2U3UUSUUD 2UUPUMESIIPM3UU ЧРSIIPM3IIPUUEPP UQQUAAPU UUUREUPU НАЦИОНАЛЬНАЯ АКАДЕМИЯ HAYK PECITYEЛИКИ APMEHUЯ NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF ARMENIA

Հայաստանի քիմիական Հանդես Химический журнал Армении **77**, № **3-4**, **2024** Chemical Journal of Armenia

DOI: 10.54503/0515-9628-2024.77.3-4-331

ОБЩИЕ ЗАКОНОМЕРНОСТИ РЕАКЦИЙ 3-АЛЛИЛ- И 3-МЕТАЛЛИЛ-5,5-ДИМЕТИЛ-2-ТИОКСО-2,3,5,6-ТЕТРАГИДРОБЕНЗО[h]ХИНАЗОЛИН-4(1*H*)-ОНОВ С АМИНОСОЕДИНЕНИЯМИ

А.И. МАРКОСЯН, А.С. АЙВАЗЯН, С.А. ГАБРИЕЛЯН

Научно-технологический центр органической и фармацевтической химии Национальной академии наук Республики Армения. Армения, 0014, г. Ереван, пр. Азатутян 26. *E-mail: ashot@markosyan.am

Поступило 20.12.2024

Изучены взаимодействия 3-аллил- и 3-металлил-5,5-диметил-2-тиоксо-2,3,5,6-тетрагидробензо[h]хиназолин-4(1H)-онов с азотсодержащими соединениями. Выявлено, что реакции указанных тиоксобензохиназолинов с избытком гидразин гидрата протекают нормально - с образованием 2-гидразинил-5,5-диметил-3-аллил(2-метилаллил)-5,6-дигидробензо[h]хиназолин-4(3H)-онов. Аналогичные реакции с 2-этаноламином и 3-пропаноламином протекали аномально - с образованием 2-(2-гидроксиэтил)амино-5,5-диметил-5,6-дигидробензо[h]хиназолин-4(3H)-она и 2-(3-гидроксипропил)амино-5,5-диметил-5,6-дигидробензо[h]хиназолин-4(3H)-она соответственно. Взаимодействие указанных тиоксобензохиназолинов с бензиламином, играющим роль катализатора, приводило к внутримолекулярной циклизации исходных тиоксосоединий с образованием 6,6,10-триметил-9,10-дигидро-5H-бензо[h]тиазоло[2,3-h]хиназолин-7(h)-она соответственно.

Библ. ссылок 22, схем. 3.

Ключевые слова: закономерности, аномальное, гидрозинопроизводные, циклизация, расщепление, аминоалканолы.

Литературные данные показывают, что производные бензо[h]хиназолина проявляют противоопухолевую, антибактериальную, противогрибковую, противовирусную, психотропную и другие полезные свойства. [1-9]. Ранее проведённые нами исследования в области 2-тиоксо 5,5-дизамещённых бензо[h]хиназолинов и 2-тиоксобензо[h]хиназолинов спироциклического строения показали, что указанные соединения, содержащие в третьем положении различные заместители (кроме аллила и металлила) при взаимодействии с гидразином и аминосоединениями образуют соответствующие 2-гидразино- и 2- аминозамещённые производные бензо[h]хиназолинов [10-19].

В представленной работе приводятся данные о некоторых превращениях 3-аллил- и 3-металлил-5,5-диметил-2-тиоксо-2,3,5,6-тетрагидробензо[h]хиназолин-4(1H)-онов взаимодействием с азотсодержащими соединениями. Реакции 3-аллил-5,5-диметил-2-тиоксо-2,3,5,6-тетрагидробензо[h]хиназолин-4(1H)-она (1) и 3-(2-метилаллил)-5,5-диметил-2-тиоксо-2,3,5,6-тетрагидробензо[h]хиназолин-4(1H)-она (2) в избытке гидразина завершались в течение 4 часов с образованием 2-гидразинил-5,5-диметил-3-(2-метилаллил)-5,6-дигидробензо[h]хиназолин-4(3H)-она (12) с выходами 77% и 88% соответственно (схема 1).

Схема 1

 $R = H (I,3), CH_3 (3,4)$

Тиоксобензохиназолины 1,2 были поставлены по взаимодействие с 2-этаноламином и 3-пропаноламином при температуре кипения последних, однако вместо ожидаемых 2-(2-гидроксиэтил)амино- и 2-(2гидроксипропилл)аминосоединений 5,6 были получены продукты отщепления аллильной и металлильной групп - 2-(2-гидроксиэтил)амино-5,5-диметил-5,6-дигидробензо[h]хиназолин-4(3H)-он (7) и 2-(3-гидроксипропил)амино-5,5-диметил-5,6-дигидробензо[h]хиназолин-4(3H)-он (8). Соединение 7 нами ранее было получено конденсацией 5,5-диметил-2-тиоксо-2,3,5,6-тетрагидробензо[h]хиназолин-4(1H)-она с 2-этаноламином [20]. С целью синтеза 2-бензиламино-3-аллил(2-метилаллил)-5,5-диметил-5,6-дигидробензо[h]хиназолин-4(3H)-онов **9,10** соединения 1,2 ввели в реакцию с избытком бензиламина при температуре кипения последнего, однако вместо ожидаемых 2-бензиламиносоединений 9,10 были получены продукты внутримолекулярной циклизации исходных тиоксобензохиназолинов - 6,6,10-триметил-9,10-дигидро-5*H*бензо[h]тиазоло[2,3-b]хиназолин-7(6H)-он (11) и 6,6,10,10-тетраметил-9,10-дигидро-5H-бензо[h]тиазоло[2,3-b]хиназолин-7(6H)-он (12). Поскольку в конечных продуктах 11,12 бензильная группа отсутствует, можно предположить, что в последних случаях бензиламин играет роль катализатора (схема 2). Исходя из вышеизложенного следует, что формально происходит внутримолекулярное присоединение тиокси-группы к двойной связи подобно правилу Марковникова (водород присоединяется к наиболее гидрогенизированному атому углерода)

Схема 2

N, NH(CH₂)nOH

5,6

$$H_2N(CH_2)nOH$$

N, NH(CH₂)nOH

Первой общей стадией всех превращений, очевидно, является присоединение амина по связи C=N тиольного таутомера соединений 1,2. Дальнейшая судьба аддукта определяется природой заместителя у атома азота. Для гидразина это замещение тиольной группы, для аддукта с бензиламином с наиболее основным атомом азота N1 это внутримолекулярная циклизация с последующим отщеплением бензиламина, выступающего как катализатор, а для аддуктов с алканоламинами, в которых возможен перенос протона от гидроксила на атом азота N1, реализуется перестройка с последующим разрывом связей C-S и C-N1 и отщеплением тиоизобутиральдегида или продуктов его распада, и, после таутомеризации, образованием продуктов 7,8 (схема 3).

Схема 3

Таким образом, изучено взаимодействие 3-аллил(металлил)-бензо[h]хиназолинов с гидразин гидратом, 2-этаноламином и 3-пропаноламином. В первом случае происходит образование 2-гидразинопроизводного с сохранением аллильной или метилаллильной группировки, в то время, как реакция с аминоалканолами происходит аномально, с расщеплением указанных групп. Реакция тиоксохиназолинов с бензиламином также протекает аномально - вместо образования 2-бензильного производного происходит циклизация согласно правилу Марковникова. Среди синтезированных соединений выявлены отдельные производные с выраженным антибактериальным действием, близким к активности препарата сравнения — фуразолидону, что указывает на целесообразность продолжения поиска в данном ряду [21,22].

Экспериментальная часть

ИК спектры сняты на спектрофотометре «FT-IR NEXUS» в вазелиновом масле, спектры ЯМР 1H (300 $M\Gamma u$, DMSO-d6/CCl4 1/3) и 13C (75 $M\Gamma u$, DMSO-d6/CCl4 1/3) зарегистрированы на приборе «Varian Mercury-300», внутренние стандарты — ТМС или ГМДС. ТСХ проведена на пластинках «SilufolR», проявитель — пары йода.

3-Аллил-2-гидразинил-5,5-диметил-5,6-дигидробензо[h]хиназо**лин-4(3H)-он (3)**. Смесь 4.48 г (15 ммоль) тиоксобензохиназолина **1** [21] и 15 г (30 ммоль) гидразин гидрата кипятили с обратным холодильником в течение 4 ч. К реакционной смеси добавляли 30 мл ледяной воды, выпавший осадок отфильтровывали, промывали водой и перекристаллизовывали из 70% этанола. Выход 3.4 г (77%), т. пл. 166-168 °C, R_f 0.64 (хлороформ-метанол, 1:10). ИК-спектр, v, $c M^{-1}$: 1604 (C = C аром.), 1640 (C = O), 3100-3320 (NH, NH₂). Спектр ЯМР 1 H: 1.30 с (6H, 5-Me₂), 2.71 с, (2H, 6-CH₂), 4.25 ш, (2H, NH₂), 4.56 дт, (2H, J=5.4, 1.5, =СН₂), 5.13 ддт, (1H, J=10.2, 1.6, 1.5, =СН₂), 5.21 ддт, (1H, J=17.2, 1.6, 1.5, =CH₂), 5.82 ддт, (1H, J=17.2, 10.2, 5.4, =CH), 7.08-7.13 м, (1H, аром.), 7.19-7.23 м, (2H, аром.), 7.95 ш, (1H, NH), 8.11-8.18 м, (1H, аром.). Спектр ЯМР ¹³С: 26.1 (5-Me₂), 32.7 (5-С), 40.9 (6-СH₂), 44.8 (NCH₂), 114.3, 116.4 (=CH₂), 124.9 (CH), 125.6 (CH), 127 (CH), 128.9 (СН), 131.6 (=СН), 132.5, 136.5, 151.6, 153.6, 160.3. Найдено, %: С 68.97; H 6.90; N 18.71. С₁₇H₂0N₄O. Вычислено, %: С 68.89; Н 6.80; N 18.90.

2-Гидразинил-5,5-диметил-3-(2-метилаллил)-5,6-дигидробензо- [*h*]хиназолин-4(3*H*)-он (4). Аналогично из 9.4 ε (30 *ммоль*) 5,5-диметил-3-(2-метилаллил)-2-тиоксо-2,3,5,6-тетрагидробензо[*h*]хиназолин-4(1*H*)-она (2) [22] и 50 *мл* гидразин гидрата получили 8.2 ε (88%) соединения 2, т. пл. 214-216 °C, R_f 0.51 (метанол-бензол, 1:1). ИК спектр, v,

см⁻¹: 1604 (С = С, аром.), 1631 (С = N), 1663 (С = О), 3150-3330 (NH, NH₂). Спектр ЯМР ¹H, δ , м.д.: 1.30 с, (6H, 5-Me₂), 1.76-1.78 м (3H, CH₃), 2.72 с (2H, 6-CH₂), 4.21 ш.с (2H, NH₂), 4.47-4.51 м (1H, =CH₂), 4.76-4.79 м (1H, =CH₂), 7.08-7.13 м (1H, аром.), 7.20-7.29 м (2H, аром.), 7.8 ш.с (1H, NH), 8.11-8.17 м (1H, аром.). Спектр ЯМР ¹³С, δ , м.д.: 19.8 (СН₃), 26.1 (5-Me₂), 32.7 (5-С), 43.7 (NCH₂), 44.7 (6-CH₂), 109.3 (=CH₂), 114.3, 125.0 (CH), 125.6 (CH), 127.0 (CH), 129.0 (CH), 132.6, 136.5, 138.8, 151.6, 153.9, 160.3 (CO). Найдено, %: С 69.79; H 7.02; N 18.21. С₁₈H₂₂N₄O. Вычислено, %: С 69.65; H 7.14; N 18.05.

2-(2-Гидроксиэтил)амино-5,5-диметил-5,6-дигидробензо[h]хина-золин-4(3H)-он (7).

Способ а. Смесь 4.48 г (15 *ммоль*) тиоксобензохиназолина **1** и 20.4 г (30 *ммоль*) аминоэтанола кипятили с обратным холодильником в течение 20 ч, охлаждали, добавляли 100 *мл* воды. Выпавшие кристаллы отфильтровывали и перекристаллизовывали из 60% этанола. Выход 2.0 г (47%), т. пл. 170-172 °С, R_f 0.68 (хлороформ-метанол, 6:1). ИК-спектр, v, *см*-¹: 1604 (С = С аром.), 1640 (С = О), 3100-3400 (NH, OH). Спектр ЯМР ¹H: 1.28 с, (6H, 5-Me₂), 2.66 с, (2H, 6-CH₂), 3.49 дт, (2H, J=5.3, 5.0, NH<u>CH₂</u>CH₂OH), 3.62 т, (2H, J=5.0, NHCH₂<u>CH₂</u>OH), 4.64 ш, (1H, OH); 6.21 уш.т, (1H, J=5.3, NHCH₂), 7.03-7.08 м, (1H, аром.), 7.16-7.23 м, (2H, аром.), 7.99-8.04 м, (1H, аром.), 10.38 ш, (1H, 3-NH). Спектр ЯМР ¹³С: 26.4 (5-Me2), 32.9 (5-C), 42.8 (6-CH₂), 44.9 (NCH₂), 60.1 (OCH₂), 114.9; 125.2 (CH), 125.7 (CH), 127.1 (CH), 128.9 (CH), 133.0, 136.6, 152.6, 154.2, 162.1. Найдено, %: С 67.19; H 6.55; N 14.89. C₁₆H₁₉N₃O₂. Вычислено, %: С 67.35; H 6.71; N 14.73.

Способ б. Смесь 3.12 г (10 ммоль) 2-тиоксобензо[h]хиназолина 2 и 15 мл аминоэтанола кипятили в течение 20 ч и добавляли 100 мл воды. Выпавшие кристаллы отфильтровывали и перекристаллизовывали из 60% этанола. Выход 1.5 ε (44%). Температуры плавления, ИК-спектры, ЯМР 1 Н, и ЯМР 13 С спектры соединения 7, полученные обоими способами идентичны.

2-(3-Гидроксипропил)амино-5,5-диметил-5,6-дигидробензо[h]хиназолин-4(3H)-он (8).

Способ а. Смесь 4.48 г (15 ммоль) тиоксобензохиназолина **1** и 22.5 г (30 ммоль) 3-аминопропанола кипятили с обратным холодильником в течение 20 ч, охлаждали, добавлялит 100 мл воды. Выпавшие кристаллы отфильтровывали и перекристаллизовывали из 60% этанола. Выход 1.5 г (33%) соединения **8**, т. пл. 82-83 °C, R_f 0.46 (хлороформ-метанол, 6:1). ИК-спектр, v, $c M^{-1}$: 1589 (C = C apoм.), 1637 (C = O), 3150-3400 (NH, OH). Спектр ЯМР 1 H: 1.28 с, (6H, 5-Me₂), 1.70-1.80 м, (2H, CH₂), 2.66 с, (2H, 6-CH₂), 3.47-3.57 м, (4H, NCH₂ и OCH₂), 4.30 ш, (1H, OH),

6.04 уш.т, (1H, J=5.6, $_{\rm NHCH2}$), 7.03-7.10 м, (1H, аром.), 7.16-7.23 м, (2H, аром.), 7.99-8.05 м, (1H, аром.), 10.37 ш, (1H, 3-NH). Спектр ЯМР 13 С: 26.3 (5-Me₂); 31.8 (CH₂), 32.8 (5-C), 37.2 (6-CH₂), 44.9 (NCH₂), 58.3 (OCH₂), 114.7, 125.1 (CH), 125.7 (CH), 126.9 (CH), 128.8 (CH), 133.0, 136.5, 152.5, 154.1, 162.0. Найдено, %: C 68.40; H 6.89; N 14.18. $C_{17}H_{21}N_3O_2$. Вычислено, %: C 68.20; H 7.07; N 14.04.

Способ б. Аналогично из $3.12 \ \epsilon (10 \ \text{ммоль}) \ 2$ -тиоксобензо[h]хиназолина **2** и 15 мл аминопропанола получили 1.6 г (54%) соединение **8**. Температуры плавления, ИК-спектры, ЯМР 1 Н, и ЯМР 13 С спектры соединения **8**, полученные обоими способами идентичны.

6,6,10-Триметил-9,10-дигидро-5*H*-бензо[*h*] тиазоло[2,3-*b*] хиназолин-7(*6H*)-он (11). Смесь 2.0 г (6.7 *ммоль*) тиоксобензохиназолина 1 и 21.4 г (20 *ммоль*) бензиламина кипятили с обратным холодильником в течение 18 ч. После отгонки избытка бензиламина остаток перекристаллизовывали из 75% этанола. Получили 1.2 г (60%) соединения **11** т. пл. 204-206 °C, R_f 0.79 (хлороформ-метанол, 6:1). ИК-спектр, v, *см*⁻¹: 1603 (С = С аром.), 1648 (С = О). Спектр ЯМР ¹H: 1.32 с, (3H, 6-CH₃), 1.34 с, (3H, 6-CH₃), 1.58 д, (3H, J=6.4, 10-CH₃), 2.74 с, (2H, 5-CH2), 4.00-4. м, 16 (2H, 10-CH, 9-CHa), 4.47 дд, (1H, J=11.8, 6.6, 9-CHb), 7.08-7.16 м, (1H, аром.), 7.19-7.32 м, (2H, аром.), 7.97-8. м, 05 (1H, аром.). Спектр ЯМР ¹³С: 20.5 (10-Ме), 25.6 (6-Ме₂), 32.9 (6-С), 37.6 (10-СH), 44.2 (5-СH₂), 55.0 (9-CH₂), 120.7, 125.2 (CH), 125.9 (CH), 127.1 (CH), 129.5 (CH), 131.4, 136.0, 153.3, 159.4, 161.1. Найдено, %: С 68.20; H 6.25; N 9.53; S10.91. С₁₇H₁₈N₂OS. Вычислено, %: С 68.42; H 6.08; N 9.39; S 10.75.

6,6,10,10-Тетраметил-9,10-дигидро-5*H***-бензо**[*h*]тиазоло[2,3-*b*]хиназолин-7(*6H*)-он (12). Аналогично из 3.12 ε (10 *ммоль*) 2-тиоксобензо[*h*]хиназолина **2** и 15 *мл* бензиламина получили 2.2 ε (71%), т. пл. 178-180 °C, R_f 0.75 (этилацетат-бензол, 1:1). ИК спектр, v, $c m^{-1}$: 1602 (С v с, аром.), 1638 (С v с). Спектр ЯМР v н, v м.д.: 1.34 v (6H, 5-Me₂), 1.69 v (6H, (CH₃)₂, 2.75 v (2H, 6-CH₂), 4.18 v (2H, NCH₂), 7.10-7.15 v (1H, аром.), 7.20-7.32 v (2H, аром.), 7.99-8.04 v (1H, аром.). Спектр ЯМР v с, v м.д.: 25.6 (5-Me₂), 28.3 (CH₃)₂, 32.9 (5-C), 44.1 (6-CH₂), 49.6 (NCH₂), 60.3 (C), 120.8, 125.2 (CH), 125.9 (CH), 127.1 (CH), 129.5 (CH), 131.4, 136.0, 153.2, 159.4, 161.1 (CO). Найдено, %: C 69.33; H 6.30; N 8.81; S 10.33. v 314.14. v C₁₈H₂₀N₂OS. Вычислено, %: C 69.20; H 6.45; N 8.97; S 10.26.

3-ԱԼԻԼ-և 3-ՄԵՏԱԼԻԼ-5,5-ԴԻՄԵԹԻԼ-2-ԹԻՈՔՍՈ-2,3,5,6-ՏԵՏՐԱՀԻԴՐՈԲԵՆԶՈ[ħ]ՔԻՆԱԶՈԼԻՆ-4(1H)-ՈՆԵՐԻ և ԱՄԻՆՈՄԻԱՑՈՒԹՑՈՒՆՆԵՐՒ ՌԵԱԿՑԻԱՆԵՐԻ ԸՆԴՀԱՆՈՒՐ ՕՐԻՆԱՉԱՓՈՒԹՑՈՒՆՆԵՐԸ

Ա. Ի. ՄԱՐԿՈՍՑԱՆ. Ա. Ս. ԱՑՎԱԶՑԱՆ, Ս. Հ. ԳԱԲՐԻԵԼՑԱՆ

Ուսումնասիրվել են 3-ալիլ- և 3-մետալիլ-5,5-դիմեթիլ-2-թիոքսո-2,3,5,6-տետրահիդրոբենզո[h]քինագոլին-4(1H)-ոնների փոխազդեցություններն ազոտ պարունակող միացությունների հետ։ Պարզվել է, որ նշված Թիոքսոբենզոքինագոլինների ռեակցիան հիդրազին հիդրատի ավելցուկով ընթանում է նորմալ՝ 2հիդրագինիլ-5,5-դիմե*ի*իլ-3-ալիլ(2-մետալիլ)-5,6-դիհիդրոբենգո[h]քինագոլինների առաջացմամբ։ Նմանատիպ ռեակցիաները 2-էթանոլամինի և 3-պրոպանոլամինի հետ ընթացել են անոմալ՝ համապատասխանաբար 2-(2-հիդրօքսիէթիլ)ամինո-5,5-դիմեթիլ-5,6-դիհիդրոբենցո[h]քինացոլին-4(3H)-ոնի և 2-(3հիդրօքսիպրոպիլ)ամինո-5,5-դիմեԹիլ-5,6-դիհիդրոբենզո[h]քինագոլին-4(3H)ոնի ստացմամբ։ Վերոհիշյալ Թիոքսոբենզոքինազոլինների փոխազդեցությունը կատալիզատորի դեր խաղացող բենզիլամինի հետ հանգեցրել է սկզբնական *թիոքսոմիացությունների ներմոլեկուլային ցիկլացմանը, առաջացնելով համա*պատասխանաբար 6,6,10-տրիմեԹիլ-9,10-դիԴիդրո-5H-բենզո[h]Թիազոլո[2,3b]ջինագոլին-7(6H)-ոն և 6,6,10,10-տետրամեԹիլ-9,10-դիհիդրո-5H-բենգո[\]Թիագոլո[2,3-b] քինագոլին-7(6H)-ոն։

GENERAL REGULARITIES OF REACTIONS OF 3-ALLYL- AND 3-METALLYL-5,5-DIMETHYL-2-THIOXO-2,3,5,6-TETRAHYDROBENZO[h]QUINAZOLINE-4(1*H*)-ONES WITH AMINO COMPOUNDS

A. I. MARKOSYAN, A. S. AYVAZYAN, S. H. GABRIELYAN

The Scientific and Technological Center of Organic and Pharmaceutical
Chemistry of the National Academy of Sciences of the Republic of Armenia.
Armenia, 0014, Yerevan, Azatutyan Ave. 26.

E-mail: ashot@markosyan.am

The interactions of 3-allyl- and 3-methallyl-5,5-dimethyl-2-thioxo-2,3,5,6-tetrahydrobenzo[h]quinazolin-4(1H)-ones with nitrogen-containing compounds were studied. It was found that the reactions of the indicated thioxobenzoquinazolines with excess hydrazine hydrate proceed normally, with the formation of 2-hydrazinyl-5,5-dimethyl-3-allyl(2-methylallyl)-5,6-dihydrobenzo[h]quinazolin-4(3H)-ones. Similar reactions with 2-ethanolamine and 3-propanolamine proceeded abnormally - with the formation of 2-(2-hydroxyethyl)amino-5,5-dimethyl-5,6-dihydrobenzo[h]quinazolin-4(3H)-one and 2-(3-hydroxypropyl)amino-5,5-dimethyl-5,6-dihydrobenzo[h]quinazolin-4(3H)-one, respectively. The interaction of the indicated thioxobenzoquinazolines

with benzylamine, which plays the role of a catalyst, led to the intramolecular cyclization of the initial thioxo compounds with the formation of 6,6,10-trimethyl-9,10-dihydro-5*H*-benzo[h]thiazolo[2,3-b]quinazolin-7(6*H*)-one and 6,6,10,10-tetramethyl-9,10-dihydro-5*H*-benzo[h]thiazolo[2,3-b]quinazolin-7(6*H*)-one, respectively.

ЛИТЕРАТУРА

- [1] Liqiang W., Yunxia L., Yazhen Li. Synthesis of Spirooxindole-O-Naphthoquinone-Tetrazolo[1,5-a]Pyrimidine Hybrids as Potential Anticancer Agents // Molecules 2018, v. 23, № 9, p. 2330; doi:10.3390/molecules23092330
- [2] Roudbaraki S.J., Janghorban S., Ghashang M. Green Chemistry Preparation of thiochromeno[4,3-b]pyran and benzo[h]thiazolo[2,3-b]quinazoline derivatives using HSBM Technique over ZnAl₂O₄ nano-powders // Comb. Chem. High Throughput Screening 2019, v. 22, № 6, p.p. 422–427. Doi: 10.2174/1386207322666190617164617
- [3] Nowak M., Fornal E., Kontek R., Sroczyński D., Jóźwiak A., Augustowska E., Warpas A., Adamczyk M., Malinowski Z. Synthesis of acylnaphthylamines and their applications in the formation of benzoquinazolines. // Arkivoc. 2018, vii, p.p. 248–265. doi 10.24820/ark.5550190.p010.739
- [4] Ramadan A., Kamel G., Awad N.E., Shokry A.A., Fayed H.M. The pharmacological effect of apricot seeds extracts and amygdalin in experimentally induced liver damage and hepatocellular carcinoma // J. Herb. Pharm. 2020, v. 9, № 4, p.p. 400–407. Doi: 10.34172/jhp.2020.50.
- [5] Pal A., Curtin J.F., Kinsella G.K. In silico and in vitro screening for potential anticancer candidates targeting GPR120 // Bioorg. Med. Chem. Lett., 2021, Jan 1:31: p. 127672. Doi: 10.1016/j.bmcl.2020.127672.
- [6] Gauni B., Mehariya K., Shah A. Duggirala S.M. Tetralone scaffolds and their potential therapeutic applications // Letters in Drug Design & Discovery, v. 18, № 3, 2021, p.p. 222–238. _Doi.org/10.2174/1570180817999201013165656.
- [7] Bora D., Kaushal A., Shankaraiah N. Anticancer potential of spirocompounds in medicinal chemistry: A pentennial expedition // Europ. J. Med. Chem. 2021, v. 215, №5, p. 113263. Doi:10.1016/j.ejmech.2021.113263.
- [8] Luan M.Z., Zhang X.F., Yang Y., Meng Q.G., Hou G.G. Anti-inflammatory activity of fluorine-substituted benzo[h]quinazoline-2-amine derivatives as NF-κB inhibitors // Bioorg. Chem. 2023, March, p. 106360. Doi:10.1016/j.bioorg.2023.106360.
- [9] Constantine V., Milyutin N., Komogortsev A., Lichitsky B.V., Minyaev M.E., Melekhina V.G. Synthesis of substituted 8H-benzo[h]pyrano[2,3-f]quinazolin-8-ones via photochemical 6π-electrocyclization of pyrimidines containing an allomaltol fragment // Beilstein J. Org. Chem., 2023, v. 19, p.p.778–788. Doi:10.3762/bjoc.19.58.
- [10] *Markosyan A.I.*, *Hakopyan Kh.S.* Synthesis and studying the biological activity of 3-benzyl-5-methyl-5-ethyl-4-oxo-3,4,5,6-tetrahydrobenzo[h]quinazoline derivatives // Electronic J. Nat. Sci NAS RA, 2005, № 1(4), p.p. 9–13.
- [11 Gabrielyan S.H. Synthesis and some conversions of 3-furfurel-4-oxo-2-thioxo-1,2,3,4,5,6-hexahydrospiro(benzo[h]quinazoline-5,1'-cyclohexanes) // Electronic J. Nat. Sci NAS RA, 2008, v.2, №11, p.p. 51–55.
- [12] Markosyan A.I., Hakobyan Kh.S., Arsenyan F.H. and Sukasyan R.S. Synthesis, antimonoaminoxidase and antitumor properties of the 3,5-dimethyl-5-ethyl-4-oxobenzo[h]quinazoline derivatives. // Electronic J. Nat. Sci NAS RA, 2011, 2(17), p.p. 21–25.

- [13] Markosyan A.I., Torshirzad N.M., Gabrielyan S.H., Papanyan N.J., Avakimyan J.A. Some conversions of 1-amino-3,3-dimethyl-3,4-dihydronaphthalene-2-carboxylate // Electronic J. Nat. Sci NAS RA, 2013, v. 1, № 20, p.p. 17–21.
- [14] Markosyan A.I., Torshirzad N.M., Gabrielyan S.H., Mkrtchyan D.A., Stepanyan H.M., Avakimyan J.A. Synthesis and some conversions of 9-mercapto-6,6-dimethyl-5,6-dihydroben-zo[h][1,2,4]triazolo[3,4-b]quinazolin-7(11H)-one // Electronic J. Nat. Sci. NAS RA, 2014, v. 1, № 22, p.p. 26–32.
- [15] *Григорян Н.П., Маркосян А.И., Пароникян Р.Г., Сукасян Р.С.* Синтез и некоторые превращения этилового эфира 4'-амино- 5',8'-диметил-1'*H*-спиро[циклогексан-1,2'-нафталин]-3'-карбоновой кислоты и их антимоноаминоксидазная и противосудорожная активности // Хим.-фарм. ж., 2017, т. 51, № 8, с. 3–8.
- [16] Маркосян А.И., Багдасарян А.С., Айвазян А.С., Габриелян С.А., Дангян М.Ю., Аракелян А.Г. Синтез превращения 5,5-Диметил-3-пропил-2-тиоксо-2,3,5,6-тет-рагидробензо[h]хиназолин-4(1H)-она и антибактериальные свойства полученых соединений // Хим. ж. Армении, 2022, № 3–4, с. 294–303.
- [17] Маркосян А.И., Айвазян А.С., Габриелян С.А., Мамян С.С., Айвазян А.А., Аракелян А.Г. Синтез, некоторые превращения и антибактериальная активность 5H-спиро[бензо[h][1,2,4]триазоло[3,4-b]-хиназолин-6,1'-циклогептан]-7(11H)-онов // ЖОХ, 2023, т. 93 № 3, с. 485–494. Doi.10.1134/S1070363223030040L
- [18] *Markosyan A.I.*, *Ayvazyan A.S.*, *Gabrielyan S.A.*, *Mamyan S.S.*, *Muradyan R.E.* Synthesis and antibacterial activity of new 3-benzylspiro[benzo[*h*]quinazoline-5,1′-cycloheptan]-4(6*H*)-one derivatives // Russian J. Org. Chem.,2024, v. 60, № 3, p.p. 415–422. Doi: 10.1134/S1070428024030072
- [19] *Маркосян А.И., Айвазян А.С., Габриелян С.А., Дангян М.Ю., Авакимян Дж.А, Арсенян Ф.Г.* Синтез и некоторые превращения 2-хлорметил-3*H*-спиро[бен-зо[*h*]хиназолин-5,1'-циклогептан]-4(*6H*)-она // Хим.-фарм. ж., 2024, т. 58 № 7, с. 17–23. Doi: 10.30906/0023-1134-2024-58-7-17-23
- [20] Маркосян А.И., Торширзад Н.М., Габриелян С.А., Авакимян Дж.А. Синтез и превращения 5,5-диметил-2-тиоксо-2,3,5,6-тетрагидробензо[h]хиназолин-4(1H)-она // Хим. ж. Армении, 2013, т. 66, № 2, с. 303—309.
- [21] Маркосян А.И., Айвазян А.С., Габриелян С.А., Дангян М.Ю., Аракелян А.Г. Синтез и антибактериальная активность производных 3-аллил-5,5-диметил-2-тиоксо-2,3,5,6-тетрагидробензо[h]хиназолин-4(1H)-она. Хим. ж. Армении, 2023, т. 76 (3), с. 228–238.
- [22] Маркосян А.И., Айвазян А.С., Габриелян С.А., Дангян М.Ю., Арсенян Ф.Г., Ава-кимян Дж.А. Синтез и некоторые закономерности превращений 5,5-диметил-3-(2-метилаллил)-2-тиоксо-2,3,5,6-тетрагидробензо[h]хиназолин-4(1H)-она. Анти-бактериальные свойства полученных соединений. // ЖОХ, 2024, том 94, № 3, сс. 376—384. doi: 10.31857/s004446-0x24030083.