Известия НАН Армении, Физика, т.60, №1, с.26–32 (2025) УДК 535.343 DOI: 10.54503/0002-3035-2025-60.1-26

РЕЗОНАНС ЭЛЕКТРОМАГНИТНО-ИНДУЦИРОВАННОЙ ПРОЗРАЧНОСТИ В СИГНАЛЕ СЕЛЕКТИВНОГО ОТРАЖЕНИЯ В ПАРАХ АТОМАРНОГО Cs

А.Д. САРГСЯН^{*}, Д.Е. БОСТАНДЖЯН, Д.Г. САРКИСЯН

Институт физических исследований НАН Армении, Аштарак, Армения

*e-mail: sarmeno@mail.ru

(Поступила в редакцию 14 января 2025 г.)

Исследован процесс электромагнитно-индуцированной прозрачности (EIT) с использованием двух разных пробных излучений в атомарных парах Cs. В первом случае пробное излучение – пропускание через наноячейку с образованием EIT_T; во втором – селективное отражение (SR) лазерного излучения от границы атомарные пары–диэлектрик (диэлектрик – окно наноячейки) с образованием EIT_{SR}. Для формирования EIT-резонансов использовались излучения от двух непрерывных узкополосных лазеров с $\lambda = 852$ нм и наноячейка с толщиной столба паров атомов в интервале 150–1500 нм. Проводилось сравнение формирования EIT-резонансов в 1- и 2-м случаях. Пробные излучения, содержащие EIT_T и EIT_{SR}-резонансы, распространяются в противоположных направлениях. Отмечается, что в ряде случаев формирование EIT-резонанса эффективнее проводить, используя SR-излучение. Зарегистрировано расщепление EIT_{SR}-резонанса в продольном магнитном поле на семь эквидистантных компонент, что позволяет проводить дистанционный мониторинг магнитного поля.

1. Введение

В последнее время возобновился интерес к процессам когерентного пленения населённости (в англоязычной литературе CPT-coherent population trapping) и связанного с ним явления электромагнитно-индуцированной прозрачности (в англоязычной литературе EIT – electromagnetically induced transparency), отчасти, благодаря разработке атомных часов в масштабе чипа, таких, как микроконструированные атомные часы [1-3]. Для некоторых потенциальных приложений, использующих эти эффекты, важно сильно уменьшить размеры используемых ячеек, содержащих атомарные пары для формирования СРТ- или ЕІТ-резонанса, сохраняя при этом их хорошие параметры. В работе [4] для формирования EITрезонанса использовались пробное и связывающее излучения от двух непрерывных узкополосных лазеров с $\lambda = 780$ нм и наноячейка с толщиной столба паров атомов L в интервале $150 \le L \le 1500$ нм. В качестве пробного излучения использовалось излучение селективного отражения (в англоязычной литературе SR – selective reflection) от границы паров атомов Rb и диэлектрика – окна наноячейки с парами атомов Rb. Эффекту SR лазерного излучения от границы газ (пары атомов щелочных металлов) и диэлектрик (окно спектроскопической ячейки сантиметровой длины, содержащей атомарный газ) посвящено большое число исследований, которые изложены в работах [4–12]. Однако позже было продемонстрировано существенное преимущество формирования SR-излучения при использовании спектроскопической ячейки нанометровой толщины, поскольку спектр SR-излучения имеет спектральную ширину ~10 МГц, что более чем на порядок уже, чем при использовании спектроскопической ячейки сантиметровой длины [13, 14]. Это важно для практических применений [10–15]. В работе [4] для формирования EIT-резонанса проводилось сравнение двух возможных реализаций: в первом случае в качестве пробного излучения использовалось пропускание через наноячейку, и при наличии связывающего излучения формировалось EIT_т; во втором случае использовалось излучение SR от Rb наноячейки, и при наличии связывающего излучения формировалось EIT_{SR}. Было показано, что при толщинах столба паров атомов Rb L < 200 нм, параметры EIT_{SR} лучше. Поскольку, при одинаковой температуре плотность атомов Cs в несколько раз превосходит плотность атомов Rb, то целесообразно проводить вышеотмеченные исследования в парах атомов Cs.

В работах [16, 17] показано, что в Л-системе для формирования EITрезонанса (в случае слабого пробного v_P излучения) необходимо выполнение условия

$$\Omega_{\rm c}^{2/}(\gamma_{\rm D} \gamma_{21}) >> 1, \tag{1}$$

где $\Omega_{\rm C}$ – частота Раби сильного связывающего v_C излучения, $\gamma_{\rm D}$ – доплеровское уширение ~ 350 МГц, γ_{21} содержит уширение, обусловленное дефазировкой когерентности нижних уровней Λ -системы, столкновительное уширение атома со стенками наноячейки, и времяпролетное уширение, обусловленное малым временем пролета атома через лазерный пучок диаметром 0.1 см. В нашем случае $\gamma_{21} \sim 2$ МГц [17]. Частота Раби $\Omega_{\rm C}$ определяется из простого выражения

$$\Omega_{\rm c}/2\pi = \gamma_{\rm 6P} \left(I/8 \right)^{1/2},\tag{2}$$

где *I* – интенсивность связывающего лазера в единицах мВт/см² [18], γ_{6P} – радиационная ширина уровня 6Р_{3/2}, равная 5.2 МГц. В нашем случае *I* = 2 Вт/см², Ω_c = 82 МГц и выражение (1) выполняется. Большая величина Ω_c приводит к уширению ЕІТ-резонанса

$$\gamma_{\rm EIT} = \Omega_{\rm c}^{2} / \gamma_{\rm D} + \gamma_{21} \tag{3}$$

и равна ~21 МГц [3]. Формула (3) верна при использовании когерентно-связанных пробного и связывающего излучений [3]. В нашем случае это не выполняется, поэтому γ_{EIT} может быть немного больше.

Целью настоящей работы было формирование и изучение EIT-резонансов в сигнале SR в парах атомов Cs в наноячейке с варьируемой толщиной L = 150-1500 нм. Как показано ниже, полученные результаты могут иметь как научный интерес, так и прикладное значение.

2. Эксперимент и обсуждение результатов

Фрагмент схемы эксперимента приведен на рис.1а. Использовались излучения двух непрерывных узкополосных диодных лазеров с внешним резонатором и с длинами волн 852 нм. Пробное v_P и связывающее излучения v_C имели спектральную ширину ~1 МГц (лазер ECDL с внешним резонатором [19]). Частота v_P сканировалась по переходам $4 \rightarrow 3', 4', 5'$ (здесь и далее верхние уровни отмечены штрихами), а частота связывающего излучения v_C находилась в резонансе с переходом $3 \rightarrow 4'$. Часть (10%) излучения лазера v_C направлялась на систему для

Рис.1. (а) Фрагмент экспериментальной схемы формирования ЕІТ-резонансов в Cs-наноячейке с участием SR пробного излучения $v_{P(SR)}$ и проходящего через наноячейку с v_{PT} (T-transmission) с одновременным участием v_C излучения (для простоты показано только первое окно наноячейки). Угол между v_P и связующим v_C излучениями составляет несколько мрад. (b) Диаграмма энергетических уровней Cs, D₂ линии, которые формируют ЕІТ-резонанс. Частота v_P сканировалась по переходам $4 \rightarrow 3' 4' 5'$, а частота v_C находилась в резонансе с переходом $3 \rightarrow 4'$

осуществления стабилизации его частоты методом DAVLL [20]. Соответствующие энергетические уровни Cs D₂-линии, которые формируют Л-систему и участвуют в формировании EIT-резонанса, показаны на рис.1b.

Процесс SR происходит от границы паров Cs и сапфирового окна (Al₂O₃) наноячейки [4], что формирует пробное излучение v_{p(SR)}. Второе сапфировое окно наноячейки, которое находится очень близко к первому окну (не показано, чтобы не усложнять рисунок), имеет внутреннюю поверхность, почти параллельную внутренней поверхности первого окна, то есть наноячейка ведет себя как низкодобротный эталон Фабри–Перо [21]. Расстояние между внутренними поверхностями окон, то есть величина зазора L, может плавно изменяться в диапазоне 30– 2000 нм (для этого обеспечивается слабая клиновидность зазора). Методика определения толщины зазора наноячейки приведена в [22]. Наноячейка помещалась в двухсекционный нагреватель для независимого нагрева окон и бокового отростка-резервуара, заполненного металлическим Сs. Для прохождения лазерного излучения нагреватель имел два отверстия диаметром 10 мм. Пробное v_P и связывающее v_C излучения совмещались и направлялись перпендикулярно окну Сѕ наноячейки. При вертикальном перемещении нагревателя с наноячейкой внутри лазерное излучение могло проходить через различные толщины зазора наноячейки. Пробное и связывающее излучения имели линейные и одинаковые поляризации.

Поэтому для блокировки связывающего излучения между пробным и связывающим излучениями делался небольшой угол (мрад). Как видно из рис.1а пробное v_P и связующее v_C излучения также могут быть совмещенными, распространяясь через наноячейку и образуя EIT_T-резонанс (индекс обозначает пропускание – transmission.) Таким образом при различных толщинах зазора наноячейки проводилось сравнение EIT_{SR} и EIT_T резонансов. Оптические излучения регистрировались фотодиодом FD-24 и 4-канальным осциллографом TDS2014B.

На рис.2 показаны два процесса ЕІТ в парах Cs в Λ-системе; в первом случае в качестве пробного излучения используется пропускание через наноячейку с образованием EIT_T, во втором – излучение SR с образованием EIT_{SR}. Температура наноячейки – 110°С, мощности пробного и связывающего излучений 0.1 и 20 мВт, соответственно. На рис.2а – толщина столба паров 1200 нм, кривая 1 – спектр проходящего пробного излучения при наличии связывающего излучения, который содержит формируемый EIT_T-резонанс, кривая 2 – спектр SR при наличии связывающего излучения содержит формируемый EIT_{SR}-резонанс, кривая 3 – продифференцированный (differentiated) спектр кривой 2, который содержит EIT^D_{SR} (спектральная ширина 35 МГц). На рис.2b толщина столба паров 800 нм, кривая 1 – спектр проходящего пробного излучения с EIT_T-резонансом, кривая 2 – спектр SR с EIT_{SR}-резонансом, кривая 3 – продифференцированный спектр кривой 2, который содержит EIT^D_{SR}.

На рис.3 толщина столба паров 200 нм, кривая *1* – спектр SR при наличии связывающего излучения, который содержит формируемый EIT_{SR}-резонанс, кривая *2* – продифференцированный спектр кривой *1*, который содержит EIT^D_{SR} (спектральная ширина 80 МГц).

На рис.4 приведена зависимость спектральной ширины EIT_{SR}-резонанса

Рис.2. Два процесса ЕІТ в парах атомов Cs: (а) толщина столба паров L=1200 нм, кривая 1 – спектр пропускания с ЕІТ_т-резонансом, кривая 2 – спектр селективного отражения с формируемым ЕІТ_{SR}-резонансом, кривая 3 – продифференцированный спектр кривой 2; (b) L=800 нм, кривая 1 – спектр пропускания, кривая 2 – спектр SR с ЕІТ_{SR}-резонансом, кривая 3 – продифференцированный спектр кривой 2.

Рис.3. Спектры SR и его производная DSR при толщине ячейки L = 200 нм. Кривая l – спектр SR с EIT_{SR}-резонансом, кривая 2 – продифференцированный спектр кривой l.

 $\gamma_{\rm EITSR}$ от толщины зазора *L* наноячейки; наблюдается зависимость $\gamma_{\rm EITSR} \sim 1/L$.Отметим, что при больших атомных плотностях целесообразней формировать EIT_{SR}-резонанс, поскольку SR-излучение формируется тонким столбом паров атомов $L \sim \lambda/2\pi$ [7] (где λ – длина волны излучения резонансного с атомным переходом), и поглощение излучений $v_{P(SR)}$ и v_{C} невелико, в то время как EIT_т-резонанс формируется по всей длине ячейки, что вызывает большее поглощение излучений v_{PT} и v_{C} .

Для формирования магнитного поля использовалась система из 3-х катушек Гельмгольца, внутрь которой помещалась наноячейка, содержащая пары атомов Cs. Катушки Гельмгольца позволяли обнулить лабораторное магнитное поле и создать магнитное поле в нужном направлении. На рис.5 к наноячейке приложено продольное магнитное поле, направленное вдоль распространения лазерного излучения. Магнитное поле B = 70 Гс. Регистрировалась производная спектра от SR. Для того, чтобы расщепление было хорошо видно, мощность связывающего лазера увеличивалась до 30 мВт. Толщина ячейки L = 1000 нм. В этом случае образуются семь эквидистантных EIT_{SR}-резонансов с шириной линии 25 МГц. Начальным и конечным уровнями являются основные уровни $F_g = 3$ и $F_g =$

Рис.4. Зависимость спектральной ширины EIT_{SR} -резонанса от толщины зазора L наноячейки. Пунктирная кривая— аппроксимация функцией ~1/L. Черные квадраты — экспериментальные результаты.

Рис.5. (а) Расщепление EIT_{SR}-резонанса в продольном магнитном поле B = 70 Гс на семь компонент с частотным расстоянием между соседними компонентами 65.1 МГц. Толщина ячейки L = 1000 нм. (b) Вставка показывает образование семи Λ -систем.

4, которые расщепляются на семь и девять зеемановских подуровней, соответственно. Поскольку частотный сдвиг зеемановских подуровней $F_g = 3$ и $F_g = 4$ составляет – 0.465 и + 0.465 МГц/(Гс), соответственно [17], и они смещены в противоположных направлениях, то частотное расстояние между двумя соседними EIT_{SR}-резонансами при магнитной индукции B = 70 Гс составляет 2 × 70 Гс × 0.465 МГц/Гс = 65.1 МГц. Отметим, что эквидистантное расположение частот EIT_{SR}-резонансов сохраняется вплоть до магнитных полей $B \ll B_0 = A_{\rm hfs}/\mu_{\rm B}$, где $A_{\rm hfs}$ – константа магнитного дипольного взаимодействия, а $\mu_{\rm B}$ — магнетон Бора [23–25], и для атома Cs B₀ ~1.6 кГс. Для теоретического определения частотных сдвигов нижних уровней $F_g = 3$, 4 при $B > B_0$ используются формулы Брейта–Раби [23]. Отметим, что EIT_{SR} можно использовать для дистанционного мониторинга величины магнитного поля.

3. Заключение

Для формирования EIT-резонанса использовались пробное и связывающее излучения от двух непрерывных узкополосных лазеров с $\lambda = 852$ нм, а также наноячейка с толщиной столба паров атомов в интервале 150-1500 нм. EITрезонанс исследован для двух случаев: в качестве пробного излучения использовалось излучение, проходящее через наноячейку, и вместе с связывающим излучением v_{C} , формировался EIT_T-резонанс; в качестве пробного излучения использовалось излучение vP(SR) селективного отражения лазерного излучения от наноячейки, и при наличии связывающего излучения v_C формировался EIT_{SR}резонанс. Пробные излучения, содержащие ЕІТ_т и ЕІТ_{sr}-резонансы, распространялись в противоположных направлениях. Исследовалась зависимость спектральной ширины EIT_{sr}- резонанса γ_{EITSR} при толщинах столба паров L: 1200, 800 и 200 нм; наблюдается зависимость _{УЕІТЅR} ~1/L. Зарегистрировано расщепление EIT_{SR}- резонанса в продольном магнитном поле на семь эквидистантных компонент. Поскольку пробное излучение, которое содержит EIT_{SR}, распространяется в противоположном направлении падающему излучению, EIT_{SR} можно использовать для дистанционного мониторинга магнитного поля. Заметим, что при использовании когерентно связанных пробного и связывающего лазерных излучений [1–3], спектральная ширина EIT-резонансов может быть значительно меньше приведенных выше величин.

Работа выполнена при финансовой поддержке Комитета по науке PA в рамках научных проектов N 22IRF-06 и N 1-6/23-I/IPR.

ЛИТЕРАТУРА

- 1. M. Fleischhauer, A. Imamoglu, J.P. Marangos. Rev. Mod. Phys., 77, 633 (2005).
- 2. J. Kitching. Appl. Phys. Rev., 5, 031302 (2018).
- 3. R. Finkelstein, S. Bali, O. Firstenberg, I. Novikova. New J. Phys., 25, 035001 (2023).
- 4. A. Sargsyan, A. Gogyan, D. Sarkisyan. JQSRT, 329, 109197 (2024).
- 5. T.A. Vartanyan, D.L. Lin. Phys. Rev. A, 51, 1959 (1995).
- 6. T.A. Vartanyan, A. Weis. Phys. Rev. A, 63, 063813 (2001).
- 7. D. Bloch, M. Ducloy. Advances in Atomic, Molecular, and Optical Physics. Elsevier, 2005.
- 8. V.A. Sautenkov, H. Li, M.A. Gubin, Y.V. Rostovtsev, M.O. Scully. Laser Phys., 21, 153

(2011).

- 9. D.N. Khachatryan, G.G. Grigoryan. J. Contemp. Phys., 54,136 (2019).
- 10. A.A. Bobrov, S.A. Saakyan, V.A. Sautenkov, B.B. Zelener. JETP Lett., 114, 524 (2021).
- V.A. Sautenkov, S.A. Saakyan, A.A. Bobrov, E.V. Vilshanskaya, B.B. Zelener. Bull. Lebedev Phys. Inst., 50, S599 (2023).
- V. Sautenkov, S. Saakyan, A. Bobrov, L. Khalutornykh, B. Zelener. JQSRT, 328, 109153 (2024).
- A. Sargsyan, A. Papoyan, I.G. Hughes, C.S. Adams, D. Sarkisyan. Opt. Lett., 42, 1476 (2017).
- 14. A.D. Sargsyan, D.H. Sarkisyan. J. Contemp. Phys., 59, 233 (2024).
- W. Demtroder. Laser Spectroscopy: Basic Concepts and Instrumentation. Springer, Berlin, 2004.
- 16. J. Gea-Banacloche, Y.Q. Li, S.Z. Jin, M. Xiao. Phys. Rev. A, 51, 576 (1995).
- A. Sargsyan, Y. Pashayan-Leroy, C. Leroy, S. Cartaleva, D. Sarkisyan. J. Mod. Optics, 62, 769 (2015).
- A.J. Krmpot, M.M. Mijailovic, B.M. Panic, D.V. Lukic, A.G. Kovacevic, D.V. Pantelic, B.M. Jelenkovic. Opt. Express, 13, 1448 (2005).
- 19. V. Vassiliev, S. Zibrov, V. Velichansky. Rev. Sci. Instrum., 77, 013102 (2006).
- 20. V.V. Yashchuk, D. Budker, J.R. Davis. Rev. Sci. Instrum., 71, 341 (2000).
- 21. G. Dutier, S. Saltiel, D. Bloch, M. Ducloy. J. Opt. Soc. Am. B, 20, 793 (2003).
- 22. A. Sargsyan, A. Amiryan, S. Cartalev, D. Sarkisyan. JETP, 125, 43 (2017).
- D.A. Steck. Alkali D line data, available from: steck.us/alkalidata/ https://steck.us/alkalidata/cesiumnumbers.pdf.
- 24. B.A. Olsen, B. Patton, Y.Y. Jau, W. Happer. Phys. Rev. A, 84, 063410 (2011).
- M.A. Zentile, J. Keaveney, L. Weller, D.J. Whiting, C.S. Adams, I.G. Hughes. Computer Physics Commun., 189, 162 (2015).

RESONANCE OF ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN THE SELECTIVE REFLECTION SIGNAL OF ATOMIC Cs VAPOR

A.D. SARGSYAN, D.E. BOSTANJYAN, D.H. SARKISYAN

The process of electromagnetically induced transparency (EIT) was investigated using two different probe radiations in Cs atomic vapors: In the first case probe radiation– transmission through a nanocell (NC) with the formation of EIT_T; in the second–selective reflection (SR) of laser radiation from the boundary of the atom-dielectric vapor (dielectric is nanocell window) with the formation of EIT_{SR}. To form EIT resonances, we used two continuous narrow-band lasers with $\lambda = 852$ nm and a nanocell with an atomic vapor column thickness in the range of 150–1500 nm. A comparison of the formation of EIT resonance in the 1-st and 2-nd cases was carried out. Probe radiation containing EIT_T and EIT_{SR}-resonances propagates in opposite directions. It is noted that in a few cases, the formation of EIT resonance is more effective using SR radiation. The splitting of the EIT_{SR}-resonance in the longitudinal magnetic field into seven equidistant components was recorded, which allows remote monitoring of the magnetic field.