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Abstract. In CdSe nanoplatelet, interband transitions in the presence of an axial electric field 

are considered. It is shown that at certain nanoplatelet thicknesses, the combined effect of 

polarization and confining potentials forms an effective parabolic potential in the axial 

direction. As a consequence, the influence of the electric field in this direction can be described 

within the framework of the one-dimensional mixed oscillator model. Analytical formulas for 

the energy spectrum and wave function are obtained, threshold frequencies are determined for 

different monolayer thicknesses. 
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1. Introduction  

Semiconductor nanoplatelets (NPLs) are quasi-two-dimensional hybrid structures occupying 

an intermediate position between quantum dots and quantum wells [1–3]. From a geometric point 

of view, they are rectangular parallelepipeds, one side of which is significantly shorter than the 

other two. Despite the large dimensions of the two sides of the nanoplatelet, it is nevertheless 

necessary to take into account the dimensional quantization in these directions, as evidenced by 

the experimentally discovered dimensional quantization of the motion of the exciton center of 

mass in CdSe nanoplatelets [4]. The effect of size quantization in the direction of the small length 

of the nanoplate (the Oz axis) is significantly greater than in the plane perpendicular to this axis. 

Consequently, the energy spectrum of electrons and holes in the NPL has a pronounced subband 

character. Such a character of the energy band structure of the NPL leads to an extremely rich 

picture of optical transitions in such systems, both intraband and intersubband, and interband (see, 

for example, [5–10]). In work [5], the effects of the influence of electron-hole interaction on the 

character of interband and intraband absorption in CdSe NPL were studied taking into account 

the effects of polarization at the NPL-environment transition boundary in the axial direction. The 

influence of the axial electric field on the exciton absorption in CdSe NPL was discussed in [6] 

taking into account the presence of imaginary charges in the axial direction within the Takagahara 

model [11]. It should be noted that the axially symmetric potential restricting the particle motion 

in the Oz direction is formed from the confining potential of the size quantization 𝑉||
conf(z) itself, 

as well as from the potentials of imaginary charges 𝑉self(z): 

 

Vtotal(z)  = V||
conf(z) +  Vself(z)                                             (1) 

 

As a result, the particle performs quantum motion in the axial direction in the effective field 

formed from the above potentials. In the case where V||
conf(z) is a rectangular well of finite depth, 
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and 𝑉self(z) is described by the Takagahara model [5,6], Vtotal(z) has the profile shown in Fig. 1. 

 

 
Figure 1. Dependence of the potential profile Vtotal(z) on ze. 

 

The axial Schrödinger equation with Vtotal(z) is not analytically solvable in the general case. 

However, by selecting the parameters of the NPL, the Vtotal(z) profile can be approximated to a 

parabolic one, then for relatively low levels of electrons and holes in the NPL, we can assume: 

 

Vtotal(z) =
𝜇𝜔2z2

2
 ,                                                                 (2) 

 

where 𝜔 − is the frequency of the parabolic potential, determined by comparing the exact and 

approximate curves Vtotal(z). If we consider in the xOy plane, the confining potential V⊥
conf(x, y) 

within the framework of the model of infinitely deep rectangular walls: 

 

V⊥
conf(x, y) = {

0 , M ∈  NP𝐿 
∞ , M ∉  NPL 

,                                                        (3) 

 

then the single-particle Schrödinger equation will be exactly solvable, including in the presence of 

a uniform axial electric field ℰ⃗. The latter circumstance allows us to conduct a detailed analytical 

study of interband optical electroabsorption in CdSe NPL. This is the problem that this paper is 

devoted to.  

2. Wave functions and energy spectrum 

Consider a particle in a CdSe NPL, in the presence of a uniform electric field ℰ⃗ directed along 

the Oz axis. Taking into account the arguments expressed in the introduction regarding the 

confinement potentials in the Oz and xOy directions, as well as the influence of the polarization 

potential in the axial direction for a single-particle Hamiltonian, we can write:  
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Ĥ = −
ℏ2

2𝜇⊥
(

𝜕2

𝜕x2
+

𝜕2

𝜕y2
) −

ℏ2

2𝜇||
(

𝜕2

𝜕z2
) + V⊥

conf(x, y) + Vtotal(z) − eℰz,                   (4) 

 

where 𝜇⊥(||) is the effective mass of a particle (electron or hole) in the xOy plane (along the Oz 

axis). The Schrödinger equation Ĥ𝜓 = E𝜓 is exactly solvable and the wave function 𝜓(x, y, z) 

can be represented as a product of two functions 𝜓⊥(x, y) and 𝜓||(z): 

 

𝜓(x, y, z) = 𝜓⊥(x, y) × 𝜓||(z).                                              (5) 

 

These functions satisfy the following equations: 

 

−
ℏ2

2𝜇⊥
(

𝜕2

𝜕x2 +
𝜕2

𝜕y2) 𝜓⊥ + V⊥
conf(x, y)𝜓⊥ = E⊥𝜓⊥,                               (6) 

and  

−
ℏ2

2𝜇||
(

𝜕2

𝜕z2) 𝜓|| +
𝜇𝜔2z2

2
ψ|| − eℰz𝜓|| = E||𝜓||.                                (7) 

 

The solution to equation (6) is well known and has the following form [12]: 

 

𝜓⊥(x, y) = √
2

L1
√

2

L2
𝑠𝑖𝑛(

𝜋n1

𝐿1
x + 𝛿𝑛1)𝑠𝑖𝑛(

𝜋n2

𝐿2
y + 𝛿n2) ,                           (8) 

E⊥ =
𝜋2ℏ2

2𝜇⊥
((

n1

L1
)

2

+ (
n2

L2
)

2
),                                                  (9) 

 

where n1(2) are the quantum numbers of the characterized energy levels in the Ox(Oy),  direction, 

𝛿n1(2) are the initial phases of the quantum states (𝛿𝑛1(2) = 0 for odd levels, and n1(2) =
𝜋

2
 for 

even levels). Equation (7) describes the states of a particle of a mixed oscillator in the axial 

direction. For a particle with charge e, the wave functions and energy spectrum have the following 

form: 

𝜓||(z) = Cn3
e

−

(z−
eℰ

𝜇||𝜔2)2

2a𝜔
2

Hn3
(

z−
eℰ

𝜇||𝜔2

a𝜔
),                                                     (10) 

E|| = ℏ𝜔 (n3 +
1

2
) −

e2ℰ2

2𝜇||𝜔
2 ,                                                           (11) 

where n3 is the oscillator quantum number, Hn3
 is the Hermite polynomial, a𝜔 = √

ℏ

𝜇𝜔
  is the 

oscillator length. We note right away that the Stark splitting is proportional to the square of the 

electric field strength. 

 

2. Interband electroabsorption  

 

Based on the results obtained above, it is possible to calculate the interband absorption 

coefficient taking into account the influence of the external electric field. The specified 

coefficient is determined according to the formula [13]: 

 

𝐾(𝛺) = A ∑ ∑ |∫ 𝜓n1
e,n2

e,n3
e𝜓n1

h,n2
h,n3

hdV|
2

n1
h,n2

h,n3
h 𝛿(ℏ𝛺 − Eg − En1

e,n2
e,n3

e − En1
h,n2

h,n3
h)n1

e,n2
e,n3

e ,  (12)  
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where Eg is the band gap, En1
e,n2

e,n3
e is the electron energy, En1

h,n2
h,n3

h  is the hole energy, A is 

the coefficient proportional to the matrix element constructed on the Bloch amplitudes of the 

valence band and conduction band, 𝛺 is the frequency of the incident radiation, under the 

influence of which these transitions occur, and the 𝛿 function ensures the fulfillment of the law 

of conservation of energy during transitions. 

 

Let us turn to the calculation of the integrals in (12). In the directions Ox and Oy we will have 

an integral of the following form: 

 

2

L
∫ 𝑠𝑖𝑛 (

𝜋ne

L
x + 𝛿ne) 𝑠𝑖𝑛 (

𝜋nh

L
x + 𝛿nh) dx = {

1, ne = nh

0, ne ≠ nh

L

2

−
L

2

 .                  (13) 

 

From equation (13) the following selection rules are obtained: 

 

n1 ≡ n1
e = n1

h

n2 ≡ n2
e = n2

h
} .                                                        (14) 

 

In the axial direction, the following integral is obtained: 

 

I = Cn3
eCn3

h ∫ e
−

(z−
eℰ

𝜇||𝜔e
2)2

2a𝜔e
2

Hn3
e (

z−
eℰ

𝜇||𝜔e
2

a𝜔e

)
∞

−∞
× e

−

(z+
eℰ

𝜇||𝜔h
2)2

2a𝜔h
2

Hn3
h (

z+
eℰ

𝜇||𝜔h
2

a𝜔h

) dz .       (15)  

 

The integral (15) is calculated numerically and its values are nonzero for different 

combinations of n3
e and n3

h. Thus, the imposition of the eclectic field in the axial direction 

removes the selection rules for interband transitions in the Oz direction. 

 

From the argument of the 𝛿 − function in (12) we find the threshold value 𝛺0 of the interband 

absorption frequency: 

 

ℏ𝛺0 = Eg +
𝜋2ℏ2

2𝜇⊥
(

1

L1
2 +

1

L2
2) +

ℏ

2
(𝜔e + 𝜔h) −

e2ℰ2

2
(

1

𝜇||
e𝜔e

2 +
1

𝜇||
h𝜔h

2
),               (16) 

 

where  
1

𝜇⊥
=

1

𝜇⊥
e

+
1

𝜇⊥
h
. 

 

3. Numerical Calculations  

 

In order to find the value 𝛺0 of the interband absorption frequency, we will use the data shown 

in table 1. These parameters were estimated from calculations obtained using the density 

functional theory method [14,15]. Numerical values of ℏ𝜔e, ℏ𝜔h for different NPL thicknesses are 

presented in the table 2. 
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n mze
, m0 mzh

, m0 Eg, eV 𝜇⊥, (m0)  

1.5 0.25 1.04 2.7 0.13 

2.5 0.19 0.98 2.45 0.108 

3.5 0.157 0.96 2.3 0.103 

4.5 0.144 0.92 2.15 0.09 

Table 1: 𝑚ze
, 𝑚zh

, 𝐸g,  μ⊥ parameters are shown for different NPL thicknesses (n). 

 

n ℏ𝜔e, eV ℏ𝜔h, eV 

1.5 3.82 1.79 

2.5 3.35 1.36 

3.5 2.78 1.05 

4.5 2.18 0.72 

Table 2: Numerical values of ℏ𝜔e, ℏ𝜔h are shown for different NPL thicknesses (n). 

 

Based on the abovementioned numerical values of ℏ𝜔e, ℏ𝜔h and from formula (16), it is 

possible to determine the numerical value of the threshold frequencies of absorption at different 

thicknesses of the nanoplatelet. Table 3 shows the values of the threshold frequencies of absorption 

at different thicknesses of the nanoplatelet. 

 

 n = 1.5 n = 2.5 n = 3.5 n = 4.5 

ℏ𝛺0, 𝑒𝑉 5.50502 4.80502 4.21503 3.60003 

Table 3: Numerical values of the threshold frequencies of absorption (ℏ𝛺0) at different thicknesses of 

nanoplatelet (n). 

 

From the given numerical values, it follows that with the growth of the number of monolayers 

the threshold frequency of the invitation decreases. This is a consequence of the weakening of 

the size quantization in the axial direction, as a result of which the interlevel distances decrease 

and the energy of the interband transitions also decreases. 
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