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Abstract

Using Palatini’s formalism extended in a plausible fashion to the recent M̃Sp-Supergravity (Ter-

Kazarian, 2023c, 2024b), subject to certain rules, we reinterpret a flat M̃Sp-SG theory with Weitzenböck

torsion as the quantum field theory of Master-Space Teleparallel Supergravity (M̃Sp-TSG), having the
gauge translation group in tangent bundle. Here the spin connection represents only inertial effects,
but not gravitation at all. In order to recover the covariance, we introduce a 1-form of the Yang–Mills
connection assuming values in the Lie algebra of the translation group. The Hilbert action vanishes and
the gravitino action loses its spin connections, so that the accelerated reference frame has Weitzenböck
torsion induced by gravitinos. Due to the soldered character of the tangent bundle, torsion presents also
the anholonomy of the translational covariant derivative. The gauge invariance of the tetrad provides
torsion invariance under gauge transformations. The role of the Cartan-Killing metric usually comes,
when it exists, from its being invariant under the group action. Here it does not exist, but we use the
invariant Lorentz metric of Minkowski spacetime in its stead. The action of M̃Sp-TSG is invariant under
local translations, under local super symmetry transformations and by construction is invariant under
local Lorentz rotations and under diffeomorphisms. So that this action is invariant under the Poincaré
supergroup and under diffeomorphisms. We show the equivalence of the Teleparallel Gravity action with
Hilbert action, which proves that the immediate cause of the fictitious Riemann curvature for the Levi-
Civita connection arises entirely due to the inertial properties of the Lorentz-rotated frame of interest.
The curvature of Weitzenböck connection vanishes identically, but for a tetrad involving a non-trivial
translational gauge potential, the torsion is non-vanishing. We consider Weitzenböck connection a kind
of dual of the Levi-Civita connection, which is a connection with vanishing torsion, and non-vanishing
fictitious curvature. The Weitzenböck connection defines the acceleration through force equation, with
torsion (or contortion) playing the role of force.

Keywords: Supergravity–Teleparallel Supergravity–Accelerated frames

1. Introduction

In a recent papers (Ter-Kazarian, 2023c, 2024b) we developed a quantum field theory of M̃Sp-Supergravity
as a local extension of the theory of global Master space (MSp)-SUSY (Ter-Kazarian, 2023a, 2024a). The
letter is the microscopic theory of deformed Lorentz symmetry and deformed geometry induced by foamy
effects at the Planck scale, which tested in recent ultra-high energy experiments of cosmic rays (UHECRs)
and astrophysical TeV-γ photons. They reflect the expectation that the solutions to this mystery appear to
require new physics (see e.g. Batista & et al. (2019, 2023), Mattingly (2005) and references therein). These
astrophysical experiments measure quantum gravity (QG) effects within a two or three orders of magnitude
of Planck length ℓP ≈ 1.62× 10−33cm and Planck time tP /c. One of the most important efforts of this type
has historically been the search for a violation of the standard Lorenz code (SLC) of motion in ultra-high
energy experiments. To this aim, as a guiding principle to make the rest of paper understandable, in the ap-
pendices we necessarily recount succinctly some of the highlights behind of global MSp-SUSY (Ter-Kazarian,

2023a, 2024a) and local M̃Sp-SUSY (Ter-Kazarian, 2023c, 2024b) theories, which are in use throughout the
present article.

In (Ter-Kazarian, 2023a, 2024a) (see Appendix A for brief outline), we developed a microscopic theory
of deformed Lorentz symmetry and deformed geometry induced by foamy effects at the Planck scale, and

∗gago 50@yahoo.com

G.Ter-Kazarian
doi: https://doi.org/10.52526/25792776-24.71.2-249

249

https://doi.org/10.52526/25792776-24.71.2-249


The Master-Space Teleparallel Supergravity: Accelerated frames

tested in ultra-high energy experiments. This theory, among other things, actually explores the first part
of the phenomenon of inertia, which refers to inertial uniform motion along rectilinear timelike world lines.
The phenomenon of inertia may be the most profound mystery in physics, and it is still the most important
incomprehensive problem that needs to be solved. Today there is no known feasible way to account for
credible explanation of this problem. With this perspective in sight, the local extension of MSp-SUSY is the
next necessary step.

In (Ter-Kazarian, 2023c, 2024b) (see Appendix B for brief outline), we conceived local M̃Sp-SUSY as a

quantum field theory of M̃Sp-Supergravity (SG), in which we review the accelerated motion of a particle in a

new perspective of local M̃Sp-SUSY transformations. That is, a creation of a particle in curved Master space

M̃Sp ≡ V 2 (2D semi-Riemannian space) means its transition from initial state defined on the background
semi-Riemannian 4D-space V4 into intermediate state defined on V 2, while an annihilation of a particle
in V 2 means vice versa. The same interpretation holds for the creation and annihilation processes in V4.
The net result of each atomic double transition of a particle V4 ⇌ V 2 to V 2 and back is as if we had
operated with a local space-time translation with acceleration, a⃗, on the original space V4. Accordingly, the
acceleration, a⃗, holds in V 2 at V 2 ⇌ V4. So, the accelerated motion of boson A(x̃) in V4 is a chain of its
sequential transformations to the Weyl fermion χ(x̃) defined on V 2 (accompanied with the auxiliary fields

F̃ ) and back, and the same interpretation holds for fermion χ(x̃). A curvature of M̃Sp within M̃Sp-SG
theory arises entirely due to the inertial properties of the Lorentz-rotated frame of interest.

Using Palatini’s formalism generalized for the M̃Sp-SG, in present article we reinterpret a flat M̃Sp-SG

theory with Weitzenböck torsion as a theory of M̃Sp-TSG having the gauge translation group in tangent
bundle. An important property of Teleparallel Gravity is that its spin connection is related only to the
inertial properties of the frame, not to gravitation. Whereas the Hilbert action vanishes and the gravitino
action loses its spin connections, so we find that the accelerated reference frame has Weitzenböck torsion
induced by gravitinos.

We proceed according to the following structure. To start with, in Section 2 we discuss the Palatini’s
formalism and flat M̃Sp-SG with torsion. Section 3 is devoted to the M̃Sp-TSG with the translation group.
In Section 4 we turn to the simple Newtonian gravitational field and ’absolute’ acceleration. In Section 5
we derive the homogeneous acceleration field. As concluding remarks, we list in section 6 of what we think
is the most important that distinguish a theory of M̃Sp-TSG. In appendices A and B, we briefly revisit

the global MSp-SUSY and M̃Sp-SG without going into the subtleties, respectively, as a guiding principle to

make the paper understandable. We revisit the simple (N = 1) M̃Sp - SG without auxiliary fields in B.1.
On these premises, we discuss the velocity and acceleration in M4. Throughout we will use the ’two-in-one’
notation of a theory MSp-SUSY (Appendix A), implying that any tensor (W ) or spinor (Θ) with indices
marked by ’hat’ denote

W µ̂1···µ̂m

ν̂1···ν̂n := Wµ1···µm
ν1···νn ⊕W

µ
1
···µ

m
ν1···νn ,

Θα̂ := θα ⊕ θα, Θ̄ ˆ̇α := θ̄α̇ ⊕ θ̄α̇.
(1)

This corresponds to the action of supercharge operators Q ≡ (either q or q) (see (86), (87) ), which is due

to the fact that the framework of M̃Sp-SG combines bosonic and fermionic states in V4 and V 2 on the
same base rotating them into each other under the action of operators (q, q). The α are all upper indices,
while α̇ is a lower index. For brevity, whenever possible undotted and dotted spinor indices often can be
ruthlessly suppressed without ambiguity. Unless indicated otherwise, the natural units, h = c = 1 are used
throughout.

2. Palatini’s formalism and Flat M̃Sp-SG with torsion

The method of finding the dependence of spin connection ω on other fields by first treating it as an
independent field in the action and then solving its (always nonpropagating) field equation is known in
standard supergravity as the Palatini’s formalism. This leads to the simplest description of supergravity.
So, solving from (114) (thus without matter) the field equation for ω, one finds ω = ω(e). We will use

the techniques of (van Nieuwenhuizen, 1981) but extended in a plausible fashion to the M̃Sp-SG. We will
find the spin connection as a function of tetrad and gravitino. Whereas the Hilbert action vanishes and the
gravitino action loses its spin connections, and thus we will find torsion induced by gravitinos.

Palatini’s formalism can be implemented as follows. Varying the spin connection in Hilbert action (118),
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which can conveniently be rewritten in the form

L(2) = − 1
16ε

µ̂ν̂ρ̂σ̂εâb̂ĉd̂e
â
µ̂e

b̂
ν̂R

ĉd̂
ρ̂σ̂ (ω), (2)

we obtain

δL(2) = −1
4ε

µ̂ν̂ρ̂σ̂εâb̂ĉd̂(Dσ̂e
â
µ̂)e

b̂
ν̂δω

ĉd̂
ρ̂ , (3)

where Deâ = deâ + ωâb̂eb̂. Varying then the spin connection in the Rarita-Schwinger action (119), it yields

δL(3/2) = 2εµ̂ν̂ρ̂σ̂(Ψ̄µ̂γ5̂γν̂σĉd̂Ψσ̂)(δω
ĉd̂
ρ̂ ), (4)

which can be recast in the form

δL(3/2) = εµ̂ν̂ρ̂σ̂εb̂ĉd̂â(Ψ̄µ̂γ
âΨσ̂)e

b̂
ν̂δω

ĉd̂
ρ̂ . (5)

For the field equation of the spin connection, comparison of (2) and (5) gives

Dµ̂e
â
ν̂ −Dν̂e

â
µ̂ = 1

2Ψ̄µ̂γ
âΨν̂ . (6)

Solving this equation, we as usual introduce the contorsion tensor K âb̂ (Aldrovandi & Pereira, 1995),

ωâb̂ = ωâb̂(e) +K âb̂. (7)

By virtue of the first tetrad postulate (which is a definition of ω(e)), we obtain

∂µ̂e
â
ν̂ + ω â

µ̂ ν̂ − (µ↔ ν) = 0,

Kµ̂âν̂ −Kν̂âµ̂ = −Ψ̄µ̂γâΨν̂ .
(8)

By substituting the second equation of (8) into the identity

(Kµ̂âν̂ −Kν̂âµ̂) + (Kâµ̂ν̂ −Kν̂µ̂â) + (Kâν̂µ̂ −Kµ̂ν̂â) = 2Kµ̂âν̂ , (9)

and using the second tetrad postulate,

∂µ̂e
â
ν̂ + ω â

µ̂ ν̂ − Γ â′
ν̂µ̂e

â
â′
= 0, (10)

one obtains an expression for antisymmetric part Γâ
[µ̂ν̂],

2T â
µ̂ν̂ = Γâ

[µ̂ν̂] = −K â
[µ̂ ν̂], (11)

with the torsion tensor T â,
T â = 1

2Ψ̄γ
âΨ. (12)

Thus, the invariance of the total action (117) under local supersymmetry transformation requires the vanish-
ing of the supertorsion T̃ â = 0, which means that the connection is no longer an independent variable. The
same supertorsion-free condition is necessary for the invariance of the action under local Poincaré transla-
tions, because of the variation (115) in case of an independent ω. An effect of the supertorsion-free condition
on the local Poincaré superalgebra is that all commutators on δeâ and δΨ close except the commutator of
two local supersymmetry transformations on the gravitino. For this commutator on the vierbein one finds

[δϵ1(X), δϵ2(X)]e
â(X) = δeâ(X) = Dρâ(X)

= 1
2 ϵ̄2(X)γâDϵ1(X)− 1

2 ϵ̄1(X)γâDϵ2(X) = 1
2D(ϵ̄2(X)γâϵ1(X)),

(13)

so that ρâ(X) = 1
2 ϵ̄2(X)γâϵ1(X) in accord with (104). The dependence of ωâb̂ on the tetrad field then reads

ωµ̂âb̂(e,Ψ) = 1
2(Rµ̂b̂,â −Rµ̂â,b̂ +Râb̂,µ̂),

Rµ̂ν̂,â = −∂µ̂eâν̂ + ∂ν̂eâµ̂ − (Ψ̄µ̂γâΨν̂),
(14)
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provided, Rµ̂b̂,â = eν̂
b̂
Rµ̂ν̂,â. Since ω(e,Ψ) is an extremum of the action, then according to the Theorem (I)

in (?), under transformation ωâb̂ → ωâb̂ + τ âb̂, for arbitrary τ âb̂ = −τ b̂â, the symmetry

L(2)(e, ω(e,Ψ) + τ) + L(3/2)(e,Ψ, ω(e,Ψ) + τ))

= L(2)(e, ω(e,Ψ)) + L(3/2)(e,Ψ, ω(e,Ψ))

−1
4(τµ̂ν̂ρ̂τ

ρ̂ν̂µ̂ − (τ λ̂
λ̂µ̂
)2) + total derivative,

(15)

holds because terms linear in τ cancel out. In particular case if τ âb̂ = −ωâb̂, the Hilbert action with the
Weitzenböck curvature vanishes, and the gravitino action loses its spin connections. So we may henceforth
reinterpret flat M̃Sp-SG with Weitzenböck torsion as a teleparallelism theory - a theory that involves
only torsion, where a parallel transport is defined over finite distances and not only in an infinitesimal
neighborhood. This theory represented an alternative way of including torsion to the scheme previously

provided by a Einstein-Cartan theory. Using then the result for ωâb̂ in terms of the curls

∂µ̂e
â
ν̂ − ∂ν̂e

â
µ̂ + Ψ̄µ̂γ

âΨν̂ , (16)

in (14), we may rewrite the action of a M̃Sp-TSG theory:

LMS−TSG = 4εµ̂ν̂ρ̂σ̂Ψ̄µ̂γ5̂γν̂∂ρ̂Ψσ̂

−R2
µ̂ν̂â −Rµ̂ν̂âR

âν̂µ̂ + 1
2R

2
ν̂λ̂λ̂

,
(17)

where the objects Rµ̂ν̂â is interpreted as the supercovariantized torsion tensor

−Dµ̂eâν̂ +Dν̂eâµ̂ − (Ψ̄µ̂γâΨν̂). (18)

3. The M̃Sp-TSG with the translation group

In Teleparallel Gravity, the spin connection represents only inertial effects, but not gravitation at all.
All quantities related to Teleparallel Gravity will be denoted with an over ’dot’. The spin connection reads

ω̇â
b̂µ̂

= Lâ
d̂
∂µ̂L

d̂
b̂
, (19)

and the energy-momentum density of the inertial or fictitious forces is

i̇ ρ̂
â = 1

k ω̇
ĉ
âσ̂Ṡ

ρ̂σ̂
ĉ , (20)

where Ṡ ρ̂σ̂
ĉ is the so called superpotential (see (38)). Teleparallel Gravity is a gauge theory for the translation

group (?). The M̃Sp-TSG theory, therefore, has the gauge translation group in tangent bundle. Namely,
at each point p of coordinates X of the base space (V4 ⊕ V 2), there is attached a Minkowski tangent-space
(the fiber) Tp(V4 ⊕ V 2) = TXµ̂(V4 ⊕ V 2), on which the point dependent gauge transformations,

X ′â = X â + εâ(X), (21)

take place. Under an infinitesimal tangent space translation, it transforms according to

δΦ(X â(X µ̂)) = −εâ∂âΦ(X â(X µ̂)). (22)

The generators of this group satisfy the Lie algebra [Pâ, Pb̂] = 0. In order to recover the covariance, it
is necessary to introduce a 1-form of the Yang–Mills connection assuming values in the Lie algebra of the
translation group:

B = eâPâ, (23)

with gauge field eâ. Introducing the covariant derivative

Ḋµ̂X
â = ∂µ̂X

â + ω̇â
b̂µ̂
X b̂, (24)

the tetrad, which is invariant under translations, becomes

ėâµ̂ = Ḋµ̂X
â + ω̇â

b̂µ̂
. (25)
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In this new class of frames, the gauge field transforms according to δeâµ̂ = −Ḋµ̂ε
â. Thus the covariant

derivative, Ḋ = d+B, with Yang–Mills connection reads

Ḋµ̂ = (δâµ̂ + e â
µ̂ )∂â = (∂µ̂X

â + e â
µ̂ )∂â = ė â

µ̂ ∂â. (26)

The curvature of the Weitzenböck connection

Γ̇ρ̂
ν̂µ̂ = ė ρ̂

â Ḋµ̂ė
â
ν̂ , (27)

vanishes identically, while for a tetrad ėâ with eâµ̂ ̸= Ḋµ̂ε
â, the torsion 2-form - the field strength (here we

re-instate the factor ∧),
Ṫ â = dėâ = 1

2 Ṫ
â
b̂ĉ
ėb̂ ∧ ėĉ = K̇ â

ĉ ∧ ėĉ, (28)

is non-vanishing:
Ṫ â

µ̂ν̂ = Ḋµ̂ė
â
ν̂ − Ḋν̂ ė

â
µ̂ = Γ̇â

[µ̂ν̂] = Ḋµ̂e
â
ν̂ − Ḋν̂e

â
µ̂ ̸= 0. (29)

Here K̇ âb̂ is the contorsion tensor, and we also taken into account the vanishing torsion,
[Ḋµ̂, Ḋν̂ ]X

â = 0, of inertial tetrad, ėâµ̂ = Ḋµ̂X
â. Hence

[ėµ̂, ėν̂ ] = Ṫµ̂ν̂ = Ṫ â
µ̂ν̂Pâ. (30)

Due to the soldered character of the tangent bundle, torsion presents also the anholonomy of the translational
covariant derivative:

[ėµ̂, ėν̂ ] = Ṫµ̂ν̂ = Ṫ ρ̂
µ̂ν̂Pρ̂. (31)

The gauge invariance of the tetrad provides torsion invariance under gauge transformations. As a gauge
theory for the translation group, the action (17) of the M̃Sp-TSG theory can be recast in the form (see
also Salgado et al. (2005))

L̇MS−TSG = 1
4 tr

(
ˆ̇T ∧ ⋆ ˆ̇T

)
− 4Ψ̄γ5̂γd̂DΨėd̂

= 1
4ηâb̂Ṫ

â ∧ ⋆Ṫ b̂ − 4Ψ̄γ5̂γd̂DΨėd̂,
(32)

where (we re-instate the factor ∧) the torsion 2-form reads

ˆ̇T = 1
2 Ṫ

â
µ̂ν̂PâdX

µ̂ ∧ dX ν̂ , (33)

and

⋆ ˆ̇T = 1
2

(
⋆Ṫ â

ρ̂σ̂

)
PâdX

ρ̂ ∧ dX σ̂. (34)

Here ⋆ denotes the Hodge dual. That is, let Ωp be the space of p-forms on an n-dimensional manifold R
with metric. Since vector spaces Ωp and Ωn−p have the same finite dimension, they are isomorphic. The
presence of a metric renders it possible to single out an unique isomorphism, called Hodge dual. Using a
coordinate basis, the Hodge dual map ⋆ : Ωp → Ωn−p is the C∞-linear map ⋆ : Ωp → Ωn−p, which acts on
the wedge product monomials of the basis 1-forms as

⋆(ϑa1···ap) = εa1···aneap+1···an , (35)

where eai (i = p+ 1, ..., n) are understood as the down indexed 1-forms eai = oaib ϑ
b and ϵa1...an is the total

antisymmetric pseudo-tensor. The operator ⋆ satisfies the property

⋆ ⋆ (ϑa1···ap) = (−1)p(n−p)+(n−s)/2 ⋆ (ϑa1···ap) (36)

where s is the metric signature. Its inverse is

⋆−1 = (−1)p(n−p)+(n−s)/2 ⋆ . (37)

A further relation involving Hodge duality reads ⋆ (α ∧ ea) = (ea ⌋⋆ α), while for differential forms α, β of
the same degree p, equation ⋆ (α ∧ β = ⋆ (β ∧ α) holds.

In (32) we taken into account that the translation group is abelian, therefore its Cartan-Killing bilinear
form is degenerate and cannot be used as a metric. Recall that the group manifold of translations is just
the Minkowski spacetime M, the quotient space between the Poincaré, P, and the Lorentz, L, groups:
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M = P/L. Namely, M is homogeneous or transitive under X-space translations, which means that there
is only one group element that moves a point of the M space into another given point of the M space. The
role of the Cartan-Killing metric comes, when it exists, from its being invariant under the group action.
Here it does not exist, but we can use the invariant Lorentz metric ηâb̂ of M in its stead. Defining the tensor
of superpotential

Ṡ ρ̂σ̂
â = −Ṡ σ̂ρ̂

â := K̇ ρ̂σ̂
â − ė σ̂

â Ṫ ĉρ̂
ĉ + ė ρ̂

â Ṫ
ĉσ̂
ĉ, (38)

the dual torsion can be rewritten in the form

⋆Ṫ ρ̂
µ̂ν̂ = ė

2εµ̂ν̂λ̂σ̂Ṡ
ρ̂λ̂σ̂, (39)

with ė = det ėâµ̂(X) =
√
−g, and hence

L̇MS−TSG = ė
8 Ṫρ̂µ̂ν̂ Ṡ

ρ̂µ̂ν̂ − 4Ψ̄γ5̂γd̂DΨėd̂. (40)

An entire torsion tensor can be written through the components of ’vector torsion’ (V̇µ̂ = Ṫ ν̂
µ̂ν̂), ’axial

torsion’ (Ȧµ̂ = 1
6ε

µ̂ν̂ρ̂λ̂Ṫν̂ρ̂λ̂), and ’pure tensor torsion’ (Ṫρ̂µ̂ν̂) (a tensor with vanishing vector and axial parts)
as

Ṫρ̂µ̂ν̂ = 2
3(Ṫρ̂µ̂ν̂ − Ṫρ̂ν̂µ̂) + 1

3(gρ̂µ̂V̇ν̂ − gρ̂ν̂ V̇µ̂) + ερ̂µ̂ν̂λ̂Ȧ
λ̂. (41)

Making use of the identity Ṫ µ̂
µ̂ρ̂ = K̇ µ̂

ρ̂µ̂, the action (32) becomes

L̇MS−TSG = ė
4

(
1
4 Ṫ

ρ̂
µ̂ν̂ Ṫ

µ̂ν̂
ρ̂ + 1

2 Ṫ
ρ̂
µ̂ν̂ Ṫ

ν̂µ̂
ρ̂ − Ṫ ρ̂

µ̂ρ̂Ṫ
ν̂µ̂
ρ̂

)
− 4Ψ̄γ5̂γd̂DΨėd̂, (42)

which consequently can be recast in the form

L̇MS−TSG = −εâb̂ĉd̂K̇
â
êK̇

êb̂ėĉėd̂ − 4Ψ̄γ5̂γd̂DΨėd̂, (43)

or

L̇MS−TSG = −εâb̂ĉd̂K̇
âb̂Ṫ ĉėd̂ − 4Ψ̄γ5̂γd̂DΨėd̂ + surface term. (44)

This action is invariant under local translations, under local super symmetry transformations and by con-
struction is invariant under local Lorentz rotations and under diffeomorphisms (see Salgado et al. (2003,
2005), Stelle & West (1980)). In other words, the action (42) is invariant under the Poincaré supergroup
and under diffeomorphisms.

It remains to see the equivalence of the Teleparallel Gravity action L̇(2) in (42) with Hilbert action
L(2) in (118), which will prove that the immediate cause of the fictitious Riemann curvature (R) for the
Levi-Civita connection (Γ) is the acceleration. The curvature (Ṙ) of Weitzenböck connection (Γ̇) vanishes
identically, but for a tetrad involving a non-trivial translational gauge potential (ė â

µ̂ ̸= Ḋµ̂ε
â), the torsion

(Ṫ ) is non-vanishing. The connection (Γ̇) can be considered a kind of dual of the Levi-Civita connection
(Γ), which is a connection with vanishing torsion (T ), and non-vanishing fictitious curvature (R). Provided,
the following relations hold:

Γ̇ρ̂
µ̂ν̂ = Γρ̂

µ̂ν̂ + K̇ ρ̂
µ̂ν̂ ,

Ṙρ̂

λ̂µ̂ν̂
= Rρ̂

λ̂µ̂ν̂
+ Q̇ρ̂

λ̂µ̂ν̂
≡ 0,

(45)

where Q̇ is a 2-form assuming values in the Lie algebra of the Lorentz group,

Q̇ = 1
2S

b̂
â Q̇

â
b̂µ̂ν̂
dX µ̂ ∧ dX ν̂ , (46)

with the components
Q̇â

b̂µ̂ν̂
= Dµ̂K̇

â
b̂ν̂

−Dν̂K̇
â
b̂µ̂

+ K̇ â
ĉν̂K̇

ĉ
b̂µ̂

− K̇ â
ĉµ̂K̇

ĉ
b̂ν̂
. (47)

The scalar version of second relation in (45) is

−Ṙ = Q̇ ≡
(
K̇ µ̂ν̂ρ̂K̇ν̂µ̂ρ̂ − K̇ µ̂ρ̂

µ̂K̇
ν̂

ρ̂ν̂

)
+ 2

ė∂µ̂

(
ėṪ ν̂µ̂

ν̂

)
, (48)

which proves that the immediate cause of the fictitious Riemann curvature (R) is the acceleration. Com-
paring with (42), this actually proves the equivalence of the Teleparallel Gravity action L̇(2) in (42) with
Hilbert action L(2) in (118):

L̇(2) = L(2) + surface term. (49)
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The dynamical aspects of particle mechanics involve derivatives with respect to proper time along the
particle worldline, which is the line element written in frame (25):

ds2 = ηâb̂ė
âėb̂ = ηâb̂ė

â
µ̂ė

b̂
µ̂dX

µ̂dX ν̂ ≡ ηµ̂ν̂dX
µ̂dX ν̂ . (50)

A worldline C of a particle, parametrized by proper time as C(s) = X µ̂(s), will have as six-velocity the vector
of components uµ̂ = dX µ̂/ds and uâ = ėâµ̂u

µ̂, which are the particle velocity along this curve respectively
in the holonomic and anholonomic bases in the X-space. The proper time can be written in the form
ds = uµ̂dX

µ̂ = uâė
â. The equation of motion in the X-space is written as

duâ

ds =
(
K̇ â

b̂ρ̂
− ω̇â

b̂ρ̂

)
ub̂uρ̂. (51)

This equation can be rewritten in a purely spacetime form

duρ̂

ds =
(
K̇ ρ̂

µ̂ν̂ − Γ̇ρ̂
µ̂ν̂

)
uµ̂uν̂ . (52)

The corresponding acceleration cannot be given a covariant meaning without a connection, while each
different connection Γρ̂

µ̂ν̂ will deffne a different acceleration. The Weitzenböck connection, which defines

the Fock-Ivanenko derivative Ḋµ̂ written in terms of covariant derivative ▽̇µ̂:

Ḋµ̂Φ
â = ėâρ̂▽̇µ̂Φ

ρ̂, (53)

will define the acceleration too

ȧρ̂ = ▽̇uρ̂

▽̇s = uν̂▽̇ν̂u
ρ̂ = duρ̂

ds + Γ̇ρ̂
µ̂ν̂u

µ̂uν̂

= K̇ ρ̂
µ̂ν̂u

µ̂uν̂ = Ṫ ρ̂
ν̂µ̂u

µ̂uν̂ .
(54)

This is a force equation, with torsion (or contortion) playing the role of force. To transform the tetrad
field into a reference frame in X-space with an observer attached to it, we may ”attach” ė0̂ to the observer

by identifying u = ė0̂ = d
ds with components uµ̂ = ė µ̂

0̂
, such that ė0̂ will be the observer velocity. The

Weitzenböck connection, Γ̇, will attribute to the observer an acceleration

ȧâ
( ˙f,Γ)

= ω̇â
0̂0̂

+ K̇ â
0̂0̂
, (55)

seen by that very observer. Whereas,
ω̇â

b̂ĉ
= ėâµ̂▽̇ėĉ , ė

µ̂

b̂
, (56)

which literarily means the covariant derivative of ėb̂ along ėĉ, projected along ėâ. As ȧρ̂ (54) is orthogonal
to uρ̂, its vanishing means that the uρ̂ keeps parallel to itself along the worldline.

Another transport, distinct from parallel transport, is the Fermi-Walker transport, which absorbs the
acceleration. Fermi-Walker transport for a vector V along a worldline with unit tangent U is characterized
by a boost that compensates the acceleration U̇ ≡ U/Ds. The temporal-part of V remains unchanged,
while the spatial-part becomes subject to a rotation preserving the length of the spatial-part of the vector
V and, thus, its four-dimensional length. In particular,

▽̇(FW )
ė0̂

ė ρ̂

0̂
= ▽̇ė0̂

ė ρ̂

0̂
− ȧρ̂, (57)

implies that ė0̂, by this transport, is kept tangent along its own integral curve. Along the radial geodesics,
however, Fermi-Walker transport becomes Levi-Civita’s parallel transport.

4. A Newtonian gravitational field: ’absolute’ acceleration

A Newtonian limit is obtained by assuming that the translational gauge field is stationary and weak.
This means respectively that the time derivative of eaµ in M4 vanishes, and that|eaµ| ≪ 1 (Aldrovandi &
Pereira, 2013). In accord, all the particles are supposed to move in M4 with a sufficient small velocity so
that ui ≪ u0. The equation of motion (52) rewritten purely in the terms of M4 spacetime is then reduced
to

duρ

ds + Γ̇ρ
00u

0u0 = Ṫ ρ
0 0u

0u0. (58)
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In the class of frames in which the teleparallel spin connection ω̇â
b̂ρ̂

vanishes, and choosing a translational

gauge in which ∂µx
a = δaµ, the tetrad has the form

ẽaµ = δaµ + eaµ.

Up to first order in the field eaµ, we obtain

Γ̇ρ
µν ≡ ∂νe

ρ
µ,

where
eρµ = δρae

a
µ.

The (58) becomes
d2xρ

ds2
= ∂ρe00u

0u0.

Substituting u0 = cdt/ds, we obtain
d2xρ

ds2
= ∂ρe00c

2(
dt

ds
)2.

For the temporal component this gives
d2x0

ds2
≡ c2

d2t

ds2
= 0,

the solution of which is the constant dt/ds. Then the spatial components of d2xρ/ds2 reads

dvi

dt
= c2∂ie00,

where vi is the particle three-velocity. If we identify c2e00 = Φ, with the potential of the fictitious gravita-
tional force (the inertial force):

F = −▽Φ,

we obtain
a⃗ = −F⃗ .

Here we have taken into account that the components of x⃗ are given by xi = −xi, so that ∂i = −∂i. As
expected, due to the equivalence with the geodesic equation, the force equation (54) also can be approximated
to the limit of a Newtonian gravitational field.

Now consider the Newtonian field with acceleration −a(c), in M2, in the x1-direction of zero velocity

and at x0 = 0. Let the parallel worldlines x = const be the geodesics. For x0 = 0 and x1 = 1/v0a(c), the

parallel to the x0-axis through this point is touched by the worldline of an observer with constant intrinsic
acceleration

a(c) =
√
2(a

(+)
(c) a

(−)
(c) )

1/2 = 2(θ1 θ̄1θ2 θ̄2)
1/2 d2τ

ds2

∣∣∣
const

, (59)

which is the hyperbola (see next subsect.) parameterized with proper time s,

x0 = ρ sinh s
ρ , x1 = ρ cosh s

ρ , ρ = 1
v0a(c)

. (60)

Let this observer measure the distance η(s) to the straight line x = ρ orthogonal to his worldline:

η(s) = ρ− ρ

cosh s
ρ

= 1
2ρs

2 +O(s4). (61)

The acceleration then reads

a =
d2ρ

s2
= 1

2ρ = v0a(c). (62)

Since the velocity η/s increases, the acceleration points into the negative x1-direction. Further, according
to (126), the absolute acceleration in M4 becomes

a⃗abs. = −a = −v0a(c) = −4(θ1 θ̄1θ2 θ̄2)
dτ
ds

d2τ
ds2

∣∣∣
const

, (63)

pointing into the negative n⃗ = x⃗/|x⃗|-direction. It is for this special case: against absolute space, in the same
event, and at the same velocity, an inertial observer and the absolutely accelerated observer can interpret
gravity as acceleration and vice versa. Acceleration against Newton’s absolute space now is no longer so
implausible as it appeared a century ago. The vacuum of spacetime is filled with the fluctuations of all fields
and a metric too. Absolute space is realized by a local inertial system.
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5. The homogeneous acceleration field

The torsion in affine connected master space M2 is described by the vector-valued 2-form T as

T = d(eµe
µ), (64)

where d denotes the operator of exterior covariant derivation. Let us now to study the accelerated frame of
reference described by the constant torsion (written with re-instated factor ∧) - the fictitious gravitational
field strength,

Tµ = deµ = 1
2T

µ

λ νe
λ ∧ eν , (65)

in the M2. The metric of a homogeneous manifold is invariant under a transitive group of motions, i.e. if its
action maps any point of the manifold into any other point (Schucking & Surowitz, 2007). For gravitational
fields, the group of motions has to be simply transitive, i.e. there is only one group element that moves
a point of the manifold into another given point of the manifold. The homogeneity group in the master
space M2 is characterized by the invariant differential 1-forms eµ that determine the coframes. Namely,
M2 is homogeneous if the metric is given in terms of invariant differential 1-forms eµ = e

µ
νdxν for a simply

transitive group. Therefore the e
′µ
ν and the e

m
ν are the same functions of their arguments e

′µ
ν(x′

λ) = e
µ
ν(xλ),

provided, det[e
′µ
ν ] ̸= 0 and det[e

µ
ν ] ̸= 0. In this case, the specific coframe vectors (eµ),

e(+) = dx(+)

a(c)x
(+) , e(−) = a(c)x

(+)dx(−),

ds2 = 2e(+)e(−),
(66)

with constant acceleration a(c) (59), are independent and yield the components of constant and thus homo-
geneous torsion (65):

T
(+)
(+) (−) = 0, T

(−)
(+) (−) = a(c). (67)

The embedding map (100) gives

e(±) =
1√
2
(dx0 ± dx1) =

1√
2
(dx0 ± d|x⃗|),

so that ds2 = ds2. Using the relation eµ ⌋ eλ = δ
µ

λ , the frame vectors e(±) read

e(+) = a(c)x
(+)∂(+), e(−) = (a(c)x

(+))−1∂(−). (68)

The covariant components aj of the constant acceleration vector, from the (54), can be written

aj = Tjklv
kvl, (69)

which is the geodesic acceleration adapted to frame (68), with

a(+) = T(+) (−) (+)v
(−)v(+) = a(c)v

(−)v(+),

a(−) = T(−) (+) (+)v
(+)v(+) = −a(c)

(
v(+)

)2
,

(70)

where v(±) = 1√
2
(v0 ± |v⃗|). The contravariant components then are

a(+) = −a(c)
(
v(+)

)2
, a(−) = a(c)v

(−)v(+). (71)

Thus the acceleration four-vector reads

a = aµeµ = −
(
a(c)v

(+)
)2
x(+)∂(+) +

v(−)v(+)

x(+) ∂(−). (72)

This vector is orthogonal to the four-velocity
ajv

j = 0, and tangent to the curves

dx(+)

dσ = −
(
a(c)v

(+)
)2
x(+),

dx(−)

dσ = v(−)v(+)

x(+) ,
(73)
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described by the parameter σ. Integration gives

x(+) = C
(+)
1 e−(a(c)v

(+))
2
σ,

x(−) − C
(−)
1 = v(−)v(+) e(a(c)v

(+))
2
σ

(a(c)v(+))
2
C

(+)
1

,
(74)

with constants C
(±)
1 . By eliminating these constants and using the relation

2v(+)v(−) =
(
v0
)2 − |v⃗|2 = 1, (75)

we obtain
x(−) − C

(−)
1 = 1

2x(+)(a(c)v(+))
2 (76)

These curves can be obtained from the hyperbola

x(+)x(−) = (x(0))2 − |x⃗|2 = 1
2(v(+)a(c))

2 , (77)

by translation in the x(−)-direction. If we choose the velocity as a constant, say, v(+) = const > 0, it follows
from (75) that v(−) is also constant and the velocity vector field

v = vµeµ = v(+) a(c)x
(+)∂(+) + v(−) 1

a(c)x
(+)∂(−), (78)

is invariant in the M4. Since v(+) is constant, the vectors are parallel in the usual affine sense along lines
x(+) = const. In the same manner as above, we write

dx(+)

ds = v(+) a(c)x
(+), dx(−)

ds = 1
2v(+) a(c)x

(+) , (79)

so that integration gives

x(+) = C
(+)
2 ev

(+) a(c)s,

x(−) − C
(−)
2 = − e

v(+) a(c)s

2C
(+)
2 (v(+)a(c))

2
,

(80)

with constants C
(±)
2 . By eliminating C

(+)
2 and proper time s, we obtain a set of identical hyperbolae

x(−) − C
(−)
2 = − 1

2x(+)(v(+)a(c))
2 , (81)

that are obtained from the hyperbola

x(+)x(−) + 1
2(v(+)a(c))

2 = 0, (82)

or
(x(0))2 − |x⃗|2 + 1

2(v(+)a(c))
2 = 0, (83)

by translation in the x(−)-direction. The question is whether two events in M4 are connected by a straight
timelike line or by a hyperbolic path can easily be solved because the hyperbolic path has a smaller proper
time. Thus, the results obtained clearly show that the accelerated frame of reference should be described as a
frame with torsion. Whereas the frames expressing linear and rotational acceleration can be interpreted—via
torsion—as an invariant property of spacetime.

6. Concluding remarks

In this section we highlight a few points of the M̃Sp-TSG theory and discuss issues to be studied in
subsequent paper.

(I) Using Palatini’s formalism extended in a plausible fashion to the M̃Sp - SG, we reinterpret a flat

M̃Sp-SG theory with Weitzenböck torsion as a M̃Sp-TSG theory, having the gauge translation group in
tangent bundle. Whereas the Hilbert action vanishes and the gravitino action loses its spin connections, so
we find torsion induced by gravitinos. The accelerated reference frame has Weitzenböck torsion.
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(II) The spin connection represents only inertial effects, but not gravitation at all. The action of a

M̃Sp-TSG theory is invariant under the Poincaré supergroup and under diffeomorphisms.
(III) The translation group is abelian, therefore its Cartan-Killing bilinear form is degenerate and cannot

be used as a metric. Recall that the group manifold of translations is just the Minkowski spacetime M, the
quotient space between the Poincaré, P, and the Lorentz, L, groups: M = P/L. Namely, M is homogeneous
or transitive under X-space translations, which means that there is only one group element that moves a
point of the M space into another given point of the M space. The role of the Cartan-Killing metric comes,
when it exists, from its being invariant under the group action. Here it does not exist, but we can use the
invariant Lorentz metric ηâb̂ of M in its stead.

(IV) The action of M̃Sp-TSG is invariant under local translations, under local super symmetry trans-
formations and by construction is invariant under local Lorentz rotations and under diffeomorphisms. So
that this action is invariant under the Poincaré supergroup and under diffeomorphisms.

(V) We show the equivalence of the Teleparallel Gravity action with Hilbert action, which will prove that
the immediate cause of the fictitious Riemann curvature for the Levi-Civita connection is the acceleration.
The curvature of Weitzenböck connection vanishes identically, but for a tetrad involving a non-trivial trans-
lational gauge potential, the torsion is non-vanishing. We consider Weitzenböck connection a kind of dual
of the Levi-Civita connection, which is a connection with vanishing torsion, and non-vanishing fictitious
curvature. The Weitzenböck connection, which defines the Fock-Ivanenko derivative written in terms of
covariant derivative, will define the acceleration through force equation, with torsion (or contortion) playing
the role of force.

(VI) The Weitzenböck connection (Γ̇), which defines the Fock-Ivanenko derivative (Ḋµ̂) written in terms
of covariant derivative (▽̇µ̂), defines the acceleration too. By means of it, we derive a force equation, with
torsion (or contortion) playing the role of force. The connection (Γ̇) can be considered a kind of dual of the
Levi-Civita connection (Γ), which is a connection with vanishing torsion (T ), and non-vanishing fictitious
curvature (R). Using this, we prove the equivalence of the Teleparallel Gravity action (L̇(2)) in (42) with
Hilbert action (L(2)) in (118).

(VII) We complement a theory of M̃Sp-TSG with implications for special cases. In particular, we discuss
the Newtonian limit, and describe the homogeneous acceleration field.

(VIII) Further studies on the M̃Sp-TSG are warranted with special emphasis on the general deformation
of MSp induced by external force exerted on a particle and inertial effects, the hypothesis of locality, which
will essentially improve the framework of present paper. Actually,

a) As we emphasized already essential difference arisen between the standard supergravity theories

and some rather unusual properties of a M̃Sp-SG theory is as follows. In the framework of the standard
supergravity theories, as in GR, a curvature of the space-time acts on all the matter fields. The source of
graviton is the energy-momentum tensor of matter fields, while the source of gravitino is the spin-vector
current of supergravity. The gauge action of simple M̃Sp-SG is the sum of the Hilbert action for the
tetrad field - fictitious graviton, and the Rarita-Schwinger action for the fictitious gravitino field. Instead
we argue that a deformation of MSp is the origin of these fields. They refer to the particle of interest
itself, without relation to other matter fields, so that these fields can be globally removed by appropriate
coordinate transformations. With these physical requirements, a standard coupling of supergravity with
matter superfields evidently no longer holds. Instead we should look for an alternative way of implications
of M̃Sp-SG for the model of accelerated motion and inertial effects. We, therefore, would work out the
theory of a general deformation of MSp induced by external force exerted on a particle, in order to show

that in the M̃Sp-TSG theory the occurrence of the absolute and inertial accelerations, and the inertial force
are obviously caused by this. In the same time, the relative acceleration (in Newton’s terminology) (both
magnitude and direction), to the contrary, has nothing to do with a deformation of M 2 and, thus, it cannot
produce the inertia effects.

b) In standard framework of the construction of reference frame of an accelerated observer, the hypothesis
of locality holds for huge proper acceleration lengths and that represents strict restrictions, because it
approximately replaces a noninertial frame of reference S̃(2), which is held stationary in the deformed space

M2 ≡ V
(ϱ)
2 (ϱ ̸= 0), where V 2 is the 2D semi-Riemannian space, with a continuous infinity set of the inertial

frames {S(2), S′
(2), S

′′
(2), ...} given in the flatM2 (ϱ = 0). In this situation the use of the hypothesis of locality

is physically unjustifiable. In this study, therefore, it is worthwhile to take into account a deformation

M2 −→ V
(ϱ)
2 , which will essentially improve the standard framework. The above mentioned problems (a,b)

will be topic for research in subsequent paper (Ter-Kazarian, 2024c).
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Appendices

Appendix A A global MSp-SUSY

As a guiding principle to make the present paper understandable, in the next two sections we necessarily
recount succinctly some of the highlights behind of global MSp-SUSY (Ter-Kazarian, 2023a, 2024a) and local

M̃Sp-SUSY theories.
The flat MSp is the 2D composite space

MSp ≡M 2 = R1
(+) ⊕R1

(−), (84)

with Lorentz metric. The ingredient 1D-space R1
m is spanned by the coordinates ηm. The following nota-

tional conventions are used throughout this paper: all quantities related to the spaceM 2 will be underlined.
In particular, the underlined lower case Latin letters m,n, ... = (±) denote the world indices related to M 2.

Suppose the position of the particle is specified by the coordinates xm(s) (x0 = t) in the basis em
(m=0,1,2,3) at given point in the background M4 space. A smooth map f : M2 −→ M4 is defined to be
an immersion (the embedding which is a function that is a homeomorphism onto its image):

e0 = e0, x0 = x0, e1 = n⃗, x1 = |x⃗|, (85)

where x⃗ = eix
i = n⃗|x⃗| (i = 1, 2, 3). Given the inertial frames S(4), S

′
(4), S

′′
(4), ... in unaccelerated uniform

motion in M4, we may define the corresponding inertial frames S(2), S
′
(2), S

′′
(2),... in M 2, which are used

by the non-accelerated observers for the positions xr, x′r, x′′r, ... of a free particle in flat M 2. According
to (85), the time axes of the two systems S(2) and S(4) coincide in direction, and the time coordinates are
taken the same. All the fermionic and bosonic states taken together form a basis in the Hilbert space. The
basis vectors in the Hilbert space composed of HB ⊗HF is given by

{|n b > ⊗|0 >f , |n b > ⊗f † |0 >f},

or
{|nb > ⊗|0 > f , |nb > ⊗f † |0 > f},

where we consider two pairs of creation and annihilation operators (b†, b) and (f †, f) for bosons and fermions,
respectively, referred to the background space M4, as well as (b†, b) and (f †, f) for bosons and fermions,

respectively, as to background master space M 2. Accordingly, we construct the quantum operators, (q†, q†)
and (q, q), which replace bosons by fermions and vice versa:

q |n b, nf >= q0
√
n b |n b − 1, nf + 1 >,

q† |n b, nf >= q0
√
n b + 1 |n b + 1, nf − 1 >,

(86)

and that
q |nb, n f >= q0

√
nb |nb − 1, n f + 1 >,

q† |nb, n f > q0
√
nb + 1 |nb + 1, n f − 1 > .

(87)

This framework combines bosonic and fermionic states on the same footing, rotating them into each other
under the action of operators q and q. So, we may refer the action of the supercharge operators q and q†

to the background space M4, having applied in the chain transformations of fermion χ (accompanied with
the auxiliary field F as it will be seen later on) to boson A, defined on M 2. Respectively, we may refer
the action of the supercharge operators q and q† to the M 2, having applied in the chain transformations
of fermion χ (accompanied with the auxiliary field F ) to boson A, defined on the background space M4.
While all the particles are living on M4, their superpartners can be viewed as living on MSp. In MSp-SUSY
theory, obviously as in standard unbroken SUSY theory, the vacuum zero point energy problem, standing
before any quantum field theory in M4, is solved. The particles in M4 themselves can be considered as
excited states above the underlying quantum vacuum of background double spaces M4⊕ MSp, where the
zero point cancellation occurs at ground-state energy, provided that the natural frequencies are set equal
(q20 ≡ νb = νf ), because the fermion field has a negative zero point energy while the boson field has a positive
zero point energy.

The odd part of the supersymmetry algebra is composed entirely of the spin-1/2 operators Q i
α , Q

j
β . In

order to trace a maximal resemblance in outward appearance to the standard SUSY theories, here we set
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one notation m̂ = (m if Q = q, or m if Q = q), and as before the indices α and α̇ run over 1 and
2. The underlying algebraic structure of MSp-SUSY generators closes with the algebra of translations on
the original space M4 in a way that it can then be summarized as a non-trivial extension of the Poincaré
group algebra those of the commutation relations of the bosonic generators of four momenta and six Lorentz
generators referred toM4. Moreover, if there are several spinor generators Q i

α with i = 1, ..., N - theory with
N−extended supersymmetry, can be written as a graded Lie algebra of SUSY field theories, with commuting
and anticommuting generators. The anticommuting (Grassmann) parameters ϵα(ξα, ξα) and ϵ̄α(ξ̄α, ξ̄

α
):

{ϵα, ϵβ} = {ϵ̄α, ϵ̄β} = {ϵα, ϵ̄β} = 0, {ϵα, Qβ} = · · · = [pm̂, ϵ
α] = 0, (88)

allow us to write the algebra (??) for (N = 1) entirely in terms of commutators:

[ϵQ, Q̄ϵ̄] = 2ϵσm̂ϵ̄pm̂, [ϵQ, ϵQ] = [Q̄ϵ̄, Q̄ϵ̄] = [pm̂, ϵQ] = [pm̂, Q̄ϵ̄] = 0. (89)

For brevity, here the indices ϵQ = ϵαQα and ϵ̄Q̄ = ϵ̄α̇Q̄
α̇ will be suppressed unless indicated otherwise. This

supersymmetry transformation maps tensor fields A(A, A) into spinor fields ψ(χ, χ) and vice versa. From
the algebra (89) we see that Q has mass dimension 1/2. Therefore, as usual, fields of dimension ℓ transform
into fields of dimension ℓ+ 1/2 or into derivatives of fields of lower dimension.

In the framework of standard generalization of the coset construction, we will take G = Gq×Gq to be the
supergroup generated by the MSp-SUSY algebra (??). Let the stability group H = Hq ×Hq be the Lorentz
group (referred toM4 andM 2), and we choose to keep all of G unbroken. Given G and H, we can construct
the coset, G/H, by an equivalence relation on the elements of G: Ω ∼ Ωh, where Ω = Ωq × Ωq ∈ G and
h = hq × hq ∈ H, so that the coset can be pictured as a section of a fiber bundle with total space, G, and

fiber, H. So, the Maurer-Cartan form, Ω−1dΩ, is valued in the Lie algebra of G, and transforms as follows
under a global G transformation,

Ω −→ gΩh−1,
Ω−1dΩ −→ h(Ω−1dΩ)h−1 − dhh−1,

(90)

with g ∈ G.
The `superspace´ is a 14D-extension of a direct sum of background spaces M4 ⊕M 2 (spanned by the

6D-coordinates Xm̂ = (xm, ηm) by the inclusion of additional 8D-fermionic coordinates Θα = (θα, θα)
and Θ̄α̇ = (θ̄α̇, θ̄ α̇). Then the net result of sequential atomic double transitions induce the inhomogeneous
Lorentz group, or Poincaré group, and that the unitary linear transformation |x, t >→ U(L, a)|x, t > on
vectors in the physical Hilbert space.

To study the effect of supersymmetry transformations, we consider

g(0, ϵ, ϵ̄) Ω(X, Θ, Θ̄) = ei(ϵ
αQα+ϵ̄α̇Q̄

α̇) ei(−Xm̂pm̂+ΘαQα+Θ̄α̇Q̄
α̇). (91)

the transformation (91) induces the motion:

g(0, ϵ, ϵ̄) Ω(Xm̂, Θ, Θ̄) → (Xm̂ + iΘσm̂ ϵ̄− i ϵ σm̂ Θ̄, Θ+ ϵ, Θ̄ + ϵ̄), (92)

namely,
gq(0, ξ, ξ̄) Ωq(x, θ, θ̄) → (xm + i θ σm ξ̄ − i ξ σm θ̄, θ + ξ, θ̄ + ξ̄),
gq(0, ξ, ξ̄) Ωq(η, θ, θ̄) → (ηm + i θ σm ξ̄ − i ξ σm θ̄, θ + ξ, θ̄ + ξ̄).

(93)

The spinors θ(θ, θ̄) and θ̄(θ, θ̄) satisfy the embedding relations ∆x0 = ∆x0 and ∆x2 = (∆x⃗)2, so from (93)
we obtain

θ σ0 ξ̄ − ξ σ0 θ̄ = θ σ0 ξ̄ − ξ σ0 θ̄, (θ σ3 ξ̄ − ξ σ3 θ̄)2 = (θ σ⃗ ξ̄ − ξ σ⃗ θ̄)2. (94)

The atomic displacement caused by double transition of a particle M4 ⇌M 2 reads

∆x(a) = em∆x
m
(a) = uτ, (95)

where the components ∆x
m
(a) are written

∆x
m
(a) = (θ σm θ̄)τ. (96)
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Hence the velocities of light in vacuum, v0 = c, and of a particle ,v⃗ 1 = e1v
1 = n⃗|v⃗| = v⃗ (|v⃗| ≤ c), are

v0 = θ σ0 θ̄ = (θ1 θ̄1 + θ2 θ̄2) = θ θ̄,
v1 = θ σ1 θ̄ = (θ1 θ̄1 − θ2 θ̄2).

(97)

Thus, we achieve the desired goal to derive the SLC in terms of spinors (θ, θ̄) and period (τ) of superoscil-
lations referred to the master space M 2 . This allows to introduce the physical finite relative time interval
between two events as integer number of the own atomic duration time of double transition of a particle
from M4 to MSp and back.

Thereby we consider the spaces M4 and M 2 as mathematical prior the motion, devoid of any sense of
physical space-time, until we have to impose two specific conditions on the spinor transformation matrix
M acting in M 2 to derive the most important inertial uniform motion in M4 with physical properties of
Special Relativity. Actually, to derive the most important relative inertial uniform motion in mathematical
Minkowski space M4 devoid of any sense of physical space-time, it is necessary to impose specific conditions
on the spinor transformation matrix M in M 2. We are of course not limited within MSp-SUSY to consider
particular constant spinor θ referred to M 2, which yields the constant velocity v⃗(θ), but can choose at will
any other constant spinors θ′, θ′′, . . . yielding respectively the constant velocities v⃗′(θ′), v⃗ ′′(θ′′), . . . of inertial
observers that move uniformly forever on rectilinear timelike worldlines, whose transformational law on the
original spinor θ is known (first condition):

θ′α =M β
α θβ, θ̄α̇ = (M∗) β̇

α̇ θ̄β̇, α̇, β̇ = 1, 2, (98)

whereM ∈ SL(2, C) is the hermitian unimodular two-by-two matrix, the matrixM∗ is related by a similarity

transformation to (M−1)†, i.e. (M †)βα = (M∗) β
α . The (98) gives the second founding property of SR that

the bilinear combinations are c := θ θ̄ = θ′ θ̄
′
= · · · = const, which yields a second postulate of SR (Einstein’s

postulate). Therewith a quantity em (θ σm ξ̄) (where em is a basis vector, θ, ξ are Weyl spinors) is a Lorentz
scalar if and only if the second condition holds:

1
2 Tr

(
σmMσnM †)σnαα̇ = (M−1)α

βσ
m

ββ̇
(M−1)†β̇ α̇, (99)

where the map from SL(2, C) to the Lorentz group is established through the σ-matrices. The latter,
according to embedding map, can be written in terms of σ⃗-Pauli spin matrices. The (99) combined with (96)
give the first founding property ∆x(a) = ∆x′(a) = · · · = inv of SR. This calls for a complete reconsideration
of our standard ideas of Lorentz motion code, to be now referred to as the individual code of a particle,
defined as its intrinsic property. On these premises, we derive the two postulates on which the theory
of SR is based. In the sequel, we turn to the deformation of these spinors (Ter-Kazarian, 2023b, 2024a):
θ → θ̃ = λ1/2 θ, etc., where λ appears as a deformation scalar function of the Lorentz invariance (LIDF).
This yields both the DLE and DMAV, respectively, in the form d̃s = λds and c̃ = λc, provided, the
invariance of DLE, and the same value of DMAV in free space hold for all inertial systems. Thus the
Lorentz invariance deformation (LID)-generalization of global MSp-SUSY theory formulates the generalized
relativity postulates in a way that preserve the relativity of inertial frames, in spite of the appearance of
modified terms in the LID dispersion relations. We complement this conceptual investigation with testing
of various LIDFs in the UHECR- and TeV-γ threshold anomalies by implications for several scenarios: the
Coleman and Glashow-type perturbative extension of SLC, the LID extension of standard model, the LID
in quantum gravity motivated space-time models, the LID in loop quantum gravity models, and the LIDF
for the models preserving the relativity of inertial frames.

Appendix B The M̃Sp-Supergravity

A local extension of the MSp-SUSY algebra leads to the gauge theory of translations. One might guess
that the condition for the parameter ∂µ̂ϵ = 0 of a global MSp-SUSY theory (Ter-Kazarian, 2023b, 2024a)
should be relaxed for the accelerated particle motion, so that a global SUSY will be promoted to a local
SUSY in which the parameter ϵ = ϵ(X µ̂) depends explicitly on X µ̂ = (x̃µ, x̃µ) ∈ V4⊕V 2, where x̃

µ ∈ V4 and

x̃µ ∈ M̃Sp(≡ V 2), with V4 and V 2 are the 4D and 2D semi-Riemannian spaces. This extension will address
the accelerated motion and inertia effects.
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A smooth embedding map, generalized for curved spaces, becomes f̃ : V 2 −→ V4 defined to be an
immersion (the embedding which is a function that is a homeomorphism onto its image):

ẽ0 = ẽ0, x̃0 = x̃0, ẽ1 =
⃗̃n, x̃1 = |⃗̃x|, (100)

where ⃗̃x = ẽix̃
i = ⃗̃n|⃗̃x| (i = 1, 2, 3) (the middle letters of the Latin alphabet (i, j, ...) will be reserved for

space indices). We expect the notion of a general coordinate transformation should be

[δϵ1(X), δϵ2(X)]V = 1
2 ϵ̄2(X)σµ̂ϵ1(X) ∂̃µ̂V. (101)

On the premises of (?), we review the accelerated motion of a particle in a new perspective of local M̃Sp-
SUSY transformations that a creation of a particle in V 2 means its transition from initial state defined on
V4 into intermediate state defined on V 2, while an annihilation of a particle in V 2 means vice versa. The
same interpretation holds for the creation and annihilation processes in V4. The net result of each atomic
double transition of a particle V4 ⇌ V 2 to V 2 and back is as if we had operated with a local space-time
translation with acceleration, a⃗, on the original space V4. Accordingly, the acceleration, a⃗, holds in V 2 at
V 2 ⇌ V4. So, the accelerated motion of boson A(x̃) in V4 is a chain of its sequential transformations to the
Weyl fermion χ(x̃) defined on V 2 (accompanied with the auxiliary fields F̃ ) and back,

→ A(x̃) → χ(F )(x̃) → A(x̃) → χ(F )(x̃) →, (102)

and the same interpretation holds for fermion χ(x̃).

The mathematical structure of a local theory of M̃Sp-SUSY has much in common with those used in
the geometrical framework of standard supergravity theories. Such a local SUSY can already be read off
from the algebra of a global MSp-SUSY (?) in the form

[ϵ(X)Q, Q̄ϵ̄(X)] = 2ϵ(X)σµ̂ϵ̄(X)p̃µ̂, (103)

which says that the product of two supersymmetry transformations corresponds to a translation in 6D X-
space of which the momentum p̃µ̂ = i∂̃µ̂ is the generator. We expect the notion of a general coordinate
transformation should be

[δϵ1(X), δϵ2(X)]V = 1
2 ϵ̄2(X)σµ̂ϵ1(X) ∂̃µ̂V. (104)

Then for the local M̃Sp-SUSY to exist it requires the background spaces (V4, V 2) to be curved. In order to
become on the same footing with V 2, the V4 refers to the accelerated proper reference frame of a particle
without relation to other matter fields. This leads us to extend the concept of differential forms to superspace.
A useful guide in the construction of local superspace is that it should admit rigid superspace as a limit. The
superspace is a direct sum of background semi-Riemannian 4D-space and curved Master space V4 ⊕ M̃Sp,
with an inclusion of additional fermionic coordinates Θ(θ, θ̄) and Θ̄(θ, θ̄), which are induced by the spinors

θ and θ̄ referred to M̃Sp.
The multiplication of two local sequential supersymmetric transformations induces the motion (a gener-

alization of the motion (93))

g(0, ϵ(X), ϵ̄(X)) Ω(X µ̂, Θα̂, Θ̄ ˆ̇α −→
(X µ̂ + iΘα̂ σµ̂ ϵ̄(X)− i ϵ(X)σµ̂ Θ̄ ˆ̇α, Θ+ ϵ(X), Θ̄ + ϵ̄(X)),

(105)

which gives
gq(0, ξ(x̃), ξ̄(x̃)) Ωq(x̃, θ, θ̄) →
(x̃m + i θ σm ξ̄(x̃)− i ξ(x̃)σm θ̄, θ + ξ(x̃), θ̄ + ξ̄(x̃)),
gq(0, ξ(x̃), ξ̄(x̃)) Ωq(x̃, θ, θ̄) →
(x̃m + i θ σm ξ̄(x̃)− i ξ(x̃)σm θ̄, θ + ξ(x̃), θ̄ + ξ̄(x̃)).

(106)

Being embedded in V4, the M̃Sp is the unmanifested indispensable individual companion of a particle of
interest devoid of any matter influence. While all the particles are living on V4, their superpartners can be
viewed as living on M̃Sp. In this framework supersymmetry and general coordinate transformations are

described in a unified way as certain diffeomorphisms. The action of simple M̃Sp-SG includes the Hilbert
term for a fictitious graviton coexisting with a fictitious fermionic field of, so-called, gravitino (sparticle)
described by the Rarita-Scwinger kinetic term. These two particles differ in their spin: 2 for the graviton, 3/2

for the gravitino. They are the bosonic and fermionic states of a gauge particle in V4 and M̃Sp, respectively,
or vice versa.
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B.1 The simple (N = 1) M̃Sp - SG without auxiliary fields, revisited

The generalized Poincaré superalgebra for the simple (N = 1) M̃Sp-SG reads:

[Pâ, Pb̂] = 0, [Sâb̂, Pĉ] = (ηâĉPb̂ − ηb̂ĉPâ),
[Sâb̂, Sĉd̂] = i(ηâĉSb̂d̂ − ηb̂ĉSâd̂ + ηb̂d̂Sâĉ − ηâd̂Sb̂ĉ),
[Sâb̂, Q

α] = 1
2(γâb̂)

α
βQ

β,

[Pâ, Q
β] = 0, [Qα, Q̄β̇] =

1
2(γ

â)αβ̇Pâ.

(107)

with (Sâb̂)
ĉ
d̂
= i(δĉâηb̂d̂ − δĉ

b̂
ηâd̂) (??) a given representation of the Lorentz generators. Using (107) and a

general form for gauge transformations on BA,

δB = Dλ = dλ+ [B, λ], (108)

with

λ = ρâPâ +
1
2κ

âb̂Sâb̂ + Q̄ε, (109)

we obtain that the (eâ, ωâb̂,Ψ) transform under Poincaré translations as

δeâ = Dρâ, δωâb̂ = 0, δΨ = 0; (110)

under Lorentz rotations as

δeâ = κâ
b̂
δeb̂, δωâb̂ = −Dκâb̂, δΨ = 1

4κ
âb̂γâb̂Ψ; (111)

and under supersymmetry transformation as

δeâ = 1
2 ε̄γ

âΨ, δωâb̂ = 0, δΨ = Dε. (112)

In first-order formalism, the gauge fields (eâ, ωâb̂, Ψ), (with Ψ = (ψ,ψ) a two-component Majorana spinor)
are considered as an independent members of multiplet in the adjoint representation of the Poincaré super-
group of D = 6 ((3+1), (1+1)) simple (N = 1) M̃Sp-SG with the generators (Pâ, Sâb̂, Q

α). Unless indicated
otherwise, henceforth the world indices are kept implicit without ambiguity. The operators carry Lorentz
indices not related to coordinate transformations. The Yang-Mills connection for the Poincare´ supergroup
is given by

B = BATA = eâPâ +
1
2 iω

âb̂Sâb̂ +ΨQ̄. (113)

The field strength associated with connection B is defined as the Poincaré Lie superalgebra-valued curvature
two-form RA. Splitting the index A, and taking the Θ = Θ̄ = 0 component of RA, we obtain

R âb̂(ω) = dωâb̂ − ωâ
ĉω

ĉd̂,

T̃ â = T â − 1
2Ψ̄γ

âΨ, ρ = DΨ,
(114)

where γâ = (γa, σa), R âb̂(ω) is the Riemann curvature in terms of the spin connection ωâb̂, and the
generalized Weyl lemma (see App./(4)) requires that the, so-called, supertorsion T̃ â be inserted. The solution
ω(e) satisfies the tetrad postulate that the completely covariant derivative of the tetrad field vanishes,

therefore Râb̂(ω) = R(ω)eâeb̂.

For the bosonic part of the gauge action (graviton of spin 2) of simple M̃Sp-SG it then seems appropriate
to take the generalized Hilbert action with e = det eâµ̂(X). While the fermionic part of the standard gauge
action (garvitino of spin 3/2), which has positive energy, is the Rarita-Schwinger action. The full nonlinear
gravitino action in curved space then should be its extension to curved space, which can be achieved by

inserting the Lorentz covariant derivative DΨ = dΨ + 1
2ω

âb̂γâb̂Ψ. In both parts, the spin connection is
considered a dependent field, otherwise in the case of an independent spin connection ω, the action will be
invariant under diffeomorphism, and under local Lorentz rotations, but it will be not invariant under the
neither the Poincaré translations nor the supersymmetry. In the case if spin connection is independent, we
should have under the local Poincaré translations

δL̂pt = δ
(
εâb̂ĉd̂e

âeb̂Rĉd̂ + 4Ψ̄γ5̂e
âγâDΨ

)
= 2εâb̂ĉd̂R

âb̂T̃ ĉρd̂ + surf. term,
(115)
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and under local supersymmetry transformations

δL̂SUSY = −4ε̄γ5̂γâDΨT̃ â + surf. term. (116)

The invariance of the action then requires the vanishing of the supertorsion T̃ â = 0, which means that
the connection is no longer an independent variable. So that the starting point of our approach is the
action of a simple M̃Sp-SG theory written in ’two in one’-notation (1), which is invariant under the local
supersymmetry transformation (112), where the Poincaré superalgebra closes off shell without the need for
any auxiliary fields:

LMS−SG = εâb̂ĉd̂e
âeb̂Rĉd̂(ω) + 4Ψ̄γ5̂e

âγâDΨ. (117)

This is the sum of bosonic and fermionic parts with the same spin connection, where γâ = (γa ⊕ σa),

γ5̂ = (γ5 ⊕ γ5), γ5 =

(
1 0
0 −1

)
is given in the chiral or Weyl representations, i.e. in the irreducible

2-dimensional spinor representations (12 , 0) and (0, 12), since two-component formalism works for a Weyl
fermion. This is indispensable in order to solve algebraical constraints in superspace because they can be used
as building blocks of any fermion field (van Nieuwenhuizen, 1981). In this representation, action of projection
matrices L = (1/2)(1 + γ5) and R = (1/2)(1 − γ5) on a Dirac fermion leads to zero two lower components
of the left-handed spinor and zero two upper components of the right-handed spinor, respectively. The
two-component notation described above essentially does away with the vanishing components explicitly

and deals only with the non-trivial ones. Taking into account that gµ̂ν̂ = ηâb̂e
â

µ̂ e
b̂

ν̂ and γµ̂ = e â
µ̂ γâ, with

ηâb̂ = (ηab ⊕ η
ab
) related to the tangent space, where ηab = diag(+1,−1,−1,−1) and η

ab
= diag(+1,−1),

we can recast the generalized bosonic and fermionic actions given in (117), respectively, in the forms

L(2) = −1
4

√
gR(g,Γ) = −1

4eR(e, ω), (118)

and

L(3/2) = 4εµ̂ν̂ρ̂σ̂Ψ̄µ̂γ5̂γν̂Dρ̂Ψσ̂. (119)

Here we taken into account that Dρ̂Ψσ̂ is the curl due to the ε-symbol, and as far as εµ̂ν̂ρ̂σ̂ is the density
(which always equals 0,±1), so there is no need to put the density e in front of fermionic part.

The accelerated motion of a particle is described by the parameter ϵ = ϵ(X µ̂) in (105) of local SUSY,
which depends explicitly on X µ̂ = (x̃µ, x̃µ), where x̃µ ∈ V4 and x̃µ ∈ V 2. To be specific, let us focus for the
motion on the simple case of a peculiar anticommuting spinors (ξ(x̃), ξ̄(x̃)) and (ξ(x̃), ξ̄(x̃)) defined as

ξα(x̃) = i τ(x̃)
2 θα, ξ̄

α̇
(x̃) = −i τ∗(x̃)

2 θ̄α̇,

ξα(x̃) = i τ(x̃)2 θα, ξ̄α̇(x̃) = −i τ
∗(x̃)
2 θ̄α̇.

(120)

Here the real parameter τ(x̃) = τ∗(x̃) = τ(x̃) = τ∗(x̃) can physically be interpreted as the atomic duration
time of double transition of a particle V4 ⇌ V 2, i.e. the period of superoscillations. In this case, the atomic
displacement caused by double transition reads

∆x̃(a) = ẽm∆x̃
m
(a) = ũτ(x̃), (121)

where, according to the motion (93), the components ∆x̃
m
(a) are written

∆x̃
m
(a) = ṽm τ(x̃) = iθ σm ξ̄(x̃)− iξ(x̃)σm θ̄. (122)

The corresponding acceleration reads

a(±) = iθ σ(±) d2ξ̄

ds̃2
− i

d2ξ

ds̃2
σ(±) θ̄, (123)

where σ(±) = 1√
2
(σ0 ± σ1) = 1√

2
(σ0 ± σ3) and ds̃2 = dx̃(+)dx̃(−). By virtue of (120), the (123) is reduced to

a(±) = v
(±)
c

d2τ
ds̃2
, (124)

where v
(±)
c ≡ (θ σ(±)θ̄).
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In Van der Warden notations for the Weyl two-component formalism (θ̄α̇)
∗ = θα and θ̄α̇ = (θα)

∗,
the (124) gives

ã =
√
2(a(+)a(−))1/2 =

√
2vc

d2τ
ds̃2
,

vc = (v
(+)
c v

(−)
c )1/2 =

√
2(θ1 θ̄1θ2 θ̄2)

1/2,
(125)

with v
(+)
c =

√
2(θ1 θ̄1) and v

(−)
c =

√
2(θ2 θ̄2). The acceleration will generally remain a measure of the velocity

variation over proper time (s̃). The (124) and (125) yield

v(±) = v
(±)
c

(
dτ
ds̃ + 1

)
,

ṽ =
√
2(v(+)v(−))1/2 =

√
2vc

(
dτ
ds̃ + 1

)
.

(126)

The spinors θ(θ, θ̄) and θ̄(θ, θ̄) satisfy the embedding map (100), namely ∆x̃0 = ∆x̃0 and (∆x̃1)2 = (∆⃗̃x)2,
so from (93) we obtain

θ σ0 ξ̄ − ξ σ0 θ̄ = θ σ0 ξ̄ − ξ σ0 θ̄,

(θ σ3 ξ̄ − ξ σ3 θ̄)2 = (θ σ⃗ ξ̄ − ξ σ⃗ θ̄)2.
(127)

Denote
v
0
(c) =

1√
2

(
v
(+)
c + v

(−)
c

)
= (θ θ̄),

v
1
(c) =

1√
2

(
v
(+)
c − v

(−)
c

)
= (θ1 θ̄1 − θ2 θ̄2),

(128)

then

θ1(θ, θ̄) =
1
2

[(
v
0
(c) +

√
2
3v

1
(c)

)1/2

+
(
v
0
(c) −

√
2
3v

1
(c)

)1/2
]
,

θ2(θ, θ̄) =
1
2

[(
v
0
(c) +

√
2
3v

1
(c)

)1/2

−
(
v
0
(c) −

√
2
3v

1
(c)

)1/2
]
.

(129)

The dynamical aspects of particle mechanics involve derivatives with respect to proper time along the particle
worldline, which is the line element written in frame (25):

ds2 = ηâb̂ė
âėb̂ = ηâb̂ė

â
µ̂ė

b̂
µ̂dX

µ̂dX ν̂ ≡ ηµ̂ν̂dX
µ̂dX ν̂ . (130)

A worldline C of a particle, parametrized by proper time as C(s) = X µ̂(s), will have as six-velocity the vector
of components uµ̂ = dX µ̂/ds and uâ = ėâµ̂u

µ̂, which are the particle velocity along this curve respectively in
the holonomic and anholonomic bases in the X-space.
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