2U3UUSUUP ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Մեխանիկա

78. №1. 2025

Механика

УДК 539.3, 519.6

DOI: 10.54503/0002-3051-2025.78.1-46

СВЕРХЗВУКОВОЙ ФЛАТТЕР ПАНЕЛИ УМЕРЕННЫХ РАЗМЕРОВ, НАГРУЖЕННОЙ ПО ДВУМ НАПРАВЛЕНИЯМ: РАСТЯНУТОЙ ПО ПОТОКУ ГАЗА И СЖАТОЙ В ПЕРПЕНДИКУЛЯРНОМ НАПРАВЛЕНИИ, ПРИ НАБЕГАНИИ ПОТОКА НА ЕЕ СВОБОДНЫЙ КРАЙ

Мартиросян С. Р.

Ключевые слова: аэроупругая устойчивость, растягивающие и сжимающие силы, сосредоточенные инерционные массы и моменты поворота, аналитическое решение, дивергенция панели, панельный флаттер

Martirosyan S.R.

Supersonic flutter of a moderate sized panel loaded in two directions: stretched along the gas flow and compressed in the perpendicular direction, when the flow runs into its free edge

Key words: aeroelastic stability, tensile and compressive forces, concentrated inertial masses and moments, analytical solution method, panel divergence and flutter

By analyzing, as an example, a thin elastic plate of a moderate sized, initially loaded in two directions: stretched along supersonic the gas flow and compressed in the perpendicular direction, we study the influence of the initial stress state of the plate on the stability of the unperturbed equilibrium state of the dynamical system "plate – flow" under the assumption that the flow runs into the free edge of the panel, on which there are concentrated inertial masses and moments. An analytical solution of the problem of stability is obtained. An accurate assessment of the influence of initially loading forces on the stability of the system is given.

Մարտիրոսյան Ս.Ռ.

Գերձայնային գազի հոսքի ուղղությամբ ձգված և միաժամանակ հոսքին ուղղահայաց ուղղությամբ սեղմված ուղղանկյուն սալի ֆլատերի մի խնդրի մասին, սալի ազատ եզրին հոսքի վրավազքի դեպքում

Հիմնաբառեր` առաձգական կայունություն, ուղղանկյուն սալ, ձգող և սեղմող ուժեր, կենտրոնացված իներցիոն զանգվածներ և մոմենտներ, անալիտիկ լուծման եղանակ, դիվերգենցիյա, ֆլատեր

Ուսումնասիրված է գերձայնային գազի հոսքում մեկ ազատ եզրով ուղղանկյուն սայի նախնական լարվածային վիճակի ազդեցությունը, պայմանավորված ձգված շրջհոսման ուղղությամբ և միաժամանակ սեղմված ուղղահայաց ուղղությամբ ուժերով, «սալ–հոսք» դինամիկ համակարգի ոչխոտորված հավասարակշոության վիճակի կայունության վրա։ Ենթադրվում է, որ սայի ազատ եզրին առկա են կենտրոնացած իներցիոն զանգվածներ և մոմենտներ։ Ստացված է կայունության խնդրի անալիտիկ յուծումը։ «Սալ–հոսք» համակարգի կայունության վրա նախնական ուժերի ազդեցությանը տրված է խիստ գնահատական։

В статье, в линейной постановке, исследуется влияние первоначального напряжённого состояния тонкой упругой прямоугольной пластинки умеренных размеров, первоначально нагруженной по двум направлениям силами растяжения и сжатия, соответственно, по потоку газа и в перпендикулярном ему направлении, на устойчивость невозмущённого состояния равновесия системы «пластинка-поток» в предположении, что сверхзвуковой поток газа набегает на её свободный край, на котором имеются сосредоточенные инерционные массы и моменты поворота. Получено аналитическое решение задачи устойчивости. Дана точная оценка влиянию первоначальных сил на устойчивость системы. Введение. В предлагаемой статье исследуется влияние первоначального напряжённого состояния прямоугольной пластинки умеренных размеров с одним свободным и с тремя шарнирно закреплёнными краями на устойчивость невозмущённого состояния равновесия динамической системы «пластинка–поток» при набегании сверхзвукового потока газа на её свободный край, на котором имеются сосредоточенные инерционные массы и моменты поворота, в предположении, что первоначально пластинка нагружена растягивающими и сжимающими силами по двум направлениям, соответственно, по потоку газа и в перпендикулярном ему направлении.

Получено аналитическое решение задачи устойчивости системы «пластинкапоток» с помощью алгоритма, подробно изложенного в [13].

Показано, что при меньших значениях отношения длины пластинки (сторона по потоку) к её ширине невозмущённое состояние равновесия системы теряет как статическую устойчивость, так и динамическую, соответственно, в виде эйлеровой и не эйлеровой дивергенции панели, и в виде панельного флаттера, в отличие от пластинок с большим отношением сторон, примерно равным единице, при котором имеет место потеря статической устойчивости в виде эйлеровой дивергенции панели, а неэйлерова дивергенция и панельный флаттер отсутствуют. Найдены «опасные» и «безопасные» границы области устойчивости [12].

Дана точная оценка влиянию соотношения первоначальных сил растяжения и сжатия на порог устойчивости невозмущённого состояния равновесия системы в зависимости от её «существенных» параметров и относительной толщины пластинки.

Применённый метод аналитического исследования позволяет не только установить условия возникновения панельного флаттера, но и даёт возможность предсказать последующее развитие колебаний.

Данная статья является обобщением работ [13,15,16] и продолжением [19]. Рассмотрение подобных задач аэроупругой устойчивости при комбинированном нагружении имеет важное прикладное и теоретическое значение [1–5, 8, 9].

Результаты работы могут быть использованы при обработке данных экспериментальных исследований дивергенции и флаттера панелей обшивки сверхзвуковых летательных аппаратов на этапе проектирования и при эксплуатации.

1. Постановка задачи. Рассматривается тонкая упругая прямоугольная пластинка, занимающая в декартовой системе координат Oxyz область: $0 \le x \le a$, $0 \le y \le b$, $-h \le z \le h$, $ab^{-1} \in [0.33; 1.96)$. Декартова система координат Oxyzвыбирается так, что оси Ox и Oy лежат в плоскости невозмущённого состояния равновесия пластинки, а ось Oz перпендикулярна пластинке и направлена в сторону сверхзвукового потока газа, обтекающего пластинку с одной стороны в направлении оси Ox с невозмущённой скоростью V. Течение газа принимается плоским и потенциальным.

Пусть край x = 0 пластинки свободен, а края x = a, y = 0 и y = b – закреплены идеальными шарнирами. Вдоль свободного края x = 0 пластинки приложены сосредоточенные инерционные массы m_c и моменты поворота I_c [2, 8, 13].

Будем полагать, что первоначально, ещё до обтекания, пластинка подвержена действию растягивающих $N_x = 2h\sigma_x$ и сжимающих $N_y = 2h\sigma_y$ сил, равномерно

распределённых по кромкам пластинки, соответственно, x = 0, x = a и y = 0, y = b, являющимися результатом нагрева, или каких – либо других причин; усилия σ_x и σ_y предполагаются постоянными во всей срединной поверхности панели и неменяющимися с изменением прогиба w = w(x, y, t) [1, 2, 5].

Прогиб пластинки w = w(x, y, t) вызывает избыточное давление δp на верхнюю обтекаемую поверхность пластинки со стороны обтекающего потока газа, которое учитывается приближённой формулой «поршневой теории» $\delta p = -a_0 \rho_0 V \frac{\partial w}{\partial x}$, где a_0 – скорость звука в невозмущённой газовой среде, ρ_0 – плотность невозмущённого потока газа [6, 7]. Будем полагать, что прогибы w = w(x, y, t) малы относительно толщины пластинки 2h [1, 5].

Выясним условия, при которых возможна потеря устойчивости состояния невозмущённого равновесия динамической системы «пластинка-поток» в случае, в котором изгиб прямоугольной пластинки обусловлен соответствующими аэродинамическими нагрузками δp , растягивающими σ_x и сжимающими σ_y усилиями в срединной поверхности пластинки и сосредоточенными инерционными массами m_c и моментами I_c поворота, приложенными вдоль её свободного края x = 0, в предположении, что усилия σ_x и σ_y малы по сравнению с критическими значениями $(\sigma_x)_{pr.}$ и $(\sigma_y)_{cr.}$, где $(\sigma_x)_{pr.}$ – усилие, начиная с которого имеет место явление потери устойчивости цилиндрической формы пластинки [10]; $(\sigma_y)_{cr.}$ – усилия, которые могут произвести «выпучивание» пластинки в отсутствие обтекания (V = 0) при условии $\sigma_x = 0$ [1, 15].

Тогда, дифференциальное уравнение малых изгибных колебаний точек срединной поверхности прямоугольной пластинки около невозмущённой формы равновесия в рамках справедливости гипотезы Кирхгофа и «поршневой теории» [6, 7] в предположении малости интенсивности $m \partial^2 w / \partial t^2$ распределённой массы пластинки m в сравнении с интенсивностями $m_c \partial^2 w / \partial t^2$ и $I_c \partial^2 w / \partial t^2$, учитываемых в граничных условиях, будет описываться соотношением [1, 2, 5, 19]:

$$D\Delta^2 w - N_x \frac{\partial^2 w}{\partial x^2} + N_y \frac{\partial^2 w}{\partial y^2} + a_0 \rho_0 V \frac{\partial w}{\partial x} = 0, \ w = w(x, y, t);$$
(1.1)

 $\Delta^2 w = \Delta(\Delta w), \Delta$ – дифференциальный оператор Лапласа; D – цилиндрическая жёсткость.

Граничные условия, в принятых предположениях относительно способа закрепления кромок пластинки, будут вида [1, 2, 8, 13, 19]:

$$D \cdot \left(\frac{\partial^2 w}{\partial x^2} + v \frac{\partial^2 w}{\partial y^2}\right) = I_c \frac{\partial^3 w}{\partial x \partial t^2}, \qquad (1.2)$$
$$D \cdot \frac{\partial}{\partial x} \left(\frac{\partial^2 w}{\partial x^2} + (2 - v) \frac{\partial^2 w}{\partial y^2}\right) - N_x \frac{\partial w}{\partial x} = -m_c \frac{\partial^2 w}{\partial t^2} \quad \text{при } x = 0;$$
$$w = 0, \quad \frac{\partial^2 w}{\partial x^2} = 0 \quad \text{при } x = a \quad \text{н} \quad w = 0, \quad \frac{\partial^2 w}{\partial y^2} = 0 \quad \text{при } y = 0 \text{ н} \quad y = b; \quad (1.3)$$

ν – коэффициент Пуассона.

Задача устойчивости динамической системы (1.1)–(1.3) состоит:

1) в нахождении критической скорости V_{cr} – наименьшей скорости потока газа – в интервале сверхзвуковых и гиперзвуковых скоростей [1, 2]:

$$V \in (a_0 M_0, a_0 M_{2\cos m}), \ M_0 = \sqrt{2}, \ M_{2\cos m} \approx 33.85;$$
 (1.4)

приводящей к потере устойчивости невозмущённого состояния равновесия динамической системы «пластинка-поток» в предположении:

$$\sigma_x < (\sigma_x)_{pr.}, \ \sigma_y < (\sigma_y)_{cr.}, \tag{1.5}$$

когда все параметры системы заданы, кроме скорости потока V;

2) в определении относительной толщины пластинки $(2ha^{-1})_{min}$, которая обеспечивала бы её прочность по критерию устойчивости колебаний, когда форма, материал пластинки и все параметры потока известны.

Анализ устойчивости невозмущённого состояния равновесия системы (1.1) - (1.5) по Ляпунову [11] сводится к исследованию дифференциального уравнения (1.1) с соответствующими краевыми условиями (1.2) и (1.3) для прогиба w(x, y, t) в интервале (1.4) при условии (1.5).

Задачу устойчивости (1.1) – (1.5) будем исследовать в случае прямоугольных пластинок умеренных размеров [1, 2, 13, 16]:

$$\gamma = ab^{-1} \in [0.33; 1.96], \tag{1.6}$$

 γ – отношение ширины пластинки a (сторона пластинки по потоку) к её длине b

В работе [13] получено аналитическое решение задачи (1.1) – (1.3) для всех значений $\gamma \in [0,\infty]$ в отсутствии первоначальных усилий в срединной поверхности пластинки ($\sigma_x = \sigma_y = 0$). В работе [16] исследована исходная задача устойчивости, при условии $\sigma_x \neq 0$, $\sigma_y = 0$. Показано, что растягивающие усилия σ_x приводят к существенному повышению устойчивости системы. В работе [17] получено решение задачи (1.1) – (1.5) для всех $\gamma \in [0,\infty]$ в статической постановке ($m_c = 0, I_c = 0$) по методу Эйлера. Показано, что возмущённое движение системы «пластинка-поток» теряет статическую устойчивость в виде эйлеровой дивергенции панели и в виде локализованной дивергенции, в зависимости от её существенных параметров. Исследована граница перехода из области эйлеровой дивергенции панели в область локализованной дивергенции. Определены критические скорости дивергенции

панели и локализованной дивергенции. Установлено, что при определённом соотношении усилий, растягивающих σ_x и сжимающих σ_x , наблюдается эффект их «взаимной компенсации», наиболее ярко проявленный в случае пластинок, у которых $\gamma \ge 0.5$. В работе [19] получено решение задачи (1.1) – (1.5) для $\gamma \in [0; 0.33)$.

2. Общее решение задачи устойчивости (1.1) – (1.5). Сведём поставленную задачу устойчивости к задаче на собственные значения λ для обыкновенного дифференциального уравнения. Общее решение уравнения (1.1), удовлетворяющее граничным условиям (1.2) и (1.3), будем искать в виде суммы гармонических колебаний [1, 2, 13, 19]:

$$w(x, y, t) = \sum_{n=1}^{\infty} C_n \exp(\mu_n r x + \lambda t) \cdot \sin(\mu_n y), \ \mu_n = \pi n b^{-1},$$
(2.1)

 C_n – произвольные постоянные; n – число полуволн вдоль стороны b пластинки.

Невозмущённое состояние равновесия системы (1.1)–(1.5) асимптотически устойчиво, если все собственные значения λ имеют отрицательные вещественные части ($\operatorname{Re} \lambda < 0$), и неустойчиво, если хотя бы одно собственное значение λ находится в правой части комплексной плоскости ($\operatorname{Re} \lambda > 0$) [11]. Критическая скорость потока газа V_{cr} , характеризующая переход от устойчивости к неустойчивости системы, определяется условием равенства нулю вещественной части одного или нескольких собственных значений ($\operatorname{Re} \lambda = 0$) [1, 2, 11].

Подставляя выражение (2.1) в дифференциальное уравнение (1.1), получаем характеристическое уравнение системы «пластинка–поток» в виде [17, 19]:

$$r^{4} - 2 \cdot (1 + \beta_{x}^{2}) \cdot r^{2} + \alpha_{n}^{3} \cdot r + (1 - \beta_{y}^{2}) = 0, \qquad (2.2)$$

 α_n^3 – параметр, определяющий неконсервативную составляющую нагрузки:

$$\alpha_n^3 = a_0 \rho_0 V D^{-1} \mu_n^{-3} \in (a_0^2 \rho_0 M_0 D^{-1} \mu_n^{-3}, a_0^2 \rho_0 M_{2\cos m} D^{-1} \mu_n^{-3});$$
(2.3)

 β_x^2 и β_y^2 – коэффициенты, характеризующие усилия σ_x и σ_y соответственно, определяющие консервативную составляющую нагрузки [1,17]:

$$\beta_x^2 = 1/2 \cdot N_x D^{-1} \mu_n^{-2} = h \sigma_x D^{-1} \mu_n^{-2} < (\beta_x^2)_{pr.}, \ (\beta_x^2)_{pr.} = h(\sigma_x)_{pr.} D^{-1} \mu_n^{-2};$$
(2.4)
$$\beta_y^2 = N_y D^{-1} \mu_n^{-2} = 2h \sigma_y D^{-1} \mu_n^{-2} < (\beta_y^2)_{cr.}, \ (\beta_y^2)_{cr.} = 2h(\sigma_y)_{cr.} D^{-1} \mu_n^{-2}$$
(табл.1);

согласно условиям (1.4), (1.5).

В соответствии с известным решением Феррари, уравнение (2.2) можно представить в виде произведения двух квадратных трёхчленов, что тождественно группе уравнений [17, 19]:

$$\left(r^{2} + \sqrt{2(q+1+\beta_{x}^{2})} \cdot r + q - \sqrt{q^{2}-1+\beta_{y}^{2}}\right) = 0, \qquad (2.5)$$

$$\left(r^{2} - \sqrt{2(q+1+\beta_{x}^{2})} \cdot r + q + \sqrt{q^{2} - 1 + \beta_{y}^{2}}\right) = 0; \qquad (2.6)$$

где *q* > 0 – единственный действительный корень кубического уравнения:

$$8 \cdot (q+1+\beta_x^2)(q^2-1+\beta_y^2) - \alpha_n^6 = 0.$$
(2.7)

Отсюда, в соответствии с обозначением (2.3), очевидно, что параметр $q \in R$ характеризует скорость потока газа V при фиксированных значениях остальных параметров системы: $q = q(V) \in (q(a_0M_0), q(a_0M_{2\cos m}))$ в силу условия (1.4).

С помощью графоаналитических методов исследования характеристического уравнения (2.2), переписанного в виде (2.5) и (2.6), можно показать, что

$$q = q(V) \in (q_0, q(a_0 M_{2\cos m})) \subseteq (q(a_0 M_0), q(a_0 M_{2\cos m})),$$
(2.8)

$$q_0 = \left(-\left(1+\beta_x^2\right) + 2\sqrt{\left(1+\beta_x^2\right)^2 + 3\left(1-\beta_y^2\right)}\right) / 3$$
(2.9)

при всех $\beta_x^2 < (\beta_x^2)_{pr}$ и $\beta_y^2 < (0; 0.25(1+\beta_x^2)^2+1) \bigcap (0; (\beta_y^2)_{cr.});$ (2.10)

в силу очевидного условия q > 0 и известного требования к её корням r_i [1,2,13,17]:

$$r_1 < 0, r_2 < 0, r_{3,4} = \alpha \pm i \beta \in W, \alpha > 0,$$
 (2.11)
являющимися решением квадратных уравнений (2.5) и (2.6) соответственно [17, 19]:

$$r_{1,2} = -0.5\sqrt{2(q+1+\beta_x^2)} \pm \sqrt{\sqrt{q^2-1+\beta_y^2} - 0.5(q-1-\beta_x^2)}, r_1 < 0, r_2 < 0; (2.12)$$

$$r_{3,4} = 0.5\sqrt{2(q+1+\beta_x^2)} \pm i\sqrt{\sqrt{q^2-1+\beta_y^2} + 0.5(q-1-\beta_x^2)}, r_{3,4} \in W.$$
(2.13)

Тогда, в соответствии с выражениями (2.12) и (2.13), общее решение (2.1) уравнения (1.1) запишется в виде двойного ряда:

$$w(x, y, t) = \sum_{n=1}^{\infty} \sum_{k=1}^{4} C_{nk} \cdot \exp(\mu_n r_k x + \lambda t) \cdot \sin(\mu_n y) .$$
(2.14)

В таблице 1 приведены критические значения коэффициента β_y , характеризующего напряжение σ_y : $(\beta_y^2)_{cr} = (\beta_y^2)_{cr} (n, \gamma, \nu)$ – решения дисперсионных уравнений исходной задачи устойчивости в отсутствии обтекания для $\gamma \in [0.33;1.96)$ при n = 1, $\beta_x^2 = 0$ и $m_c = 0$, $I_c = 0$, найденные с точностью до порядка 10^{-4} [15,19]:

$$\begin{split} F_1(n,\gamma,\nu,\beta_y^2) &= \\ &= \left(\sqrt{1+\beta_y}\left(1-\beta_y-\nu\right)^2 + \sqrt{1-\beta_y}\left(1+\beta_y-\nu\right)^2\right) sh\left(\pi n\gamma\left(\sqrt{1+\beta_y}-\sqrt{1-\beta_y}\right)\right) - \\ &- \left(\sqrt{1+\beta_y}\left(1-\beta_y-\nu\right)^2 - \sqrt{1-\beta_y}\left(1+\beta_y-\nu\right)^2\right) sh\left(\pi n\gamma\left(\sqrt{1+\beta_y}+\sqrt{1-\beta_y}\right)\right) = 0 \\ \text{когда } \beta_y^2 < 1; \\ &F_2(n,\gamma,\nu) = \left(2-\nu^2\right) sh\left(\sqrt{2}\pi n\gamma\right) - \nu^2\sqrt{2}\pi n\gamma \cdot ch\left(\sqrt{2}\pi n\gamma\right) = 0 \text{, когда } \beta_y^2 = 1; \end{split}$$

51

$$\begin{aligned} F_{3}\left(n,\gamma,\nu,\beta_{y}^{2}\right) &= \sqrt{\beta_{y}-1}\left(\beta_{y}+1-\nu\right)^{2} sh\left(\pi n\gamma\sqrt{\beta_{y}+1}\right) \cos\left(\pi n\gamma\sqrt{\beta_{y}-1}\right) - \\ &-\sqrt{\beta_{y}+1}\left(\beta_{y}-1+\nu\right)^{2} ch\left(\pi n\gamma\sqrt{\beta_{y}+1}\right) \sin\left(\pi n\gamma\sqrt{\beta_{y}-1}\right) = 0, \text{ когда } \beta_{y}^{2} > 1 \end{aligned}$$

1 worninger 1	Таблица	1
---------------	---------	---

γ	0.125	0.25	0.3	0.375	0.5
0.33	5.799	5.150	4.875	4.447	3.686
0.40	4,245	3.815	3.625	3.332	2.797
0.50	3.058	2.792	2.672	2.479	2.114
0.60	2.416	2.237	2.153	2.015	1.745
0.70	2.032	1.903	1.841	1.735	1.523
0.74	1.921	1.806	1.751	1.654	1.458
0.80	1.785	1.687	1.639	1.555	1.379
0.90	1.616	1.539	1.500	1.431	1.282
1.00	1.496	1.434	1.401	1.342	1.212
1,20	1.341	1.297	1.273	1.228	1.124
1.80	1.149	1.126	1.113	1.086	1.016
1.96	1.125	1.105	1.092	1.067	1.004

Подставляя выражение (2.3) в кубическое уравнение (2.7), после простых преобразований получаем формулу зависимости скорости потока газа V от «существенных» параметров системы «пластинка–поток»:

 $V(q) = 2\sqrt{2(q+1+\beta_x^2)(q^2-1+\beta_y^2)} \cdot \pi^3 n^3 \gamma^3 D(a_0 \rho_0 a^3)^{-1}, \gamma \in [0.33; 1.96). (2.15)$ позволяющую по известному значению параметра $q = q(n, \gamma, \nu, \beta_x^2, \beta_y^2)$ определить приведённую скорость потока газа $V(q) \cdot D^{-1}(a_0 \rho_0 a^3).$

T. C	\mathbf{a}
гаолина	7.
1 0000000000000000000000000000000000000	_

<i>V</i> 2 <i>ha</i> ⁻¹	0.125	0.3	0.5
0,006	(54.81, 1311.78)	(50.52, 1208.98)	(41.63, 996.35)
0,007	(34.45, 811.07)	(32.00, 753.37)	(26.15, 615.52)
0,008	(23.12, 544.34)	(21.48, 505.62)	(17,55, 413.10)
0,009	(16.22, 381.76)	(15.06, 354.59)	(12.31, 289.71)
0.010	(11.84, 283.45)	(10.91, 261.25)	(8.99, 215.32)
0.011	(8.89, 209.40)	(8.09, 190.36)	(6.75, 158.91)
0.012	(6.85, 164.01)	(6.32, 151.20)	(5.20, 124.60)
0,013	(5,39, 126.87)	(5.01, 117.84)	(4.09, 96.28)
0,014	(4.31, 101.46)	(4.00, 94.24)	(3.27, 76.99)
0.015	(3.51, 84.04)	(3.23, 77.33)	(2.67, 63.81)

Учитывая условия (1.4), из выражения (2.15) согласно формуле цилиндрической жёсткости $D = E \cdot (2h)^3 / (12(1-v^2))$ имеем [17,19]: $V(a) D^{-1}(a, 0, a^3) \in (V(a,)D^{-1}(a, 0, a^3), a, M, -\Psi) \subset (a, M, a, M, -\Psi) \Psi$

$$V(q)D^{-1}(a_{0}\rho_{0}a^{3}) \in (V(q_{0})D^{-1}(a_{0}\rho_{0}a^{3}), a_{0}M_{2\cos m}\Psi) \subseteq (a_{0}M_{0}, a_{0}M_{2\cos m})\Psi,$$

когда $V(q_{0}) \ge a_{0}M_{0};$

$$V(q)D^{-1}(a_0\rho_0a^3) \in (a_0M_0, a_0M_{2\cos m})\Psi,$$
когда $V(q_0) < a_0M_0;$

$$\Psi = 12(1-\nu^2)a_0\rho_0E^{-1}(2ha^{-1})^{-3}, M_0 = \sqrt{2}, M_{2\cos m} \approx 33.85.$$
(2.16)

Далее, подставляя значения $2ha^{-1} \in [0.006, 0.015]$ в выражения (2.16), получаем соответствующие интервалы $d(2ha^{-1}, v) = (a_0M_0, a_0M_{2\cos m}) \cdot \Psi$ допустимых значений приведённой скорости $VD^{-1}(a_0\rho_0a^3)$, применительно к интервалу сверхзвуковых скоростей (1.4) для стальных пластинок (табл. 2) [16, 18].

3. Достаточные признаки потери устойчивости невозмущённого состояния равновесия динамической системы «пластинка–поток» (1.1) – (1.5).

Подставляя общее решение (2.14) дифференциального уравнения (1.1), в котором корни r_k характеристического уравнения (2.2) определяются выражениями (2.12) и (2.13), в граничные условия (1.2) и (1.3), получаем однородную систему алгебраических уравнений четвёртого порядка относительно произвольных постоянных C_{nk} . Приравненный нулю определитель этой системы уравнений – характеристический определитель, описывается биквадратным уравнением относительно собственного значения λ [19]:

$$\chi_{n}\delta_{n}A_{0}\lambda^{4} + (\chi_{n}A_{1} + \delta_{n}A_{2})\lambda^{2} + A_{3} = 0 , \qquad (3.1)$$

$$\delta_n = m_c D^{-1} b^3 (\pi n)^{-3}, \ \chi_n = I_c D^{-1} b (\pi n)^{-1}, \ \delta_n > 0, \ \chi_n > 0, \ (3.2)$$

 δ_n и γ_n – приведённые значения сосредоточенных инерционных масс m_c и моментов поворота I_c , приложенных вдоль свободного x = 0 пластинки;

$$A_{0} = A_{0}(q, n, \gamma, \beta_{x}^{2}, \beta_{y}^{2}) = \sqrt{2(q+1+\beta_{x}^{2})} \left(1 - e^{-2\sqrt{2(q+1+\beta_{x}^{2})} \cdot \pi n\gamma}\right) B_{1}B_{2} - (3.3)$$

$$-2B_{2}\left(q+1+\beta_{x}^{2}+\sqrt{q^{2}-1+\beta_{y}^{2}}\right) e^{-\sqrt{2(q+1+\beta_{x}^{2})} \pi n\gamma} sh(\pi n\gamma B_{1}) \cos(\pi n\gamma B_{2}) - (2B_{1}\left(q+1+\beta_{x}^{2}-\sqrt{q^{2}-1+\beta_{y}^{2}}\right) e^{-\sqrt{2(q+1+\beta_{x}^{2})} \pi n\gamma} ch(\pi n\gamma B_{1}) \sin(\pi n\gamma B_{2});$$

$$A_{1} = A_{1}(q, n, \gamma, \beta_{x}^{2}, \beta_{y}^{2}) = (3.4)$$

$$\begin{split} &= 2(q+1+\beta_x^2) \bigg[q - \sqrt{q^2 - 1 + \beta_y^2} + (q + \sqrt{q^2 - 1 + \beta_y^2}) e^{-2\sqrt{2}(q+1+\beta_x^2)mny}} \bigg] B_i B_2 + \\ &+ 2B_2 \bigg[\sqrt{2}(q+1+\beta_x^2)(q^2 - 1 + \beta_y^2)} (q+1+\beta_x^2 + \sqrt{q^2 - 1 + \beta_y^2}) sh(\pi n \gamma B_1) + \\ &+ 2B_i((2q-1)(q+1) + \beta_y^2 + q\beta_x^2) ch(\pi n \gamma B_1) \bigg] cos(\pi n \gamma B_2) e^{-\sqrt{2}(q+1+\beta_y^2)mny} + \\ &+ 2\bigg[B_1\sqrt{2}(q+1+\beta_x^2)(q^2 - 1 + \beta_y^2) (q+1+\beta_x^2 - \sqrt{q^2 - 1 + \beta_y^2}) ch(\pi n \gamma B_1) + \\ &+ (q+1+\beta_x^2)(q-1+\beta_y^2 + q\beta_x^2) sh(\pi n \gamma B_1) \bigg] sin(\pi n \gamma B_2) exp(-\sqrt{2}(q+1+\beta_x^2)\pi n \gamma); \\ &A_2 = A_2(q,n,\gamma,\beta_x^2,\beta_y^2) = (3.5) \\ &= 2(q+1+\beta_x^2) (1 + exp(-2\sqrt{2}(q+1+\beta_x^2)\pi n \gamma)) B_1 B_2 - \\ &- 4(q+1+\beta_x^2) B_1 B_2 ch(\pi n \gamma B_1) cos(\pi n \gamma B_2) exp(-\sqrt{2}(q+1+\beta_x^2)\pi n \gamma) + \\ &+ 2(3(q^2 - 1) - 2\beta_x^2 - \beta_x^4 + 2\beta_y^2) sh(\pi n \gamma B_1) sin(\pi n \gamma B_2) exp(-\sqrt{2}(q+1+\beta_x^2)\pi n \gamma); \\ &A_3 = A_3(q,n,\gamma,v,\beta_x^2,\beta_y^2) = (3.6) \\ &= \sqrt{2}(q+1+\beta_x^2) \bigg\{ \bigg(q+1 - \sqrt{q^2 - 1 + \beta_y^2} \bigg)^2 - 2(q+1)v - (1-v)^2 + \\ &+ 2\beta_x^2 \bigg(q - \sqrt{q^2 - 1 + \beta_y^2} \bigg) \bigg\} B_i B_2 - \sqrt{2} \bigg(q+1+\beta_x^2) \bigg\{ \bigg(q+1 + \sqrt{q^2 - 1 + \beta_y^2} \bigg)^2 - \\ &- (2q+1)v - (1-v)^2 + 2\beta_x^2 \bigg(q + \sqrt{q^2 - 1 + \beta_y^2} \bigg) \bigg\} B_i B_2 exp(-2\sqrt{2}(q+1+\beta_x^2)\pi n \gamma + \\ &+ 2B_2 exp(-\sqrt{2}(q+1+\beta_x^2)\pi n \gamma) \bigg\{ \bigg[(4q^2 + 2q-1)\sqrt{q^2 - 1 + \beta_y^2} - \\ &- (2q^2 - 4q+1)(q+1) + (2q^2 + 4q - 1 + 2q\sqrt{q^2 - 1 + \beta_y^2} + \beta_y^2 + 2q\beta_x^2) \cdot \beta_x^2 - \\ &- \bigg(q - 1 - \sqrt{q^2 - 1 + \beta_y^2} \bigg) B_i (n n \gamma B_1) + \\ &+ 2\sqrt{2}(q+1+\beta_x^2)^3 (q^2 - 1 + \beta_y^2) B_i (n n \gamma B_1) + \\ &+ 2\sqrt{2}(q+1+\beta_x^2)^3 (q^2 - 1 + \beta_y^2) B_i (n (n \gamma B_1)) + \\ &+ 2\sqrt{2}(q+1+\beta_x^2)^3 (q^2 - 1 + \beta_y^2) B_i (h (\pi n \gamma B_1)) + \\ &+ 2\sqrt{2}(q+1+\beta_x^2)^3 (q^2 - 1 + \beta_y^2) B_i (h (\pi n \gamma B_1) + \\ &+ 2\sqrt{2}(q+1+\beta_x^2)^3 (q^2 - 1 + \beta_y^2) B_i (h (\pi n \gamma B_1) + \\ &+ (2q^2 - 4q+1)(q+1) - (2q^2 + 4q - 1 - 2q\sqrt{q^2 - 1 + \beta_y^2} + \beta_y^2 + 2q\beta_x^2) \cdot \beta_x^2 + \\ &+ \bigg(q-1+\sqrt{q^2 - 1 + \beta_y^2} \bigg) B_y^2 + 2((2q-1)(q+1) + q\sqrt{q^2 - 1 + \beta_y^2} + \beta_y^2 + 2q\beta_x^2) \cdot \beta_x^2 + \\ &+ \bigg(q-1+\sqrt{q^2 - 1 + \beta_y^2} \bigg) B_y^2 + 2((2q-1)(q+1) + q\sqrt{q^2 - 1 + \beta_y^2} + \beta_y^2 + 2q\beta_x^2) v - \\ \end{bmatrix}$$

$$-(q+1+\beta_x^2-\sqrt{q^2-1+\beta_y^2})v^2]ch(\pi n\gamma B_1)+\sqrt{2(q+1+\beta_x^2)(q^2-1+\beta_y^2)}\cdot$$

$$\cdot(3(q^2-1)-2\beta_x^2-\beta_x^4+2\beta_y^2)\cdot sh(\pi n\gamma B_1)\}sin(\pi n\gamma B_2);$$

$$B_1=\sqrt{\sqrt{q^2-1+\beta_y^2}}-0.5(q-1-\beta_x^2), B_2=\sqrt{\sqrt{q^2-1+\beta_y^2}}+0.5(q-1-\beta_x^2). (3.7)$$

Легко показать, что при допустимых значениях (2.9) параметра $q=q(V)$ и козф-

фициентов (2.10): $\beta_x^2 < (\beta_x^2)_{pr.}$, $\beta_y^2 < (0; 0.25(1 + \beta_x^2)^2 + 1) \cap (0; (\beta_y^2)_{cr.})$, характеризующих напряжения σ_x и σ_y , для всех $\gamma \in [0.33; 1.96)$ справедливо:

$$B_1 = B_1(q, \beta_x^2, \beta_y^2) > 0, \ B_2 = B_2(q, \beta_x^2, \beta_y^2) > 0.$$
(3.8)

Отсюда следует, что

$$A_{0} = A_{0}(q, n, \gamma, \beta_{x}^{2}, \beta_{y}^{2}) > 0, A_{2} = A_{2}(q, n, \gamma, \beta_{x}^{2}, \beta_{y}^{2}) > 0.$$
(3.9)

Вводя обозначение

$$k_n = \chi_n \cdot \delta_n^{-1} = I_c \left(\pi n\gamma\right)^2 \cdot \left(m_c a^2\right)^{-1},$$
(3.10)

характеристический определитель (3.1), в соответствии с условиями (3.2) и (3.9), перепишется в виде

$$\lambda^4 + (k_n A_1 + A_2) \chi_n^{-1} A_0^{-1} \lambda^2 + \chi_n^{-1} \delta_n^{-1} A_0^{-1} A_3 = 0, \ \delta_n > 0, \ \chi_n > 0, \ k_n > 0.$$
 (3.11)
Будем полагать, что

$$k_n \in (0, 10]. \tag{3.12}$$

При больших значениях k_n , примерно $k_n \ge 14$, при скоростях $V \ge V_{cr.div.}$ переход из левой части комплексной плоскости собственных значений λ_k системы в правую часть происходит через точку $\lambda_{\infty} = \pm \infty$, вызывающий «жёсткое» изменение характера возмущённого движения системы от устойчивости к неустойчивости: имеет место апериодическая неустойчивость [1, 2].

Заметим, что непосредственной подстановкой $\beta_x^2 = \beta_y^2 = 0$ в уравнение (3.11) можно убедиться в его тождественности уравнению, полученному в работе [13].

Анализ устойчивости невозмущённого состояния равновесия динамической системы «пластинка-поток» (1.1) – (1.3) при ограничениях (1.4) и (1.5) сводится к исследованию поведения корней λ_k характеристического определителя (3.11), описывающего собственные движения системы «пластинка–поток» в пространстве её «существенных» параметров $\mathfrak{T} = \{q(V), n, \gamma, \nu, \beta_x^2, \beta_y^2, k_n\}$ – параметров, оказывающих наиболее значимое влияние на динамическую систему «пластинка–поток». Значения остальных параметров системы принимаются фиксированными.

4. Разбиение пространства параметров системы «пластинка-поток» на области устойчивости и неустойчивости. Как и в работах [13,14,18,19], введём в рассмотрение в пространстве параметров \Im системы «пластинка-поток» область устойчиво-

сти $\mathfrak{T}_0(k_nA_1+A_2>0, A_3>0, \Delta>0)$ и области неустойчивости: $\mathfrak{T}_1(A_3<0, \Delta>0),$ $\mathfrak{T}_2(k_nA_1+A_2<0, A_3>0, \Delta>0)$ и $\mathfrak{T}_3(A_3>0, \Delta<0);$

соответственно, эйлеровой и неэйлеровой дивергенции панели и панельного флаттера.

Здесь Δ – дискриминант биквадратного уравнения (3.11):

$$\Delta = \Delta(n, \gamma, \mathbf{v}, \beta_x^2, \beta_y^2, k_n) = (k_n A_1 + A_2)^2 - 4k_n A_0 A_3.$$
(4.1)

В области устойчивости \mathfrak{T}_0 уравнение (3.11) имеет две пары чисто мнимых корней $\lambda_{1,2} = \pm i \omega_1$, $\lambda_{3,4} = \pm i \omega_2$: прямоугольная пластинка совершает гармонические колебания около невозмущённого состояния равновесия; в области \mathfrak{T}_1 – имеет два действительных корня $\lambda_1 < 0$, $\lambda_2 > 0$ и два чисто мнимых корней $\lambda_{3,4} = \pm i \omega$, что характеризует эйлерову дивергенцию панели; в области \mathfrak{T}_2 – имеет два отрицательных ($\lambda_1 < 0$, $\lambda_2 < 0$) и два положительных ($\lambda_3 > 0$, $\lambda_4 > 0$) корня, характеризующих более ярко выраженную дивергенцию панели – неэйлеровую дивергенцию; в области \mathfrak{T}_3 , по крайней мере, два корня уравнения (3.11) являются комплексно сопряжёнными числами с положительной вещественной частью: имеет место панельный флаттер, при котором пластинка совершает флаттерные колебания – колебания по нарастающей амплитуде [1,2,13].

Границами области устойчивости \mathfrak{T}_0 системы в пространстве её параметров \mathfrak{T} при условии $k_n A_1 + A_2 > 0$ являются гиперповерхности $A_3 = 0$ и $\Delta = 0$ – определяющие, соответственно, условия апериодической и колебательной неустойчивости [11–13]: характеристическое уравнение (3.11) на гиперповерхности $A_3 = 0$ имеет один нулевой корень $\lambda_0 = 0$ кратности 2, а на гиперповерхности $\Delta = 0$ – пару чисто мнимых корней $\lambda_{1,2} = \pm i \omega$. Переходы ($\mathfrak{T}_0 \to \mathfrak{T}_3$) и ($\mathfrak{T}_2 \to \mathfrak{T}_3$) определяют «опасные границы» областей \mathfrak{T}_0 и \mathfrak{T}_2 [12].

На границе $A_3 = 0$ области устойчивости \mathfrak{T}_0 при условии $k_n A_1 + A_2 > 0$ и $\Delta > 0$ система «пластинка-поток» при скоростях потока газа $V \ge V_{cr.div}$ теряет статическую устойчивость в виде эйлеровой дивергенции панели \mathfrak{T}_1 . Критические скорости $\{V_{cr.div}\}$, определяемые подстановкой первого и третьего корней уравнения $A_3 = 0$ в формулу (2.15), разграничивают области \mathfrak{T}_0 и \mathfrak{T}_1 . При скоростях потока газа $V \ge V_{cr.div}$ происходит «мягкий» переход через точку $\lambda_0 = 0$ в правую часть комплексной плоскости собственных значений λ_k , вызывающий плавное изменение характера возмущённого движения системы от устойчивости к эйлеровой дивергенции панели. Это приводит к возникновению дополнительных напряжений, при-

водящих к изменению плоской формы равновесия: пластинка «выпучивается» с ограниченной скоростью «выпучивания».

Критические скорости неэйлеровой дивергенции $\{V_{1,2}\}$ разграничивают области \mathfrak{T}_1 и \mathfrak{T}_2 . При скоростях потока газа $V \ge V_{1,2}$ происходит «мягкий» переход из области \mathfrak{T}_1 в область \mathfrak{T}_2 . Критические скорости $V_{1,2}$ определяются подстановкой второго корня уравнения $A_3 = 0$ при условии $k_n A_1 + A_2 < 0$ и $\Delta > 0$ в формулу (2.15).

На границе $\Delta = 0$ области устойчивости \mathfrak{T}_0 при условии $k_n A_1 + A_2 > 0$, $A_3 > 0$, а также, на границе $\Delta = 0$ области \mathfrak{T}_2 при условии $k_n A_1 + A_2 < 0$, $A_3 > 0$, система при скоростях потока газа $V \ge V_{cr,fl}$ теряет устойчивость в виде колебательной неустойчивости: имеет место панельный флаттер. При этом, система переходит в состояние колебательной неусточивости из состояния равновесия или из состояния неэйлеровой дивергенции соответственно. Критические скорости панельного флаттера $\{V_{cr,fl.}\}$, определяемые подстановкой первого корня уравнения $\Delta = 0$ в формулу (2.15), разграничивают области \mathfrak{T}_0 и \mathfrak{T}_3 при условии $k_n A_1 + A_2 > 0$ или области \mathfrak{T}_2 и \mathfrak{T}_3 при условии $k_n A_1 + A_2 < 0$. В обоих случаях при $V \ge V_{cr,fl.}$ происходит «мягкий» (плавный) переход к флаттерным колебаниям. Однако, в первом случае начинает совершать флаттерные колебания относительно равновесного состояния плоская по форме пластинка, а во втором случае – изогнутая пластинка – «выпученная».

Критические скорости $V_{cr.div.}$, $V_{1,2}$ и $V_{cr.fl.}$ определяются с достаточной точностью подстановкой искомых значений параметра $q \in (q_0, q(a_0M_{2\cos m}))$ в формулу (2.15).

5. Численные результаты. В данной работе с помощью методов графоаналитического и численного анализа строились семейства кривых $\{q(n,\gamma,\nu,\beta_x^2,\beta_y^2,k_n)\} \in \mathfrak{T}$ для $\gamma \in [0.33;1.96)$, параметризованных надлежащим образом.

Численные результаты наиболее представительных из этого семейства кривых, приведённые в таблицах 3 – 14, показали, что при фиксированных значениях остальных параметров системы критические скорости эйлеровой и неэйлеровой дивергенции, а также, флаттера являются монотонно возрастающими функциями от числа полуволн n: их наименьшему значению соответствует n = 1.

В этом случае, так же, как и в [16, 18], можно выделить три интервала параметра γ : $\gamma \in [0.33; 0.74)$, $\gamma \in [0.74; 1.3)$ и $\gamma \in [1.3; 1.96)$, в которых качественные характеристики возмущённого движения системы, примерно, одинаковы, в отличие от количественных характеристик, существенно зависящих от γ .

Для наглядной иллюстрации динамики возмущённого движения системы составим цепочки переходов из области $\mathfrak{I}_{l} \subset \mathfrak{I}$ в область $\mathfrak{I}_{k} \subset \mathfrak{I}$, применительно к интервалу сверхзвуковых скоростей (1.4), сопоставляя найдённые значения критических скоростей с данными таблицы 2, аналогично, как и в [14, 18, 19]. Ясно, что формы представления цепочек существенно зависят от относительной толщины $2ha^{-1}$ и материала пластинок. Цепочки переходов в случае стальных пластинок относительной толщины $(2ha^{-1}) \in [0.006, 0.015]$, когда $\gamma \in [0.33; 1.96)$, в частности, для $\gamma = 0.5; 0.8; 1.0$ и $\gamma \ge 1.3$ будут вида:

$$\begin{split} \gamma &= 0.5 \\ &\left(\mathfrak{F}_{0}\right) \stackrel{V_{crdw}^{(1)}}{\longrightarrow} \mathfrak{F}_{1} \stackrel{V_{0}}{\longrightarrow} \mathfrak{F}_{0} \stackrel{V_{crdw}^{2}}{\longrightarrow} \mathfrak{F}_{1}, \quad k_{1} \in \left(0, 0.37\right); \\ &\left(\mathfrak{F}_{0}\right) \stackrel{V_{crdw}^{(1)}}{\longrightarrow} \mathfrak{F}_{1} \stackrel{V_{0}}{\longrightarrow} \mathfrak{F}_{0} \stackrel{V_{crd}}{\longrightarrow} \mathfrak{F}_{3} \stackrel{V_{0}^{*}}{\longrightarrow} \mathfrak{F}_{0} \stackrel{V_{crdw}^{(2)}}{\longrightarrow} \mathfrak{F}_{1}, \\ &k_{1} \in \left[0.37, 1.16\right); \\ &\left(\mathfrak{F}_{0}\right) \stackrel{V_{crdw}^{(1)}}{\longrightarrow} \mathfrak{F}_{1} \stackrel{V_{1.2}}{\longrightarrow} \mathfrak{F}_{2} \stackrel{V_{crf}}{\longrightarrow} \mathfrak{F}_{3} \stackrel{V_{0}^{*}}{\longrightarrow} \mathfrak{F}_{0} \stackrel{V_{crdw}^{(2)}}{\longrightarrow} \mathfrak{F}_{1}, \\ &k_{1} \geq \left[1.16; 10\right]; \\ &\gamma = 0.8 \\ &\mathfrak{F}_{0} \stackrel{V_{crdw}^{(1)}}{\longrightarrow} \mathfrak{F}_{1} \stackrel{V_{0}}{\longrightarrow} \mathfrak{F}_{0} \stackrel{V_{crdw}^{2}}{\longrightarrow} \mathfrak{F}_{1}, \\ &\beta_{x}^{2} = 0 \ \mathtt{m} \ \mathfrak{F}_{0} \stackrel{V_{crdw}^{(1)}}{\longrightarrow} \mathfrak{F}_{1}, \\ &\beta_{x}^{2} > 0; \\ &\gamma = 1 \\ &\mathfrak{F}_{0} \stackrel{V_{crdw}^{(1)}}{\longrightarrow} \mathfrak{F}_{1} \ \mathtt{npu} \ \mathtt{Bcex} \ \beta_{x}^{2} \geq 0; \\ &\gamma \in \left[1.3; 1.96\right) \\ &\mathfrak{F}_{0} \stackrel{V_{crdw}^{(1)}}{\longrightarrow} \mathfrak{F}_{dv} \subset \mathfrak{F}_{1}, \\ &\gamma \in \left[\gamma_{*}; 1.96\right); \\ &\mathfrak{F}_{1} = \mathfrak{F}_{dv} \cup \mathfrak{F}_{loc.dv}, \\ &\mathfrak{F}_{loc.dv} \rightarrow \mathfrak{F}_{loc.dv} \subset \mathfrak{F}_{1}, \\ &\gamma \in \left[\gamma_{*}; 1.96\right); \\ &\mathfrak{F}_{1} = \mathfrak{F}_{dv} \cup \mathfrak{F}_{loc.dv}, \\ &\mathfrak{F}_{loc.dv} \rightarrow \mathfrak{F}_{loc.dv} = \mathfrak{F}_{loc.dv} =$$

при всех допустимых значениях остальных параметров. Значение $\gamma_* = \gamma \left(\left(\beta_x^2 \right)_* \right)$ (табл. 3) разграничивает подобласти области статической неустойчивости: дивергенции панели $(\mathfrak{T}_{div.})$ и локализованной дивергенции $(\mathfrak{T}_{loc.div.})$.

Здесь, в соответствии с обозначением (3.10), $k_1 = \chi_1 \cdot \delta_1^{-1} = I_c \pi^2 \gamma^2 \cdot (m_c a^2)^{-1}$. Таблица 3.

γ_*	1.3	1.4	1.6	1.8	1.96
$\left(\beta_x^2\right)_*$ при $\nu = 0.3$	2.2	2.1	2.0	1.8	0

Заметим, что качественные характеристики поведения возмущённого движения системы (1.1) – (1.5) при всех значениях $\gamma \in [0.33, 1.96)$ такие же, как и в [16].

Иными словами, силы N_{y} , направленные перпендикулярно скорости потока, оказывают исчезающе малое влияние на разбиение пространства параметров системы, в отличие от сил N_{x} , направленных по потоку газа, аналогично случаю, рассмотренному в [18].

5.1. В интервале γ ∈ [0.33;0.74) для стальных пластинок относительной толщины 2*ha*⁻¹ ∈ [0.006;0.01] невозмущённое состояние равновесия системы, будучи неустойчивым при малых $\beta_x^2 < \left(\beta_x^2\right)_{\min} = \left(\beta_x^2\right)_{\min} \left(\gamma, 2ha^{-1}\right)$ вблизи $a_0\sqrt{2}$, становится устойчивым, когда $\beta_x^2 \ge \left(\beta_x^2\right)_{\min}$ (табл.4), в отличие от пластинок относительной толщины $2ha^{-1} \in (0.01; 0.015]$, для которых оно устойчиво при всех $\beta_x^2 \ge 0$ и при всех допустимых значениях остальных параметров системы.

- Tuosiniqu I		$P_x J_{\min} = r$	e[0.55,017	·) ii 2///	
γ $2ha^{-1}$	0.4	0.5	0.6	0.7	0.73
0.006	4.2	2.3	1.28	0.49	0.011
0.010	0.52	0.01	0	0	0

Таблица 4. Значения (β_x^2) при $\gamma \in [0.33, 0.74)$ и $2ha^{-1} \in [0.006; 0.01]$.

При малых $k_1 \in (0, 0.37)$ невозмущённое состояние равновесия системы теряет устойчивость в виде эйлеровой дивергенции панели при скоростях потока $V \ge V_{cr.div.}^{(1)}$ и $V \ge V_{cr.div.}^{(2)}$ (табл. 5, 7): неэйлерова дивергенция и панельный флаттер отсутствуют.

При умеренных $k_1 \in [0.37, 1.16)$ и больших значениях $k_1 \ge [1.16; 10]$ – теряет как статическую устойчивость в виде эйлеровой и неэйлеровой дивергенции панели при скоростях потока $V \ge V_{cr.div.}^{(1)}$ (табл. 5), $V \ge V_{1,2}$) (табл. 6) и $V \ge V_{cr.div.}^{(2)}$ (табл. 7), так и динамическую устойчивость при скоростях $V \ge V_{cr.fl.}$ (табл. 8, 9) в виде панельного флаттера, становясь устойчивым при $V \ge V_0$ и $V \ge V_0^*$ (табл. 6, 10, 11) соответственно. При этом, когда $k_1 \in [0.37; 1.16)$, имеет место переход от покоя к флаттерным колебаниям $\left(\mathfrak{I}_{0} \xrightarrow{V_{cril}} \mathfrak{I}_{3}\right)$ – начинает совершать автоколебания плоская по форме пластинка, а когда $k_1 \ge [1.16;10] - (\Im_2 \xrightarrow{V_{crfl}} \Im_3) -$ начинает совершать автоколебания «выпученная» – изогнутая по форме пластинка. Справедливо равенство:

$$V_0$$
 при $k_1 \in [0.37, 1.16] = V_{1,2}$ при $k_1 \in [1.16; 10]$. (5.5)

Приведённые скорости $V_0 D^{-1}(a_0 \rho_0 a^3)$, $V_{1,2} D^{-1}(a_0 \rho_0 a^3)$ и $V_0^* D^{-1}(a_0 \rho_0 a^3)$ в цепочках переходов (5.1) исчисляются подстановкой второго корня уравнений $A_3 = 0$ и $\Delta = 0$ соответственно в формулу (2.15).

В отличие от критических скоростей V_0 , $V_{1,2}$ и $V_{cr.fl.}$, скорости $V_{cr.div.}^{(1)}$, $V_{cr.div.}^{(2)}$, и V_0^* меньше в пластинах с большим значением коэффициента Пуассона V, примерно, в 1.74 раза, 1.2 раза и 1.07–1.25 раз. А, скорости V_0 , $V_{1,2}$ и $V_{cr.fl.}$ – больше, примерно, в 1.2 раза и в 1.1 – 1.25 раз соответственно.

				(· · /	
β_{y}^{2}	0	0.3	0.5	1.0	1,5	2.0
0	11.706	15.416	18.264	25.214	32.680	40.444
0.5	9.442	13.126	15.646	22.365	29.530	36.986
1.0	7.176	10.745	13.183	19.625	26.496	33.750
1.5	_	_	10.705	16.962	23.488	30.557

Таблица 5. Значения $V_{crdiv}^{(1)} D^{-1} \left(a_0 \rho_0 a^3 \right)$ при $\gamma = 0.5, \nu = 0.3$

Таблица 6. Значения $V_0 D^{-1} (a_0 \rho_0 a^3)$ и $V_{1,2} D^{-1} (a_0 \rho_0 a^3)$ при $\gamma = 0.5, \nu = 0.3.$

β_{y}^{2}	β_x^2	0	0.3	0.5	1.0	1,5	2.0
	0	120.387	130.740	137.691	155.232	173.217	191.632
	0.5	120.502	131.084	138.210	156.234	174.640	193.505
	1.0	120.581	131.389	138.685	157.148	175.954	195.279
	1.5	_	-	139.119	157.932	177.158	196.909

					,	
β_x^2 β_y^2	0	0.3	0.5	1.0	1,5	2.0
0	458.481	468.929	475.758	492.462	508.795	524.647
0.5	458.788	469.052	475.798	492.319	508.423	523.900
1.0	459.034	469.168	475.851	492.147	508.175	523.153
1.5	_	_	475.816	492.005	508.101	522.440

Таблица 7. Значения $V_{crdiv}^{(2)} D^{-1} (a_0 \rho_0 a^3)$ при $\gamma = 0.5, \nu = 0.3.$

β_{y}^{2}	0	0.3	0.5	1.0	1.5	2.0
0	140.253	161.284	179.460	_		_
0.5	136.544	155.889	171.913	_		_
1.0	133.201	151.609	166.064	_		_
1.5	_	_	161.338	_	_	_

Таблица 8. Значения $V_{cr.fl.}D^{-1}(a_0\rho_0a^3)$ при $\gamma = 0.5, \nu = 0.3, k_1 = 0.5; 0.8; 1.$

β_{y}^{2}	0	0.3	0.5	1.0	1.5	2.0
0	123.946	138.484	148.564	174.653	215.415	-
0.5	123.659	135.990	145.963	171.794	207.712	-
1.0	121.338	135.456	143.416	168.985	201.488	_
1.5	_	_	142.851	168.274	197.121	_

β_x^2 β_y^2	0	0.3	0.5	1.0	1.5	2.0
0	121.884	133.822	142.208	166.270	181.583	234.199
0.5	121.057	132.917	141.248	163.504	178.608	225.297
1.0	120.765	132.418	140.502	162.282	176.305	220.202
1.5	_	_	139.962	162.165	174.865	216.538

 β_x^2 0 0.3 0.5 2.0 1.01.5 β_y^2 147.366 141.620 162.124 177.598 193.831 133.079 0 0.5 135.968 144.553 150.327 165.358 180.899 197.415 1.0 138.836 147.466 153.189 168.573 184.181 200.981

1.5	_	_	166.192	171.728	187.660	204.530
β_x^2 β_y^2	0	0.3	0.5	1.0	1.5	2.0
0	144.376	152.560	158.255	172.546	187.062	202.257
0.5	147.851	156.291	162.025	176.618	191.574	207.045
1.0	151.111	159.804	165.574	181.096	195.810	211.641
1.5	_	_	169.108	184.293	199.945	216.090

Таблица 9. Значения $V_{cr.fl.}D^{-1}(a_0\rho_0a^3)$ при $\gamma = 0.5, \nu = 0.3$ и $k_1 = 5;10.$

β_{y}^{2}	0	0.3	0.5	1.0	1.5	2.0
0	245.563	239.409	230.207	_		_
0.5	251.527	247.102	241.005	_		_
1.0	257.032	253.884	249.315	_		_
1.5	_	_	256.722	_	_	_

Таблица 10. Значения $V_0^* D^{-1} (a_0 \rho_0 a^3)$ при $\gamma = 0.5, \nu = 0.3$ и $k_1 = 0.5; 0.8; 1.$

β_{y}^{2}	0	0.3	0.5	1.0	1.5	2.0
0	270.215	268.617	265.031	260.274	259.682	-
0.5	276.053	278.041	280.938	280.454	279.460	-
1.0	280.204	283.926	284.411	286.661	281.307	-
1.5	_	_	290.325	292.632	288.780	_

β_x^2 β_y^2	0	0.3	0.5	1.0	1.5	2.0
0	275.042	280.662	283.318	286.497	286.456	271.900
0.5	280.901	285.349	288.275	292.987	293.900	285.581
1.0	284.820	290.282	293.235	297.129	300.563	295.394
1.5	_	_	297.951	305.070	307.815	304.001

β_x^2 β_y^2	0	0.3	0.5	1.0	1.5	2.0			
0	251.654	261.606	268.062	283.539	298.395	312.561			
0.5	256.231	266.874	273.179	289.283	304.744	319.282			
1.0	260.809	270.874	278.093	294.538	310.597	325.737			
1.5	_	_	282.524	300.044	315.032	332.211			

Таблица 11. Значения $V_0^* D^{-1} (a_0 \rho_0 a^3)$ при $\gamma = 0.5, \nu = 0.3$ и $k_1 = 5;10.$

β_x^2 β_y^2	0	0.3	0.5	1.0	1.5	2.0
0	233.756	243.919	250.415	266.756	282.610	297.842
0.5	238.280	248.503	255.274	272.197	288.549	304.544
1.0	242.341	253.087	260.133	277.641	294.594	311.205
1.5	_	-	264.756	282.845	300.397	317.368

Критическая скорость $V_{cr.fl.}$ является возрастяющей функцией функцией от k_1 в интервале $k_1 \in [1.16;10]$. $V_{cr.fl.}$ с ростом k_1 возрастает на 5 – 10% : вибрации повышают устойчивость системы «пластинка–поток» [9].

Отметим, что обтекание приводит к «падению» критического значения коэффициента $(\beta_{\nu}^{2})_{cr} = (\beta_{\nu}^{2})_{cr} (n, \gamma, \nu)$ (табл. 1), примерно, в 1.6 – 1.8 раз.

Из сопоставления данных таблиц 5 – 11 с данными таблицы 2, следует, что менее устойчивым является нрвозмущённое состояние равновесия систем с пластинками относительной толщины $2ha^{-1} < 0.009$, как и в [18].

В интервале $\gamma \in [0.74;1.96)$ невозмущённое состояние равновесия системы устойчиво вблизи $a_0\sqrt{2}$ для всех $2ha^{-1} \in [0.006;0.015]$. И, поскольку, начиная с значения $\gamma = 0.74$, справедливы неравенства $k_nA_1 + A_2 > 0$ и $\Delta > 0$ при всех допустимых значениях остальных параметров системы «пластинка–поток, то её невозмущённое состояние равновесия в интервале $\gamma \in [0.74;1.96)$ теряет только статическую устойчивость в виде эйлеровой дивергенции панели либо в виде локализованной дивергенции: неэйлерова дивергенция и панельный флаттер отсутствуют [16, 17].

5.2. При значениях $\gamma \in [0.74; 0.8)$ дисперсионное уравнение $A_3 = 0$ при всех $\beta_x^2 \ge 0$ и $\beta_y^2 \ge 0$ имеет три корня: имеет место дивергенция панели при скоростях потока $V \ge V_{cr.div}^{(1)}$ и $V \ge V_{cr.div}^{(2)}$. А, при значениях $\gamma \in [0.8; 1.3)$ – один корень: теряет устойчивость при скоростях потока $V \ge V_{cr.div}^{(1)}$.

				(,	
β_x^2 β_y^2	0	0.3	0.5	1.0	1.5	2.0
0	54.089	69.200	79.651	107.235	135.940	165.653
0.3	42.224	55.367	64.970	89.285	114.680	141.297
0.5	34.407	47.009	65.571	78.536	102.561	127.640
1.0	18.526	28.711	36.034	54.917	75.807	97.495

Таблица 12. Значения $V_{cr.div}D^{-1}(a_0\rho_0a^3)$ при $\gamma = 0.8, \nu = 0.3.$

β_x^2 β_y^2	0	0.3	0.5	0.8	1.0	1.5
	523.999	577.560	611.225	665.171	701.241	792.021
0	128.462	166.066	191.409	229.894	256.653	321.715
	73.683	99.742	117.919	145.231	163.249	211.243
	518.252	566.368	599.753	649.203	683.533	768.200
0.1	114.718	149.243	172.153	208.017	231.714	291.275
	66.569	91.674	111.079	134.543	152.683	197.168
	506.234	546.975	574.944	616.614	646.166	713.460
0.3	91.698	120.178	139.237	169.124	189.197	240'611
	52.256	76.052	91.426	115.048	131.134	172.280
	494.768	526.875	547.821	577.260	596.305	636.171
0.5	71.408	95.974	111.679	137.452	155.121	199.850
	41.268	61.781	75.525	96.764	110.708	148.219
	483.845	506.159	515.670	513.727	173.308	222.788
0.7	53.280	73.987	88.217	112.310	125.874	164.886
	29.832	47.423	58.806	79.165	91.858	—

Таблица 13. Значения $V_{cr.div.}D^{-1}(a_0\rho_0a^3)$ при $\gamma = 1, \nu = 0.125; 0.3; 0,5.$

Из данных таблиц 12 и 13 следует, что приведённое значение критической скорости дивергенции $V_{cr.div.}D^{-1}(a_0\rho_0a^3)$ является монотонно возрастающей функцией от β_x^2 : возрастает в 3–5.3 раза и в 2.5–3 раза соответственно; убывающая функция от β_y^2 : убывает в 1.7–3 раза и 2–2.4 раза соответственно; меньше в пластинках с большим значением коэффициента Пуассона V, соответственно, в 2.3 раза и 2–8.5 раз.

В этом случае обтекание приводит к «падению» критического значения коэффициента $(\beta_v^2)_{cr}$ (табл. 1), примерно, в 2 раза.

5.3. В интервале $\gamma \in [1.3, 1.96)$ невозмущённое состояние равновесия системы при значениях $\beta_x^2 < (\beta_x^2)_*$ (табл. 3) теряет устойчивость в виде эйлеровой дивергенции панели $(\mathfrak{T}_{div.})$, а при значениях $\beta_x^2 < (\beta_x^2)_* - \mathfrak{B}$ виде локализованной дивергенции $(\mathfrak{T}_{loc.div.})$. Гиперповерхность $\gamma_* = \gamma ((\beta_x^2)^*, \beta_y^2, \mathbf{v})$ разграничивает область \mathfrak{T}_1 на подобласти: $\mathfrak{T}_1 = \mathfrak{T}_{div.} \cup \mathfrak{T}_{locdiv}$. Функция $\gamma_* = \gamma ((\beta_x^2)^*, \beta_y^2, \mathbf{v})$ зависит от параметров β_y^2 и \mathbf{v} исчезающе мало.

Из данных таблицы 3 очевидно, что с ростом β_x^2 граница $\gamma_* = \gamma((\beta_x^2)_*)$ смещается в сторону меньших значений параметра γ , приводя к сужению подобласти $\mathfrak{T}_{div.}$

и расширению $\mathfrak{T}_{div.}$ – к повышению устойчивости системы, по сравнению с ненагруженной панелью [13].

Начиная со значения $\gamma = 1.96$, при скоростях потока $V \ge V_{locdiv}$. и при всех $\beta_x^2 < 2$, $\beta_y^2 \le 0.7$ и ν невозмущённое состояние равновесия системы теряет устойчивость только в виде локализованной дивергенции – дивергенции, локализованной в окрестности свободного края x = 0 пластинки, подобно полубесконечной пластине–полосе ($\gamma = \infty$)[13, 16].

Из данных таблиц 5 – 13 и из представлений (5.1) – (5.3) следует, что менее устойчивы системы с большим коэффициентом Пуассона V и с меньшим значением относительной толщины $2ha^{-1}$. При больших β_x^2 и малых β_y^2 с ростом γ устойчивость системы повышается.

При определённом соотношении растягивающих N_x и сжимающих N_y сил, имеет место эффект их «взаимной компенсации», наиболее ярко проявленный в случае пластинок, когда $\gamma \ge 0.74$ (табл. 14).

Таблица 14.

γ	0.33	0.5	0.8	1.0	≥1.96
$\varphi_c = \beta_{xc}^2 \cdot \left(\beta_{yc}^2\right)^{-1}$	0.143	0.370	0.625	0.833	1–2

При $\phi < \phi_c$ существенное влияние на устойчивость невозмущённого состояния равновесия системы оказывают сжимающие силы N_y : с ростом N_y устойчивость системы понижается; а при $\phi \ge \phi_c$ – силы растяжения N_x , с ростом которых устойчивость системы повышается.

Как следует из данных таблицы 14, в случае достаточно широких пластин $(\gamma \ge 1.96)$ отношение $\varphi_c = \beta_{xc}^2 \cdot (\beta_{yc}^2)^{-1} \in [1; 2]$. Соответственно, при равных значениях коэффициентов напряжений $\beta_x^2 = \beta_y^2 \in [0; 0.5)$ и при $1 < \varphi_c \le 2$, когда $\beta_x^2 = \beta_y^2 \ge 0.5$, критические скорости $V_{loc.div.}$ в точности равны критическим скоростям локализованной дивергенции панели с ненагруженными краями $(\beta_x^2 = \beta_y^2 = 0)$ [13].

С ростом параметра γ , влияние растягивающих сил N_x на устойчивость – на критические скорости дивергенции панели становится более ощутимым, в сравнении со сжимающими силами N_y (табл. 5, 12, 13). Очевидно, что при $\gamma \in [0.74, 1.96)$ первоначальное статическое нагружение панели по двум направлениям в виде растягивающих N_x и сжимающих N_y сил, направленных, соответственно, по потоку и перпендикулярно скорости потока газа, приводит к существенному

повышению устойчивости системы, в сравнении с системой, с первоначально ненагруженной панелью [13].

Заметим, что качественные характеристики поведения возмущённого движения системы (1.1) – (1.5) в интервале $\gamma \in [0.74; 1.96)$ такие же, как и в [16]: здесь, как и в [18], силы N_y , направленные перпендикулярно скорости потока, не оказывают существенного влияния на качественные характеристики возмущённого движения системы, в отличие от сил N_x , направленных по потоку газа.

6. Основные результаты и заключение. В статье получено аналитическое решение задачи динамической устойчивости невозмущённого состояния равновесия упругой прямоугольной пластинки с одним свободным краем, обтекаемой сверхзвуковым потоком газа, первоначально нагруженной по двум направлениям: растягивающими силами по потоку газа и сжимающими, направленными перпендикулярно к потоку, в предположении, что сверхзвуковой поток газа набегает на её свободный край, при наличии на нём сосредоточенных инерционных масс и моментов поворота.

Произведено разбиение пространства «существенных» параметров системы «пластинка–поток» на область устойчивости и на области неустойчивости: эйлеровой и неэйлеровой дивергенции панели, панельного флаттера и локализованной дивергенции. Показано, что на структуру разбиения существенное влияние оказывают силы, направленные по потоку газа.

Получена формула зависимости скорости потока газа от «существенных» параметров системы «пластинка–поток», позволяющая найти критические скорости дивергенции панели и панельного флаттера.

Исследована граница области устойчивости, а также граница между областями неустойчивости. Найдены «безопасные» и «опасные» границы области устойчивости.

Установлено, что при малых значениях отношения интенсивностей приложенных инерционных моментов поворота и масс потеря устойчивости наступает при меньшей скорости потока газа, но это не эйлерова потеря устойчивости, а переход системы от покоя к движению – к автоколебаниям. А при умеренных и больших значениях отношения интенсивностей – имеем переход из области неэйлеровой дивергенции в область флаттерных колебаний, при котором начинает колебаться «выпученная» – изогнутая по форме пластинка. При этом критическая скорость флаттера является монотонно возрастающей функцией от интенсивности приложенных моментов поворота: вибрации существенно повышают устойчивость системы.

Найдено соотношение первоначально приложенных сил растяжения и сжимающих сил, при котором происходит «взаимная компенсация» их влияния на устойчивость системы.

В целом, можно утверждать, что в отличие от достаточно удлинённых пластинок, в случае пластинок умеренных размеров влияние первоначальных сил растяжения, приложенных наряду с сжимающими силами, на устойчивость невозмущённого состояния равновесия системы значимо: растягивающие силы приводят к существенному повышению устойчивости, по сравнению с ненагруженной панелью и с панелью, нагруженной сжимающими силами и силами растяжения, направленными по потоку газа и в перпендикулярном направлении соответственно. Применённый метод аналитического исследования позволяет не только установить условия возникновения панельного флаттера, но и даёт возможность предсказать последующее развитие колебаний.

ЛИТЕРАТУРА

- 1. Вольмир А.С. Устойчивость упругих систем. М.: Физматгиз. 1963. 880 с.
- Болотин В.В. Неконсервативные задачи теории упругой устойчивости. М.: Наука. 1961. 329 с.
- Алгазин С.Д., Кийко И.А. Флаттер пластин и оболочек. М.: Наука. 2006. 247 с.
- 4. Новичков Ю.Н. Флаттер пластин и оболочек // Итоги науки и технологии. Механика деформируемых твердых тел.– М: Наука. 1978. Т. 11. С. 67–122.
- Прочность. Устойчивость. Колебания. Справочник в 3 т. // Под ред. И.А.Биргера и Я.Г. Пановко. – М.: Машиностроение. 1968.
- 6. Ильюшин А.А. Закон плоских сечений при больших сверхзвуковых скоростях // ПММ. 1956. Т. 20. № 6. С. 733–755.
- 7. Ashley G.H., Zartarian G. Piston theory a new aerodynamic tool for the aeroelastician//J. Aeronaut. Sci. 1956. Vol. 23. N 12. P. 1109–1118.
- 8. Ржаницын А.Р. Консольный упругий стержень, нагруженный следящей силой // Изв. НАН Армении, Механика. 1985. Т.38. № 5. С. 33–44.
- 9. Челомей В.Н. О возможности повышения устойчивости упругих систем при помощи вибраций // ДАН СССР. 1956. Т.110 (3).
- 10. Надаи А. Пластичность и разрушение твердых тел.-М.: ИЛ. 1954. 647 с.
- 11. Ляпунов А.М. Общая задача об устойчивости движения. М.–Л.: Гостехиздат. 1950. 471 с.
- 12. Баутин Н.Н. Поведение динамических систем вблизи границ области устойчивости. – М.: Наука. 1984. 176 с.
- 13. Белубекян М.В., Мартиросян С.Р. О флаттере упругой прямоугольной пластинки, обтекаемой сверхзвуковым потоком газа, набегающим на её свободный край // Изв. НАН Армении, Механика. 2014, т. 67, № 2, с. 12–42.
- M.V. Belubekyan, S.R. Martirosyan. Supersonic flutter of a compressed elongated plate in the presence of concetrated inertial masses and moments // Proceed. of NAS of Armenia. Mechanics. 2020. V. 73(4). P. 58–74.
- 15. Белубекян М.В., Мартиросян С.Р. Сверхзвуковой флаттер панели со свободным краем, сжатой в направлении, перпендикулярном к скорости потока газа, при наличии сосредоточенных инерционных масс и моментов. // Изв. НАН Армении, Механика. 2021. Т.74 (2), с. 33–59.
- 16. Мартиросян С.Р. Сверхзвуковой флаттер прямоугольной пластинки с одним свободным краем, растянутой по потоку газа, при наличии сосредоточенных инерционных масс и моментов // Изв. НАН Армении, Механика. 2022. Т.75 (4), с.52 – 73. DOI: 10.54503/0002-3051-2022.75.4-52.

- Martirosyan S.R. Supersonic divergence of a panel with a free edge initially loaded in two directions tensile and compressive forces // 2022. Journal of Physics: Conference Series 2231 012030. IP address 93.187.163.146. DOI: 10.1088/1742– 6596/2231/1/012030.
- 18. Мартиросян С.Р. Сверхзвуковой флаттер прямоугольной пластинки умеренных размеров со свободным краем, первоначально нагруженной по двум направлениям: сжатой по потоку газа и растянутой в перпендикулярном направлении // Изв. НАН Армении, Механика. 2024. Т.77 (2), с. 25–46. DOI:10.54503/0002-3051-2024.77.2- 25.
- 19. Мартиросян С.Р. Сверхзвуковой флаттер удлинённой панели со свободным краем, первоначально нагруженной по двум направлениям: растянутой по потоку газа и сжатой в перпендикулярном направлении // Изв. НАН Армении, Механика. 2024. Т.77 (4), с. 27-47. DOI: 10.54503/0002-3051-2024.77.4-27.

Сведения об авторе:

Мартиросян Стелла Размиковна – кандидат физ.-мат. наук, старший научный сотрудник Института механики НАН Армении, Ереван, Армения (+374 10) 524890 E-mail: mechinsstella@mail.ru

Поступила в редакцию 24.02.2025