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Abstract. Within the framework of the adiabatic approximation, the electron's energy 

spectrum in a strongly oblate asymmetric ellipsoidal quantum dot, in the presence of an axial 

magnetic field, has been investigated. It has been shown that in the QD's section plane, for 

relatively low energy levels, the confining potential of the system can be described within the 

framework of a two-dimensional asymmetric oscillator. The electron's axial and planar 

energies have been defined, and the electron's energy dependencies on the geometrical 

parameters as well as the magnitude of the magnetic field have been studied.    
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1. Introduction 

Semiconductor structures with complex geometries are the subject of extensive investigation, 

as the presence of numerous geometrical parameters in the studied samples enables flexible control 

over the system’s energy levels [1]. Modern techniques for growing quantum dots (QDs) allow for 

the experimental realization of pyramidal, conical, lens-shaped, and ellipsoidal structures [2 −  7]. 

The complexity of QD geometry necessitates solving the Schrödinger equation under non-trivial 

boundary conditions. Even in the single-particle case, these equations typically require numerical 

methods for solution. However, obtaining analytical representations of Schrödinger equation 

solutions allows for a deeper analysis of various physical characteristics of the studied structures, 

including their optical, kinetic, and tunneling properties. Therefore, developing approximate 

analytical models for describing QDs remains a relevant and active area of research in modern 

quantum dot physics. Alongside methods such as the variational approach and perturbation theory, 

the adiabatic approximation offers an effective means of describing quantum systems. This method 

is based on representing the system’s Hamiltonian as the sum of Hamiltonians corresponding to 

the fast and slow subsystems [8]. 

Experimental studies of the optical properties of strongly oblate, asymmetric lens-shaped QDs 

[9, 10] have demonstrated that the adiabatic approach is quite effective for describing both one-

particle and many-particle systems in such structures. It is important to note, however, that most 

research on electron and hole states in strongly oblate ellipsoidal and lens-shaped QDs has focused 

on structures with circular cross-sections. Yet, structures with asymmetric cross-sections can also 

be realized — for example, when considering ellipsoids with unequal semi-axes. 
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Previous studies have examined one-electron and many-electron states in strongly oblate 

asymmetric QDs [11, 12]. In particular, it has been shown that, for relatively low energy levels, 

the confining potential of the slow subsystem can be described using a two-dimensional 

asymmetric oscillator model. Notably, applying an axial magnetic field to a strongly oblate 

asymmetric ellipsoidal QD creates additional opportunities for manipulating charge carriers’ 

energy levels, which in turn affects various physical properties of these systems. This motivates 

further theoretical investigation of electron states in strongly oblate asymmetric ellipsoidal QDs 

(SAEQD) in the presence of a homogeneous axial magnetic field.  

2. Theory 

Let us discuss the electron energy states in the strongly oblate asymmetric ellipsoidal 

quantum dot in the presence of an axial magnetic field. The problem scheme is presented below 

(Fig.1).  

 

Fig. 1. Schematic view of QD.  

 

Considering the magnetic field ,B  directed along the OZ axis, the Schrodinger equation of 

the system can be presented in the following form:  
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0μ 0.026m= − the effective mass of the electron in InAs (
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The confining potential of the system is introduced below:  
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The considered system is under a strong quantization regime along the axial direction, 

allowing the application of the adiabatic approximation method in solving the problem. Within 
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this framework, the motion of the electron can be viewed in two perpendicular directions: along 

the axis and in the plane. The first direction represents the fast subsystem, while the second 

represents the slow subsystem. Consequently, the wave function of the system ( ) r  can be 

expressed as the product of two wave functions that describe the fast subsystem ( )ψ ( ;( , ))f z x y  

and the slow subsystem ( )ψ ( , )s x y : 

     ( ) ψ ( ;( , ))ψ ( , ).f sz x y x y =r      (3) 

In the axial direction (fast subsystem), the particle is in the one-dimensional infinitely deep 

potential well. The Schrodinger equation of the fast subsystem has the form: 

    2

conf
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The solution to that problem is well-known and has the form introduced below:  
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where 
zn − the axial quantum number, δ

zn −  the initial phase of the particle’s wave function, 

( , )L x y − the width of the potential well, that parametrically depends on the in-plane coordinates 

x  and .y  

As the system has the form of the ellipsoid, ( , )L x y  can be presented by the following 

expression:    

2 2
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Considering here the confining effect of the walls of QD on the electron, we can assume that 

the particle will be concentrated mainly around the geometrical center of the system, the result of 

which will be the realization of these conditions: x a  and .y b  This makes possible the 

expansion of the relation (6) in the Taylor series by the small parameters /x a  and / ,y b  after 

which we get the new expression for ( , )L x y :     
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Substituting (7) into (5) for the energy spectrum 
znE  of the system we obtain the following relation: 
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 where 
π
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2μ
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π
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= .  

Due to the strong quantization regime in the axial direction, the particle can be considered in 

the ground state along the OZ  axis, so that 1,zn =  hence 
π
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2μ

x
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=  and 
π

ω (1) .
2μ

y
bc

=

Substituting 
znE  into (1) and making some transformations, we obtain the two-dimensional 

Schrodinger equation in the form presented below: 
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Further, using the transformations presented in the article [13], the equation (9) can be 

expressed in the new variables: 

2 2 2 2 1 2 1 2

2 2 2 2 2 2 2 2

1 1 1 1α α β β ψ ( ) ψ ( ),
μ

1
, ,

2
s sp p q q q q q q  = + + + E   (10) 

with these designations: 
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Solving the latter equation for 
1q  and 

2q  we’ll eventually obtain the two-dimensional energy 

spectrum: 
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where 
1 1 1ω α β / μ,=  

2 2 2ω α β μ/=  and , 0,1,2,x yn n =  are quantum numbers of the particle in the 

OX  and OY directions, respectively.  

Thus, in the general case, we get the following form of the system’s energy spectrum: 
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However, in our further calculations, we’ll assume again, that the particle is on the ground state 

along the axial direction, so that 1.zn =   

3. Results and Discussions 
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In this section, the dependences of the system's energy spectrum on the geometrical 

parameters ,a b  and c  of the QD and on the magnitude of the magnetic field B  is discussed.  

The following material parameters have been used in the calculations: 5 ,Ba a=  7 ,Bb a=  

Bc a= − the geometrical parameters of QD along OX , OY and OZ respectively, and the magnetic 

field B  has been changed in the range of 1 15 .T T−     

In fig.2a, b, and c the dependences of the system’s energy on the QD’s geometrical parameters 

are shown in the case of the fixed value of the magnetic field B  equal to 1T . Considering the 

specific geometry of the QD—namely, the strong oblateness along the OZ  axis, due to the strong 

quantization regime in that direction—a stronger dependence of the energy , ,x y zn n nE on the small 

semi-axis c  can be anticipated, compared to the other two parameters, a  and .b  Nevertheless, it 

can be seen from fig.2, that the system’s energy decreases with the increase of each geometrical 

parameter of QD. One can also see that the overall values of energy in the case of the first set of 

quantum numbers { , , } {1,2,1}x y zn n n =  are less than in the second case { , , } {2,1,1}.x y zn n n = This 

can be explained by the fact that frequency 
1ω , which is determined via 

1α  and 
1β , is greater than 

2ω  determined by 
2α  and 

2β . Therefore, although in the first case the quantum number 
xn  is less 

than ,yn  nevertheless, the inequality of the frequencies has greater effect on the energy.  

 

 

Fig. 2. The system’s energy 
, ,x y zn n nE dependence on the geometrical parameters ,a ,b  and .c  The 

energy levels considered are: { , , } {1,2,1}x y zn n n =  (curve 1), { , , } {2,1,1}x y zn n n =  (curve  2). The 

magnetic field B  in all cases is equal to 1 .T   
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In Fig.3 the energy , ,x y zn n nE dependency on the magnetic field B  is displayed for the fixed 

values of the semi-axes ,a ,b  and c  equal to 5 ,Ba 7 ,Ba  and 1 Ba  respectively. In this case, the energy 

increases with the increase of the magnetic field. The figure illustrates that the effect of the 

magnetic field on energy is compatible with that in the case of geometrical parameters a  and b  in 

the XOY  plane, still, it is much less pronounced compared with the effect of the small semi-axis 

c  of the QD on the energy states. This is attributed to the strong quantization regime in the axial 

direction, which significantly impacts the energy states than the magnetic field.    

 

Fig. 3. The system’s energy 
, ,x y zn n nE dependence on the magnetic field ,B for the fixed values of 

geometrical parameters 5 ,Ba a=  7 Bb a=  and .Bc a=   The energy levels considered are: 

{ , , } {1,2,1}x y zn n n =  (curve 1), { , , } {2,1,1}x y zn n n =  (curve 2).  

 

3. Conclusions  

The electron's energy decreases with the increase in QD's geometrical parameters. On the 

other hand, with the rise in the magnetic field due to magnetic quantization strengthening, the 

energy levels increase. At the same time, the system's energy is more sensitive to the change in 

the axial semi-axis, as the influence of walls in that direction is significantly stronger compared 

to the other two.  

 

References 

[1] T. Chakraborty, Quantum Dots (Elsevier North Holland, Amsterdam, 1999). 

[2] P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, 

E. Kapon, Appl. Phys. Letters 92 (2008) 263101. 

[3] E. Capon, E. Pelucchi, S. Watanabe, A. Malko, M.H. Baier, K. Leifer, B. Dwir, F. Michelini, M.A. 

Dupertuis, Phys.E 25 (2004) 288. 

[4] T.A. Ameen, Y.M. El-Batawy, Opt and Quant. El. 47 (2015) 149. 

javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;


Armenian Journal of Physics, 2025, vol. 18, issue 1, pp. 7-13 

 

13 
 

[5] D. Lu, J. Ahn, S. Freisem, D. Gazula, D.G. Deppe, Appl. Phys. Lett. 87 (2005) 163105.  

[6] J. H. Blokland, M. Bozkurt, J. M. Ulloa, D. Reuter, A. D. Wieck, P. M. Koenraad, P. C. M. 

Christianen, J. C. Maan, Appl. Phys. Lett. 94 (2009) 023107. 

[7] D.G. Austing, S. Sasaki, S. Tarucha, S.M. Reimann, M. Koskinen, M. Manninen, Phys. Rev. B 60 

(1999) 11514. 

[8] V.M. Galitsky, B.M. Karnakov, V.I. Kogan, Problems in Quantum Mechanics (Nauka, Moscow, 

1992). 

[9] H.A. Sarkisyan, D.B. Hayrapetyan, L.S. Petrosyan, E.M. Kazaryan, A.N. Sofronov, R.M. Balagula, 

D.A. Firsov, L.E. Vorobjev, A.A. Tonkikh, Nanomaterials 9 (2019) 56. 

[10] R.V. Ustimenko, M.Ya. Vinnichenko, D.A. Karaulov, H.A. Sarkisyan, D.B. Hayrapetyan, D.A. 

Firsov, ACS Appl. Nano Mat. 7 (2024) 27245. 

[11] M.K. Manvelyan, M.A. Mkrtchyan, H.A. Sarkisyan, J. Phys. 2924 (2024) 012017. 

[12] A.A. Nahapetyan, M.A. Mkrtchyan, Y.Sh. Mamasakhlisov, M.Ya. Vinnichenko, D.A. Firsov, H.A. 

Sarkisyan, NIMA 1073 (2025) 170251. 

[13] A.V. Madhav, T. Chakraborty, Phys. Rev. B 49 (1994) 8163. 

 

javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;

