Известия НАН Армении, Математика, том 60, н. 1, 2025, стр. 25 – 44.

О МАТРИЧНЫХ ОПЕРАТОРАХ \mathcal{L} -ВИНЕРА-ХОПФА В СЛУЧАЕ БЕЗОТРАЖАТЕЛЬНОГО ПОТЕНЦИАЛА

Г. А. КИРАКОСЯН

Институт Математики, Национальная Академия Наук Армении E-mail: grigor.kirakosyan.99@gmail.com

Аннотация. В работе рассматриваются матричные операторы \mathcal{L} -Винера-Хопфа порожденные безотражательным потенциалом и действующие в лебеговых пространствах с весом Макенхаупта. Эти операторы определяются заменой преобразования Фурье в стандартном определении Винера-Хопфа на спектральное преобразование оператора Штурма-Лиувилля с безотражательным потенциалом. Получены критерий фредгольмовости и формула для индекса в случае кусочно-непрерывного символа.

MSC2020 number: 47G10; 47B35.

Ключевые слова: безотражательный потенциал; матричный оператор \mathcal{L} -Винера-Хопфа; оператор Фредгольма.

1. Постановка задачи

Пусть λ_k , m_k $(k=1,\ldots,N)$ положительные числа, причём $\lambda_i \neq \lambda_j$, при $i \neq j$, а функции $\varphi_1,\ldots,\varphi_N$ однозначно определяются системой линейных уравнений

$$(1.1) \varphi_k(x) + \sum_{s=1}^N m_k m_s \frac{e^{-(\lambda_k + \lambda_s)x}}{\lambda_k + \lambda_s} \varphi_s(x) = m_k e^{-\lambda_k x}, k = 1, \dots, N, x \in \mathbb{R}.$$

Определим также функции $t(\lambda)$, $u^{\mp}(x,\lambda)$, $x,\lambda \in \mathbb{R}$:

$$t(\lambda) = \prod_{k=1}^{N} \frac{\lambda + i\lambda_k}{\lambda - i\lambda_k},$$

$$u^{-}(x, \lambda) = t(\lambda)e^{i\lambda x} \left(1 - \sum_{k=1}^{N} \frac{m_k e^{-\lambda_k x}}{\lambda_k - i\lambda} \varphi_k(x)\right),$$

$$u^{+}(x, \lambda) = e^{-i\lambda x} \left(1 - \sum_{k=1}^{N} \frac{m_k e^{-\lambda_k x}}{\lambda_k + i\lambda} \varphi_k(x)\right).$$

При N=0 будем считать, что $t(\lambda)=1,$ $u^{\mp}(x,\lambda)=e^{\pm ix\lambda}.$ 25

Рассмотрим интегралы

$$(U_{\mp}y)(\lambda) = \int_{-\infty}^{\infty} u^{\mp}(x,\lambda) y(x) dx, \quad \lambda \in \mathbb{R}.$$

Как известно (более подробно см. [1, 2]) эти интегралы сходятся по норме $L_2(\mathbb{R})$ и определяют ограниченные операторы $U_{\mp}\colon L_2(\mathbb{R}) \to L_2(\mathbb{R})$.

Функции u^{\mp} и операторы U_{\pm} тесно связаны с действующим в $L_{2}(\mathbb{R})$ самосопряжённым дифференциальным оператором \mathcal{L} порождённым дифференциальным выражением

$$(\ell x)(x) = -y''(x) + v(x)y(x), \quad x \in \mathbb{R}$$

в случае когда v является безотражательным потенциалом (более подробно см. [1, секция 3], а также [3, 4, 5, 6]).

Ниже для линейного пространства X через X^n (соответственно через $X^{n\times n}$) будем обозначать множество n-мерных столбцов (соответственно $n\times n$ матриц). Для оператора A, действующего из линейного пространства X в линейное пространство Y, оператор

$$diag(A, ..., A) \colon X^n \to Y^n$$

также будем обозначать через A, т.е. действие оператора A на X^n будем понимать покомпонентно. Условимся через m(a) обозначать действующий в функциональных пространствах оператор умножения на матриц-функцию a:

$$(m(a)y)(x) = a(x) y(x),$$

а через $J: L_2(\mathbb{R}) \to L_2(\mathbb{R})$ оператор действующий по формуле (Jy)(x) = y(-x).

Для банаховой алгебры \mathfrak{A} , через $G\mathfrak{A}$ будем обозначать группу обратимых элементов.

Пусть E либо \mathbb{R} , либо $\mathbb{R}_{\pm} := \{\pm x > 0 \colon x \in \mathbb{R}\}$, а $A_p(E)$, 1 множество весов на <math>E удовлетворяющих условию A_p :

$$\sup \left(\frac{1}{|I|} \int_{I} w(x)^{p} dx\right)^{1/p} \left(\frac{1}{|I|} \int_{I} w(x)^{-q} dx\right)^{1/q} < \infty,$$

где I пробегает все ограниченные интервалы E, |I| длина интервала и q=p/(p-1). Через $L_p(E,w), 1 будем обозначать лебегово пространство с нормой$

$$||f||_{p,w} = \left(\int_{E} |f(x)|^{p} w(x)^{p} dx\right)^{1/p}.$$

Под спектральным преобразованием оператора \mathcal{L} мы понимаем оператор

$$U := m(\chi_+)U_- + m(\chi_-)JU_+ : L_2(\mathbb{R}) \to L_2(\mathbb{R}).$$

Оператор U удовлетворяет равенствам

$$U^*U = I - P, \quad UU^* = I,$$

где I – единичный оператор, а P – ортогональный оператор на собственное подпространство $span\{\varphi_1,\ldots,\varphi_N\}$ оператора \mathcal{L} . Кроме того на всюду плотном в $L_2(\mathbb{R})$ множестве имеет место равенство $U\mathcal{L}U^*=m(\lambda^2)$ (см. [1,2,6]).

При v=0 (соответствующему случаю N=0) оператор $U=U_{\pm}$ совпадает с преобразованием Фурье $F\colon L_2(\mathbb{R})\to L_2(\mathbb{R})$:

$$(Fy)(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\lambda x} y(x) dx.$$

Функцию $a \in L_{\infty}(\mathbb{R})$ назовём U-мультипликатором в $L_p(\mathbb{R}, w)$ если для каждого $y \in L_2(\mathbb{R}) \cap L_p(\mathbb{R})$ функция $U^*m(a)Uy$ также принадлежит $L_2(\mathbb{R}) \cap L_p(\mathbb{R}, w)$ и кроме того при некотором постоянном c > 0 неравенство

$$||U^*m(a)Uy|| \leqslant c||y||$$

имеет место одновременно для всех $y \in L_2(\mathbb{R}) \cap L_p(\mathbb{R},w)$. Оператор $U^*m(a)U$ допускает непрерывное продолжение до действующего на $L_p(\mathbb{R},w)$ ограниченного оператора, который мы будем обозначать через $W^0_{\mathcal{L}}(a)$ и называть оператором \mathcal{L} -свёртки на $L_p(\mathbb{R},w)$ с символом a. Множество U-мультипликаторов будем обозначать через $\mathcal{M}_{p,w,\mathcal{L}}$. В случае $a=(a_{ij})\in \mathcal{M}_{p,w,\mathcal{L}}^{n\times n}$ под оператором \mathcal{L} -свертки мы понимаем оператор

$$W^0_{\mathcal{L}}(a) = \left(W^0_{\mathcal{L}}(a_{ij})\right) : L^n_p(\mathbb{R}, w) \to L^n_p(\mathbb{R}, w),$$

здесь, как и в дальнейшем, через $L_p^n(\mathbb{R}, w)$ будем обозначать алгебру $(L_p(\mathbb{R}, w))^n$ (см. определение пространства X^n для банахова пространства X).

Определим операторы $\pi^0_{\pm}: L_p(\mathbb{R}_{\pm}, w) \to L_p(\mathbb{R}, w), \ \pi_{\pm}: L_p(\mathbb{R}, w) \to L_p(\mathbb{R}_{\pm}, w)$ по формулам $(\pi_{\pm}y)(x) = y(x), \ x \in \mathbb{R}_{\pm}$

$$\left(\pi_+^0 y\right)(x) = \left\{ \begin{array}{cc} y(x) & x \in \mathbb{R}_+ \\ 0 & x \in \mathbb{R}_- \end{array} \right., \qquad \left(\pi_-^0 y\right)(x) = \left\{ \begin{array}{cc} 0 & x \in \mathbb{R}_+ \\ y(x) & x \in \mathbb{R}_- \end{array} \right..$$

Пусть $a \in \mathcal{M}_{p,w,\mathcal{L}}^{n \times n}$. Оператор $W_{\mathcal{L}}(a) := \pi_+ W_{\mathcal{L}}^0(a) \pi_+^0 \colon L_p^n(\mathbb{R}_+, w) \to L_p^n(\mathbb{R}_+, w),$ $1 будем называть оператором <math>\mathcal{L}$ -Винера-Хопфа с символом a.

Поскольку при v = 0, оператор U совпадает с преобразованием Фурье F, то операторы $W^0_{\mathcal{L}}(a)$ и $W_{\mathcal{L}}(a)$ в этом случае совпадают, соответственно определёнными в весовых пространствах, оператором свёртки и оператором Винера-Хопфа (см. [7]). По этой причине в этом случае во всех обозначениях мы опускаем индекс \mathcal{L} и будем пользоваться стандартными обозначениями $\mathcal{M}_{p,w}, \mathcal{M}_{p,w}^{n \times n}, W^0(a)$, W(a). Множество мульпликаторов $\mathfrak{M}_{p,w}$ (см. [7]) является банаховой алгеброй с нормой

$$||a||_{\mathfrak{M}_{p,w}} := ||W^0(a)||_{B(L_p(\mathbb{R},w))}.$$

Далее через $PC = PC(\dot{\mathbb{R}})$ будем обозначать алгебру всех кусочно непрерывных функций на $\dot{\mathbb{R}}=\mathbb{R}\cup\{\infty\}$, т.е. функций имеющих в каждой точке $x_0\in\dot{\mathbb{R}}$ пределы $a(x_0-0):=\lim_{x\to x_0-0}a(x),\ a(x_0+0):=\lim_{x\to x_0+0}a(x),\$ причём $a(\infty\mp0):=a(\pm\infty)=a(\pm\infty)=a(\pm\infty)$ $\lim_{x \to \pm} a(x).$

Заметим, что функции из PC имеющие ограниченную вариацию V(a) принадлежат $\mathcal{M}_{p,w}$ (см. [7]) и $\mathcal{M}_{p,w,\mathcal{L}}$ (см. [2, теорема 5.1]).

Далее через $PC_{p,w}$ (соответственно $C_{p,w}$) обозначим замыкание в $\mathfrak{M}_{p,w}$ множества кусочно непрерывных функций имеющих ограниченную вариацию и не более чем конечное число скачков (соответственно непрерывных на \mathbb{R} функций).

Напомним, что линейный ограниченный оператор $A: X \to Y$, где X, Y банаховы пространства, называется фредгольмовым, если его образ замкнут и конечномерны его ядро $\ker A := \{x \in X : Ax = 0\}$ и коядро $\operatorname{coker} A := Y/\operatorname{Im} A$.

В данной работе исследуется задача фредгольмовости матричного оператора \mathcal{L} -Винера-Хопфа $W_{\mathcal{L}}(a)\colon L_p^n(\mathbb{R}_+,w)\to L_p^n(\mathbb{R}_+,w)$ в случае, когда $a\in PC_{p,w}^{n\times n}.$

Как и в скалярном случае исследование фредгольмовости оператора $W_{\mathcal{L}}(a)$ к исследованию фредгольмовости оператора Винера-Хопфа $W(a)\colon L^n_p(\mathbb{R}_+,w)\to L^n_p(\mathbb{R}_+,w)$. О возможности исследования этого оператора говорится в работе [7] стр. 331. К сожалению в этой работе не приведены условия фредгольмовости и формула для индекса оператора W(a). По этой причине мы вынуждены исследовать достаточно подробно фредгольмовость этого оператора (см. секции 2–6).

Критерий фредгольмовости и формула для индекса оператора W(a) в случае $n=1,\ w=1$ получен в [8], а в случае $n=1,\ w\in A_p$ в [9]. Для оператора $W_{\mathcal{L}}(a)$ аналогичные результаты получены в случае $n=1, w \in A_p$ в [2]. Случай более общих потенциалов w=1, n=1, p=2 рассмотрен в [1]. Аналогичные

результаты для матричного оператора W(a) в случае степенных весов получены в [10].

2. Формулировка основной теоремы

Пусть $\nu \in (0,1), z_1, z_2 \in \mathbb{C}$. Множество

$$\mathcal{A}(z_1, z_2; \nu) := \left\{ \frac{z_2 e^{2\pi(x+i\nu)} - z_1}{e^{2\pi(x+i\nu)} - 1} , \ x \in \mathbb{R} \right\} \cup \{z_1, z_2\}$$

является дугой окружности соединяющей точки z_1 и z_2 и содержащая концевые точки z_1 и z_2 . Множество $\mathcal{A}(z,z;\nu)$ вырождается в точку $\{z\}$. Множество $\mathcal{A}(z_1,z_2;1/2)$ совпадает с отрезком соединяющий точки z_1 и z_2 . В случае $\nu>1/2$ из точек $\mathcal{A}(z_1,z_2;\nu)$ отличных от z_1 и z_2 отрезок $[z_1,z_2]$ виден под углом $2\pi(1-\nu)$ и при переходе от точки z_1 к точке z_2 отрезок остаётся справа. В случае $\nu<1/2$, из отличных от z_1 и z_2 точек $\mathcal{A}(z_1,z_2;\nu)$ отрезок виден под углом $2\pi\nu$ и при переходе от точки z_1 к z_2 отрезок остаётся слева.

Заметим, что

$$\mathcal{A}(z_1, z_2; \nu) = \{ (1 - \mu)z_1 + \mu z_2 \colon \mu \in \mathcal{A}(0, 1; \nu) \}.$$

Рассмотрим также множество

$$\mathcal{H}(z_1, z_2; \nu_1, \nu_2) = \bigcup_{\nu \in [\nu_1, \nu_2]} \mathcal{A}(z_1, z_2; \nu)$$

называемое рогом между z_1 и z_2 из $\mathbb C$ и определяемое числами ν_1 , ν_2 , $0 < \nu_1 \leqslant \nu_2 < 1$ (см. [7]).

Каждое из множеств (см. [7, 9])

$$I_{\xi}(p, w) = \left\{ \mu \in \mathbb{R} \colon \left| \frac{x - \xi}{x - i} \right|^{\mu} w(x) \in A_p \right\}, \quad \xi \in \mathbb{R}$$
$$I_{\infty}(p, w) = \left\{ \mu \in \mathbb{R} \colon \left| x - i \right|^{-\mu} w(x) \in A_p \right\}$$

является открытым интервалом длиной не превышающей единицу и содержащий 0

$$I_{\xi}(p, w) = \left(-\nu_{\xi}^{-}(p, w), 1 - \nu_{\xi}^{+}(p, w)\right), \ \xi \in \dot{\mathbb{R}}$$

где $0 < \nu_{\xi}^{-}(p, w) \leqslant \nu_{\xi}^{+}(p, w) < 1.$

Рассмотрим также числа $\nu_0^0 = \frac{1}{2}(\nu_0^- + \nu_0^+), \ \nu_\infty^0 = \frac{1}{2}(\nu_\infty^- + \nu_\infty^+).$

Пусть $a \in PC^{n \times n}$. Через $\gamma_{p,w}(a)$ мы обозначим замкнутую непрерывную кривую дополняющую существенный образ функции $\det a$ кривыми

$$\det[(1-\mu)a(x-0) + \mu a(x+0)],$$
29

 $\mu \in \mathcal{A}(0,1;\nu_{\infty}^0)$ при $x \in \mathbb{R}$ и $\mu \in \mathcal{A}(0,1;\nu_0^0)$ при $x = \infty$, соединяющими точки $\det a(x-0)$ и $\det a(x+0)$ в каждой точке разрыва $x \in \dot{\mathbb{R}}$. Ориентация \mathbb{R} от $-\infty$ до $+\infty$ и вышеуказанных кривых от $\mu = 0$ к $\mu = 1$ порождает естественную ориентацию кривой $\gamma_{p,w}(a)$ которая совпадает с множеством

$$\bigcup_{x \in \mathbb{R}} \left\{ \det[(1-\mu)a(x-0) + \mu a(x+0)] \colon \mu \in \mathcal{A}\left(0,1;\nu_{\infty}^{0}\right) \right\} \bigcup \left\{ \det[(1-\mu)a(+\infty) + \mu a(-\infty)] \colon \mu \in \mathcal{A}\left(0,1;\nu_{0}^{0}\right) \right\}.$$

В случае, когда $0 \notin \gamma_{p,w}(a)$ корректно определено количество оборотов, обозначаемое далее через $\operatorname{wind}_{p,w}a$, вокруг нулевой точки при обходе кривой $\gamma_{p,w}(a)$ в направлении ее естественной ориентации (см. [7]). Основным результатом настоящей работы является следующая

Теорема 2.1. Пусть $a \in PC_{p,w}^{n \times n}$. Тогда оператор $W_{\mathcal{L}}(a)$ фегдольмов в пространстве $L_p^n(\mathbb{R}_+, w)$ тогда и только тогда, когда

$$\det[(1-\mu)a(x-0) + \mu a(x+0)] \neq 0 \quad npu \ x \in \mathbb{R} \quad u \ \mu \in \mathcal{H}\left(0, 1; \nu_{\infty}^{-}, \nu_{\infty}^{+}\right) \quad u$$
$$\det[(1-\mu)a(+\infty) + \mu a(-\infty)] \neq 0 \quad npu \ \mu \in \mathcal{H}\left(0, 1; \nu_{0}^{-}, \nu_{0}^{+}\right).$$

В случае выполнения этих условий

Ind
$$W_{\mathcal{L}}(a) = -\text{wind}_{n,w}a$$
.

Окончательное доказательство этой теоремы будет приведено в секциях 5, 6. В секциях 3, 4 приведены результаты необходимые для доказательства основной теоремы.

3. Связь операторов
$$W_{\mathcal{L}}(a)$$
 с $W(a)$

С помощью непрерывной на \mathbb{R}_+ функции ϕ и удовлетворяющей там неравенству $|\phi(x)| < ce^{-\lambda x}, \ x \in \mathbb{R}_+$, где λ и c положительные постоянные, построим ограниченные операторы

$$N_{\phi,1}^+, N_{\phi,2}^+ \colon L_p(\mathbb{R}_+) \to L_p(\mathbb{R}_+),$$

действующие по формулам

(3.1)
$$\left(N_{\phi,1}^{+}y\right)(x) = \int_{x}^{\infty} \phi(\sigma) y(\sigma) d\sigma, \quad \left(N_{\phi,2}^{+}y\right)(x) = \int_{0}^{x} \phi(\sigma) y(\sigma) d\sigma,$$

Определим так называемый оператор преобразования по формуле

$$I + \mathcal{K}_{+} = I - \sum_{k=1}^{N} m(\varphi_{k}) N_{\psi_{k},1}^{+} \colon L_{p}(\mathbb{R}_{+}) \to L_{p}(\mathbb{R}_{+}),$$

а также оператор

$$I - \Gamma_{+} = I - \sum_{k=1}^{N} m(\psi_{k}) N_{\varphi_{k},2}^{+} \colon L_{p}(\mathbb{R}_{+}) \to L_{p}(\mathbb{R}_{+}),$$

где $\varphi_k, \ k=1,\ldots,N$ определяются из (1.1), а $\psi_k(x):=m_k e^{-\lambda_k x}, \ k=1,\ldots,N,$ $x\in\mathbb{R}.$

Точно так же как в [2] можно установить ограниченность и обратимость этих операторов в $L_p^n(\mathbb{R}_+, w)$, при $w \in A_p(\mathbb{R})$ а также связь между операторами $W_{\mathcal{L}}(a)$ и W(a), при $a \in \mathcal{M}_{p,w}^{n \times n}$, $w \in A_p(\mathbb{R})$. Именно, справедливы следующие результаты.

Лемма 3.1. $w \in A_p(\mathbb{R}), 1 . Тогда операторы <math>I + \mathcal{K}_+, I - \Gamma_+$ ограничены в пространствах $L_p^n(\mathbb{R}_+, w)$. Кроме того эти операторы обратимы и справедливы равенства

$$(I + \mathcal{K}_{+})^{-1} = I + \sum_{k=1}^{N} m(\psi_{k}) N_{\varphi_{k},1}^{+},$$

$$(I - \Gamma_+)^{-1} = I + \sum_{k=1}^{N} m(\varphi_k) N_{\psi_k, 2}^+$$

Теорема 3.1. Пусть $w \in A_p(\mathbb{R})$, $a \in \mathcal{M}_{p,w}^{n \times n}$. Тогда $a \in \mathcal{M}_{p,w,\mathcal{L}}^{n \times n}$ и в пространстве $L_p^n(\mathbb{R}_+,w)$ справедливо тождество

$$W_{\mathcal{L}}(a) = (I + \mathcal{K}_+)W(a)(I - \Gamma_+).$$

Последнее даёт эквивалентность фредгольмовых свойств операторов $W_{\mathcal{L}}(a)$ и W(a) в пространствах $L_p^n(\mathbb{R}_+,w)$. Следовательно, для доказательства основной теоремы достаточно убедиться в её справедливости для оператора W(a).

Пусть $\mathcal{M}_{p,w}^{n\times n}$. Определим операторы

$$E = \begin{pmatrix} -\pi_+^0 & m(\chi_-) + m(\chi_+)W^0(a) \\ I & -\pi_+W^0(a - E_n) \end{pmatrix} : L_p^n(\mathbb{R}_+, w) \oplus L_p^n(\mathbb{R}, w) \to L_p^n(\mathbb{R}, w) \oplus L_p^n(\mathbb{R}_+, w)$$

$$F = \begin{pmatrix} \pi_+ W^0(a - E_n) & I \\ m(\chi_-) + m(\chi_+) W^0(a) & \pi_+^0 \end{pmatrix} :$$

$$L_p^n(\mathbb{R}, w) \oplus L_p^n(\mathbb{R}_+, w) \to L_p^n(\mathbb{R}_+, w) \oplus L_p^n(\mathbb{R}, w),$$

где E_n единичная матрица размера n. Нетрудно убедиться, что эти операторы обратимы, причём

$$E^{-1} = \left(\begin{array}{cc} \pi_+ W^0(a - E_n) & W(a) \\ I & \pi_+^0 \end{array} \right), \quad F^{-1} = \left(\begin{array}{cc} -\pi_+^0 & I \\ W(a) & -\pi_+^0 W^0(a - E_n) \end{array} \right),$$

а также имеет место равенство

(3.2)
$$\begin{pmatrix} m(\chi_{-}) + m(\chi_{+})W^{0}(a) & 0 \\ 0 & I \end{pmatrix} = E \begin{pmatrix} W(a) & 0 \\ 0 & I \end{pmatrix} F$$

Это доказывается непосредственной проверкой записав оператор $m(\chi_-) + m(\chi_+) W^0(a)$ в виде $I + \pi_+^0 \pi_+ W^0(a - E_n)$.

Из равенства (3.2) и обратимости E, F следует, что оператор W(a) (а следовательно и $W_{\mathcal{L}}(a)$) фредгольмов в $L_p^n(\mathbb{R}_+, w)$ тогда и только тогда когда оператор $m(\chi_-) + m(\chi_+)W^0(a)$ фредгольмов в $L_p^n(\mathbb{R}, w)$.

4. Локальный принцип

Пусть \mathfrak{A} — банахова алгебра с единицей. Ограниченное подмножество $\mathfrak{M} \subset \mathfrak{M}$ называется локализирующим классом, если $0 \notin \mathfrak{M}$ и для любых элементов $B_1, B_2 \in \mathfrak{M}$ существует третий $B \in \mathfrak{M}$, что $B_j B = B B_j = B, j = 1, 2$. Система $\{\mathfrak{M}\}_{\tau \in T}$ локализирующих классов называется покрывающей, если из каждого множества $\{B_{\tau}\}_{\tau \in T}, B_{\tau} \in \mathfrak{M}_{\tau}$, можно выделить конечное число, сумма которых обратима в алгебре \mathfrak{A} (см. [11]).

Пусть $\{\mathfrak{M}\}_{\tau\in T}$ покрывающая система локализирующих классов в \mathfrak{A} и положим $\mathcal{B}=\cup\{\mathfrak{M}_{\tau}\colon \tau\in T\}$. Комутант $\mathrm{Com}\,\mathcal{B}$ замкнутая подалгебра в \mathfrak{A} . Для $\tau\in T$ определим

$$\mathfrak{Z}_{\tau} = \left\{ A \in \operatorname{Com} \mathfrak{B} \colon \inf_{B \in \mathfrak{M}_{\tau}} \|AB\| = \inf_{B \in \mathfrak{M}_{\tau}} \|BA\| = 0. \right\}$$

Можно показать, что \mathfrak{Z}_{τ} замкнутый, двухсторонний идеал в Com \mathfrak{B} . Для $A \in \text{Com } \mathfrak{B}$ через A_{τ} обозначим смежный класс в $\text{Com } \mathfrak{B}/\mathfrak{Z}_{\tau}$ содержащий элемент A.

Теорема 4.1 (Локальный принцип Гохберга и Крупника [11]). Элемент $A \in \text{Сот } \mathbb{B}$ обратим в \mathfrak{A} тогда и только тогда, когда A_{τ} обратим в $\text{Сот } \mathbb{B}/\mathfrak{Z}_{\tau}$ для всех $\tau \in T$.

Теорему 4.1 будем применять в случае алгебры Калкина

 $\mathfrak{A} = \mathcal{B}\left(L_p^n(\mathbb{R}_+,w)\right)/\mathcal{K}\left(L_p^n(\mathbb{R}_+,w)\right)$, где $\mathcal{B}\left(L_p^n(\mathbb{R}_+,w)\right)$ – банахова алгебра всех линейных ограниченных операторов на $L_p^n(\mathbb{R}_+,w)$, а $\mathcal{K}\left(L_p^n(\mathbb{R}_+,w)\right)$ – идеал компактных операторов на $L_p^n(\mathbb{R}_+,w)$, который кратко будем обозначать через \mathcal{K} .

В качестве кандидатов на локализационных классов в $\mathfrak A$ возьмём семейство $\{\mathfrak M_{y,\eta}\},\ (y,\eta)\in (\dot{\mathbb R}\times\dot{\mathbb R})\setminus (\mathbb R\times\mathbb R)=T.$ Множество $\mathfrak M_{y,\eta}$ состоит из смежных классов $m(v)W^0(u)+\mathcal K$ таких, что $u=diag(\underbrace{u^0,\dots,u^0}_n),\ v=diag(\underbrace{v^0,\dots,v^0}_n),$ где $u^0,v^0\in C(\dot{\mathbb R})$ кусочно линейные с ограниченной вариацией и u^0 (соответственно v^0) тождественно равно 1 в некоторой открытой окрестности y (соответственно η) и тождественно равно 0 вне некоторой открытой окрестности y (соответственно η).

Сначала покажем, что каждый из множеств $\mathfrak{M}_{y,\eta}$ является локализирующим классом. Пусть $m(v_i)W^0(u_i)+\mathfrak{K}\in\mathfrak{M}_{y,\eta},\ i=1,2,$ для некоторой $(y,\eta)\in T.$ Для любого $m(v)W^0(u)+\mathfrak{K}\in\mathfrak{M}_{y,\eta}$ имеем

$$(m(v_i)W^0(u_i) + \mathcal{K}) (m(v)W^0(u) + \mathcal{K}) = m(v_i)W^0(u_i)m(v)W^0(u) + \mathcal{K} =$$

$$= m(v_iv)W^0(u_iu) + m(v_i) [W^0(u_i)m(v) - m(v)W^0(u_i)] W^0(u) + \mathcal{K} =$$

$$= m(v_iv)W^0(u_iu) + \mathcal{K}.$$

Последнее равенство следует из следующего известного факта (см. [7, 8]).

Пемма 4.1. Пусть хотя бы одна из матриц функций а или в диагональна. Тогда, если $a \in C^n(\dot{\mathbb{R}})$, в является функцией ограниченной вариации $(Var(b) < \infty)$ либо $a \in PC^{n \times n}$, $Var(b) < \infty$, $b \in C^n(\dot{\mathbb{R}})$, то оператор $m(a)W^0(b) - W^0(b)m(a)$ компактен в $L_n^n(\mathbb{R}, w)$.

Очевидно, что $v_iv=vv_i,\ u_iu=uu_i$ и что функции u,v можно выбрать таким образом, что $v_iv=v,\ u_iu=u.$ Система локализирующих классов $\{\mathfrak{M}_{y,\eta}\}$ является покрывающей, т.е. что оператор $\sum_{i=1}^n m(u_i)W^0(v_i)$ фредгольмов для заданных

$$u_j = diag(u_j^0, \dots, u_j^0), \quad v_j = diag(v_j^0, \dots, v_j^0), \quad \sum_{j=1}^n u_j^0 \geqslant 1, \quad \sum_{j=1}^n v_j^0 \geqslant 1.$$

Этот факт очевидным образом сводится к скалярному случаю рассмотренному в [12].

Аналогичными рассуждениями, из леммы 4.1 следует, что если хотя бы одна из матриц-функций c или a диагональна, $b,c\in PC^{n\times n},\ a\in PC^{n\times n}_{p,w}$, то $m(b)+m(c)W^0(a)+\mathcal{K}\in \mathrm{Com}\,\mathbb{B}$. Тогда элемент $\left[m(b)+m(c)W^0(a)+\mathcal{K}\right]_{(y,\eta)}$ принадлежит алгебре $\mathrm{Com}\,\mathbb{B}/\mathfrak{Z}_{y,\eta}$, которую кратко обозначим через $\left[m(b)+m(c)W^0(a)\right]_{y,\eta}^\pi$.

Используя локальный принцип Гохберга-Крупника заключаем, что для доказательства фредгольмовости оператора $m(\chi_-) + m(\chi_+) W^0(a)$ (а, следовательно, и для W(a), $W_{\mathcal{L}}(a)$) достаточно исследовать обратимость элементов $\left[m(\chi_{-})+m(\chi_{+})W^{0}(a)\right]_{u,n}^{\pi}$ в алгебре $\operatorname{Com} \mathbb{B}/\mathfrak{Z}_{u,n}$ для всех $(y,\eta)\in T$.

5. Доказательство критерий фредгольмовости $W_{\mathcal{L}}(a)$

Пусть $\sigma_{\zeta}(x) = -\mathrm{sgn}(x-\zeta)E_n$, $\lambda_{\zeta}(x) = e^{i\zeta x}E_n$, где $x,\zeta \in \mathbb{R}$, Имеет место равенство

$$m(b) + m(c)W^{0}(\sigma_{\zeta}) = m(\lambda_{\zeta}^{-1})(m(b) + m(c)S)m(\lambda_{\zeta}),$$

где $b,c \in PC^{n\times n}$, а S сингулярный интегральный оператор на оси (см. например [7] либо [11]). Пользуясь стандартной техникой сингулярных интегральных операторов (см. например [9, лемма 3.4] и [7, теорема 16.21]) можем утверждать справедливость следующего утверждения.

Теорема 5.1. Пусть $b, c \in PC^{n \times n}$, $\zeta \in \mathbb{R}$ и предположим, что $b-c \in GL_{\infty}^{n \times n}(\mathbb{R})$. Тогда оператор $m(b)+m(c)W^0(\sigma_{\zeta})$ фредгольмов в пространстве $L_p(\mathbb{R},w)$ тогда и только тогда, когда

$$\det[(1-\mu)d(x-0) + \mu d(x+0)] \neq 0$$

$$npu \ \mu \in \mathcal{H}(0,1; \nu_x^-(p,w), \nu_x^+(p,w)), \ x \in \dot{\mathbb{R}}, \ \epsilon \partial e \ d = (b-c)^{-1}(b+c).$$

Доказательства следующих лемм в скалярном случае приведены в работе [9] (см. [9, лемма 4.6, лемма 5.1]). Сохраняя методологию этой работы перенесем эти результаты на матричный случай.

Лемма 5.1. Пусть $b, c \in PC^{n \times n}$, $b-c, b+c \in GL^n_{\infty}(\mathbb{R})$ и $d=d_{b,c}=(b-c)^{-1}(b+c)$ и предположим, что $y, \eta, \zeta \in \mathbb{R}$. Тогда

- (1) $\left[m(b) + m(c)W^{0}(\sigma_{\zeta})\right]_{y,\infty}^{\pi}$ обратим тогда и только тогда, когда $\det[(1-\mu)d(y-0) + \mu d(y+0)] \neq 0$, при $\mu \in \mathcal{H}\left(0,1; \nu_{y}^{-}(p,w), \nu_{y}^{+}(p,w)\right);$
- $(2) \ \left[m(b)+m(c)W^0(\sigma_\zeta)\right]_{\infty,\infty}^\pi \ \text{обратим;}$
- (3) $\left[m(b)+m(c)W^0(\sigma_\zeta)\right]_{\infty,\eta}^{\pi}$ обратим, если $\eta \neq \zeta$;
- (4) $[m(b) + m(c)W^{0}(\sigma_{\zeta})]_{\infty,\zeta}^{\pi''}$ обратим тогда и только тогда, когда $\det[(1 \mu)d(+\infty) + \mu d(-\infty)] \neq 0$, при $\mu \in \mathfrak{H}(0,1;\nu_{\infty}^{-}(p,w),\nu_{\infty}^{+}(p,w))$.

Доказательство. (1) Имеем

$$\left[m(b) + m(c)W^{0}(\sigma_{\zeta})\right]_{y,\infty}^{\pi} = \left[m(b_{y}) + m(c_{y})W^{0}(\sigma_{\zeta})\right]_{y,\infty}^{\pi}$$

где $b_y, c_y \in PC^{n \times n}$ такие, что $b_y(y \pm 0) = b(y \pm 0), c_y(y \pm 0) = c(y \pm 0)$. Функции b_y, c_y выберем так, чтобы они были непрерывными на $\dot{\mathbb{R}} \setminus \{y\}$, а также $b_y \pm c_y \in GPC^{n \times n}$ и $\det d_{b_y,c_y}(x) \neq 0$ при $x \in \dot{\mathbb{R}} \setminus \{y\}$.

Пусть $\det[(1-\mu)d(y-0)+\mu d(y+0)] \neq 0$ при $\mu \in \mathcal{H}(0,1;\nu_y^-(p,w),\nu_y^+(p,w))$. Тогда из теоремы 5.1 заключаем, что оператор $m(b_y)+m(c_y)W^0(\sigma_\zeta)$ фредгольмовый. В силу теоремы 4.1 элемент $\left[m(b_y)+m(c_y)W^0(\sigma_\zeta)\right]_{y,\infty}^\pi$ обратим.

Теперь предположим, что $\det[(1-\mu)d(x-0)+\mu d(x+0)]=0$ при некотором $\mu\in\mathcal{H}(0,1;\nu_y^-(p,w),\nu_y^+(p,w)),$ но элемент $\left[m(b_y)+m(c_y)W^0(\sigma_\zeta)\right]_{y,\infty}^\pi$ обратим. Для $x\in\dot{\mathbb{R}}\setminus\{y\}$ имеем

$$\left[m(b_y) + m(c_y)W^0(\sigma_\zeta)\right]_{x=\infty}^{\pi} = \left[m(b_y(x)) + m(c_y(x))W^0(\sigma_\zeta)\right]_{x=\infty}^{\pi},$$

а так как оператор $m(b_y(x)) + m(c_y(x))W^0(\sigma_\zeta)$ (с постоянными матрицами $b_y(x)$, $c_y(x)$) фредгольмов по теореме 5.1, то в силу теоремы 4.1 элемент $\left[m(b_y(x)) + m(c_y(x))W^0(\sigma_\zeta)\right]_{x,\infty}^{\pi}$ обратим. Также, для $\eta \in \mathbb{R}$ имеем

$$\left[m(b_y) + m(c_y)W^0(\sigma_\zeta)\right]_{\infty,\eta}^{\pi} = \left[m(b_y(\infty)) + m(c_y(\infty))W^0(\sigma_\zeta)\right]_{\infty,\eta}^{\pi}.$$

Повторяя вышеуказанные рассуждения получим обратимость и для элемента $\left[m(b_y) + m(c_y)W^0(\sigma_\zeta)\right]_{\infty}^{\pi}$.

Следовательно получили, что элемент $[m(b_y) + m(c_y)W^0(\sigma_\zeta)]_{x,\eta}^{\pi}$ обратим для всех $(x,\eta) \in T$ и в силу теоремы 4.1 заключаем, что оператор $m(b_y) + m(c_y)W^0(\sigma_\zeta)$ фредгольмов, что противоречит нашему предположению с учетом теоремы 5.1.

Доказательство (2), (3) без всяких изменений проводится также как и в скалярном случае (см. [9, лемма 5.1]).

(4) Имеем

$$\left[m(b) + m(c)W^{0}(\sigma_{\zeta})\right]_{\infty,\zeta}^{\pi} = \left[m(b_{\infty}) + m(c_{\infty})W^{0}(\sigma_{\zeta})\right]_{\infty,\zeta}^{\pi},$$

где b_{∞} , c_{∞} непрерывны на \mathbb{R} такие, что $b_{\infty}(\pm \infty) = b(\pm \infty)$, $c_{\infty}(\pm \infty) = c(\pm \infty)$, $b_{\infty} \pm c_{\infty} \in GPC^{n \times n}$, $\det d_{b_{\infty},c_{\infty}}(x) \neq 0$ при $x \in \mathbb{R}$.

Пусть $\det[(1-\mu)d(+\infty)+\mu d(-\infty)] \neq 0$ при $\mu \in \mathcal{H}(0,1;\nu_{\infty}^{-}(p,w),\nu_{\infty}^{+}(p,w))$. Тогда оператор $m(b_{\infty})+m(c_{\infty})W^{0}(\sigma_{\zeta})$ фредгольмов по теореме 5.1. Следовательно, в силу теоремы 4.1 элемент $\left[m(b_{\infty})+m(c_{\infty})W^{0}(\sigma_{\zeta})\right]_{\infty,\zeta}^{\pi}$ обратим.

Предположим обратное, пусть $\det[(1-\mu)d(+\infty) + \mu d(-\infty)] = 0$ при некотором $\mu \in \mathcal{H}(0,1;\nu_{\infty}^{-}(p,w),\nu_{\infty}^{+}(p,w))$, но элемент $[m(b_{\infty}) + m(c_{\infty})W^{0}(\sigma_{\zeta})]_{\infty,\zeta}^{\pi}$ обратим. При $y \in \mathbb{R}$, имеем

$$\left[m(b_{\infty}) + m(c_{\infty})W^{0}(\sigma_{\zeta})\right]_{y,\infty}^{\pi} = \left[m(b_{\infty}(y)) + m(c_{\infty}(y))W^{0}(\sigma_{\zeta})\right]_{y,\infty}^{\pi},$$

но оператор $m(b_{\infty}(y))+m(c_{\infty}(y))W^0(\sigma_{\zeta})$ (с постоянными матрицами $b_{\infty}(y),c_{\infty}(y)$) фредгольмов в силу теоремы 5.1 и, следовательно, в силу теоремы 4.1 элемент $\left[m(b_{\infty})+m(c_{\infty})W^0(\sigma_{\zeta})\right]_{y,\infty}^{\pi}$ обратим. В случае $\eta\in\dot{\mathbb{R}}\setminus\{\zeta\}$ имеем обратимость

элемента $[m(b_{\infty}) + m(c_{\infty})W^0(\sigma_{\zeta})]_{\infty,\eta}^{\pi}$ в силу пунктам (2), (3). Следовательно, в силу теоремы 4.1 из обратимости элементов $[m(b_{\infty}) + m(c_{\infty})W^0(\sigma_{\zeta})]_{y,\eta}^{\pi}$ для любых $(y,\eta) \in T$ заключаем фредгольмовость оператора $m(b_{\infty}) + m(c_{\infty})W^0(\sigma_{\zeta})$, что противоречит нашему предположению с учетом теоремы 5.1.

Лемма 5.2. Пусть $a \in PC_{p,w}^{n \times n} \cap GL_{\infty}^{n}(\mathbb{R}), y, \eta \in \mathbb{R}$. Тогда

- (1) $[m(\chi_{-}) + m(\chi_{+})W^{0}(a)]_{y,\infty}^{\pi}$ обратим если $y \neq 0$;
- (2) $[m(\chi_{-}) + m(\chi_{+})W^{0}(a)]_{0,\infty}^{\tilde{\pi}}$ обратим тогда и только тогда, когда $\det[(1-\mu)a(+\infty) + \mu a(-\infty)] \neq 0$, при $\mu \in \mathcal{H}(0,1;\nu_{0}^{-}(p,w),\nu_{0}^{+}(p,w));$
- (3) $\left[m(\chi_{-})+m(\chi_{+})W^{0}(a)\right]_{\infty,\infty}^{\pi}$ обратим;
- (4) $[m(\chi_{-}) + m(\chi_{+})W^{0}(a)]_{\infty,\eta}^{\pi}$ обратим тогда и только тогда, когда $\det[(1-\mu)a(\eta-0) + \mu a(\eta+0)] \neq 0$, при $\mu \in \mathcal{H}(0,1;\nu_{\infty}^{-}(p,w),\nu_{\infty}^{+}(p,w))$.

Доказательство. (1) При y < 0 имеет место равенство

$$[m(\chi_{-}) + m(\chi_{+})W^{0}(a)]_{y,\infty}^{\pi} = [I]_{y,\infty}^{\pi},$$

а при y > 0 имеем

$$\begin{split} \left[m(\chi_{-}) + m(\chi_{+}) W^{0}(a) \right]_{y,\infty}^{\pi} &= \left[W^{0} \left(a(-\infty) \chi_{-} + a(+\infty) \chi_{+} \right) \right]_{y,\infty}^{\pi} = \\ &= \left[m \left(\frac{a(-\infty) + a(+\infty)}{2} \right) + m \left(\frac{a(-\infty) - a(+\infty)}{2} \right) W^{0}(\sigma_{0}) \right]_{y,\infty}^{\pi} = \\ &= \left[m(b) + m(c) W^{0}(\sigma_{0}) \right]_{y,\infty}^{\pi}. \end{split}$$

Очевидно, что $\left[I\right]_{y,\infty}^{\pi}$ обратимый и поскольку

$$\det [(b-c)^{-1}(b+c)] = \det [(a(+\infty))^{-1}a(-\infty)] \neq 0,$$

то из леммы 5.1 (1) заключаем, что элемент $\left[m(\chi_-) + m(\chi_+)W^0(a)\right]_{u,\infty}^{\pi}$ обратим.

(2) Имеем

$$[m(\chi_{-}) + m(\chi_{+})W^{0}(a)]_{0,\infty}^{\pi} =$$

$$= [m(\chi_{-}) + m(\chi_{+})W^{0}(a(-\infty)\chi_{-} + a(+\infty)\chi_{+})]_{0,\infty}^{\pi} =$$

$$= [m(b) + m(c)W^{0}(\sigma_{0})]_{0,\infty}^{\pi}.$$

Поскольку

$$((b-c)^{-1}(b+c))(x) = \begin{cases} E_n, & \text{для } x < 0 \\ (a(+\infty))^{-1}a(-\infty), & \text{для } x > 0 \end{cases}$$

то из леммы 5.1 (1) заключаем, что элемент $\left[m(\chi_-)+m(\chi_+)W^0(a)\right]_{0,\infty}^\pi$ обратим тогда и только тогда, когда

$$\det[(1-\mu)E_n + \mu(a(+\infty))^{-1}a(-\infty)] \neq 0, \text{ при } \mu \in \mathcal{H}\left(0,1;\nu_0^-(p,w),\nu_0^+(p,w)\right).$$

Последнее умножая на $\det a(+\infty) \neq 0$ получим требуемое.

(3) Имеем

$$\begin{split} \left[m(\chi_{-}) + m(\chi_{+}) W^{0}(a) \right]_{\infty,\infty}^{\pi} &= \\ &= \left[m(\chi_{-}) + m(\chi_{+}) W^{0} \left(a(-\infty)\chi_{-} + a(+\infty)\chi_{+} \right) \right]_{\infty,\infty}^{\pi} &= \\ &= \left[m(b) + m(c) W^{0}(\sigma_{0}) \right]_{\infty,\infty}^{\pi}. \end{split}$$

что обратимо в силу леммы 5.1(2).

(4) Пусть χ_{η}^- и χ_{η}^+ характеристические функции множеств $(-\infty, \eta)$ и $(\eta, +\infty)$ соответственно. Тогда

$$\begin{split} \left[m(\chi_{-}) + m(\chi_{+}) W^{0}(a) \right]_{\infty,\eta}^{\pi} &= \\ &= \left[m(\chi_{-}) + m(\chi_{+}) W^{0} \left(a(\eta - 0) \chi_{\eta}^{-} + a(\eta + 0) \chi_{\eta}^{+} \right) \right]_{\infty,\eta}^{\pi} &= \\ &= \left[m(\chi_{-}) + m \left(\frac{a(\eta - 0) + a(\eta + 0)}{2} \right) + m \left(\frac{a(\eta - 0) - a(\eta + 0)}{2} \right) W^{0}(\sigma_{\eta}) \right]_{\infty,\eta}^{\pi} &= \\ &= \left[m(b) + m(c) W^{0}(\sigma_{\eta}) \right]_{\infty,\eta}^{\pi}. \end{split}$$

Поскольку

$$((b-c)^{-1}(b+c))(-\infty) = E_n, ((b-c)^{-1}(b+c))(+\infty) = (a(\eta+0))^{-1}a(\eta-0),$$

то из леммы 5.1 (4) закючаем, что элемент $\left[m(\chi_-)+m(\chi_+)W^0(a)\right]_{\infty,\eta}^\pi$ обратим тогда и только тогда, когда

$$\det\left[\left(1-\mu\right)\left(a(\eta+0)\right)^{-1}a(\eta-0)+\mu E_{n}\right]\neq0,\ \ \text{при}\ \ \mu\in\mathcal{H}(0,1;\nu_{\infty}^{-}(p,w),\nu_{\infty}^{+}(p,w)).$$

Умножая на $\det a(\eta + 0) \neq 0$ получим требуемое.

Принимая во внимание вышеуказанный факт о фредгольмовой эквивалентности операторов $W_{\mathcal{L}}(a)$ и $m(\chi_-) + m(\chi_+) W^0(a)$ и локальный принцип Гохберга-Крупника, из леммы 5.2 получаем первую часть теоремы 2.1, а именно критерий фредгольмовости оператора $W_{\mathcal{L}}(a)$.

6. Формула индекса

Пусть $a \in \mathbb{M}_{p,w}^{n \times n}$. Операторы Ганкеля $H(a), \, \tilde{H}(a)$ с символом a определим

$$H(a) = \pi_{+}W^{0}(a)\pi_{-}^{0}J \colon L_{p}^{n}(\mathbb{R}_{+}, w) \to L_{p}^{n}(\mathbb{R}_{+}, w),$$
$$\tilde{H}(a) = J\pi_{-}W^{0}(a)\pi_{+}^{0} \colon L_{p}^{n}(\mathbb{R}_{+}, w) \to L_{p}^{n}(\mathbb{R}_{+}, w).$$

Нетрудно убедиться (см. [7, предложение 2.10]), что имеет место следующее равенство

$$W(ab) = W(a)W(b) + H(a)\tilde{H}(b), \quad \text{где } a, b \in \mathcal{M}_{p,w}^{n \times n}$$

Предложение 6.1. Пусть $c \in C^{n \times n}(\dot{\mathbb{R}})$, тогда операторы Ганкеля H(c), $\tilde{H}(c)$ компактны.

Доказательство. Пусть $1 и <math>w \in A_p(\mathbb{R}_+)$. Теорема 2.31 из [13] утверждает, что существует $\varepsilon_0 > 0$ такое, что $w^{1+\gamma} \in A_{p_1}(\mathbb{R}_+)$, как только

$$|\gamma| < \varepsilon_0, \quad |p - p_1| < \varepsilon_0 \quad \text{и} \quad 1 < p_1 < \infty.$$

Пусть $0 < \theta < 1, \ \gamma = \frac{1-\theta}{\theta}$ и $p_1 = p(1+\varepsilon)$. Выберем θ таким образом, чтобы имело место равенство

(6.3)
$$\frac{1}{p} = \frac{1-\theta}{2} + \frac{\theta}{p(1+\varepsilon)}$$

и одновременно были выполнены условия (6.2). Такой выбор возможен поскольку из (6.3) следует, что

$$\varepsilon = \frac{(1-\theta)(p-2)}{2-p(1-\theta)}$$

и при $\theta \to 1$, имеем $\gamma \to 0$, $\varepsilon \to 0$.

Пусть весовая функция w_1 определена равенством $w^p = w_1^{p_1 \frac{p\theta}{p_1}} = w_1^{p\theta}$, т.е. $w_1 = w^{\frac{1}{\theta}} = w^{1+\frac{1-\theta}{\theta}} = w^{1+\gamma}$ и поэтому в силу вышеуказанной теоремы $w_1 \in A_{p_1}(\mathbb{R}_+)$. В силу интерполяционной теоремы Стейна-Вейса (см. [14]) $L_p(\mathbb{R}_+, w)$ является интерполяционным пространством с показателем θ , между парой пространств $L_2(\mathbb{R}_+)$ и $L_{p_1}(\mathbb{R}, w_1)$. Ганкелевы операторы H(c) и $\tilde{H}(c)$ в случае $c \in C(\dot{\mathbb{R}})$ компактны как операторы действующие из $L_2(\mathbb{R}_+)$ в $L_2(\mathbb{R}_+)$ (см. [7]) и ограничены как операторы действующие из $L_{p_1}(\mathbb{R}_+, w)$ в $L_{p_1}(\mathbb{R}_+, w)$. В силу обобщённой теоремы Красносельского (см. [15]) эти операторы компактны и как операторы действующие из $L_p(\mathbb{R}_+, w)$ в $L_p(\mathbb{R}_+, w)$.

Используя равенство (6.1) из предложения 6.1 вытекает

Следствие 6.1. Пусть $a, b \in \mathcal{M}_{p,w}^{n \times n}$ и хотя бы один из функций a, b принадлежит $C^{n \times n}(\dot{\mathbb{R}})$, то оператор W(ab) - W(a)W(b) компактный.

Перейдём теперь к доказательству формулы индекса. Учитывая теорему 3.1 формулу индекса достаточно доказать для W(a).

Пусть E подмножество $PC_{p,w}^{n\times n}$ состоящее из матриц-функций компоненты которых являются функциями ограниченной вариации и имеющих конечное число разрывов. Из определения $PC_{p,w}^{n\times n}$ следует существование последовательности $a_n, a_n \in E$, такого что $\|W(a_n) - W(a)\| \underset{n\to\infty}{\longrightarrow} 0$. Поскольку индекс оператора является непрерывной функцией, то без потери общности мы можем считать, что $a \in E$. Из условий фредгольмовости имеем, что $a \in GPC^{n\times n}$. Тогда, как известно (см. [16, лемма 2.2]), матрица a может быть представлена в виде

$$a = b \varphi c$$
,

где $b,c \in GC^{n\times n}(\dot{\mathbb{R}}), \ \varphi \in GPC^{n\times n}$ и φ верхтреугольная матрица вида

$$\varphi = \left(\begin{array}{ccc} \varphi_1 & & * \\ & \ddots & \\ 0 & & \varphi_n \end{array} \right)$$

при этом матриц-функции b, φ, c могут быть выбраны так, чтобы их компоненты были функциями ограниченной вариации. Тогда в силу обобщенного неравенства Стечкина (см. [7, теорема 17.1]) матриц-функции являются мультипликаторами, т.е. $b, \varphi, c \in \mathcal{M}_{p,w}^{n \times n}$.

В силу следствия 6.1 оператор $W(a)-W(b)W(\varphi)W(c)\colon L_p^n(\mathbb{R}_+,w)\to L_p^n(\mathbb{R}_+,w)$ является компактным. Из критерия фредгольмовости и из того, что $b,c\in GC^{n\times n}(\dot{\mathbb{R}})$ имеем, что операторы $W(b),\,W(c)$ фредгольмовы. Кроме того

$$0 \neq \det[(1-\mu)a(x-0) + \mu a(x+0)] = \det[(1-\mu)b(x)\varphi(x-0)c(x) + \mu b(x)\varphi(x+0)c(x)] = \det b(x) \cdot \det[(1-\mu)\varphi(x-0) + \mu \varphi(x+0)] \det c(x),$$

где при $x \in \mathbb{R}$, $\mu \in \mathcal{H}(0,1;\nu_{\infty}^{-}(p,w),\nu_{\infty}^{+}(p,w))$, а при $x = \infty$, $\mu \in \mathcal{H}(0,1;\nu_{0}^{-}(p,w),\nu_{0}^{+}(p,w))$.

Следовательно, так как $\det b(x) \neq 0$, $\det c(x) \neq 0$, то в силу уже доказанного критерия фредгольмовости оператор $W(\varphi)$ также является фредгольмовым и $\det[(1-\mu)\varphi(x-0) + \mu\varphi(x+0)] \neq 0$. В силу треугольной структуры φ

$$\prod_{i=1}^{n} [(1-\mu)\varphi_i(x-0) + \mu\varphi_i(x+0)] \neq 0 \implies$$

$$\implies [(1-\mu)\varphi_i(x-0) + \mu\varphi_i(x+0)] \neq 0, \quad i = 1, \dots, N,$$

где при $x \in \mathbb{R}$, $\mu \in \mathcal{H}(0,1;\nu_{\infty}^{-}(p,w),\nu_{\infty}^{+}(p,w))$, а при $x=\infty$, $\mu \in \mathcal{H}(0,1;\nu_{0}^{-}(p,w),\nu_{0}^{+}(p,w))$.

Г. А. КИРАКОСЯН

Используя критерий фредгольмовости для оператора Винера-Хопфа со скалярным символом (см. [9]) получаем, что операторы $W(\varphi_i)$, $i=1,\ldots,n$ фредгольмовы. Следовательно

(6.4)
$$\operatorname{Ind} W(a) = \operatorname{Ind} W(b) + \sum_{j=1}^{n} \operatorname{Ind} W(\varphi_j) + \operatorname{Ind} W(c).$$

Для каждой φ_j обозначим через $\varphi_j^\#$ кривую, которая получается из существенного образа кривой φ_j путем соединения точек $\varphi_j(x-0)$, $\varphi_j(x+0)$ дугами вида

$$(1-\mu)\varphi_i(x-0) + \mu\varphi_i(x+0),$$

где $\mu \in \mathcal{A}(0,1;\nu_{\infty}^{0})$ при $x \in \mathbb{R}$ и $\mu \in \mathcal{A}(0,1;\nu_{0}^{0})$ при $x = \infty$.

Из [9, теорема 5.2] следует, что

$$\operatorname{Ind} W(\varphi_j) = -\operatorname{wind} \varphi_j^{\#}.$$

Поэтому

$$\sum_{j=1}^{n} \operatorname{Ind} W(\varphi_j) = \sum_{j=1}^{n} -\operatorname{wind} \varphi_j^{\#} = -\operatorname{wind} \prod_{j=1}^{n} \varphi_j^{\#} = -\operatorname{wind} \varphi^{\#},$$

где $\varphi^{\#}$ кривая полученная из образа $\det \varphi$ добавлением кривыми вида

$$\det[(1-\mu)\varphi(x-0) + \mu\varphi(x+0)],$$

где $\mu \in \mathcal{A}(0,1;\nu_{\infty}^{0})$ при $x \in \mathbb{R}$ и $\mu \in \mathcal{A}(0,1;\nu_{0}^{0})$ при $x = \infty$, в точках разрыва функции $\det \varphi$. Таким образом $\operatorname{Ind} W(\varphi) = -\operatorname{wind} \varphi^{\#}$.

Для непрерывных b, c имеем, что (см. [7, теорема 17.10])

$$\operatorname{Ind} W(b) = -\operatorname{wind} \det b, \quad \operatorname{Ind} W(c) = -\operatorname{wind} \det c.$$

Следовательно из (6.4) имеем $\operatorname{Ind} W(a) = -\operatorname{wind} \det b - \operatorname{wind} \varphi^{\#} - \operatorname{wind} \det c = -\operatorname{wind}_{p,w} a$. Теорема 2.1 доказана.

7. Следствия из основной теоремы

Обозначим через $\lambda_j(x), x \in \dot{\mathbb{R}}, j = 1, 2, \dots, n$ собственные значения матрицы $a^{-1}(x-0)a(x+0)$. Легко видеть, что при $x \in \dot{\mathbb{R}}$ условие

$$\det[(1-\mu)a(x-0) + \mu a(x+0)] \neq 0, \quad \mu \in \mathcal{A}(0,1;\nu)$$

эквивалентно условиям

det
$$a(x \pm 0) \neq 0$$
,
 $\frac{\mu}{\mu - 1} \lambda_j(x) \neq 1$, $j = 1, ..., n, \mu \in \mathcal{A}(0, 1; \nu) \setminus \{0, 1\}$,

или, что тоже самое

det
$$a(x \pm 0) \neq 0$$
,
 $\lambda_j(x) \neq \frac{\mu - 1}{\mu}, \quad j = 1, \dots, n, \ \mu \in \mathcal{A}(0, 1; \nu) \setminus \{0, 1\}.$

С учетом того, что для $\mu \in \mathcal{A}(0,1;\nu) \setminus \{0,1\}$, $\frac{\mu}{\mu-1} = e^{i2\pi\nu}\zeta$, $\zeta \in (0,\infty)$ из теоремы 2.1 несложно убедиться в справедливости следующей теоремы.

Теорема 7.1. Пусть $a \in PC_{p,w}^{n \times n}$. Тогда следующие три утверждения эквивалентны

- (1) Оператор $W_{\mathcal{L}}(a)$ фредгольмов;
- (2) $\det a(x\pm 0) \neq 0$ das $x \in \dot{\mathbb{R}}$,

$$\nu + \frac{1}{2\pi} \arg \lambda_j(x) \notin \mathbb{Z} \quad \text{для } x \in \mathbb{R}, \ \nu \in [\nu_\infty^-, \nu_\infty^+], \ j = 1, \dots, n,$$
$$\nu + \frac{1}{2\pi} \arg \lambda_j(\infty) \notin \mathbb{Z} \quad \text{для } \nu \in [\nu_0^-, \nu_0^+], \ j = 1, \dots, n;$$

(3) $\det a(x \pm 0) \neq 0$ dua $x \in \mathbb{R}$,

$$\lambda_j(x) \notin \{re^{-i2\pi\nu} : r \in (0,\infty), \ \nu \in [\nu_\infty^-, \nu_\infty^+]\} \ \text{ dist } x \in \mathbb{R},$$

$$\lambda_j(\infty) \notin \{re^{-i2\pi\nu} : r \in (0,\infty), \ \nu \in [\nu_0^-, \nu_0^+]\}.$$

Пусть $\lambda \in \mathbb{C} \setminus \{0\}$, $0 < \nu < 1$, функция $g \colon \mathcal{A}(0,1,\nu) \to \mathbb{C}$ определена равенством $g(\mu) = (1-\mu) + \mu \lambda$. Как известно (см. например [7, теорема 16.18])

$$\frac{1}{2\pi} \left[\arg g \right]_{\mathcal{A}(0,1,\nu)} = -\nu + \left\{ \nu + \frac{1}{2\pi} \arg \lambda \right\},\,$$

где $[\arg g]_{\mathcal{A}(0,1,\nu)}$ является изменением аргумента g при переходе от $\mu=0$ к $\mu=1$ по дуге $\mathcal{A}(0,1;\nu)$, а $\{c\}$ означает дробная часть числа, $c\in\mathbb{R}$. Отсюда при $x\in\mathbb{R}$ изменение аргумента вдоль дуги $\mathcal{A}(0,1;\nu)$ функции $\arg\det((1-\mu)a(x-0)+\mu a(x+0))$ равно

$$\frac{1}{2\pi} \left[\arg \det((1-\mu)a(x-0) + \mu a(x+0)) \right]_{\mathcal{A}(0,1;\nu)} =
= \frac{1}{2\pi} \left[\arg \prod_{j=1}^{n} ((1-\mu) + \mu \lambda_{j}(x)) \right]_{\mathcal{A}(0,1;\nu)} =
= \frac{1}{2\pi} \sum_{j=1}^{n} \left[\arg((1-\mu) + \mu \lambda_{j}(x)) \right]_{\mathcal{A}(0,1;\nu)} = -n\nu_{\infty} + \sum_{j=1}^{n} \left\{ \nu_{\infty} + \frac{1}{2\pi} \arg \lambda_{j}(x) \right\}.$$

Аналогично

$$\frac{1}{2\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty) + \mu a(-\infty)) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty) + \mu a(-\infty) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty) + \mu a(-\infty) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty) + \mu a(-\infty) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty) + \mu a(-\infty) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi} \left[\arg \det((1-\mu)a(+\infty) + \mu a(-\infty) \right]_{\mathcal{A}(0,1;\nu)} = \frac{41}{\pi}$$

$$= -n\nu_0 + \sum_{i=1}^n \left\{ \nu_0 + \frac{1}{2\pi} \arg \lambda_j(\infty) \right\}.$$

Пусть $\Delta=[\alpha,\beta]$, где $-\infty\leqslant\alpha<\beta\leqslant\infty$. Для непрерывной на Δ и отличной там от нуля функции c через $\arg_{\Delta}c$ будем обозначать непрерывный аргумент функции c, т.е. непрерывную на Δ функцию удовлетворяющую тождеству $c(x)=|c(x)|e^{i\arg c(x)},\ x\in\Delta$.

Из теоремы 2.1 следует справедливость следующего утверждения.

Теорема 7.2. Пусть матриц-функция $a \in PC_{p,w}^{n \times n}$ имеет конечное число разрывов в точках $-\infty < x_1 < x_2 < \ldots < x_m < \infty$ и может иметь разрыв в бесконечности. Тогда, если оператор $W_{\mathcal{L}}(a)$ фредгольмов, то

$$\operatorname{Ind} W_{\mathcal{L}}(a) = \frac{1}{2\pi} \left(\arg_{\Delta_0} \det a(-\infty) - \arg_{\Delta_0} \det a(x_1 - 0) \right) +$$

$$+ \frac{1}{2\pi} \sum_{k=1}^{m-1} \left(\arg_{\Delta_k} \det a(x_k + 0) - \arg_{\Delta_k} \det a(x_{k+1} - 0) \right) +$$

$$+ \frac{1}{2\pi} \left(\arg_{\Delta_m} \det a(x_m + 0) - \arg_{\Delta_m} \det a(+\infty) \right) + n \, m \, \nu_{\infty}^0 + n \, \nu_0^0 -$$

$$- \sum_{k=1}^{m} \sum_{j=1}^{n} \left\{ \nu_{\infty}^0 + \frac{1}{2\pi} \arg \lambda_j(x_k) \right\} - \sum_{j=1}^{n} \left\{ \nu_0^0 + \frac{1}{2\pi} \arg \lambda_j(+\infty) \right\}.$$

8. Частный случай

Пусть $w(x) = t^{\beta}$, $\beta \in \left(-\frac{1}{p}, \frac{1}{q}\right)$, где $1 . Известно, что тогда <math>w \in A_p(\mathbb{R})$ (см. [7, стр. 304]).

Рассмотрим оператор $W_{\mathcal{L}}(a)\colon L_p(\mathbb{R}_+,t^\beta)\to L_p(\mathbb{R}_+,t^\beta)$ в случае символа a(x)= —sgn (x) и безотражательного потенциала

$$v(x) = -\frac{2\mu^2}{\operatorname{ch}^2(\mu(x-\xi))}, \quad \xi = \frac{1}{\ln(m^2/2\mu)},$$

 $m, \mu > 0$. Известно следующее равенство (см. [17, 6])

$$W_{\mathcal{L}}(-\operatorname{sgn} x) = \frac{1}{\pi i} \int_{0}^{\infty} \frac{1}{s-x} y(s) \, ds - \frac{1}{\pi i} \varphi(x) \int_{0}^{\infty} (Ei(\mu(s-x)) - Ei(\mu(x-s))) \varphi(s) y(s) \, ds,$$

где $\varphi(x):=\frac{me^{\mu\xi}}{2\mathrm{ch}(\mu(x-\xi))},$ а $Ei(x):=v.p.\int\limits_{-\infty}^x\frac{e^t}{t}\,dt$ интегрально-показательная функция. Из теоремы 3.1 имеем

$$W_{\mathcal{L}}(-\operatorname{sgn} x) = (I + \mathcal{K}_{+})W(-\operatorname{sgn} x)(I - \Gamma_{+}).$$
42

С другой стороны из леммы 3.1 имеем обратимость операторов $(I + \mathcal{K}_+)$, $(I - \Gamma_+)$ и их явный вид. Следовательно обратимость оператора $W_{\mathcal{L}}(-\operatorname{sgn} x)$ сводится к обратимости оператора $W(-\operatorname{sgn} x)$.

Известно, что (см. [7]) оператор $W(-\operatorname{sgn} x)$ совпадает с сингулярным интегральным оператором S_+ на положительной полуоси

$$(S_+f)(t) = \frac{1}{\pi i} \int_0^\infty \frac{f(\tau)}{\tau - t} d\tau, \qquad t \in \mathbb{R}_+.$$

В свою очередь (см. [11, стр. 312]) имеем, что при $2(1+\beta)>p$

$$\left(S_{+}^{-1}f\right)(t) = \frac{1}{\pi i} \int_{0}^{\infty} \sqrt{\frac{\tau}{t}} \frac{f(\tau)}{\tau - t} d\tau, \qquad t \in \mathbb{R}_{+},$$

а при $2(1 + \beta) < p$

$$\left(S_{+}^{-1}f\right)(t) = \frac{1}{\pi i} \int_{0}^{\infty} \sqrt{\frac{t}{\tau}} \frac{f(\tau)}{\tau - t} d\tau, \qquad t \in \mathbb{R}_{+},$$

В случае когда $p=2(1+\beta)$ оператор S_+ (а следовательно и $W_{\mathcal{L}}(-\operatorname{sgn} x))$ не является обратимым.

Таким образом справедливо следующее утверждение.

Следствие 8.1. В случае $p \neq 2(1 + \beta)$ оператор $W_{\mathcal{L}}(-\operatorname{sgn} x)$ обратим u его обратный оператор допускает представление

$$\begin{split} W_{\mathcal{L}}^{-1}(-\operatorname{sgn} x) &= (I - \Gamma_{+})^{-1}W^{-1}(-\operatorname{sgn} x)(I + \mathcal{K}_{+})^{-1} = \\ &= \left(I + m(\varphi)N_{\psi,2}^{+}\right)S_{+}^{-1}\left(I + m(\psi)N_{\varphi,1}^{+}\right) = \\ &= S_{+}^{-1} + m(\varphi)N_{\psi,2}^{+}S_{+}^{-1} + S_{+}^{-1}m(\psi)N_{\varphi,1}^{+} + m(\varphi)N_{\psi,2}^{+}S_{+}^{-1}m(\psi)N_{\varphi,1}^{+}, \end{split}$$

еде $\psi(x) = me^{-\mu x}$, $x \in \mathbb{R}$, а операторы $N_{\varphi,1}^+$, $N_{\psi,2}^+$ определяются по формулам (3.1).

Abstract. The present paper considers matrix \mathcal{L} -Wiener-Hopf operators generated by a reflectionless potential and acting in Lebesgue spaces with Muckenhoupt weight. These operators are defined by replacing the Fourier transform in the standard definition of the Wiener-Hopf operator with the spectral transform of the Sturm-Liouville operator with a reflectionless potential. Criteria for Fredholm property and a formula for the index in the case of a piecewise continuous symbol are obtained.

Г. А. КИРАКОСЯН

Список литературы

- [1] А. Г. Камалян, И. М. Спитковский, "О фредгольмовости одного класса операторов типа свертки", Математические заметки, **104**, но. 3, 407 421 (2018). DOI:10.4213/mzm12113
- [2] А. Г. Камалян, Г. А. Киракосян, "Операторы \mathcal{L} -Винера-Хопфа в весовых пространствах в случае безотражательного потенциала", Изв. НАН Армении, Математика, **57**, но. 2, 112 121 (2022). DOI:10.54503/0002-3043-2022.57.2-0-43
- [3] Л. Д. Фаддеев, "Обратная задача квантовой теории рассеяния", Итоги науки и техники, Сер. Соврем. проблем мат., 3 ВИНИТИ, Москва, 93 – 180 (1974).
- [4] В. Юрко, Введение в Теорию Обратных Спектральных Задач, Физмат, Москва (2007).
- [5] П. Бхатнагар, Нелинейные Волны в Одномерных Диспергирующих Системах, Мир, Москва (1983).
- [6] D. Hasanyan, A. Kamalyan, M. Karakhanyan, I. M. Spitkovsky, "Integral Operators of the \$\mathcal{L}\$-Convolution Type in the Case of a Reflectionless Potential", Springer Proceedings in Mathematics & Statistics, 291, 175 – 197 (2019). https://doi.org/10.1007/978-3-030-26748-3
- [7] A. Böttcher Y. I. Karlovich, I. M. Spitkovsky, Convolution Operators and Factorization of Almost Periodic Matrix Functions, Birkhäuser, Basel (2002).
- [8] Р. В. Дудучава, Интегральные Уравнения Свертки с Разрывными Предсимволами, СИУ, (1979).
- [9] A. Böttcher, I. M. Spitkovsky, "Wiener-Hopf integral operators with PC symbols on spaces with Muckenhoupt weight", Revista Matemática Iberoamericana, 9, no. 2, 257 – 279 (1993). DOI:10.4171/RMI/136
- [10] R. Schneider, "Integral equations with piecewise continuous coefficients in L^p -spaces with weight", Journal of Integral Equations, $\bf 9$, no. 2, 135-152 (1985). https://www.jstor.org/stable/26164260
- [11] И. Ц. Гохберг, Н. Я. Крупник, Введение в Теорию Одномерных Сингулярных Интегральных Операторов, Кишинев, Штиинца (1973).
- [12] A. Böttcher, I. M. Spitkovsky, "Pseudodifferential operators with heavy spectrum, Integral Equations and Operator Theory", 19, 251–269, (1994). DOI:10.1007/BF01203665
- [13] A. Böttcher, Y. I. Karlovich, Carleson curves, Muckenhoupt weights, and Toeplitz operators, Progress in Mathematics, 154, Birkhäuser Verlag, Basel-Boston-Berlin (1997).
- [14] E. Stein, G. Weiss, "Interpolation of operators with change of measures", Transactions of the American Mathematical Society, 87, 159 – 172 (1958). DOI:10.1090/s0002-9947-1958-0092943-6
- [15] A. Persson, Compact linear mappings between interpolation spaces, Arkiv för Matematik, 5, no. 13, 215 219 (1964). DOI:10.1007/BF02591123
- [16] K. F. Clancey, I. Gohberg, Factorization of matrix functions and singular integral operators, Birkhäuser Verlag, Basel-Boston (1981).
- [17] G. Kirakosyan, "On the invertibility of one integral operator", Armenian Journal of Mathematics, **14**, no. 6, 1 10 (2022). DOI: https://doi.org/10.52737/18291163-2022.14.6-1-10

Поступила 08 июля 2024

После доработки 29 октября 2024

Принята к публикации 05 ноября 2024