Известия НАН Армении, Физика, т.60, №1, с.90–105 (2025) УДК 539.37 DOI: 10.54503/0002-3035-2025-60.1-90

ОБРАЗОВАНИЕ ЗАРОДЫШЕЙ АЛМАЗА В ОБЛАСТИ ТЕРМОДИНАМИЧЕСКОЙ СТАБИЛЬНОСТИ КАК РЕЗУЛЬТАТ ПРЯМОГО ФАЗОВОГО ПЕРЕХОДА ГРАФИТ–АЛМАЗ МАРТЕНСИТНОГО ТИПА

А.Н. АВАГЯН^{1*}, Г.Г. АРУТЮНЯН², А.В. ОВСЕПЯН², М.С. САКАНЯН², А.К. КОСТАНЯН¹

¹Институт общей и неорганической химии (ИОНХ) НАН РА, Ереван, Армения ²Ереванский государственный университет, Ереван, Армения

*e-mail: almaz-synthesis@mail.ru

(Поступила в редакцию 20 февраля 2025 г.)

В стохастическом приближении с учетом выводов теории упругости микронеоднородных сред рассмотрена модель образования зародышей алмаза в камере высокого давления (КВД) как результат прямого перехода графит–алмаз. Приведены соображения относительно распределения числа зародышей N в зависимости от интенсивных параметров P и T. Предположение о равенстве числа выращенных кристаллов алмаза числу образовавшихся зародышей алмаза обеспечило возможность использовать нормальное распределение (распределение Гаусса) для анализа процессов зарождения алмаза. В результате получено вероятностное аналитическое выражение для числа зародышей, позволяющее с достаточной точностью определить N в зависимости от значения измеряемых давления (P_{meas}) и температуры (T_{meas}). Оценена скорость образования зародыша алмаза в рамках модели фазового перехода мартенситного типа.

1. Введение

Со времени реализации процесса синтеза алмаза в 1953 г. в Швеции не прекращаются интенсивные исследования по изучению процессов, происходящих при кристаллизации алмаза из различных фаз и соединений углерода. Несмотря на накопленный к настоящему времени обширный материал исследований как теоретического, так и экспериментального характера по кристаллизации алмаза в расплавах металлов и сплавов, проблема прямых фазовых переходов графит– алмаз при высоких давлениях >10 ГПа и температурах $\approx 3000^{\circ}$ С остается предельно актуальной. Отметим, что механизм кристаллизации алмаза, как на стадии зарождения алмаза, так и при дальнейшем его росте, остается предметом достаточно широких дискуссий [1–16].

На сегодняшний день в центре внимания остаются два основных физических механизма зарождения и роста алмаза из графита: мартенситного типа как прямой структурный фазовый переход графит–алмаз, и диффузионного типа – через пересыщенный раствор углерода, растворенного в металле-растворителе. Отметим, что реальный промышленный синтез из графита проходит при давлениях от

5 ГПа до 10 ГПа и температурах от 1000 до 2500°С в присутствии металлов и сплавов-растворителей. Зарождение и рост фазы алмаз из пересыщенного углеродом раствора в металлах-растворителях может показаться возможным, как механизм флуктуационного зарождения фазы алмаз. Однако следует отметить, что по результатам работ [4, 5, 17] вероятность флуктуационного зарождения новой алмазной фазы ничтожно мала как для гомогенной, так и для гетерогенной нуклеации.

Остановимся на этом вопросе подробнее. Оценку вероятности флуктуационного зарождения алмазной фазы целесообразно провести в рамках классической термодинамики и статистической физики. [5, 6, 17, 18]. Из общепринятых физических соображений энергия, необходимая для образования зародыша внутри пересыщенного раствора-расплава (гомогенное зарождение), есть сумма, состоящая из уменьшения энергии при фазовом переходе, разности термодинамических потенциалов и увеличения энергии, связанной с возникновением поверхности раздела алмаз–раствор:

$$\Delta E \approx -\Delta \mu \rho R^3 + \sigma_{\text{aver}} R^2. \tag{1}$$

Здесь R – характерный размер кристалла, μ – термодинамический потенциал (на единицу веса), σ_{aver} – средняя поверхностная энергия алмаз–расплав, ρ – плотность алмаза.

Оценим размер критического зародыша и энергию активации как

$$r_{\rm crit} = \sigma_{\rm aver} / (\rho \Delta \mu), \qquad (2)$$

$$U = \sigma_{\text{aver}}^3 / \left[\rho^2 \left(\Delta \mu \right) \right]^2.$$
(3)

Величина σ для алмаза порядка $\sigma \approx 10^{3} \frac{\text{эрг}}{\text{см}^2}$. Значение σ настолько велико, что можно считать его равной σ_{aver} для контакта алмаза с любой поверхностью, и есть величина того же порядка $\sigma = 10^3 \frac{\text{эрг}}{\text{см}^2}$ (точное значение σ_{aver} – алмаз в расплаве никеля 2700 $\frac{\text{эрг}}{\text{см}^2}$ [4]). Для оценочных значений воспользуемся известным соотношением при переходе графит–алмаз [19]

$$\Delta \mu \approx \Delta V \times \Delta P \approx 10^2 \text{ эрг.}$$
(4)

Подставив реальные значения конкретного эксперимента [19] $\Delta V = 10^{-3} \text{ см}^{-3}$ и $\Delta P = 1$ кбар = 0.1 ГПа, вероятность флуктуационного возникновения зародыша алмаза согласно [17, 18] будет:

$$W \approx \frac{V}{r_{\rm crit}^3} e^{-\frac{u}{KT}}$$
(5)

Здесь V – стандартный объем КВД для проведения экспериментов в широком диапазоне давлений (ячейка Бриджмена), $r_{\rm crit} = 10^{-6}$ см [4]. Множитель в формуле (5) при $V = 10^{-3}$ см³ получим $\frac{v}{r_{crit}^3} \approx 10^{15} \approx e^{40}$ и оценка энергии активации по Банди [11] при $u \approx 10^{-8}$ эрг, $e^{\frac{u}{KT}} \approx e^{-10^3}$. Получив оценочно $W \approx e^{40} \times e^{-10^3}$, видим, что W является ничтожно малой величиной и, следовательно, можем утверждать, что зарождение зародышей алмаза практически невозможно. Однако процесс успешно реализуется не только в лабораторных экспериментах, но и в промышленных технологиях.

Целью настоящей работы является попытка теоретического описания и обоснования процесса возникновения критических и закритических зародышей алмаза в стохастическом приближении как результат прямого фазового перехода графит–алмаз мартенситного типа на первых нескольких миллисекундах [20] от начала процесса синтеза в области термодинамической стабильности алмаза. Последующий же рост критических и закритических зародышей алмаза протекает по раствор расплавному диффузионному механизму [16].

2. Процедурные эксперименты по установлению оптимальных параметров *P, T* при разработке режимов синтеза алмаза в области термодинамической стабильности в КВД

Отметим, что традиционные эксперименты при разработке режимов синтеза алмаза протекают по следующей схеме: при T = const пробегаются ряд значений по давлению P с шагом 0.1–0.2 ГПа и наоборот при P = const пробегаются значения по температуре с шагом, заданным экспериментатором, обычно 50–100°С. Целью таких экспериментов является определение максимального выхода алмазов в весовом исчислении либо достижение конкретных физико-механических, оптических, электрофизических показателей синтезируемых кристаллов алмаза. Проделав аналогичные эксперименты и предположив, что количество критических и закритических зародышей алмаза N, образовавшихся на первых миллисекундах [20] процесса синтеза, и количество выросших кристаллов алмаза за все время протекания процесса синтеза в КВД остается постоянным, построим графики зависимости количества критических и закритических зародышей N от интенсивных параметров P и T.

Эксперименты проводились в постоянном объеме КВД: $V_{\text{HPC}} = 15 \text{ см}^3$, t = 120 сек. Графит ГМЗ-ОСЧ-7.3. Растворитель – сплав Ni:Mn = 60:40% (рис.1, 2).

На рис.1 при температуре T > 1750 К наблюдается выход из области стабильности алмаза (резкое падение N) ввиду температурного смещения процесса от линии равновесия в область стабильности графита по фазовой диаграмме углерода.

Рис.1. Зависимость количества кристаллов N от температуры T при постоянном давлении P_{meas} 5.5–5.7 ГПа. Синтез проводили в интервале температур $T_{\text{mea}} \sim 1100-1750 \text{ K}$: I -экспериментальная кривая, 2 - теоретическая кривая.

Рис.2. Зависимость количества кристаллов N от давления P при температуре $T_{\text{meas}} = 1650^{\circ} \pm 20 \text{ K}$: I – экспериментальная кривая, 2 – теоретическая кривая.

Количество критических и закритических зародышей алмаза, отождествленное с количеством кристаллов алмаза, выросших в КВД за время синтеза (120 сек.), определялось прямым счетом для каждой точки по *T* и *P*. Осуществлялось 10 замеров с последующим усреднением, использовался оптический микроскоп (МБС-9) и прибор Bettersize-S3. При замерах и счете отсеивалась группа меньше 0.1 мкм, что составляло менее 0.2% от веса конкретной партии.

Эксперименты проводились с использованием графита ГМЗ ОСЧ–7.3, сплава растворителя Ni:Mn= 60:40%, при соотношении графит–сплав 50 на 50% по весу, в объеме V = 15 см³, давлении P = 5.5-5.7 ГПа, температуре T = 1650 К при разных временах протекания процессов синтеза (t = 120, 180, 240 и 300 сек).

Эксперименты показали, что количество кристаллов за различные времена протекания процесса синтеза алмаза, можно считать одинаковым. Увеличение же выхода фазы алмаз в весовом выражении объясняется ростом кристаллов алмаза, т.е. наращиванием их массы. Таким образом предположение о тождественности количества критических и закритических зародышей алмаза и выросших кристаллов алмаза в КВД подтверждается экспериментально, и можно считать его вполне корректным.

3. Образование зародыша алмаза в КВД при стандартном снаряжении смесью порошка графита и сплава растворителя

Рассмотрим процесс образования зародышей алмаза как следствие возможной реализации условий по давлению P и температуре T прямого фазового перехода графит–алмаз [7, 8], возникающего в локальных областях контактов, несовершенств поверхностей графитовых частиц, металла-растворителя, заполняющих объем КВД [8], который подвергнут «сильному» всестороннему сжатию. Отметим также, что рассматриваемая система является гетерогенной, а возможность гомогенного рассмотрения процесса относится к локальной области, занятой пересыщенным углеродом раствором металла-растворителя, размером не более 250 мкм, где вероятность W образования зародыша алмаза, как мы оценили, ничтожно мала.

Поскольку существующие в настоящее время методы измерений (P, T)-параметров в КВД (реперные элементы, соединения, термопары и т.д.) не могут обеспечить измерения в нано-метрических областях, то наши представления ограничиваются усредненными, макроскопическими данными по температуре и давлению в реакционном объеме КВД. Однако учитывая тот факт, что рассматриваемая система (снаряжение КВД), является гетерогенной, т.е. состоит из множества малых контактов наноразмерных поверхностей и подвергнута воздействию высокого давления (всестороннему сжатию), естественно предположить возможность возникновения пиковых – амплитудных значений, рассматриваемых параметров P и T для областей с поверхностью контакта $S \approx \pi r^2_{\text{crit}}$, где $r^2_{\rm crit}$ критический радиус зародыша алмаза. Выдвинутое предположение согласуется с выводами теории упругости микронеоднородных сред [21] и механики микро- и наноконтактных взаимодействий твердых тел [22]. Для наглядности качественно изобразим локальные значения давлений на фоне среднего измеряемого давления в одномерном случае на рис.3. Введем обозначения $P_{\text{meas}} \rightarrow P_{\text{aver}}$ $(среднее) \rightarrow P_i и P_{trans} \rightarrow P_{crit}$ (критические).

Рис.3. Характерное распределение «пиковых» – амплитудных значений локально возникающих давлений. Случайным образом распределенные локальные «всплески», амплитудные пиковые давления $P > P_{\text{aver}}$ в контактных областях $S \approx \pi r^2_{\text{crit}}$, имеющие характер некоего барического «шума», на фоне измеряемой усредненной величины давления P_{aver} , (кривая 1). Макроскопическое «среднее» измеряемое давление P_{aver} , (кривая 2). Критическое давление фазового перехода графит–алмаз (кривая 3); L – линейная координатная ось, выбранная вдоль любого направления в КВД.

Аналогичная ситуация возникает с температурой, так как протекание электрического тока нагрева обусловлено контактами между частицами графита. Зная, что при воздействии давления проводимость графита возрастает [21, 23, 24], делаем вывод, что в локальных областях $S \approx \pi r^2_{crit}$ пиковых давлений реализуется условие для пропускания максимальных плотностей электрического тока, а значит и максимальные значения температуры, совпадающие с минимальными контактными поверхностями зерен $S \approx \pi r^2_{crit}$. Вышеизложенное представлено на рис.4. Введем обозначения T_{meas} (среднее) $\rightarrow T_{aver} \rightarrow T_i$ и $T_{trans} \rightarrow T_{crit}$ (критические).

Следует подчеркнуть, что рассматриваемая температурная нестабильность может существовать весьма ограниченное время, так как высокая теплопроводность системы быстро приведет ее к измеряемому значению температуры T_{aver} . Пиковые значения по давлению тоже релаксируют до измеряемого давления P_{aver} , вероятно за то же время (несколько миллисекунд [20]), что связано с плавлением металла-растворителя, пластической деформацией графита, находящегося в

Рис.4. Характерное распределение температурных локальных «пиковых» значений. Возникающий температурный «шум» на уровне макроскопического температурного измеряемого фона $T, T > T_{crit}$. (кривая I). Измеряемое среднее значение температуры T_{aver} . (кривая 2); L – линейная координатная ось, выбранная вдоль любого направления в КВД.

реакционном объеме КВД и образованием более плотной фазы алмаз. Очевидно совпадение пиков локальных давлений и температур [23, 24], которые случайным образом распределены в объеме КВД. Для наглядности положительную ось температур повернем на 180° и совместим с рис.3 как показано на рис.5. Здесь $S_{\rm crit} \approx \pi r_{\rm crit}^2$ – поверхность, которая формирует объем $V_{\rm crit} \approx 4/3 r_{\rm crit}^3$, в котором выполняются термодинамические условия для прямого фазового перехода графит–алмаз и, следовательно, происходит зарождение и рост зародышей алмаза критических и закритических размеров.

Заштрихованные области на рис.5 являются областями нано-локальной реализации условий прямого фазового перехода графит–алмаз ($P \approx 10-13$ ГПа, $T \approx 3000$ K) по данным [6, 7]. Из изложенных рассуждений ясно, что, увеличивая или уменьшая ток нагрева (т.е. уровень «температурного шума»), можно регулировать количество центров кристаллизации (зарожденных критических и закритических зародышей алмаза). Аналогичные рассуждения верны для менее податливого в промышленных условиях параметра давления.

Определим характер распределения пиковых – амплитудных значений для давления и введем обозначения. Известно [9], что для различных марок поликристаллических графитов, используемых в технологиях синтеза алмаза, существуют различные значения L_e , L_a (L_e , L_a – параметры решётки) т. е. размерные, базисные и призматические факторы совершенных кристаллитов графита. Отметим, что кристаллиты графита с размерами до 500 Å являются совершенными образованиями с максимальной твердостью, и с точки зрения теории упругости микронеоднородных сред являются центрами пиковых – амплитудных давлений

Рис.5. Схематическое изображение возникновения *P*, *T* условий прямого фазового перехода графит–алмаз в нано-метрических контактных областях.

при всестороннем сжатии [21, 25–27]. Так для С–3 $L_a = 475$ и $L_c = 145$ Å; для ГМЗ – ОСЧ –7.3 $L_a = 601$ и $L_c = 160$ Å; для ГСМ–1 $L_a = 1250$ и $L_c = 375$ Å. Выберем любой из них. Очевидно, что L_a и L_c могут служить размерным фактором распределения локальных, наноразмерных, «пиковых», амплитудных значений давлений и температур [1, 21, 23, 24] для областей монокристалличности кристаллитов (высокой твердости), объемом $V_{crystallite} \ge V_{crit}$, $V_{crit} \ll V_{HPC}$, где возникают термодинамические условия для прямого фазового перехода графит–алмаз. Из условия $V_{crit} \ll V_{HPC}$ ясно, что число вероятных «пиковых» – амплитудных значений достаточно велико и, следовательно, согласно предельной теореме теории вероятностей [28, 29], наше распределение «пиковых» – амплитудных значений по давлениям и температурам стремится к нормальному распределению двух случайных независимых величин P и T или распределению Гаусса [10].

Запишем нормальное распределение вероятности пиковых, амплитудных значений для давлений *P* в виде

$$f(P) = \frac{1}{\sigma_p \sqrt{2\pi}} \exp\left[-\frac{(P - \mu(P_i))^2}{2\sigma_p^2}\right],\tag{6}$$

где количество «пиковых» амплитудных значений давлений больших или равных $P_{\rm crit}$ определяет возможное число образующихся зародышей алмаза N, σ_p – среднеквадратическое отклонение. Полное возможное число зародышей в КВД обозначим N_0 . Определим N_0 как $N_0 = \frac{V_{\rm graph}}{V_{\rm eff}} \approx \frac{V_{\rm graph}}{(10L_\alpha)^3}$, где $V_{\rm graph}$ – объем реакционного графита в КВД, $V_{\rm eff} \approx (10L_\alpha)^3$ -оценочный эффективный объем [30], соразмерный с объемом критического зародыша алмаза внутри кристаллита графита в зоне нано-размерных контактов, где достигаются (P, T)-условия прямого фазового перехода графит–алмаз (рис.6). При определении N_0 мы исходим из того факта, что для фазы алмаз $r_{\rm crit} \approx 10$ нм и содержит 10^6 атомов углерода, чем и обеспечивается проявление структуры фазы алмаза [4]. Определим также параметры нормального Гауссовского распределения исходя из того, что на экспериментальной кривой зависимости количества кристаллов от давления (рис.2) имеем точку перегиба в области 5.5–5.7 ГПа. Очевидно, что в рассматриваемой

модели, средняя точка или вершина распределения пройдет через измеряемое

давление P_{meas} в КВД, т.е. $\mu(P_{\text{meas}}) = P_{\text{meas}}$.

Рис.6. Распределение «пиковых» амплитудных значений локальных давлений в нано-метрических контактных областях в зависимости от величины измеряемого *P*_{meas}.

Распределение случайной величины давления P, ответственного за образование зародышей алмаза, лежит в заштрихованной части площади под кривой распределения вероятности справа от точки P_{crit} и может быть представлено в виде интегральной функции Гаусса $\phi(P)$

$$\phi(P) = \frac{1}{\sigma_p \sqrt{2\pi}} \int_{P_{er}}^{\infty} \exp\left[-\frac{\left(P - P_i\right)^2}{2\sigma_P^2}\right] dP.$$
(7)

Аналогичные рассуждения с учетом совпадения «пиковых» температур с «пиковыми» значениями давлений (рис.5) [23, 24, 31] дадут функцию распределения случайной величины $\phi(T)$

$$\phi(T) = \frac{1}{\sigma_p \sqrt{2\pi}} \int_{T_{cr}}^{\infty} \exp\left[-\frac{(T-T_i)^2}{2\sigma_T^2}\right] dT .$$
(8)

Совместное распределение двух независимых случайных величин (P,T) подчинено известному правилу [29, 19] $\phi(P,T) = \phi(P) \times \phi(T)$. Откуда имеем:

$$\Phi(P,T) = \frac{1}{\sigma_P \sigma_T 2\pi} \int_{P_{cr}}^{\infty} \int_{T_{cr}}^{\infty} \exp\left[-\frac{\left(P - P_i\right)^2}{2\sigma_P^2}\right] \exp\left[-\frac{\left(T - T_i\right)^2}{2\sigma_T}\right] dP dT \,. \tag{9}$$

Очевидно, что число возникающих зародышей алмаза Not (P, T) будет равно

$$N = N_0 \phi(P, T). \tag{10}$$

Определим физически реальные пределы интегрирования с применением правила 3 (29, 19) из рис.6. Для верхних пределов имеем:

$$(P_i + 3\sigma_P + \Delta\sigma_p - P_{\text{crit}}) = Z, \ (0 \le \Delta\sigma_p \le 3\sigma_p)$$

$$(T_i + 3\sigma_T + \Delta\sigma_T - T_{\text{crit}}) = Q, \ (0 \le \Delta\sigma_T \le 3\sigma_T)$$

$$(11)$$

Нижними пределами являются *P*_{crit} и *T*_{crit}. Для числа возникающих зародышей алмаза в КВД в зависимости от *P* и *T* имеем:

$$N = N_0 \frac{1}{\sigma_P \sigma_T 2\pi} \int_{P_{cr}}^{Z} \int_{T_{cr}}^{Q} \exp\left[-\frac{\left(P - P_i\right)^2}{2\sigma_P^2}\right] \exp\left[-\frac{\left(T - T_i\right)^2}{2\sigma_T}\right] dP dT .$$
(12)

На рис.7 отображена ситуация полного перехода (при $T \ge T_{crit}$) всего реакционного объема графита в фазу алмаз. Данная ситуация является условием синтеза поликристаллических алмазов типа карбонадо, балас, АСПК, АСР, и т.д. В выражении (10) $N = N_0$, так как $\phi(P,T) \approx 1$ при $\Delta \sigma_p = 3\sigma_p$. Подынтегральное выражение в (12) есть функция плотности вероятности двумерного распределения случайных независимых величин (P,T) и имеет вид

$$f(P,T) = \frac{1}{2\pi\sigma_P\sigma_T} \exp\left[-\left[\frac{(P-P_i)^2}{2\sigma_P^2} + \frac{(T-T_i)^2}{2\sigma_T^2}\right]\right].$$
 (13)

Рис.7. Вероятностная функциональная зависимость полного перехода реакционного графита в алмаз.

Функция f(P,T) зависит от четырех параметров P_{meas} , T_{meas} , σ_P , σ_T и представляет собой поверхность в виде Гауссовского «колокола» (рис.8), вершина которого находится над точкой P_{meas} , T_{meas} . на плоскости (P, T), которая является точкой пересечения измеряемых параметров процесса синтеза. Параметры σ_P и σ_T определяют форму кривой распределения и зависят от кристаллографической структуры используемых графитов, которых более 50 модификаций [25–27].

Рис.8. Двумерное распределение P и T в виде «колокола» Гаусса. Плоскости S_T и S_P отсекают поверхность (a, b, c) по линиям P_{crit} и T_{crit} на плоскости (P, T). Поверхность (a, b, c) содержит множество значений вероятностей нахождения системы в (P, T) точках зародышеобразования в зоне проекции (a, b', c) на фазовой диаграмме углерода (рис. 9).

Поверхность (a, b, c) на «колоколе» двумерного распределения (P, T), отсеченная плоскостями S_P и S_T есть множество точек значений вероятностей, удовлетворяющих критериям $P \ge P_{crit}$, $T \ge T_{crit}$, где обеспечиваются термодинамические условия прямого фазового перехода графит–алмаз. Проекция поверхности (a, b, c) (рис.8), на плоскость с осями (P, T) отображает фазовую диаграмму углерода. Сектор (a, b', c) на обшей поверхности фазовой диаграммы углерода в зависимости от давления P_{meas} и температуры T_{meas} в КВД (рис.9).

Отметим, что движение центра «пятна» проекции по координатам P_{meas} , T_{meas} двумерного Гауссовского распределения (P, T) по поверхности фазовой диаграммы будет перекрывать области стабильности различных фаз углерода и межфазных границ. Определяя координаты центра распределения Гауссовского «колокола», получим значения вероятности возникновения конкретной фазы углерода.

Рис.9. Фазовая диаграмма углерода, с проекцией поверхности вероятностей (a, b, c), как зоны образования зародышей алмаза прямым фазовым переходом графит–алмаз (a, b', c).

4. Образование зародыша фазы алмаз из графита как фазовый переход первого рода мартенситного типа

Рассматриваемый нами процесс зарождения и роста критических и закритических зародышей алмаза очевидно относится к фазовым переходам первого рода в твердом состоянии. Проанализировав специфические особенности различных фазовых переходов в твердом состоянии [18, 32, 33], остановимся на модели фазового перехода мартенситного типа, который по своим особенностям подходит к нашему случаю. Процесс образования зародыша алмаза проходит в однокомпонентной среде, состоящей из углерода. Очевидно, что мы имеем дело с бездиффузионной перестройкой кристаллической решетки фазы графит в фазу алмаз.

Отметим, что мартенситное превращение от других фазовых превращений первого рода в твердом состоянии отличают две основные характеристики: 1) бездиффузионность, (химический состав исходной фазы (графит) и конечный фазы (алмаз) одинаков); 2) ориентированность. Новая фаза алмаз – закономерно ориентирована относительно старой фазы графит, сдвиговый деформационный характер превращения и пластинчатая форма образования являются типичными для мартенситного превращения. (Синтетические кристаллы алмаза кратковременного синтеза 0.3–1 сек имеют в основном уплощенную форму близкую к «чечевице»).

В рассматриваемой модели фазовый переход происходит в нано-контактных областях графитовых зерен [34–36], которые заполняют объем КВД (рис.6). На

Рис.10. Характерное распределение напряжений «давлений» в объеме $\approx V_{\text{crit.}}$

рис.10 показано характерное распределение напряжений «давлений» в объеме $V_{\rm crit}$ по мере возрастания давления от (а) до (d). В первом приближении выберем форму двояковыпуклой линзы [37], где и происходит процесс образования зародыша, т.к. именно в объеме $V_{\rm crit}$ обеспечиваются условия $P \ge P_{\rm crit}$ и $T \ge T_{\rm crit}$. Отметим, что скорость образования и роста мартенситной фазы алмаз должна быть больше, чем скорость релаксации параметров $P_{\rm crit}$ и $T_{\rm crit}$, до $P_{\rm meas}$ и $T_{\rm meas}$, соответственно.

Проанализируем скорость роста мартенситной фазы, используя выражение (23) из работы [38]. Оставаясь в рамках первого приближения для формы $V_{\rm crit}$, толщину линзы в ее центральной части обозначим через H и, приняв H < R, получим объем мартенситной фазы алмаз $V \approx V_{\rm crit}$ в виде:

$$V = \frac{\pi H R^2}{2} \left(1 + \frac{1}{12} \frac{H^2}{R^2} \right) \approx \frac{\pi H R^2}{2},$$
 (14)

а площадь поверхности будет:

$$S = 2\pi R^2 \left(1 + \frac{H}{R} \right) \approx 2\pi R^2 \,. \tag{15}$$

При возникновении в графите фазы алмаз изменение свободной энергии системы происходит вследствие: 1) изменения свободной энергии в объеме, занятой образованной фазой алмаз в области мартенситного превращения (свободная энергия фазы алмаз, естественно, меньше свободной энергии фазы графит); 2) образование поверхности раздела между фазой алмаз и окружающей фазы графит; 3) возникновения поля упругих напряжений внутри образовавшегося зародыша алмаза и в исходном графите.

В первом приближении будем считать, что в основном искажения, вызванные полем упругих напряжений, сосредоточены в графите и имеют характер деформаций сдвига. Смещения граничных слоев атомов углерода в фазе алмаз в зародыше пропорциональны их толщине с множителем *K*, который определяется из кристаллографических параметров используемого графита [4].

Упругие деформации вокруг мартенситной фазы алмаз имеют величину порядка H/R [21, 39, 40]. Примем, что объемы области, в которой сосредоточены напряжения, обуславливающие возникающие деформации, примерно равны $4/3\pi R^3$, тогда полное значение упругой энергии [41] по порядку величины равно:

$$\Delta F_E \approx K_2 \frac{H^2}{R^2} R^3 = K_2 \pi H^2 R , \qquad (16)$$

где К₂ – коэффициент пропорциональности [39, 40]. Полное изменение

свободной энергии системы вследствие образования мартенситной фазы алмаз запишем в виде

$$\Delta F = -\frac{\pi}{2}HR^2 \cdot \Delta F + 2\pi R^2 \sigma + K_2 \pi H^2 R .$$
⁽¹⁷⁾

В данном объеме V наиболее вероятно существование центра мартенситного превращения графит–алмаз, имеющего соотношение линейных размеров, которое обеспечивает минимум ΔF . Приравнивая к нулю $d\Delta F$, при условии V = const, получим

$$R = \frac{3}{4} \frac{K_2}{\sigma} H^2 \,. \tag{18}$$

Отметим, что если отнести значение ΔF_E к единице объема мартенситного образования алмаз, то величина окажется пропорциональной H/R [35–37, 40, 42].

Следовательно, при сдвиговом характере мартенситного превращения графит–алмаз, затраты энергии на создание поля упругих напряжений вокруг центра фазы алмаз уменьшается с уменьшаются отношения толщины «кристаллита» фазы алмаз к его радиусу.

Поскольку образование мартенситной фазы алмаз подобно образованию центра новой фазы при полиморфных превращениях в однокомпонентной системе, для анализа кинетики изменения ее размеров можно воспользоваться формулой (6) из работы [16]

$$\frac{dn}{dt} \approx -n_s \omega e^{-\frac{u}{KT}} - \frac{1}{KT} \frac{d\Delta F(n)}{dn}.$$
(19)

В данном случае число атомов, находящихся непосредственно у поверхности растущего зародыша алмаза, запишем как

$$n_{S} = \frac{S_{surf}}{\pi r_{a}^{2}} = 2 \frac{R^{2}}{r_{a}^{2}} \frac{9}{16} \frac{K^{2}}{\sigma^{2}} \frac{H^{4}}{r_{a}^{2}}, \quad \omega = \varpi = \frac{3}{2} \frac{KT_{D}}{h}, \quad dn \approx \frac{K_{2}^{2}}{r_{a}^{2} \sigma^{2}} H^{4} dH$$

Таким образом, скорость роста мартенситного образования «кристаллита» фазы алмаз по высоте

$$V_H = \frac{dH}{dt} \approx \frac{\sigma^2}{K_2^2} \frac{r_a^4}{h} \frac{T_D}{T} e^{\frac{u}{KT} \frac{1}{H^4} \frac{d\Delta F}{dH}}, \quad H_{\text{crit}} \approx 5 \frac{\sigma}{\Delta F_0}, \tag{20}$$

где T_D – температура Дебая алмаза. Используя формулу (16), найдем скорость роста «кристаллита» фазы алмаз V_R по радиусу

$$V_R = 3\pi \frac{K_2 \,\Delta F_0}{\sigma h} \frac{T_D}{T} e^{-\frac{u}{KT}(H-H_{crit})}.$$
(21)

Выражения (20) и (21) представим в упрощенном виде:

$$V_{H} = \alpha_{H} \left(1 - \frac{H_{\text{crit}}}{H} \right)$$
, при $H \gg H_{\text{crit}}$ $V_{H} \approx \alpha_{H}$
 $V_{R} = \alpha_{R} \left(H - H_{\text{crit}} \right)$, при $H \gg H_{\text{crit}}$ $V_{R} \approx \alpha_{R} H$. (22)

Откуда

$$H = \alpha_H t R \approx \frac{3}{4} \frac{K_2}{\sigma} \alpha_R^2 t^2 = \beta t, \qquad (23)$$

или

$$V_R = \frac{3}{2} \frac{K_2}{\sigma} \alpha_H^2 t = \beta t .$$
⁽²⁴⁾

При росте «кристаллита» величина H увеличивается и скорость роста «кристаллита» по толщине возрастает, стремясь к предельному значению, которое определяется по формуле (22) при $\frac{H_{\text{crit}}}{H} \ll 1$. При этом V_R непрерывно увеличивается. Коэффициент K_2 может быть оценен на основании следующих соображений. Деформация чистого сдвига ε , переводящая решетку графита в решетку алмаза по порядку величины равна K H/(2R) [43, 44]. При этом плотность упругой энергии будет:

$$E_0 = \mu \frac{\varepsilon^2}{2} = \frac{\mu}{8} K^2 \frac{H^2}{R^2},$$
 (25)

где µ – модуль сдвига алмаза. Полная упругая энергия в области, окружающей мартенситную фазу алмаз, составит:

$$\Delta F_E = \frac{4}{3} \pi R^3 E_0 = \frac{\pi}{6} K^2 \mu R H^2 \,. \tag{26}$$

Отнеся ΔF_E к единице объема «кристаллита» алмаза, получим

$$\frac{\Delta F_E}{V} = \frac{1}{3} K^2 \mu \frac{H}{R}.$$
(27)

Из выражений (14) и (26) получим:

$$K_2 = \frac{1}{6} K^2 \mu \,. \tag{28}$$

Подставив справочные значения соответствующих физических величин, относящихся к графиту и алмазу [4, 8, 45] в формулы (20)–(24) и (26), получим оценочно $V_R \approx 10^5$ см/сек, $\beta \approx 10^5$ см/сек² и $V_H \approx 10^4$ см/сек. Полученные результаты требуют определенных объяснений.

Развитие фазы алмаз в радиальном направлении идет с очень большим ускорениями, следовательно, с большой скоростью, что невозможно рассматривать как скорость роста кристаллитов алмаза (средняя скорость роста монокристалла алмаза $V = 10^{-6}$ см/сек [4, 8, 45]). Скорости V_R и V_H скорее всего следует рассматривать как скорости образования мартенситной фазы алмаз. Большие величины V_R и V_H обусловлены выбранной моделью мартенситного перехода графит–алмаз в объеме двояковыпуклой линзы и распределению напряжений в этом объеме. Полученные формулы непригодны за пределами размеров критических и закритических зародышей мартенситной фазы алмаз. Отметим также, что граница фаз графит–алмаз при упругопластической деформации в процессе образования фазы алмаз характеризуется интенсивным сдвиговым движением, как базисных плоскостей графита так и больших групп дислокаций, скорости которых ограниченны скоростью пластической деформации графита $C = 2 \times 10^{-8}$ см/сек при 20°C и $C \approx 10^{-4}$ см/сек при 2000°C [46].

В данном случае скорость C является максимально возможной скоростью релаксации P_{crit} и T_{crit} до величин P_{meas} и T_{meas} и она много меньше V_R и V_H , т.е. процесс зарождения мартенситной фазы алмаз происходит быстрее релаксации

параметров $P_{\rm crit}$ и $T_{\rm crit}$, что является необходимым условием для поддержания параметров $P_{\rm crit}$ и $T_{\rm crit}$. Из вышеизложенного можно сделать вывод, что образование критических и закритических зародышей фазы алмаз в области термодинамической стабильности алмаза при высоких давлениях и температурах есть физический процесс, в корне отличающийся то роста кристаллов алмаза. Сам процесс образования зародышей в нано-метрических объемах требует глубокого изучения методами как теоретической, так и экспериментальной физики.

5. Заключение

В стохастическом приближении с использованием стандартного, нормального распределения Гаусса, теории и практики мартенситных превращений, а также некоторых положений физической кинетики рассмотрен вопрос образования критических и закритических зародышей синтетических алмазов в области термодинамической стабильности алмаза. Получено вероятностное аналитическое выражение для количества *N* образующихся критических зародышей алмаза из графита в КВД. Определен нижний предел давлений и температур для без катализаторного синтеза поликристаллических алмазов типа балас и карбонадо и т.д. (Р от 13 ГПа, Т от 2500 К до 3000 К). Показана возможность графически определять вероятность образования той или иной фазы углерода в зависимости от расположения (Р, Т) центра распределения на фазовой диаграмме углерода в трехмерном изображении. Предложенный метод использования двумерного Гауссовского распределения интенсивных термодинамических параметров может быть применен при изучении фазовых переходов в твердом состоянии, например, кристаллизации разных типов ситаллов. Полученные оценочные значения для скоростей образования – формирования заролышей фазы алмаз мартенситного пластинчатого типа в модели двояковыпуклой линзы требуют очень глубокого изучения, так как, вероятно, в процессе образования зародышей интенсивно включаются как эффекты туннелирования, так и эффекты квантовых флуктуаций. Настоящая работа является попыткой некого обобщения многолетнего опыта работы в области синтеза алмаза на базе Ереванского производственного объединения «Алмаз» и работ, проводящихся в ИОНХ НАН РА и ЕрГУ, в этом направлении. Надеемся, что изложенные соображения будут полезны как производственникам, так и научным работникам в области физики высоких давлений.

ЛИТЕРАТУРА

- 1. Д.В. Федосеев, Н.Г. Санжарлинский, и др., Изв. АН СССР, серия Химическая, 11, 2647 (1978).
- 2. Б.В. Дерягин, Д.В. Федосеев. Изв. АН СССР, 238, 92 (1978).
- 3. Д.В. Федосеев, Б.В. Дерягин. Коллоидный журнал, 41, 750 (1979).
- Н.В. Новиков, Д.В. Федосеев, А.А. Шульженко, Г.П. Богатырева. Синтез алмазов, Наукова думка, Киев, 1987.
- 5. Р.Г. Архипов, С.Д. Варфаламеев, С.В. Попова. ДАН СССР, 199, 55 (1971).
- 6. Л.Ф.Верещагин, Ю.Н. Рябинин, А.А Семерчан, Л.Ф. Лившиц, Б.П. Демяшкевич, В.С. Попова. ДАН СССР, **206**, 78, (1972).
- 7. В.И. Трофимов, С.М. Савинин. ДАН СССР, 246, 1115 (1979).
- 8. Д.В. Федосеев, Б.В.Дерягин, И.Г. Варшавская, А.С. Семенова-Тянь-Шанская,

Р.К. Чужко. Кристаллизация алмаза. Наука, Москва, 1984.

- 9. А.И. Прихна, А.А. Шульженко и др., Сверхтвердые материалы, 2, 3 (1980).
- А.Н. Авакян, А.Ш. Гюлхасян. XI-Международная конференция "Высокие давления в науке и технике", Киев, 36, 1987.
- 11. F.R. Bundy. Chem J. Phys., 38, 631 (1963).
- F.S.U. D'Haenens-Johansson, J.E. Batler, A.N. Katrusha. Reviews in Mineralogy and Geochemistry, 88, 689 (2022).
- 13. J. Collins. Masters tesis, Durhan University, 2023. https://etheses.dur.ac.uk/15103/.
- 14. В.Ф Бритун, А.В. Курдюмов. Физика и техника высоких давлений, 11, 34 (2001).
- 15. **А.В.Ножкина, А.И. Лаптев.** Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения, вып. 14, 208 (2015).
- 16. А.Н. Авагян, А.В. Овсепян, Г.Г. Арутюнян, М.С. Саканян. Известия НАН Армении, физика, **58**, 310, 2023.
- 17. Л.Д. Ландау, Е.М. Лифшиц. Теоретическая физика. том Х. Наука, Москва, 1979.
- 18. Л.Д. Ландау, Е.М. Лифшиц. Статистическая физика. Наука, Москва, 1979.
- 19. R. Berman, S.F. Simon. Phys. Chem., 59, 333 (1955).
- 20. F.P. Bundy. Science, 137, 1055 (1962).
- 21. Т.Д. Шермергор. Теория упругости микронеоднородных сред. Наука, Москва, 1977.
- 22. Ю.И. Головин, А.И. Тюрин. Природа, 1052(4), 60 (2003).
- 23. А.М. Молодец, А.А. Голышев, А.Н. Емельянов, Ю.М. Шульга, В.Е. Фортов. Письма в ЖЭТФ, 90, 263 (2014).
- 24. Е.В. Суслова, Е.А. Архипова, А.В. Калашник, А.С. Иванова, С.В. Савилов, Х. Ся, В.В. Лунин. Журнал физической химии, 93, 1551 (2019).
- 25. А.А. Ершов, А.В. Дмитриев, А.А. Ершова. Химия твердого топлива, 5, 43 (2023).
- 26. В.А. Грешняков, Е.А. Беленков. ЖЭТФ, 151, 310 (2017).
- 27. О.В. Кропотин, Ю.К. Машков, В.А. Егорова, М.В. Тренихин, Н.Н. Войтенко Омский научный вестник, 9, 19 (2006).
- 28. Н. Арлей, К. Бух. Введение в теорию вероятностей и математическую статистику. ИЛ, Москва, 1951.
- 29. П. Уиттл. Вероятность. Наука, Москва, 1982.
- 30. С.С. Букалов, Л.А Михалицин, Я.В. Зубавичус, Л.А. Лейтес, Ю.Н. Новиков. Российский химический журнал, 50, 83, 2006.
- 31. Е.С. Вентцель. Теория вероятностей. Высшая школа, Москва, 2006.
- 32. Г.В. Курдюмов. ДАН СССР, 6, 537 (1948).
- 33. **Б.И. Еременко.** Фазовые и структурные превращения в металлических сплавах. Металлургия, Москва, 1987.
- 34. **Л.Ф. Верещагин.** Избранные труды. Синтетические алмазы и гидроэкструзия-Москва, Наука, 1982.
- 35. Г.А. Малыгин. УФН, 171, 187 (2001).
- 36. **Г.А. Малыгин.** ФТТ, **61**, 1310 (2019).
- 37. Г.А. Хупджуа. Эффект памяти формы и сверхупругость. Изд. МГУ, Москва. 2014.
- 38. А.Н. Авагян, А.В. Овсепян, Г.Г. Арутюнян. Известия НАН Армении, Физика, 52, 321 (2007).
- 39. А.С. Козерук, Д.Л. Мальпика, М.И. Филонова, В.О. Кузнечик Наука и техника, 18, 416 (2019).
- **И.В. Хомская.** https://www.dissercat.com/content/fazovye-i-strukturnye-prevrashcheniyav-splavakh-na-osnove-zheleza-i-medi-pri-intensivnykh-u/read
- 41. **К.В. Владимирский.** ЖЭТФ, **17**, 530 (1947).

- 42. Г.А. Малыгин. Физика твердого тела, **50**, 1480 (2008).
- 43. И.Е. Костиков, Е.Е. Кузнецов, Н.М. Матченко. Естественные науки (Из-во Тульского Гос. Университета) **2**, 128 (2013).
- 44. О.В. Муравьева, А.В. Блинова, Л.А. Денисов, О.П. Богдан. Приборы и методы измерений, 15, 213 (2024).
- 45. Н.В. Новикова. Физические свойства алмаза. Наукова думка, Киев, 1987.
- 46. M. Thomas, H. Oh, R. Behoell, R. Schoell, S. House, M. Crespillo, K. Hattar, W. Windes, A. Haque. Materials, 17, 4530 (2024).

ԱԼՄԱՍՏԻ ՍԱՂՄԵՐԻ ԱՌԱՋԱՑՈՒՄԸ ԹԵՐՄՈԴԻՆԱՄԻԿ ԿԱՑՈՒՆՈՒԹՅԱՆ ՏԻՐՈՒՅԹՈՒՄ, ՈՐՊԵՍ ՄԱՐՏԵՆՍԻՏԱՅԻՆ ՏԻՊԻ ԳՐԱՖԻՏ-ԱԼՄԱՍՏ ԱՆՄԻՋԱԿԱՆ ՖԱՋԱՅԻՆ ԱՆՑՄԱՆ ԱՐԴՑՈՒՆՔ

Ա.Ն. ԱՎԱԳՅԱՆ, Գ.Գ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ, Ա.Վ. ՀՈՎՍԵՓՅԱՆ, Մ.Ս. ՍԱԿԱՆՅԱՆ, Ա.Կ. ԿՈՍՏԱՆՅԱՆ

Ստոխաստիկ մոտարկմամբ և հաշվի առնելով միկրո ոչ միատարը միջավայրի համար առաձգականության տեսության եզրակացությունները դիտարկված է բարձր ձնշման խցիկում (ԲՀԽ) ալմաստի սաղմերի առաջացումը որպես գրաֆիտ-ալմաստ անմիջական անցում։ Բերված են նկատառումներ, N սաղմերի թվի բաշխվածության վերաբերյալ՝ կախված P և T ինտենսիվ պարամետրերից։ Այն ենթադրությունը, որ աձեցրած բյուրեղների քանակը հավասար է առաջացած սաղմերի թվին, հնարավորություն է տվել Գաուսի բաշխումը օգտագործել ալմաստի ծագման պրոցեսի անալիզի համար։ Արդյունքում N սաղմերի համար ստացվել է անալիտիկ հավասարում, որը թույլ է տալիս բավարար ձշտությամբ որոշել N-ը կախված P և T չափվող մեծություններից։ Տրվել է ալմաստի սաղմի առաջացման արագության գնահատականը ըստ մարտենսիտային տիպի ֆազային փոխակերպման մոդելի։

FORMATION OF DIAMOND NUCLEI IN THE THERMODYNAMIC STABILITY REGION AS A RESULT OF A DIRECT MARTENSITIC-TYPE GRAPHITE-TO-DIAMOND PHASE TRANSITION

A.N. AVAGYAN, G.G. ARUTYUNYAN, A.V. HOVSEPYAN, M.S. SAKANYAN, A.K. KOSTANYAN

In a stochastic approximation, considering the conclusions of the elasticity theory of micrononhomogeneous media, a model of diamond nucleation in a high-pressure chamber (HPC) is examined as a result of a direct graphite-to-diamond transition. Considerations regarding the distribution of the number of nuclei N as a function of the intensive parameters P and T are presented. The assumption that the number of grown diamond crystals is equal to the number of formed diamond nuclei allowed the use of a normal (Gaussian) distribution to analyze the nucleation process. As a result, a probabilistic analytical expression for the number of nuclei was obtained, enabling an accurate determination of N depending on the value of the measured pressure (P_{meas}) and temperature (T_{meas}). The rate of diamond nucleus formation is estimated within the framework of a martensitic-type phase transition model.