrix W(s) of the open-loop uniform system in Fig.1:
W(s) = w(s)R (M

coincides, up to the complex scalar multiplier w(s), with the numerical matrix of
cross-connections R. The corresponding transfer matrix 7'(s) of the closed-loop

uniform system (complementary sensitivity transfer matrix) has the following
standard forms [4]:

T(s)=[I+W(s)] ' W(s). )

Denoting by 4, the eigenvalues of R, which for simplicity are supposed distinct,
and by C the modal matrix composed of linearly independent eigenvectors ¢, of

R, the canonical representation of the open-loop uniform system via similarity

transformation will have the following form [4]:
W(s) = Cdiag{l, w(s)}C™". 3)

As can be seen from (1) and (3), the canonical basis of the linear uniform
system is completely defined by the numerical matrix of cross-connections R and
does not depend on the transfer function w(s) of separate channels. Besides, all the

CTFs
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q.(s)=A,w(s) (i=1,2,..,N) 4)
coincide, up to the constant “gains” A, , with the transfer function w(s) . Considering
(3) and (4), the canonical representation of the transfer matrix 7'(s) (2) is:

)

T(s) = Cdiag {M}c-‘ .

1+ A, w(s)
The stability of the linear closed-loop uniform system is determined by the

roots of the characteristic equation:

N
det[1+ w(s)R] = J[1 + 2, w(s)] = 0, (6)
i=1
which is equivalent to a set of N equations:

1+ Aw(s)=0 (i=12,..,N). (7)

Basic perturbation models of uniform systems with multiplicative
uncertainties. At present, there are various paradigms for modeling dynamic system
uncertainties, e.g., structured, unstructured, highly structured (or parametric), etc. [3].

——> A(jo)

O(jo) <i—

Fig. 2. Basic perturbation model of a MIMO control system

The most common approach to analyzing the influence of uncertainties on
the stability of feedback control system assumes that uncertainties may be
presented in the form of a Basic Perturbation Model (BPM) shown in Fig. 2 [3].
Here, O(jw) is the transfer matrix of the ideal (nominal) system, which is
assumed to be stable, and the block A(jw) represents all uncertainties in the
dynamics of the system.

One of the key results in the robust theory is based on the Small Gain
Theorem [1,2], and is formulated for the systems in Fig. 2 as follows.
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Let O(jw) and A(jw) be stable. Then, for stability of the MIMO system
with uncertainty A(jw), it is sufficient that for all frequencies w, the following

condition holds:

1
i — V —00, 00 8
oo < i ¥ @< ®

with ||[]| denoting the spectral norm of the corresponding matrix, or (another

sufficient condition):

loGio), < ©)

1
[aCe)].

where || stands for the Hardy norm [3] determined for any transfer matrix

O(jw) as:
|®(jw),= sgopncb(jw)ll : (10)

Two main types of uncertainties (perturbation) used in the BPM are called
additive and multiplicative [3]. Uniform control systems with additive uncertainties
are thoroughly considered in [5]. Below, we shall discuss the robustness of uniform
systems with multiplicative uncertainties.

As can be seen from the matrix block diagram in Fig. 1, there are two
essentially different structural blocks in the uniform system, namely, the numerical
matrix of rigid cross-connections R and the scalar (diagonal) transfer matrix
w(s)I of identical separate channels. When analyzing the stability robustness of

uniform systems, it is appropriate to consider the influence of uncertainties
(perturbations) in these two blocks separately. Besides, it is also important to
analyze the case of joint perturbations in matrices R and w(s)I .

Structurally, all these three cases are illustrated in Fig. 3-Fig. 5.

i B!
o(s) | i f(s)

w(s)I

Fig. 3. Multiplicative perturbation of the numerical matrix R
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w(s)R

Fig. 5. Joint multiplicative perturbation of the open-loop transfer matrix W (s)

The matrix block diagrams in Fig. 3 and Fig. 4 represent the matrix block
diagrams of the uniform system with multiplicative uncertainties in matrix R and
the transfer matrix w(s)/ . Note that the perturbation A, in Fig. 3 is assumed to be
numerical. As for the perturbations A, (s) of w(s)/ in Fig. 4, generally they may
be frequency-dependent and nondiagonal. The same concerns the case of joint
perturbation A, (s) of the open-loop transfer matrix W (s) (1) (Fig. 5).

Robustness analysis of uniform systems with multiplicative uncertainties
(perturbations). Remember that the developed in [5] graphical tests for analyzing
stability robustness of uniform systems have different forms for cases of additive
uncertainties in matrices R and w(s)/ . Besides, they are not applicable to the case
of joint additive perturbations of the open-loop transfer matrix W (s) (1).

In this respect, the situation with multiplicative perturbations shown in Fig.
3-Fig. 5 is drastically different. It can be shown that the matrix Q(j®) in BPM in
Fig. 2 for all perturbed uniform systems in Fig. 3 - Fig. 5 is the same and coincides with
the transfer matrix of the closed-loop system 7'(jw) (2) taken with the minus sign:

(11

0(jw)=-T(jw) =—-Cdiag {%} c.
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Respectively, the robustness stability conditions (8) and (9) can be rewritten
in general form, i.e. for all models in Fig. 3 - Fig. 5, as

e [ awGe) | 1 .
IT(e)|= Cahag{1+ &_W(jw)}c H < gy Tecoel 0
and
ol =lcdiaed 2D ) 1
o, ~Jeses | S5 “ Gl

where the specific form of A(jw) on the right-hand side depends on the analyzed

perturbation model.
Using conventional rules of matrix multiplication and norms, we get the

following estimate for the upper bound of the norm ||T (j a))" :

7o) = |Cdiag |22 Ll < y(Cymax| - A2UD) | gy
1+ Aw(jo) L1+ Aw(jo)
where
v(©)=c]-|c| =1 (15)
is the condition number of the modal matrix C in (3) and (5).
Based on (14), one can state that if the following condition:
| Aw(jo) | 1 (16)

ax <
i |1 + /L,w(ja))| v(C) ||A(ja))||

holds true for all frequencies @, then the sufficient condition (12) of stability
robustness of the uniform system with any type of multiplicative uncertainties also
holds true.

Expression (16) allows imparting two simple geometrical interpretations to
the robust condition (12) assuming that the uncertainty A(j®w) does not depend on

the frequency  or the norm |A(jw)| is replaced by the supreme value [A(j)|, -

In what follows, we shall just write in both cases ||A|| . If we replace in (16) the sign

< by the equality sign, then after some algebraic manipulations, that condition can
be rewritten in the following form:

[Reidw(jo)y —c | + [ImiAw(jo)] =1, (17)
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where
1 ol
VOl -1 -[v©AlT]

(18)

Geometrically, this expression determines the complex plane of N characteristic

gain loci Aw(jw) (i=1,2,...,N) a circle with the center at the real point ¢ with
the radius » (Fig. 6a). The sufficient condition (12) is satisfied if the circle (17) does
not intersect the graphs of 4, w(jw). Note that for ||A|| =0, the circle (17) reduces

to the critical point —1, jO.

() _Jo=w
\/,

{Aw(jm)}

a) b)
Fig. 6. Analysis of stability robustness
Condition (16) can be rewritten in an equivalent form:

Y L0 ) N U B
C e wGe)| T vOaGe)]

Then, proceeding as before, we come to the following equation:

[Refw(jo)} —Re{c} T + [m{w(jw)} ~Im{c,} ] =77,
where
1 L Ol
(Ol -1

C. =

I
’ _Z[(V(C)"A”)z S

(19)

(20)

21

Geometrically, it determines on the complex plane of the hodograph w(jw)

of identical separate channels N circles with centers at the points ¢, and the radi

r., where the centers ¢, lie on the half-lines starting on the origin of the coordinate
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axes and passing through the critical points —1/ A, . This is illustrated for N =3in
Fig. 5. Again, the condition (19) is satisfied if none of the circles (20) intersects the
graph of w(jw).

It is important to note that, as can be seen from (17)-(21), the radii of the
“forbidden” circles are proportional to the condition number v(C) (15) of the
modal matrix C. This means that the uniform systems with normal matrices R,
that is the systems with orthogonal canonical bases, for which v(C) =1, are more
robust as compared with uniform systems with all other types of the matrix R.

It should also be noted that the presented graphical tests of robustness belong
to the so-called “very sufficient” criteria since an additional inequality is used in
(14). On the other hand, the tests are very easy to use and, what is also important,
they are based on the CTFs of the open-loop uniform systems.

Numerical example. Consider three-dimensional (N =3) uniform control
system with the following transfer function w(s) of separate channels and matrix

R of cross-connections:

) = 600000000(s +3)

= - (22)
s(s +0.33)(s + 400)* (s + 500)

09 003 -0.01
R=|-0.05 0866 05 |. (23)
002 -05  0.866

The eigenvalues of the matrix R (23) are equal to:
A4,=09, 1,=0.866+0.507, A,=0.866—;0.507, (24)

and the condition number is v(C)=1.112.

The analysis of stability robustness of the system with respect to multiplicative
perturbations is presented in Fig. 7 and Fig. 8. It shows that the “forbidden” circles
touch the characteristic gain loci of Aw(jw) (i=1,2,3) in Fig. 7 and w(jw) in
Fig. 8 for || A||=0.5134. That value of the perturbation norm applies to all models
of perturbed systems in Fig. 3-Fig. 5.
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Fig. 7. Stability robustness analysis based on the condition (16)
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Fig. 8. Stability robustness analysis based on the condition (19)
In other words, the stability robustness of any of the perturbed models in Fig.
3-Fig.5 is guaranteed if the Hardy norm of uncertainties A, . A,,(s), orA,,(s)

does not exceed 0.5134.

Conclusion. Simple graphical tests of the stability robustness of uniform
systems to multiplicative perturbations or uncertainties are proposed in the paper.
The analysis of the stability robustness of uniform systems is based on the method
of characteristic transfer functions. It is very similar to the stability analysis of
SISO control systems by the conventional Nyquist criterion, in which the critical
point —1, jO is replaced by some “forbidden” circles or areas on the complex plane

of characteristic gain loci of the open-loop uniform system.
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O.L. QUUNULEUL, 9.2. BUNPNEUL, L.U. AORULRUESUL, .U. UBLLNLIUL

UNPLSMILPYUSHY, ULNCNTCNRESNRLLELNY URUSPN YWUNUJULTU UL
0Uuuurecre NRUUSNERE3NRULE

Upwljyty i hwnhy junwdupdw hwdwlupgbph dniunpuhjuwnpy win-
nnonipnitubph tjundwdp pnpuun juynitimpjut yEpnidnipjut wwupg gpudbh-
julwb swthwihpubp: Uhunhy Ynsynid Et hbnwnwpd juyny, vh puth unin-
ptipny b Eptpny jupwwpdwt hwdwljupgbpp, npnilg wpwtidhtt juwninhukph
thnpjumigdutt $niuljghwtbpp dhbunyut L, hull Ynown thnpuunupd Juubpp
tjupugpynud Bt punwlniuwghtt pyuyhtt dwinphgny: thnwpynudp hhddnd k
punipwignhs thnpuowgdw pniiljghwtiph dbpnnh 4pw, npp htwpwynpnipniu
wnuwihu N dnunptpny b N Gptpny thinfjujuyuljgdus puquuswt junwjupdwt
hwdwljupgbph Juyniinipjut Jipnwsnipniup hwigbgubl; N hwn $hljnhy, dby
Uniwnpny b Uy Epny hpuphg wiwh hwdwupgbph JEpnusnipyuin: npuunnt-
pjut yepnidmpjutt wnwgwplynny swthwuthpubpp tkpjuyugimd tu N «upgbjus»
epgwiliautp pug vhwinhy hundwljwpgbph pinipugphy hngngpudlitph o kpu
hwppnipjut Ypu: Fipdws b pduyhtt ophtimly, npinkn gnyg b mipdws dpp aodus
suthwthoubph Yhpwnnipniip knwswth vhwnhy hwdwljupgh pnpuun juyniunt-
pjul ypnisnipjut nhupnid:

Unwhgpuyhl punkp. puquusuth junujupdwt hwdwlwupgbp, dhwnhy
hwdwljupg, dniypnhyihjunphy whnpnonipnil, pnpuun juyniunipnil, pinipw-
qnhs thnjumugdwt nruljghwmtp:
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O.H. 'ACIHIAPSIH, B.I'. UCIIUPSH, JI.M. BYHUATSH, I''A. MEJIKOHSTH

POBACTHOCTBb OJHOTUIIHBIX CUCTEM YIIPABJIEHUS C
MYJUbTUIVIMKATUBHBIMHA HEONIPEJIEJIEHHOCTSIMUA

Iensto cratby sBisieTcs pa3pabOTKa MPOCTHIX rpadMuecKuX KPUTEPUEB aHATIHN3A PO-
6acTHOH yCTOHYMBOCTH OJJHOTHIIHBIX CHCTEM YIIPaBJICHHMS MO OTHOLIEHHIO K MyJIbTHILUTIKATHB-
HBIM HeomnpeeseHHOCTsIM. OJJTHOTUIIHBIMU Ha3bIBAIOTCSl CUCTEMBI YIIPaBJIEHHs C 00OpaTHON
CBA3BI0 C HECKOJIBKMMU BXOJAMH U BBIXOJAaMU, UMEIOIUMY OJUHAKOBBIMH IEPEAaTOUHbBIE
(DyHKIMU OTZENBHBIX KaHAJIOB M )KECTKUMH B3aHMMHBIMH CBSI3SIMH, OITMCBIBAEMBIMH KBa/IpaT-
HOM 4KCNI0BOM MaTpuleld. PaccMoTpeHre OCHOBaHO Ha METO/IE XapaKTEPUCTUUYECKUX Mepe-
JIATOYHBIX (DYHKLMIA, KOTOPBIN MO3BOJISIET CBECTH aHAIN3 YCTOWYMBOCTH B3aMMOCBSI3aHHOM
MHOTOMEPHOW CHUCTEMBI ynpapieHus ¢ N BxoxamMu U N BBIXOAaMH K aHaIM3y N (UKTUB-
HBIX HE3aBHCHMBIX CHUCTEM C OJHUM BXOAOM M OJHHMM BbIxonoM. [Ipennaraemele kputepuu
aHanm3a pobacTHOCTH UMEIOT (popMy N “3ampeTHHIX” KPYTOB Ha KOMIUIEKCHOM IIOCKOCTH
XapaKTePUCTHIECKUX roforpad)oB pa3oMKHYTOW OJHOTHITHOW cucTeMbl. [IpuBeneH gucio-
BOH IpUMEp, WILTIOCTPUPYIOLINI NPHIMEHEHNE YKa3aHHBIX KPUTEPHEB K aHAIN3Y poOacTHOH
YCTOMYMBOCTH TPEXMEPHON OJHOTUITHOM CUCTEMBI.

Knrouegvle cnoga: MHOroMepHasi CUCTEMA YNPABIECHUS, OJHOTUIHAS CUCTEMA, MYJIb-
TUIUTMKAaTUBHAS! HEOTIPEIENICHHOCTh, POOACTHAsl yCTOMYMBOCTD, XapaKTEPUCTUIECKHUE TIepe-
JlaTOuHble (DYHKIHH.
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