


Խ Մ Բ Ա Գ Ր Ա Կ Ա Ն  Կ Ո Լ Ե Դ Ի Ա 

Դլխւսվոր խմբսսփ|ւ Ա. Ա. Մահտկյան

Ն.Հ. Աւափկյան ГѴ. 4 .  Հսւմրսւրձումյսւն
Վ. Ս. Upuiplil|jiu(i Հ. 1Г. Հսւյ|սսպ1ւսւյւսս
Դ.Դ. ԴԱորզյսւն Ա. Հ. Հովհաննիսյան
Ս'. Ս. Դինովյան Վ- Ա- Սսւ|ափրոսյսւն
Ն . П. l7Qq|ipui|ijuiO П. Ս. Նսւհապևայան
Վ. Ս. .QiupiupjiuO Բ. Ս”- Պա^ւայաՕ
Ա. 11. ք(>ալտլ|ւ»1ւ
Վ . Կ . O h u i l i ju iU  (ւ | | |ա սվո |)  խ մրսսւլփ  սէեւ|ակա|)

Պսասսսխանաւոու piupinmrpup Ն . Դ. Ահւսրոնյան

Р Е Д Л К Ц И О  II н Л Я  К О  JI Jl н г  и Я 

Главный редактор Л. А. Саакян

Г. М. Айрапетян II. 1і. Пнгнбарян
I». В. Амбарцумян В. С. Закарян
П. У. Аракелян И. Л. Мартиросян
В. С. Агабекян I». С. Нахапстян
Г. Г  Геворкян А. О. Оганннеян
М С. Гнновян I». М. Могосян
В. К. Оганян (зам. главного редактора) А. А. Талалян

Ответственный секретарь Н. Г. Агаронян



Известия НАН Армении, Математика, том 59, н. 2, 2024, стр. 3 – 15.

ON AN EFFICIENT SOLUTION OF THE DIRICHLET PROBLEM
FOR PROPERLY ELLIPTIC EQUATION IN THE ELLIPTIC

DOMAIN

A. H. BABAYAN, R. M. VEZIRYAN

National Polytechnic University of Armenia
E-mails: barmenak@gmail.com; rafaelveziryan@gmail.com

Abstract. The fourth-order properly elliptic equation with multiple root is considered in the
elliptic domain. The conditions, necessary and sufficient for the unique solvability of the Dirichlet
problem for this equation are found, and if these conditions fail the defect numbers of this problem
are determined. The solution of the problem is found in explicit form.

MSC2020 numbers: 35J40; 35E99; 35C11.
Keywords: properly elliptic equation; Dirichlet problem; non-trivial solutions of
homogeneous Dirichlet problem; defect numbers.

1. Introduction. Formulation of the problem

Let Γ be an ellipse in the complex plane and D = intΓ. We consider the elliptic

differential equation

(1.1)
4∑

k=0

Ak
∂4U

∂xk∂y4−k
= 0, (x, y) ∈ D

whereAk are complex constants, such that the roots λ1, λ2, λ3, λ4 of the characteristic

equation

(1.2) A0λ
4 +A1λ

3 +A2λ
2 +A3λ+A4 = 0

satisfy conditions

(1.3) λ1 = λ2 = λ, ℑmλ > 0; λ3 ̸= λ4, ℑmλ3 < 0, ℑmλ4 < 0.

We a looking for a solution U ∈ C4(D)
⋂
C(1,σ)(D

⋃
Γ) (the class C(m,σ)(X) is

a class of functions, which with all derivatives of order up to m satisfy Hölder

condition in the set X, 0 < σ ≤ 1), which on Γ satisfies to Dirichlet boundary

conditions.

(1.4)
∂kU

∂Nk

∣∣∣∣
Γ

= fk(x, y), (x, y) ∈ Γ, k = 0, 1

where fj ∈ C(1−j,σ)(Γ) are the given functions.Here ∂
∂N and ∂

∂s are derivatives with

respect to inner normal N and arc length respectively.
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The conditions (1.3) imply that equation (1.1) is properly elliptic, therefore

problem (1.1), (1.4) is Fredholmian, (see [1], [2]). In [3] it was proven that in the unit

disk when λ = i, the problem (1.1), (1.4) is uniquely solvable. The same problem

in the unit disc for the higher order properly elliptic equation was considered in

[4]. In this paper, we will show, that for arbitrary ellipse problem (1.1), (1.4) is not

uniquely solvable, find the condition to coefficients of the equation (1.1), and the

parameters of the ellipse for which this problem is uniquely solvable, and determine

the defect numbers of the problem (1.1), (1.4) in the general case.

For the exact formulation of the results, we rewrite equation (1.1) in the complex

form, using equalities

x =
z + z̄

2
, y =

z − z̄

2i
,

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Equation (1.1) transforms to

(1.5)
(
∂

∂z̄
− µ

∂

∂z

)2(
∂

∂z
− ν1

∂

∂z̄

)(
∂

∂z
− ν2

∂

∂z̄

)
U = 0,

where

µ =
i− λ

i+ λ
, νj =

i+ λ2+j

i− λ2+j
, j = 1, 2.

Observe, that (1.3) implies

(1.6) |µ| < 1, |νj | < 1, ν1 ̸= ν2, j = 1, 2.

Further, taking into account, that (1.1) and (1.4) are invariant under shift U(x, y) →
U(x + a, y + b) and dilation (U(x, y) → U(rx, ry)), without loss of generality, we

suppose, that Γ is the ellipse with the center in origin and with semiaxises 1 + ρ

and 1− ρ where 0 < ρ < 1 (if a and b, a > b are semiaxises of start ellipse D, then

using dilation (x, y) → (rx, ry), r = 2
a+b , we get ρ = a−b

a+b ). The equation of this

ellipse in the complex form is

(1.7) (z − µ0z̄) (z̄ − µ̄0z) =
(
1− |µ0|2

)2
,

(1.8) |µ0| =
∣∣ρeiδ∣∣ < 1,

where δ/2 is the angle, formed by the axisOX and the greater semiaxis of the ellipse.

Further, we suppose, that we have an equation (1.5) with boundary conditions (1.4)

and this problem is considered in the ellipse Γ given by equality (1.7). Using the

preceding notation, we can formulate, the following statement.

Theorem 1.1. Problem (1.5), (1.4) is uniquely solvable if and only if one of the

following conditions holds:

(1) µ = −µ0,
4
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(2) µ ̸= −µ0 and

(1.9) ∆k = k
αk − βk

α− β
−
(
1− αk

) (
1− βk

)
(1− α)(1− β)

̸= 0, k = 3, 4, . . . .

where

(1.10) α =
µ+ µ0

1 + µµ̄0
· ν1 + µ̄0

1 + µ0ν̄1
, β =

µ+ µ0

1 + µ0µ̄
· ν2 + µ̄0

1 + µ0ν̄2
.

Remark 1.1. The conditions (1.6) and (1.8) imply |α| < 1, |β| < 1 and α ̸= β.

Therefore, for k → ∞, we have ∆k → −(1− α)−1(1− β)−1.Hence, for every α and

β the conditions (1.9) are fulfilled for sufficiently large k.

The conditions (1.9) show that the unique solvability of the problem (1.5), (1.4)

depend both on the coefficients of the equation (1.5) and the shape of the Γ.

Therefore, may be considered the following questions:

(1) What conditions on µ, ν1 and ν2 provide the unique solvability of the

problem (1.5), (1.4) in an arbitrary ellipse Γ?

(2) For the given Γ (presented µ0) describe the class of equations (1.5) (sufficient

conditions on µ, ν1, ν2) for which the problem (1.5), (1.4) is uniquely solvable?

(3) Calculate the defect numbers, of the problem (1.5), (1.4), that is the number

of linearly independent solutions of the homogeneous(when fk = 0) problem

(1.5), (1.4) and the number of the linearly independent conditions for

the boundary functions fj necessary and sufficient for the solvability of

inhomogeneous problem (1.5), (1.4)?

Partly, the answers to these questions will be given in the final part of this paper.

2. Proof of the Theorem 1.1

We reduce the problem (1.5), (1.4) to the analogous problem in the unit disk.

The transformation

(2.1) ξ + iη = ζ =
z − µ0z̄

1− |µ0|2
, z = x+ iy

maps the point (x, y) ∈ D to the corresponding point (ξ, η) ∈ B = {ζ : |ζ| < 1}.
The inverse transformation is determined by the formula

z = ζ + µ0ζ̄.

Using this change of variables, we represent the unknown function U(z, z̄) in the

form

U(z, z̄) = U(ζ + µ0ζ̄, ζ̄ + µ̄0ζ) ≡ V (ζ, ζ̄).

This denotion implies

Vζ = Uz + µ̄0Uz̄, Vζ̄ = µ0Uz + Uz̄

5
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and, therefore

Uz =
1

1− |µ0|2
(
Vζ − µ̄0Vζ̄

)
, Uz̄ =

1

1− |µ0|2
(
Vζ̄ − µ0Vζ

)
.

Substituting these equalities in (1.5), we get the final form of this equation:

(2.2)
(
∂

∂ζ̄
− γ

∂

∂ζ

)2(
∂

∂ζ
− ω1

∂

∂ζ̄

)(
∂

∂ζ
− ω2

∂

∂ζ̄

)
V = 0.

Here

(2.3) γ =
µ+ µ0

1 + µµ̄0
, ωj =

νj + µ̄0

1 + νjµ0
, j = 1, 2.

Observe that (1.6) and (1.8) imply |γ| < 1, |ωj | < 1, j = 1, 2, ω1 ̸= ω2.

Let’s reduce the boundary conditions (1.4) to the equivalent boundary conditions

on the Γ1 = ∂B. First, we must mention, that the domain D (interior of the

ellipse(1.7)) in the polar coordinates is defined by the formulas

D =

{
z = reiθ; r2

(
eiθ − µ0e

−iθ
) (
e−iθ − µ̄0e

iθ
)
≤
(
1− |µ0|2

)2}
,

where 0 ≤ r ≤ 1, θ ∈ [−π, π], or, as a set of (x, y){
x = r(1 + ρ) cos

(
θ − δ

2

)
y = r(1− ρ) sin

(
θ − δ

2

) .

Therefore, the conditions (1.4) are equivalent to conditions:

(2.4)
∂U

∂θ

∣∣∣∣
Γ

=
df0
dθ
,

∂U

∂r

∣∣∣∣
Γ

= f̃1(θ), U

(
1,
δ

2

)
= f0

(
1,
δ

2

)
.

We don’t change the denotation of the unknown function U and in different places

may use (x, y), (r, θ), (z, z̄) independent variables (for the same domain D). In

(2.4) differentiation by r is not coincide with ∂
∂N , but the angle between r̄ and

normal to Γ is acute, hence the function f̃1 ∈ C(σ)(Γ) is the real-valued function,

uniquely determined by f0 and f1. The conditions (2.4) using operators of complex

differentiation, may be written in the form

∂U

∂z

∣∣∣∣
Γ

=
z̄

2

(
f̃1(θ)− i

df0
dθ

)
≡ G1(θ),

(2.5)
∂U

∂z̄

∣∣∣∣
Γ

=
z

2

(
f̃1(θ) + i

df0
dθ

)
≡ G1(θ), z = eiθ.

Using the representation of complex derivatives in polar coordinates

zUz =
1

2
(rVr − iVθ) , z̄Uz̄ =

1

2
(rVr + iVθ)

and representation of derivatives in ζ variables

(2.6) Vζ = Uz + µ̄0Uz̄, Vζ̄ = Uz̄ + µ0Uz,

6
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we get the boundary conditions, equivalent to (1.4), which we will use:

(2.7) Vζ |Γ = F1(θ), Vζ̄
∣∣
Γ
= F2(θ), V (1, 0) = f0

(
1,
δ

2

)
.

Here

(2.8) F1(θ) =
e−iθ + µ̄0e

iθ

2
f̃1(θ) +

i
(
µ̄0e

iθ − e−iθ
)

2

df0
dθ
,

(2.9) F2(θ) =
eiθ + µ0e

−iθ

2
f̃1(θ) +

i
(
eiθ − µ0e

−iθ
)

2

df0
dθ
.

We must mention, that the functions Fj are satysfy the Hölder condition, Fj ∈
C(σ)(Γ), on the Γ. Thus, we have to solve the boundary value problem (2.2), (2.7).

The general solution of the equation (2.2) can be represented in the form ([4]):

(2.10) V (ξ, η) = Φ0

(
ζ + γζ̄

)
+

∂

∂θ
Φ1

(
ζ + γζ̄

)
+Ψ1

(
ζ̄ + ω1ζ

)
+Ψ2

(
ζ̄ + ω2ζ

)
where functions Φ0, Φ1 are analytic in the domain D(γ) =

{
ζ + γζ̄ : |ζ| < 1

}
and

Ψj (j = 1, 2) are analytic in D1(ωj) =
{
ζ̄ + ωjζ : |ζ| < 1

}
. For the determination

of unknown functions, we substitute the function (2.10) in the boundary conditions

(2.7) and use the operator identities:

∂

∂ζ

∂

∂θ
=

(
∂

∂θ
+ iI

)
∂

∂ζ
,

∂

∂ζ̄

∂

∂θ
=

(
∂

∂θ
− iI

)
∂

∂ζ
.

We get

Φ′
0

(
ζ + γζ̄

)
+

(
∂

∂θ
+ iI

)
Φ′

1

(
ζ + γζ̄

)
+ ω1Ψ

′
1

(
ζ̄ + ω1ζ

)
+

(2.11) +ω2Ψ
′
2

(
ζ̄ + ω2ζ

)
= F1(θ),

γΦ′
0

(
ζ + γζ̄

)
+ γ

(
∂

∂θ
− iI

)
Φ′

1

(
ζ + γζ̄

)
+Ψ′

1

(
ζ̄ + ω1ζ

)
+

(2.12) +Ψ′
2

(
ζ̄ + ω2ζ

)
= F2(θ).

These equalities hold for |ζ| = 1, and, as it was shown in [1], the functions Φ′
j for

j = 0, 1 and Ψ′
j for j = 1, 2 may be represented in the form:

(2.13) Φ′
j

(
ζ + γζ̄

)
= ϕj(ζ) + ϕj(γζ̄) =

∞∑
k=0

Akjζ
k +

∞∑
k=0

Akjγ
kζ−k, |ζ| = 1,

(2.14) Ψ′
j

(
ζ̄ + ωjζ

)
= ψj(ζ̄) + ψj(ωjζ) =

∞∑
k=0

Bkjζ
−k +

∞∑
k=0

Bkjω
k
j ζ

k, |ζ| = 1.

The functions ϕj , ψj are analytic in the unit disk, therefore, may be represented by

Taylor series. We substitute the representations (2.13), (2.14) and representation

of the boundary functions Fj by the Fourier series

(2.15) Fj(θ) =

∞∑
k=−∞

dkjζ
k, |ζ| = |eiθ| = 1, j = 1, 2

7
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in the boundary equations (2.11), (2.12). We get
∞∑
k=0

Ak0ζ
k +

∞∑
k=0

Ak0γ
kζ−k +

∞∑
k=0

Ak1 (ik + i) ζk +

∞∑
k=0

Ak1 (−ik + i) γkζ−k+

+

∞∑
k=0

Bk1ω1ζ
−k +

∞∑
k=0

Bk1ω
k+1
1 ζk +

∞∑
k=0

Bk2ω2ζ
−k+

(2.16) +

∞∑
k=0

Bk2ω
k+1
2 ζk =

∞∑
k=−∞

dk1ζ
k, |ζ| = 1,

∞∑
k=0

Ak0γζ
k +

∞∑
k=0

Ak0γ
k+1ζ−k +

∞∑
k=0

Ak1γ (ik − i) ζk+

+

∞∑
k=0

Ak1 (−ik − i) γk+1ζ−k +

∞∑
k=0

Bk1ζ
−k +

∞∑
k=0

Bk1ω
k
1ζ

k+

(2.17) +

∞∑
k=0

Bk2ζ
−k +

∞∑
k=0

Bk2ω
k
2ζ

k =

∞∑
k=−∞

dk2ζ
k, |ζ| = 1.

The Fourier series expansion is unique, and, therefore, equating the coefficients by

ζk and ζ̄k, we get the system of linear equations for determination of the coefficients

Akj , Bkj .

For k = 0 we have:

(2.18)

{
2A00 + 2iA01 + 2ω1B01 + 2B02ω2 = d01,

2γA00 + 2−iA01 + 2B01 + 2B02 = d02.

For k ⩾ 1 we get four equations with four unknown

(2.19)


Ak0 + i(k + 1)Ak1 + ωk+1

1 Bk1 + ωk+1
2 Bk2 = dk1,

γAk0 + i(k − 1)γAk1 + ωk
1Bk1 + ωk

2Bk2 = dk2,

γkAk0 + i(−k + 1)γkAk1 + ω1Bk1 + ω2Bk2 = d−k1,

γk+1Ak0 + i(−k − 1)γk+1Ak1 +Bk1 +Bk2 = d−k2.

Thus, if γ ̸= 0, we reduce the problem (1.5), (1.4) to the solution of the linear

systems (2.18), (2.19).

Let’s consider the determinant of the main matrix Ωk of the system (2.19):

(2.20) detΩk =

∣∣∣∣∣∣∣∣
1 i(k + 1) ωk+1

1 ωk+1
2

γ i(k − 1)γ ωk
1 ωk

2

γk i(−k + 1)γk ω1 ω2

γk+1 i(−k − 1)γk+1 1 1

∣∣∣∣∣∣∣∣ .
Denoting

(2.21) α = γω1, β = γω2

8



ON AN EFFICIENT SOLUTION OF THE ...

we get

detΩk = i

∣∣∣∣∣∣∣∣
1 k + 1 αk+1 βk+1

1 k − 1 αk βk

1 −k + 1 α β
1 −k − 1 1 1

∣∣∣∣∣∣∣∣ = 2i(1− α)(β − 1)

∣∣∣∣∣∣
1 αk βk

k αk−1
α−1

βk−1
β−1

1 1 1

∣∣∣∣∣∣ =

= −2i(α− 1)(β − 1)

((
αk − 1

) (
βk − 1

)
(α− β)

(α− 1) (β − 1)
− k

(
αk − βk

))
.

(2.22)

Using the denotion (1.9), we have

(2.23) detΩk = 2i(α− 1)(β − 1)(α− β)∆k.

The condition (1.10) imply that |α| < 1, |β| < 1 and α ̸= β, therefore detΩk = 0 if

and only if ∆k = 0.

Let’s suppose, that condition 2 of Theorem 1 holds. Taking into account, that the

problem (1.5), (1.4) is Fredholmian, we may consider only a homogeneous problem.

Conditions (1.9) imply, that for k > 2 the homogeneous system (2.19) (if dkj ≡ 0)

has only zero solution, ∆2 = (α − 1)(β − 1) ̸= 0 also, therefore Akj = Bkj = 0

for all k ⩾ 2. It means, that the functions ϕj , ψj may be only of the first-degree

polynomials.

Thus, the solution of the homogeneous problem (1.5), (1.4) is at most second

degree polynomial of ζ and ζ̄. On the other side in [5] (T.5.1, page 84), it was shown,

that arbitrary polynomial satisfying the homogeneous conditions (1.4) admits the

representation
(
1− ζζ̄

)2
Q
(
ζ, ζ̄
)

that is a polynomial of degree not less than four.

Therefore, if the conditions (1.9) hold, the homogeneous problem (1.5), (1.4) has

only trivial solution. As this problem is Fredholmian, the latter implies the unique

solvability of the primary problem. Vice verse, assume that ∆j = 0 for j1, . . . , jm.

Then direct computation shows that the homogeneous problem (1.5), (1.4) has m

linearly independent solutions Vj1, . . . , Vjm each of which is a polynomial of degree

jp + 1, p = 1,m. For example, if ∆3 = 0 then 1 + 2(α + β) + αβ = 0, and the

function P4

(
ζ, ζ̄
)
=

((
ζ − µ0ζ̄

) (
ζ̄ − µ̄0ζ

)
−
(
1− |µ|2

)2)2

is a non-trivial solution

of the homogeneous problem (1.5), (1.4). This completes the proof of the second

part of Theorem 1 (for γ ̸= 0).

Now, we pass to the proof of the first point of Theorem 1. This part was proved

in [3], but we get the proof for the completeness of considerations.
9
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Let’s suppose, that µ = −µ0 or γ = 0 in the equation (2.2). In this case, the

general solution of the (2.2) may be represented in the form:

(2.24) V (ξ, η) = Φ0(ζ) + ζ̄Φ1(ζ) + Ψ1(ζ̄ + ω1ζ) + Ψ2(ζ̄ + ω2ζ),

where Φ0 and Φ1 are analytic functions in the unit disk B1. Substituting this

function in the boundary conditions (2.7), we get

(2.25) Φ′
0(ζ) + ζ̄Φ′

1(ζ) + ω1Ψ
′
1(ζ̄ + ω1ζ) + ω2Ψ

′
2(ζ̄ + ω2ζ) = F1(θ),

(2.26) Φ1(ζ) + Ψ′
1(ζ̄ + ω1ζ) + Ψ′

2(ζ̄ + ω2ζ) = F2(θ).

Analogously the case 2, we can consider only homogeneous problem (F1 ≡ F2 ≡ 0).

We substitute the representation (24) in homogeneous equalities (2.25), (2.26). We

get for |ζ| = 1

(2.27) Φ′
0(ζ) + ζ̄Φ′

1(ζ) + ω1ψ1(ζ̄) + ω1ψ1(ω1ζ) + ω2ψ2(ζ̄) + ω2ψ2(ω2ζ) = 0,

(2.28) Φ1(ζ) + ψ1(ζ̄) + ψ1(ω1ζ) + ψ2(ζ̄) + ψ2(ω2ζ) = 0.

Taking into account inequality ω1 ̸= ω2, we can determine ψ1(ζ̄) and ψ2(ζ̄) from

(2.27), (2.28), and as we know, that Φ0,Φ1, ψ1(ω1ζ), ψ2(ω2, ζ) are analytic in B1,

we have:

ψ1

(
ζ̄
)
= H1 + S1ζ̄, ψ2

(
ζ̄
)
= H2 + S2ζ̄.

It means, that the solution V may be a polynomial of order not more than two.

But from homogeneous conditions (2.7) the polynomial V , if it is not identically

zero, must be represented in the form

V =
(
1− ζζ̄

)2
Q
(
ζ, ζ̄
)

(see [5]), that is has a degree not less than four. Hence, the homogeneous problem

(1.5), (1.4) has only a trivial solution, therefore this problem is uniquely solvable.

Theorem 1 is proved.

Remark 2.1. We have from the conditions (1.6) and (1.8) that |α| < 1, |β| < 1

and α ̸= β. Therefore, we may transform the determinant (2.22) and the condition

(1.9), to omit the roots α = 1, β = 1 and, α = β.

We have

detΩk = −2i(α− 1)(β − 1)

∣∣∣∣∣∣
1 αk βk

k
∑k−1

j=0 α
j
∑k−1

j=0 β
j

1 1 1

∣∣∣∣∣∣ =
= −2i(α− 1)(β − 1)

∣∣∣∣∣∣
1 αk − 1 βk − 1

k
∑k−1

j=0

(
αj − 1

) ∑k−1
j=0

(
βj − 1

)
1 0 0

∣∣∣∣∣∣ =
10
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(2.29) = 2i(α− 1)2(β − 1)2

∣∣∣∣∣∣∣∣∣∣

k−1∑
m=0

αm
k−1∑
m=0

βm

k−1∑
m=0

mαm
k−1∑
m=0

mβm

∣∣∣∣∣∣∣∣∣∣
≡ 2i(α− 1)2(β − 1)2Tk.

We see, that the conditions (1.9) hold if and only if Tk ̸= 0, for k = 3, 4, . . ..

Introducing the notion

(2.30) Pk−1(z) =

k−1∑
m=0

zm,

the conditions (1.9) may be represented in equivalent form:

(2.31)
Tk

β − α
=
Pk−1(α)βP

′
k−1(β)− Pk−1(β)αP

′
k−1(α)

β − α
̸= 0, k = 3, 4, . . . .

It was taken into account, that α ̸= β.

This condition may be represented in the form:

(2.32) Sk−2(α, β) = −

∣∣∣∣∣∣∣∣∣∣

k−1∑
m=1

m−1∑
l=0

αlβm−1−l
k−1∑
m=0

βm

k−1∑
m=1

m

m−1∑
l=0

αlβm−1−l
k−1∑
m=0

mβm

∣∣∣∣∣∣∣∣∣∣
̸= 0, k = 3, 4, . . . .

Finally, expanding the determinant, we get, that ∆k ̸= 0 if and only if

(2.33) Sk−2(α, β) =

k−2∑
l=0

cl(β)α
l ̸= 0, k = 3, 4, . . . .

where

(2.34) cl(β) =

k−2−l∑
s=0

βs(s+ 1)(l + 1) +

k−2∑
s=k−1−l

βs(k − 1− s)(k − 1− l).

Introducing the denotation

(2.35) Qk−2(α, β) =
k−2∑
l=0

(l + 1)αl
k−2−s∑
s=0

(s+ 1)βs, k = 3, 4, . . . ,

the condition (2.33) may be represented in the form;

(2.36) Sk−2(α, β) = Qk−2(α, β) + αk−2βk−2Qk−3

(
1

α
,
1

β

)
̸= 0, k = 3, 4, . . . .

3. Some corollaries and final remarks

In this section we try to get some corollaries of the proved theorem.

Let’s calculate the defect numbers of the problem (1.5), (1.4), that is, K -

the number of the linearly independent solutions of the homogeneous problem

(when boundary functions identically zero) and K1 - the number of the linearly
11
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independent conditions to the boundary functions, provided solvability of the inhomo-

geneous problem.

Corollary 3.1. As we see in the previous consideration the defect numbers of the

problem are equal

(3.1) K = K1 =

∞∑
k=3

(4− rankΩk),

where Ωk is a main matrix of the system (2.19). Taking into account, that if k → ∞
detΩk → 2i(β − α) ̸= 0; we see that in the sum only a finite number of summands

differ from zero.

We can calculate rankΩk more exactly. Using representation of detΩk (2.22) we

can calculate third order minor of the matrix Ωk:

M3 =

∣∣∣∣∣∣
1 k − 1 αk

1 −k + 1 α
1 −k − 1 1

∣∣∣∣∣∣ = 2(α− 1)

k − k−1∑
j=0

αj

 ̸= 0,

for all k ⩾ 3 (because of |α| < 1). Hence, we can formulate the following statement.

Corollary 3.2. We see, that rankΩk ⩾ 3, therefore the difference, in the formula

(3.1) may be equal zero or one only. That is, the defect numbers of the problem (1.5),

(1.4) are equal to the number of the ∆k (k ⩾ 3), equal to zero. ∆k determined in

(1.9).

Now, let’s find some sufficient conditions for the unique solvability of the problem

(1.5), (1.4).

Corollary 3.3. We consider the problem (1.5), (1.4) in the ellipse (1.7). If we

have

|α| < 20

77
, |β| < 20

77
,

α and β determined in (1.10), then that problem is uniquely solvable.

Proof. Let’s suppose, that |α| < 20/77 and |β| < 20/77, and estimate the |∆k|
for k ⩾ 3. We have:

(3.2)
∣∣∣∣ (1− αk)(1− βk)

(1− α)(1− β)

∣∣∣∣ ⩾ (1− (20/77)3)2

(1 + 20/77)2
> 0, 60825.

From the other side

(3.3)
∣∣∣∣kαk − βk

α− β

∣∣∣∣ =
∣∣∣∣∣∣k

k−1∑
j=0

αjβk−1−j

∣∣∣∣∣∣ ⩽ k2(20/77)k−1 ≡ χ(k).

Let’s calculate the maximal value of the function χ. We have

χ′(k) = k(20/77)k−1(2− k ln 3.85),

12
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therefore, kmax = 2/ ln 3.85 ≈ 1.484. It means, that for k ⩾ 3 we have

χ(k) ⩽ χ(3) = 9(20/77)2 ≈ 0.6071.

From this inequality, (3.2) and (3.3), we get

|∆k| ⩾
∣∣∣∣ (1− αk)(1− βk)

(1− α)(1− β)

∣∣∣∣− ∣∣∣∣kαk − βk

α− β

∣∣∣∣ > 0

for k ⩾ 3. Corollary is proved. □

Now, we use the formulas (2.33), (2.34) for the more exact determination of the

of the defect numbers of the problem (1.5), (1.4). First, let’s consider the case, when

the parameter β is zero. In this case, from (2.34) we get

(3.4) cl(0) = l + 1,

therefore, by (2.33), we have, that the conditions (1.9) are equivalent to conditions

(3.5) Pk−2(α) =

k−2∑
m=0

(m+ 1)αm ̸= 0, k = 3, 4, . . . .

Hence, we have to find the roots of the polynomial (3.5). We will use the Eneström-

Kakeya theorem ([7], p. 12):

Theorem 3.1. (Eneström-Kakeya) If all coefficients of the polynomial

Gn(x) =

n−1∑
k=0

an−1−kx
k

are positive, then all roots ξ of this polynomial are in the ring

(3.6) min
1⩽i⩽n−1

(
ai
ai−1

)
⩽ |ξ| ⩽ max

1⩽i⩽n−1

(
ai
ai−1

)
.

Let’s apply this theorem to the polynomial Pk−2. If α is the root of this polynomial,

we have

(3.7)
1

2
= min

1⩽i⩽k−2

(
i

i+ 1

)
⩽ |α| ⩽ max

1⩽i⩽k−2

(
i

i+ 1

)
=
k − 2

k − 1
.

This estimation shows, that for arbitrary k0 we can find |α| < 1, for which Pk0−2(α) =

0, and, therefore, the problem (1.5), (1.4) is not uniquely solvable. If |α| < 0.5, then

the conditions (3.5) hold, therefore, the problem (1.5), (1.4) is uniquely solvable.

Now, let’s suppose, that for some n > 2 we have Pn−2(α) = 0, and for m > 0

Pn+m−2(α) = 0 also. That is
n−2∑
j=0

(j + 1)αj = 0,

n+m−2∑
j=0

(j + 1)αj = 0.

Subtracting first equality from the second, we get
n+m−2∑
j=n−1

(j + 1)αj = 0,

13
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or taking into account that α ̸= 0

(3.8)
m−1∑
l=0

(n+ l)αl = 0.

Applying Eneström-Kakeya theorem, we see, that

(3.9)
n

n+ 1
= min

1⩽i⩽m−1

(
n+ i− 1

n+ i

)
⩽ |α| ⩽ max

1⩽i⩽m−1

(
n+ i− 1

n+ i

)
=
n+m− 2

n+m− 1
.

But from equality Pn−2(α) = 0 we have

1

2
= min

1⩽i⩽n−2

(
i

i+ 1

)
⩽ |α| ⩽ max

1⩽i⩽n−2

(
i

i+ 1

)
=
n− 2

n− 1
.

This inequality contradicts to (3.9), because n−2
n−1 <

n
n+1 , therefore, our assumption,

that two polynomials Pn−2 and Pn+m−2 have the same root, was wrong.

Thus, we prove the following result.

Theorem 3.2. We consider the Dirichlet problem (1.5), (1.4) in the ellipse (1.7).

If µ̄0 = −ν2 and α determined in (1.10), then:

1. The problem (1.5), (1.4) is uniquely solvable if and only if the conditions (3.5)

hold.

2. If |α| < 0.5 then the problem (1.5), (1.4) is uniquely solvable.

3. The conditions (3.5) may fail for one k only, therefore the defect numbers of

the problem (1.5), (1.4) may be equal one or zero only.

We see, that for β = 0 different polynomials Pk−2 has different roots, or for

different values k the roots of Sk−2(α, 0) are different (on the picture we show the

roots of polynomials Pk−2 for k = 3, 8, 15, 30).

We did the following numerical experiment. In the formula (2.33) we fix β0 in

the unit disc and find the roots of the polynomial Sk−2(α, β0). For all considered
14
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values of β0 we obtain the same result, that is we get that for different values k the

roots of Sk−2(α, β0) are different. As an illustration of the obtained result, we show

the roots of the polynomials Sk−2(α, β0) for values β0 = 0.2 + 0.3i, β0 = 0.4 + 0.5i

and for k = 4, 8, 15, 30):

Therefore, we see that if for some (α, β) the condition (2.33) failed, that is

Sk0(α, β) = 0 (k0 > 2), then we have Sk(α, β) ̸= 0 for k ̸= k0, k > 2.

Thus, we may suppose, that the third point of the theorem 3.2 is true in general

case, that is the defect numbers of the problem (1.5), (1.4) may be equal one or

zero only for arbitrary α and β, but it should be proved.
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regularly varying discrete distribution generated by Waring-type probability (2-RDWP). Some
useful plots are displayed for the model. From the mathematical point of view, to suggest 2-
RDWP as a new discrete probability distribution in bioinformatics, some statistical facts such as
unimodality, skewness to the right, upward/downward convexity, regular variation at infinity and
asymptotically constant slowly varying component are established for the model. We provide the
conditions of coincidence of solution for the system of likelihood equations with the maximum
likelihood estimators for the unknown parameters. Simulation studies are performed using the
Monte Carlo method and Nelder-Mead optimization algorithm to obtain maximum likelihood
estimations of the unknown parameters. Asymptotic expansion of the probability function with
two terms is considered, and then the moment’s existence of integer orders is investigated. Finally,
a real count data set is used to show the applicability of the new model compared to other models
in bioinformatics.
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1. Introduction

Probability distributions are commonly applied to describe phenomena in biomo-

lecular systems, bioinformatics, etc. Due to the usefulness of probability distributions

in bioinformatics, their mathematical theory is widely studied, and new discrete

distributions (frequency distributions) are developed. According to the variety,

diversity and complexity of real data sets in bioinformatics and biomolecular systems,

it is impossible to figure out and suggest a universal model suitable for all situations.

Hence, the interest in developing discrete distributions in bioinformatics and biomo-

lecular systems remain strong in probability and statistics.

Many discrete probability distributions have been introduced based on different

methods for the needs of bioinformatics systems. For a review of different methods,

see, for example, [3]. Let us point out two of the known producers as follows.
16
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Using the method of birth-death process, we refer the readers to, for example,

[2, 5, 13, 14, 15]. Besides the method of birth-death process, there are other methods,

in particular by discretization method which we refer to, for example, [6, 7, 8, 10].

The advantage of constructing new probability distribution is proposed to paramet-

ric ones because by changing the parameters, one hopes to find the best approximation

for the unknown model. Because of the wide variety of phenomena in bioinformatics,

we shall attempt to introduce new parametric distribution (based on discretization

method).

A continuous analog of the 2-parameter regularly varying Waring probability

was given by dediscretization method [1, 2, 9]. Its probability density function is

stated as

(1.1) fx(α) =
1

c(α)
× (r + x− 1)(r+x−1)

(q + x)(q+x)
, x ∈ (0,∞)

where α = (r, q) is the unkown parameter such that r > 0, q > 0. r is called

numerator parameter and q denominator parameter and q − r > 0. Also, c(α) is

the normalization factor and c(α) =
∫∞
0

(r+t−1)(r+t−1)

(q+t)(q+t) dy.

We note that the continuous analog of the 2-parameter regularly varying Waring

probability (1.1) is a continuous probability distribution. Here, let us call the model

(1.1) as Waring-type probability.

The novelty and the motivation to write this paper is to construct a new skewed

discrete probability model (frequency distribution) for the needs of biosystems

using (1.1). We use discretization method, and then study mathematical properties,

statistical inferences and applications.

2. The 2-RDWP distribution

The desired discrete probability distribution is possible to obtain using the

discretization method. We use a type of discretization of densities used by, for

example, Farbod [6, 8] and Farbod and Gasparian [10]. Let us consider the numerator

of (1.1) as follows:

(2.1) px(α) =
(r + x− 1)r+x−1

(q + x)q+x
, x > 0.

To have px(α) (2.1) as a probability mass function (pmf), we use discretization

method [6, 7, 8, 10] to get a new discrete probability distribution, denoted by gx(α),

with the following pmf:

(2.2) gx(α) =
(
d(α)

)−1 × (r + x− 1)r+x−1

(q + x)q+x
,

17
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where x = 1, 2, ..., and d(α) is the normalization factor (normalization constant)

given by

(2.3) d(α) =

∞∑
y=1

(r + y − 1)r+y−1

(q + y)q+y

and α = (r, q) is the unknown parameter such that r > 0 and q > r.

Remark 2.1. It is obvious that gx(α) ≥ 0 and also
∑∞

x=1 gx(α) = 1. Thus, function

(2.2) is a probability function and can be considered as a new pmf on the set of

positive integers x ∈ N+ = {1, 2, 3, ...}.

A probability measure (distribution function of random variable X) is given by

(2.4)

Fx(α) = P (X ≤ x) =
(
d(α)

)−1 ∑x
m=1 gm(α) =

(
d(α)

)−1 ∑x
m=1

(r+m−1)r+m−1

(q+m)q+m .

We call model (2.4) a "2-parameter regularly varying discrete distribution generated

by Waring-type probability"(in short, 2-RDWP). The pmf of 2-RDWP is given by

Eq.(2.2). This paper investigates some mathematical properties, statistical inferences

and applications for the model (2.2).

The remaining sections of the paper can be summarized as follows. Section 3

presents some plots of pmf and log-log plot of the 2-RDWP model for different values

of parameters. Statistical facts, for our model, are verified for the mathematical

needs of bioinformatics in Section 4. In Section 5, we propose maximum likelihood

(ML) estimators of the 2-RDWP’s parameters, which are coincided with some

moment estimators. Section 6 uses the Monte Carlo method and Nelder-Mead

optimization algorithm to simulate for obtaining the ML estimations of parameters.

Section 7 gives an asymptotic expansion with two terms for the pmf, tail behavior of

distribution function, and also the moment’s existence of integer orders is investigated.

Section 8 presents application of the proposed model and compares it with other

rival models. The study is concluded in Section 9. Section 10 considers an Appendix

containing the pmfs of some rival models arising in bioinformatics.

3. Figures

This section presents two types of figures for the 2-RDWP model (2.2). To

depict figures, we need to consider the model’s pmf as truncated. First, some pmfs

for different possible values of parameters r and q are plotted in Figures 1(A-J).

Second, some log-log plots (ln gx(α) versus lnx) are displayed in Figures 2(A-J).

Figures 1(A-J) show skewness to the right and also unimodality of the pmf and

Figures 2(A-J) show the deviations of ln gx(α) versus lnx from the straight line,
18
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which is discussed in Section 4.

Рис. 1. Illustrations of the pmf of 2-RDWP model (2.2) for possible
values of two parameters r and q.
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Рис. 2. Illustrations of the log-log plot of 2-RDWP model (2.2) for
possible values of two parameters r and q.

4. Statistical facts

From the mathematical point of view, to suggest a discrete probability distribution

as a new model in bioinformatics, we need to verify some common statistical facts

(empirical facts) such as unimodality, skewness to the right, upward/downward

convexity, regularly varying at infinity, and slowly varying at infinity. In other

words, it was established that if a pmf (probability law) holds these statistical facts,

then the corresponding pmf could be a mathematical framework for bioinformatics

applications [2, 3, 5, 15]. So, to apply the 2-RDWP model (2.2) as a new probability

model in bioinformatics, we need to check out the validity of such known statistical

facts, mathematically, numerically and intuitively.

We notice that statistical facts (empirical facts) are common mathematical pro-

perties of the empirical frequency distributions (with complex forms and long right-

side tails) observed in bioinformatics data sets and are systematically reproducible

in biomolecular systems [2, 3, 5, 15].

4.1. Log-log plot. Biologists prefer to deal with log-log plot of distribution instead

of its shape [2]. One of the statistical facts is that log-log plot of discrete distributions

arising in bioinformatics systematically deviated from the straight line and shows
20
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upward/downward convexity [2, 3, 15]. It means that the deviations of log-log plot

of gx(α) from the straight line must be not too large.

Let us investigate the log-log plot of our model. Namely, we deal with ln gx(α)

versus lnx. We write the log-log plot of the model (ln gx(α) versus lnx) as follows:

(4.1)
ln gx(α)

lnx
=

(x+ r − 1) ln(x+ r − 1)− (x+ q) ln(x+ q)− ln(d(α))

lnx

It is obvious that, for sufficiently large x (sufficiently large x means x −→ ∞),

ln(x+ a) ≈ lnx (a is some real constant). Therefore from Eq.(4.1), for sufficiently

large x, we have

(4.2)
ln gx(α)

lnx
≈ r − q − 1− ln d(α)

lnx
.

Due to Eq.(4.2) we conclude that the deviations of ln gx(α) versus lnx from the

straight line constant = (r− q− 1) are small, at least for large values of x which it

turns out upward/downward convexity.

Remark 4.1. We note that there are not any specific definitions for upward/downward

convexity concept in bioinformatics and it is issue of the mathematical disciplines.

In other words, some of the peculiarities of the shapes of empirical frequency distributions

in bioinformatics are: upward/downward convexity, the only point where the frequency

distribution achieves it’s maximal value, etc. For more details about mathematical

and applied concepts of upward/downward convexity, we refer the readers to Astola

and Danielian [2, Sec.1.4, Sec.2.5].

Additionally, Figures 2(A-J) show the log-log plot of 2-RDWP with different

values of parameters. Figures 2(A-J) provide that the deviations of ln gx(α) versus

lnx from the straight line may be small, at least for some large values of x. From

Figures 2(A-J), we observed a significant shift and variation of the power law-like

right-side tail of the pmfs.

4.2. Regular variation. This subsection shows that the model gx(α) varies regularly

at infinity and also we present an asymptotically constant slowly varying component

for it. Compared to Astola and Danielian [2], let us state two definitions for our

model (2.2).

Definition 4.1. The frequency distribution gx(α) varies regularly at infinity with

exponent (−ρ) if it may be presented in the form

gx(α) = x−ρ ·R(x)(1 + o(1)), x −→ ∞, ρ ∈ (−∞,∞),

where R(x) > 0 for x = 1, 2, ..., and for κ = 2, 3, ..., limx−→∞
R(κx)
R(x) = κ−ρ.
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Definition 4.2. Let, for κ = 2, 3, ..., the limit exists

lim
x−→∞

R(κx)

R(x)
= 1

then gx(α) exhibits the asymptotically constant slowly varying component L if we

have

lim
x−→∞

R(x) = L ∈ (0,∞).

Remark 4.2. It is clear that Definition 4.2 is a particular case of Definition 4.1.

Thus, a function varying regularly at infinity with exponent ρ = 0 varies slowly at

infinity [2].

Let us establish the function gx(α) varies regularly at infinity with exponent (−ρ)
having −ρ = −(q+1− r). We propose theorem, remark and numerical example as

follows.

Theorem 4.1. The model gx(α) (2.2) varies regularly at infinity with exponent

(−ρ) and

(4.3) −ρ = −(q + 1− r) < −1.

Proof. From (2.2) and (2.3), for sufficiently large x, we get

(4.4) gx(α) ≈ (d(α))−1 · e−(q+1−r)x−(q+1−r) ≈ x−(q+1−r).

It follows from (4.4) that gx(α) (2.2) varies regularly at infinity if ρ = q+1− r > 1.

Theorem 4.1 is proved. □

Remark 4.3. From (4.4) and based on Remark 3, we observe that L = (d(α))−1 is

an asymptotically constant slowly varying component for the model gx(α) (2.2). In

other words, gx(α) exhibits the asymptotically constant slowly varying component

given by L = (d(α))−1.

Let us give a numerical example as follows.

Example 4.1. Let us compute the value of ρ corresponding to selected two parameters

r and q (used in Figures 1 and 2) by:

α = (0.4, 1.8), −ρ = −2.4 < −1
α = (0.9, 1.7), −ρ = −1.8 < −1
α = (1.4, 1.9), −ρ = −1.5 < −1
α = (3, 48), −ρ = −46 < −1
α = (0.7, 40), −ρ = −40.3 < −1
α = (0.6, 0.9), −ρ = −1.3 < −1
α = (2.5, 2.9), −ρ = −1.4 < −1
α = (15, 20), −ρ = −6 < −1
α = (20, 21), −ρ = −2 < −1
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We see that our numerical values are agreed with the variation of the value of

regular variation exponent (−ρ) and are met in the condition (4.3).

4.3. Unimodality. Unimodality is an essential feature for discrete distributions

arising in bioinformatics. For details about this, we refer the readers to, for example,

[2, 13, 14, 15]. In this subsection, we study such feature for the 2-RDWP model.

Compared to Bhati and Bakouch [4], let us give a proposition as follows.

Proposition 4.1. The pmf (2.2) is unimodal with mode value at x = 1.

Proof. Let us consider pmf (2.2) for the positive integer value of x. Then for

x ≥ 1, we get

(4.5)
dgx(α)

dx = d
dx

(
1

d(α) ·
(r+x−1)r+x−1

(q+x)q+x

)
= 1

d(α) ·
1(

(q+x)q+x
)2 · (r + x− 1)r+x−1 · (q + x)q+x ·

[
ln(r + x− 1)− ln(q + x)

]
.

It is obvious that for 0 < r < q

ln(r + x− 1)− ln(q + x) < 0.

So, we conclude that dgx(α)
dx given by (4.5) is always negative. It implies that gx(α)

decreases and takes its mode at x = 1. The proof is completed. □

In addition to Proposition 4.1, let us investigate unimodality as numerical. We

have a recursive formula given by

(4.6)
gx+1(α)

gx(α)
=

(r + x)r+x(q + x)q+x

(r + x− 1)r+x−1(q + x+ 1)q+x+1
, x = 1, 2, ....

Numerically, it can be shown that gx+1(α)
gx(α)

< 1. Let us have the following example.

Example 4.2. Let us consider some values of parameters (r = 0.7, q = 1) and

(r = 1.5, q = 2.5). From (4.6), we calculate gx+1(α)
gx(α)

, for x = 1, 2, 3, 4, 5, 6, in Table

1 as follows:

Таблица 1. The behavior of gx+1(α)
gx(α)

(4.6) for different values of
parameters r and q

α = (r, q) g2(α)
g1(α)

g3(α)
g2(α)

g4(α)
g3(α)

g5(α)
g4(α)

g6(α)
g5(α)

g7(α)
g6(α)

α = (0.7, 1) 0.46869 0.62523 0.70967 0.76288 0.79955 0.82638
α = (1.5, 2.5) 0.49602 0.59820 0.66569 0.71370 0.74962 0.77752
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From Table 1, we see that the expression, as in (4.6), increases when x increases

and also for x = 1, 2, 3, 4, 5, 6, the values gx+1(α)
gx(α)

< 1. Numerically, it seems

that gx(α) defined by (2.2) decreases and is downward convex. Automatically, the

unimodality of gx(α) is received.

Moreover, in Section 3, we plotted the pmf of 2-RDWP (2.2) for different values of

parameters. In other words, intuitively and from the graphical approach in Figures

1(A-J), it is readily seen that the pmf of 2-RDWP is unimodal. The modes are

observed for all plots in Figures 1(A-J) at x = 1.

4.4. Skewness to the right. One of the essential properties of discrete distributions

(frequency distributions) arising in biomolecular systems is the skewness to the right

of the pmf. This property has been discovered by experimental methods based on

the observation of various data sets of such systems. The conception of skewness

for biologists is based on intuition and the shapes of graphs of discrete distributions

[2, 3]. Section 3 displayed the plots of the pmf of 2-RDWP (2.2) for different possible

parameter values. Intuitively and from the graphical approach in Figures 1(A-J), it

can be observed that the pmf of 2-RDWP (2.2) is skewed to the right. Here, let us

have a numerical example.

Example 4.3. Let us have some real data that includes the number of proteins

assigned to Panther families or subfamilies as follows [18]:

1, 17, 11, 22, 16, 10, 61, 10, 12, 15, 22, 10, 5, 1, 33, 6, 11, 1, 5, 3, 2, 9, 22, 10,

3, 86, 1, 1, 15, 5, 8, 26, 2, 14, 2, 9, 62, 7, 114, 113, 20, 22, 14, 12, 13, 6, 24, 26,

22, 51, 56, 106, 59, 55, 29, 1, 141, 168, 607, 395, 616, 1, 7, 19, 3, 29, 59, 4, 4, 1,

3, 18, 60, 46, 11, 56, 269, 812.

The value of skewness for these data is 3.960.

The following mathematical result is received from Subsections 4.1 – 4.4.

Corollary 4.1. The common statistical facts (unimodality, skewness to the right,

upward/downward convexity, regular variation at infinity, asymptotically constant

slowly varying component) hold for the model gx(α) (2.2). Therefore, from the

mathematical point of view, the 2-RDWP model (2.2) may be considered as a new

regularly varying frequency distribution for the needs of large-scale biomolecular

systems, bioinformatics, etc. For details about this, see [2, 3, 5, 15].

5. On the ML estimators

This section gives ML estimators for the model (2.2). We get the conditions of

coincidence of solution for the system of likelihood equations with the ML estimators
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for the unknown parameters. Let us define the functions h(x;α) and t(x;α) by

h(x;α) = ln(r + x− 1) + 1, t(x;α) = −
(
ln(q + x) + 1

)
,

and hn(α) =
1
n

∑n
i=1 h(xi;α), tn(α) =

1
n

∑n
i=1 t(xi;α). We state a lemma for the

model (2.2).

Lemma 5.1. For model (2.2), we have the following

E
[
h(ξ;α)

]
<∞, E

[
t(ξ;α)

]
<∞,

where E[·] is the mathematical expectation.

Proof. Based on the definition of mathematical expectation, the proof is satisfied,

obviously.

From Lemma 5.1, and compared to Farbod and Gasparian [11], let us present

a theorem.

Theorem 5.1. The likelihood equations for obtaining the ML estimators of parameter

α with the model (2.2) have the following moments equations

(5.1)

 E
[
h(ξ;α)

]
= hn(α)

E
[
t(ξ;α)

]
= tn(α)

Proof. We consider the likelihood function L(Xn;α) =
∏n

i=1 gxi(α). The logarithm

of the likelihood function is given by

(5.2) l(Xn;α) = lnL(Xn;α) =

n∑
i=1

ln
(r + xi − 1)r+xi−1

(q + xi)q+xi
− n ln d(α)

If the following conditions hold

∂l(Xn;α)

∂r
= 0,

∂l(Xn;α)

∂q
= 0,

then the ML estimators of the parameters α = (r, q) exist.

Let us obtain derivatives by parameters r and q. We have

∂l(Xn;α)

∂r
=

n∑
i=1

(
ln(r + xi − 1) + 1

)
− n

1

d(α)

∂d(α)

∂r

where 1
d(α)

∂d(α)
∂r = E

[
h(ξ;α)

]
. From ∂l(Xn;α)

∂r = 0, we get E
[
h(ξ;α)

]
= hn(α).

Meanwhile, we have

∂l(Xn;α)

∂q
=

n∑
i=1

−
(
ln(q + xi) + 1

)
− n

1

d(α)

∂d(α)

∂q

where 1
d(α)

∂d(α)
∂q = E

[
t(ξ;α)

]
. From ∂l(Xn;α)

∂q = 0, we obtain E
[
t(ξ;α)

]
= tn(α).

The Theorem 5.1 is proved. □
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We aim to show that the solution α̂ of the system (5.1) is the ML estimator

of the parameter α. It is sufficient to establish that the matrix M̂n = (M̂n
ij)

2
i,j=1

with M̂n
ij = M̂n

ij(α̂), M̂
n
ij(α̂) =

∂2l(Xn;α)
∂r∂q |α=α̂ is negative definite. Let us state two

lemmas.

Lemma 5.2. Consider the model (2.2). Assuming the solution α̂ of the system

(5.1) (if it exists) holds in the following conditions

(5.3)

 E
[
ψ(ξ;α)

]
= ψn(α)

E
[
η(ξ;α)

]
= ηn(α)

where

ψ(ξ;α) =
1

r + x− 1
, ψn(α) =

1

n

n∑
i=1

ψ(xi;α); η(ξ;α) = − 1

q + x
, ηn(α) =

1

n

n∑
i=1

η(xi;α).

Then, the elements of the matrix M̂n are as follows (V ar(·) is the variance and

Cov(·, ·) is the covariance):

M̂11 = −n V ar(h(ξ;α)),

M̂12 = M̂21 = −n Cov
(
h(ξ;α), t(ξ;α)

)
,

M̂22 = −n V ar(t(ξ;α)).

Proof. We obtain second derivatives of the logarithm of likelihood functions by

∂2l(Xn;α)

∂r2
= −n

( 1

d(α)

∂2d(α)

∂r2
−

( 1

d(α)

∂d(α)

∂r

)2)
+ nψn(α)

∂2l(Xn;α)

∂r∂q
=
∂2l(Xn;α)

∂q∂r
= −n

[ 1

d(α)

∂2d(α)

∂r∂q
−
( 1

d(α)

∂d(α)

∂r

)( 1

d(α)

∂d(α)

∂q

)]
∂2l(Xn;α)

∂q2
= −n

( 1

d(α)

∂2d(α)

∂q2
−
( 1

d(α)

∂d(α)

∂q

)2)
+ nηn(α)

After some simplification, we have

M11 = −n V ar
(
h(ξ;α)

)
− n

(
E
[
ψ(ξ;α)

]
− ψn(α)

)
M12 =M21 = −n Cov

(
h(ξ;α), t(ξ;α)

)
M22 = −n V ar

(
t(ξ;α)

)
− n

(
E
[
η(ξ;α)

]
− ηn(α)

)
With the help of (5.3) the proof of Lemma 5.2 is finished. □

Lemma 5.3. Consider the model (2.2). Under the conditions (5.3), the matrix M̂n

is negative definite.
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Proof. It suffices to show M̂n
11 < 0 and det(M̂n) > 0. From Lemma 5.2, it can

be concluded that M̂n
11 < 0. To show that det(M̂n) > 0 we give

det(M̂n) = M̂n
11M̂

n
22 − (M̂n

12)
2

In accord with the value of M̂n
11 , M̂n

22 , M̂n
12 and based on Cauchy-Bunyakovski-

Schwartz inequality the proof is completed. □

From Lemmas 5.2 and 5.3, the following result is given.

Corollary 5.1. Suppose that the solution of the system (5.1) satisfies the conditions

(5.3), then it coincides with the ML estimators of parameters.

6. ML estimaton and simulation

Based on systems (5.1) and (5.3), it is not easy to derive closed forms for

the solutions, analytically. So, we need to use a numerical method for the ML

estimations of unknown parameters. Compared to Farbod [8], Nelder-Mead optimi-

zation algorithm (or simplex search algorithm) is suggested. Let us notice that the

Nelder-Mead optimization algorithm is a free-derivative optimization method to

nonlinear optimization problems and is suggested to apply for models with more

than one parameter. This algorithm was introduced by Nelder and Mead [16]. See

also [17].

For sampling, a simple stochastic sampling with replacement with the probability

of variables is considered in which the probability of variables are probability

functions. Simulation studies are proposed using the Monte Carlo method [17] with

1000 iterations to calculate ML estimations, biases and mean square errors (MSEs).

Remark 6.1. First, we performed our simulation for the model (2.2). Based on

(2.2), our simulation works well when x = 1, 2, ..., xmax (xmax = 100). But we

have some computational problems for large values x, such as xmax = 150 and

bigger than 150. Let us notice that a type of function xx exists in our pmf’s form

(2.2), and hence it raises problems for simulations and numerical calculations when

x is large. For example, if x = 500, then using R statistical software (Version 4.2.2)

xx = 500500 = ∞. To solve this computational problem, without loss of generality

and after some mathematical simplification, our pmf (2.2) can be written as follows:

(6.1) g∗x(α) =
(∑∞

y=1

(
1+ r−1

y

)y(
y+r−1

)r−1(
1+ q

y

)y
(y+q)q

)−1

·
(
1+ r−1

x

)x(
x+r−1

)r−1(
1+ q

x

)x(
x+q

)q .

From Remark 6.1 and (6.1), we have the following corollary.

Corollary 6.1. It is readily seen that the pmf (2.2) equals the pmf (6.1). So, for

simulation studies, the pmf (6.1) is considered. In the formula (6.1), we need to have
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x as truncated. For simulation aims, let us set x = 1 to xmax (xmax = 10000).

Namely, we have x = 1, 2, ..., 10000 and y = 1, 2, ..., 10000.

Let us consider the logarithm of the likelihood function (5.2). Based on (6.1)

and x = 1, 2, ..., 10000, the ML estimations, biases, and MSEs are calculated. To

simulation studies, we consider the values (r = 0.4, q = 0.6), (r = 1, q = 2), (r =

2.5, q = 3.2) as true values, different sample sizes n = 50, 100, 200, 500, 1000, 5000,

and using 1000 iterations.

Using R statistical software, the simulation results are given in Table 2. Our

simulation studies work well and have satisfactory results for the model. The differences

between real and estimated values of the parameters are small, in particular for large

sample sizes.

Table 2 shows that when the sample size n increases, bias and MSE decrease.

Moreover, from Table 2, we observe that when the true values of r and q are smaller

(also a small value of q−r), the results are better, i.e. biases and MSEs are smaller.

Let us notice that for the ML estimations, the conditions q̂ − r̂ > 0 and ρ̂ > 1 are

satisfied.

7. Asymptotic expansion

Considering that our proposed model has no closed form for the pmf, obtaining

some useful asymptotic expansion with two terms for the pmf is interesting. From

(2.2) and (6.1), we get

(7.1) gx(α) = (d(α))−1 · xr−q−1 ·
(
1+ r−1

x

)x(
1+ r−1

x

)r−1(
1+ q

x

)x(
1+ q

x

)q

We use two known asymptotic expansions as follows. For x −→ ∞, we have [5, 12]:

(7.2) (1 + c
x )

x = ec ·
(
1− c2

2x +O( 1
x2 )

)
.

Also, for x −→ 0 we have

(7.3) (1 + x)α = 1 + αx+O(x2).

From (7.2) and (7.3), the formula (7.1) may be given by

(7.4)

gx(α) = (d(α))−1 · xr−q−1 · er−q−1

(
1+ r−1

x

)x(
1+ r−1

x

)r−1(
1+ q

x

)x(
1+ q

x

)q

= (d(α))−1 · xr−q−1 · er−q−1 ·

(
1− (r−1)2

2x +O( 1
x2 )

)
(
1− q2

2x+O( 1
x2 )

) ·

(
1+

(r−1)2

x +O( 1
x2 )

)
(
1+ q2

x +O( 1
x2 )

)
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Таблица 2. Simulation results: The values of ML estimations
(r̂, q̂), biases, and
MSEs for the 2-RDWP model (6.1)

(r = 0.4, q = 0.6); x = 1, 2, ..., 10000
n (r̂, q̂) Bias MSE
50 (0.6156,0.8434) (0.2156,0.2434) (0.3234,0.4047)
100 (0.4844,0.6955) (0.0844,0.0955) (0.1013,0.1307)
200 (0.4318,0.6346) (0.0318,0.0346) (0.0420,0.0560)
500 (0.4108,0.6115) (0.0108,0.0115) (0.0150,0.0204)
1000 (0.4049,0.6051) (0.0049,0.0051) (0.0072,0.0098)
5000 (0.4002,0.6001) (0.0002,0.0001) (0.0014,0.0020)

(r = 1, q = 2); x = 1, 2, ..., 10000
n (r̂, q̂) Bias MSE
50 (1.4683,2.6768) (0.4683,0.6768) (1.9440,3.8043)
100 (1.1716,2.2475) (0.1716,0.2475) (0.4026,0.7901)
200 (1.0673,2.0963) (0.0673,0.0963) (0.1254,0.2417)
500 (1.0236,2.0330) (0.0236,0.0330) (0.0461,0.0872)
1000 (1.0158,2.0229) (0.0158,0.0229) (0.0227,0.0430)
5000 (1.0039,2.0051) (0.0039,0.0051) (0.0041,0.0079)

(r = 2.5, q = 3.2); x = 1, 2, ..., 10000
n (r̂, q̂) Bias MSE
50 (3.1808,3.9675) (0.6808,0.7675) (5.4404,6.8484)
100 (2.748,3.4778) (0.2480,0.2778) (1.3875,1.7214)
200 (2.6214,3.3357) (0.1214,0.1357) (0.5669,0.6986)
500 (2.5541,3.2609) (0.0541,0.0609) (0.2028,0.2494)
1000 (2.5367,3.2415) (0.0367,0.0415) (0.0992,0.1226)
5000 (2.5093,3.2102) (0.0093,0.0102) (0.0191,0.0238)

Let ρ = q + 1− r. From (7.4), we get

(7.5)
gx(α) ≈

(
d(α)

)−1 · x−ρ · e−ρ ×
(
1 + 1

2x

(
(r − 1)2 − q2

)
+

(
(r − 1)2 − q2

)
O( 1

x2 )
)

≈
(
d(α)

)−1 · x−ρ · e−ρ ·
(
1 + 1

2x

(
(r − 1)2 − q2

)
+O( 1

x2 )
)
.

7.1. Tail behavior. Using asymptotic expansions (7.2), (7.3) and based on (7.4),

let us propose tail behavior of distribution function Fx(α) (2.4) when x −→ ∞.

From (2.2), we get

(7.6) 1− Fx(α) = P (X > x) =

∞∑
m=x+1

gx(α)

By substituting (7.4) and (7.5) into (7.6), when x −→ ∞, we have

(7.7) 1− Fx(α) ≈
(
d(α)

)−1
e−(q+1−r)

∞∑
m=x+1

m−(q+1−r).

The following corollary is given.
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Corollary 7.1. It follows from (7.7) that the condition (4.3) must be met.

7.2. Moments. It is known that some moments are undefined for every power

law-like distribution. We investigate the moment’s existence of the model (2.2). To

do that, using asymptotic expansion (7.5), we shall propose the moment’s existence

of integer orders of the 2-RDWP model (2.2). Let ρ = q + 1− r.

From (7.5), it is readily seen that the first-order moment of X is finite if q−r > 1

(or equivalently ρ > 2). In other words, for model (2.2):

E(X) <∞, if ρ > 2.

For the second-order moment, it is easy to see that

E(X2) <∞, if ρ > 3.

Hence, the variance for the model (2.2) is also finite if ρ = q + 1− r > 3. In other

words, we have

V ar(X) = E(X2)− E2(X) <∞, if ρ > 3.

In the general case, if q − r > j then

E(Xj) <∞, j = 1, 2, ...; if ρ > j + 1.

Corollary 7.2. Assume that X is a regularly varying random variable with a

distribution (2.2) and index ρ. Then the moment of order j is infinite if ρ ≤ j + 1.

Moreover, evaluating the mean and variance of the model (2.2) for practical

needs is of interest. From the proposed asymptotic expansion (7.5), we can present

an approximate form with two terms for the mean and variance. Let us obtain mean

as a practical form for the truncated function with two terms as

(7.8)

E(X) =
∑∞

x=1 gx(α) ≈ (d(α))−1e−ρ
[∑∞

x=1 x
−ρ+1 + 1

2 ((r − 1)2 − q2)
∑∞

x=1 x
−ρ

]
.

Compared to Astola and Danielian [2, p.29], we have

(7.9)


∑∞

x=1 x
−ρ = 1

Γ(ρ−1) limλ−→1

∫ 1

0
ln(1− λt)(ln 1

t )
ρ−2 dt

t∑∞
x=1 x

−ρ+1 = 1
Γ(ρ−2) limλ−→1

∫ 1

0
ln(1− λt)(ln 1

t )
ρ−3 dt

t

where 0 < λ < 1 is some small constant and Γ(·) is the Gamma function. Substituting

(7.9) into (7.8), an approximate form with two terms for the mean is given in

the practical form and integral representation. Similarly, we can provide integral

representations for the second order moment and also variance.
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8. Application to data and comparison

As we pointed out in Section 2 and verified in Section 4, our new discrete

distribution (2.2) may be considered in bioinformatics, biosystems, etc. Let us fit

our model with a real count data set (Example 4.3) and then compare it with the

other models in bioinformatics. Again, for simulation and fitting aims, we consider

the pmf form (6.1).

The given real data set is the number of proteins in a biological system. In other

words, we consider some real data that includes the number of proteins assigned to

Panther families or subfamilies (see Subsection 4.4, Example 4.3). These data are

collected from Venter et al. [18].

For these 78 data (data used in the Example 4.2), using (6.1) we obtain the

ML estimations for two parameters r and q. ML estimations are given by r̂ =

9.620101, q̂ = 10.378817. It implies −ρ̂ = −1.758716 < −1. In addition, lnL =

−357.063 and p-value=0.713. Based on the Kolmogorov-Smirnov test and the 2-

RDWP model, the p-value equals 0.713, which is a good fit for such real data.

Additionally, based on some well-known statistical criteria such as:

Akaike information criterion (AIC) is given by AIC = 2 lnL + 2k where

k the number of parameters in the model; − lnL is the maximized value of the

likelihood function for the estimated model; AIC with corrected (AICc) is given by

AICc = AIC + 2k2+2k
n−k−1 where n is the sample size; and p-value, we compare

the 2-RDWP with other discrete models arising in bioinformatics, such as the

one-parameter skewed discrete Levy distribution (DLD) (10.1) [7], one-parameter

skewed Power-Law (PL) model (10.2) [2], one-parameter truncated skewed discrete

stable distribution (T-SDSD) (10.3) [8], one-parameter truncated skewed discrete

stable distribution (T-DSD) (10.4) [8], and two-parameter truncated skewed discrete

stable distribution (T-2SDSD) (10.5) [8], all having support on the set of positive

integers, i.e. x ∈ N+ = {1, 2, 3, ...}.
Using R statistical software, our results are presented in Table 3. It can be

observed from Table 3 that the 2-RDWP model has the smallest − lnL, AIC, AICc,

and the largest p-value. Accordingly, we can conclude that the 2-RDWP model

provides the best fit among the compared models (DLD, PL, T-SDSD, T-DSD and

T-2SDSD models). The pmfs of DLD, PL, T-SDSD, T-DSD and T-2SDSD are given

in Section 10 (Appendix).
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Таблица 3. Comparing results for 2-RDWP, DLD, PL, T-SDSD,
T-DSD, and T-2SDSD models for data of Example 4.2

Model lnL k AIC AICc p-value
2-RDWP -357.063 2 718.126 718.286 0.713

DLD -360.51055 1 723.0211 723.07373 0.04948
PL -366.2436 1 734.4872 734.53983 0.01773

T-SDSD -362.7622 1 727.5244 727.57703 0.09018
T-DSD -360.57675 1 723.1535 723.20613 0.1746

T-2SDSD -360.55815 2 725.1163 725.2763 0.1723

9. Conclusions

In this paper, using the discretization methods, we formulated a new skewed

regular varying discrete distribution, the so-called 2-RDWP, given by Eq.(2.2).

Some plots for the pmf and log-log plots of the model have been illustrated for

the different values of parameters satisfying the condition in Eq.(4.3). Figures 1(A-

J) indicated the pmfs for the used parameters are skewed to the right and unimodal

with mode value at x = 1. Significantly, Figures 1(A-J) showed that the length and

shape of the right-side tails varied with parameter value changes. Figures 2(A-J)

established the log-log plots of the 2-RDWP (2.2). The log-log plots of Figures 2(A-

J) illustrated that the right-side tails could significantly deviate from the straight

line, at least for large values of observed x.

The known common statistical facts (empirical facts), including unimodality,

skewness to the right, upward/downward convexity, stability by estimated parameters

values, regular variation at infinity and asymptotically constant slowly varying

component, have been proved for the 2-RDWP model. Hence, mathematically, we

concluded that our model (2.2) could be used as a new probability distribution for

the needs of bioinformatics and biomolecular systems.

ML estimators have been obtained based on some moment equations. The condi-

tions of coincidence of solution for the system of likelihood equations with the ML

estimators for the parameters have been proposed. Based on Monte Carlo method

and Nelder-Mead optimization algorithm simulation studies have been given to get

ML estimations, biases and MSEs. Simulation studies presented satisfactory results.

We noted that for simulation aims, instead of Eq.(2.2), we considered the pmf in

Eq.(6.1). The ML estimations r̂ and q̂ have met in the conditions, namely based on

simulation studies q̂ − r̂ > 0 and ρ̂ > 1.

An asymptotic expansion with two terms for the pmf (2.2) has been given. Using

asymptotic expansions, we proposed tail behavior of distribution function. Also, we
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investigated the moment’s existence of integer orders. Then, based on asymptotic

expansion, useful formulas for the mean and variance in the truncated forms have

been provided.

Finally, we successfully applied 2-RDWP to a real data set. Based on well-known

statistical criteria, we compared our results for the proposed model with other

known models in biosystems. Our model gives better results than the other models

for this real data set (Table 3).

The 2-RDWP model has a long right-side tail and power law-like behavior. It

can be helpful in biomolecular systems, bioinformatics and other areas such as

economics and physics.

10. Appendix

We present the pmfs of some rival models, used in Table 3. The pmf of the

one-parameter DLD model is given by [7]

(10.1) px(γ) =
x− 3

2 exp(− γ
2x )∑∞

y=1 y− 3
2 exp(− γ

2y )
, x = 1, 2, ...; γ > 0.

The pmf of the one-parameter PL model is as [2]

(10.2) px(ν) =
x−ν∑∞

y=1 y−ν , x = 1, 2, ...; ν > 1.

The pmf of T-SDSD when 0 < θ < 1, and x = 1, 2, . . . , is given by [8]

(10.3) px(θ, 1) =
Γ(θ+1)x−θ−1 sin(πθ)− 1

2Γ(2θ+1)x−2θ−1 sin(2πθ)∑∞
y=1

(
Γ(θ+1)y−θ−1 sin(πθ)− 1

2Γ(2θ+1)y−2θ−1 sin(2πθ)

) .
The pmf of T-DSD when 0 < θ < 2, and x = 1, 2, . . . , is given by [8]

(10.4) px(θ, 0) =
Γ(θ+1)x−θ−1 sin(πθ

2 )− 1
2Γ(2θ+1)x−2θ−1 sin(πθ)∑∞

y=1

(
Γ(θ+1)y−θ−1 sin(πθ

2 )− 1
2Γ(2θ+1)y−2θ−1 sin(πθ)

) .
The pmf of T-2SDSD when 0 < θ < 2, 0 < β < 1, and x = 1, 2, . . . , is given by [8]

(10.5) px(θ, β) =
Γ(θ+1)x−θ−1 sin(

πθ(1+β)
2 )− 1

2Γ(2θ+1)x−2θ−1 sin(πθ(1+β))∑∞
y=1

(
Γ(θ+1)y−θ−1 sin(

πθ(1+β)
2 )− 1

2Γ(2θ+1)y−2θ−1 sin(πθ(1+β))

) .
Code availability. All computational, fitting and simulation studies have been

done using R statistical software. The R codes are available from the author upon

request.
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Abstract. An example in the article shows that the first derivative of f(z) = 2
1−e−2z sharing

0 CM and 1,∞ IM with its shift πi cannot obtain they are equal. In this paper, we study the
uniqueness of meromorphic function sharing small functions with their shifts concerning its k− th
derivatives. We use a different method from Qi and Yang [18] to improves entire function to
meromorphic function, the first derivative to the k − th derivatives, and also finite values to
small functions. As for k = 0, we obtain: Let f(z) be a transcendental meromorphic function of
ρ2(f) < 1, let c be a nonzero finite value, and let a(z) ̸≡ ∞, b(z) ̸≡ ∞ ∈ Ŝ(f) be two distinct small
functions of f(z) such that a(z) is a periodic function with period c and b(z) is any small function
of f(z). If f(z) and f(z + c) share a(z),∞ CM, and share b(z) IM, then either f(z) ≡ f(z + c) or

ep(z) ≡
f(z + c)− a(z + c)

f(z)− a(z)
≡

b(z + c)− a(z + c)

b(z)− a(z)
,

where p(z) is a non-constant entire function of ρ(p) < 1 such that ep(z+c) ≡ ep(z).

MSC2020 numbers: 30D35; 39A46.
Keywords: meromorphic functions; shifts; derivatives; small functions.

1. Introduction and main results

Throughout this paper, we assume that the reader have a knowledge of the

fundamental results and the standard notations of the Nevanlinna value distribution

theory. See([6, 20, 21]). In the following, a meromorphic function f means meromorphic

in the whole complex plane. Define

ρ(f) = lim
r→∞

log+T (r, f)

logr
,

ρ2(f) = lim
r→∞

log+log+T (r, f)

logr

by the order and the hyper-order of f , respectively. When ρ(f) < ∞, we say f is

of finite order.

By S(r, f), we denote any quantity satisfying S(r, f) = o(T (r, f)), as r → ∞
outside of a possible exceptional set of finite logarithmic measure. A meromorphic

function a(z) satisfying T (r, a) = S(r, f) is called a small function of f . We denote

S(f) as the family of all small meromorphic functions of f which includes the

constants in C. Moreover, we define Ŝ(f) = S(f) ∪ {∞}. We say that two non-

constant meromorphic functions f and g share small function a CM(IM) if f−a and
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g−a have the same zeros counting multiplicities (ignoring multiplicities). Moreover,

we introduce the following notation: S(m,n)(a) = {z|z is a common zero of f(z +

c)− a(z) and f(z)− a(z) with multiplicities m and n respectively}. N (m,n)(r,
1

f−a )

denotes the counting function of f with respect to the set S(m,n)(a). Nn)(r,
1

f−a )

denotes the counting function of all distinct zeros of f−a with multiplicities at most

n. N (n(r,
1

f−a ) denotes the counting function of all zeros of f−a with multiplicities

at least n.

We say that two non-constant meromorphic functions f and g share small function

a CM(IM)almost if

N(r,
1

f − a
) +N(r,

1

g − a
)− 2N(r, f = a = g) = S(r, f) + S(r, g),

or

N(r,
1

f − a
) +N(r,

1

g − a
)− 2N(r, f = a = g) = S(r, f) + S(r, g),

respectively.

For a meromorphic function f(z), we denote its shift by fc(z) = f(z + c).

Rubel and Yang [19] studied the uniqueness of an entire function concerning its

first order derivative, and proved the following result.

Theorem A. Let f(z) be a non-constant entire function, and let a, b be two

finite distinct complex values. If f(z) and f ′(z) share a, b CM, then f(z) ≡ f ′(z).

Zheng and Wang [23] improved Theorem A and proved

Theorem B. Let f(z) be a non-constant entire function, and let a(z) ̸≡
∞, b(z) ̸≡ ∞ be two distinct small functions of f(z). If f(z) and f (k)(z) share

a(z), b(z) CM, then f(z) ≡ f (k)(z).

Li and Yang [15] improved Theorem B and proved

Theorem C. Let f(z) be a non-constant entire function, and let a(z) ̸≡
∞, b(z) ̸≡ ∞ be two distinct small functions of f(z). If f(z) and f (k)(z) share

a(z) CM, and share b(z) IM. Then f(z) ≡ f (k)(z).

Recently, the value distribution of meromorphic functions concerning difference

analogue has become a popular research, see [1, 2, 4 – 9, 12 – 14, 16 – 18].

Heittokangas et al [7] obtained a similar result analogue of Theorem A concerning

shifts.

Theorem D. Let f(z) be a non-constant entire function of finite order, let c be

a nonzero finite complex value, and let a, b be two finite distinct complex values. If

f(z) and f(z + c) share a, b CM, then f(z) ≡ f(z + c).

In [17], Qi-Li-Yang investigated the value sharing problem with respect to f ′(z)

and f(z + c). They proved
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Theorem E. Let f(z) be a non-constant entire function of finite order, and let

a, c be two nonzero finite complex values. If f ′(z) and f(z+ c) share 0, a CM, then

f ′(z) ≡ f(z + c).

Recently, Qi and Yang [18] improved Theorem E and proved

Theorem F. Let f(z) be a non-constant entire function of finite order, and let

a, c be two nonzero finite complex value. If f ′(z) and f(z + c) share 0 CM and a

IM, then f ′(z) ≡ f(z + c).

Of above theorem, it’s naturally to ask whether the condition 0, a can be replaced

by two distinct small functions, and f ′ can be replaced by f (k)?

In this article, we give a positive answer. In fact, we prove the following more

general result.

Theorem 1.1. Let f(z) be a transcendental meromorphic function of ρ2(f) < 1,

let c be a nonzero finite value, k be a positive integer, and let a(z) ̸≡ ∞, b(z) ̸≡ ∞ ∈
Ŝ(f) be two distinct small functions. If f (k)(z) and f(z+ c) share a(z),∞ CM, and

share b(z) IM, then f (k)(z) ≡ f(z + c).

Example 1.1. [9] Let f(z) = 2
1−e−2z , and let c = πi. Then f ′(z) and f(z+c) share

0 CM and share 1,∞ IM, but f ′(z) ̸≡ f(z + c).

This example shows that for meromorphic functions, the conclusion of Theorem

1 doesn’t hold even when sharing ∞ CM is replaced by sharing ∞ IM when k = 1.

We believe there are examples for any k, but we can not construct them.

As for k = 0, Li and Yi [13] obtained

Theorem G. Let f(z) be a transcendental entire function of ρ2(f) < 1, let

c be a nonzero finite value, and let a(z) ̸≡ ∞, b(z) ̸≡ ∞ ∈ Ŝ(f) be two distinct

small functions. If f(z) and f(z + c) share a(z) CM, and share b(z) IM, then

f(z) ≡ f(z + c).

Remark 1.1. Theorem G holds when f(z) is a non-constant meromorphic function

of ρ2(f) < 1 such that N(r, f) = S(r, f).

Theorem H. [8] Let f(z) be a non-constant meromorphic function of finite

order, let c be a nonzero finite value, and let a(z) ̸≡ ∞, b(z) ̸≡ ∞ and d(z) ̸≡ ∞ ∈
Ŝ(f) be three distinct small functions such that a(z), b(z) and d(z) are periodic

functions with period c. If f(z) and f(z+c) share a(z), b(z) CM, and d(z) IM, then

f(z) ≡ f(z + c).

We can ask a question that whether the small periodic function d(z) of f(z) can

be replaced by any small function of f(z)?

In this paper, we obtain our second result.
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Theorem 1.2. Let f(z) be a transcendental meromorphic function of ρ2(f) < 1,

let c be a nonzero finite value, and let a(z) ̸≡ ∞, b(z) ̸≡ ∞ ∈ Ŝ(f) be two distinct

small functions of f(z) such that a(z) is a periodic function with period c and b(z)

is a small function of f(z). If f(z) and f(z + c) share a(z),∞ CM, and share b(z)

IM, then either f(z) ≡ f(z + c) or

ep(z) ≡ f(z + c)− a(z + c)

f(z)− a(z)
≡ b(z + c)− a(z + c)

b(z)− a(z)
,

where p(z) is a non-constant entire function of ρ(p) < 1 such that ep(z+c) ≡ ep(z).

We can obtain the following corollary from the proof of Theorem 1.2.

Corollary 1.1. Under the same condition as in Theorem 2, then f(z) ≡ f(z + c)

holds if one of conditions satisfies

(i) b(z) is a periodic function with period nc ;

(ii) ρ(b(z)) < ρ(ep(z));

(iii) ρ(b(z)) < 1.

Example 1.2. Let f(z) = ez

1−e−2z , and let c = πi. Then f(z + c) = −ez

1−e−2z , and

f(z) and f(z + c) share 0,∞ CM, but f(z) ̸≡ f(z + c).

Example 1.3. Let f(z) = ez, and let c = πi. Then f(z + c) = −ez, and f(z) and

f(z+ c) share 0,∞ CM, f(z) and f(z+ c) attain different values everywhere in the

complex plane, but f(z) ̸≡ f(z + c).

Above two examples of show that "2CM+1IM"is necessary.

Example 1.4. Let f(z) = ee
z

, then f(z + πi) = 1
eez

. It is easy to verify that f(z)

and f(z + πi) share 0, 1,∞ CM, but f(z) = 1
f(z+πi) . On the other hand, we obtain

f(z) = f(z + 2πi).

Example 1.4 tells us that if we drop the assumption ρ2(f) < 1, we can get

another relation.

By Theorem 1.1 and Theorem 1.2, we still believe the latter situation of Theorem

2 can be removed, that is to say, only the case f(z) ≡ f(z + c) occurs. So we raise

a conjecture here.

Conjecture. Under the same condition as in Theorem 1.2, is f(z) ≡ f(z + c) ?

2. Some lemmas

Lemma 2.1. [6] Let f be a non-constant meromorphic function of ρ2(f) < 1, and

let c be a non-zero complex number. Then

m(r,
f(z + c)

f(z)
) = S(r, f),
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for all r outside of a possible exceptional set E with finite logarithmic measure.

Lemma 2.2. [10, 20, 21] Let f1 and f2 be two non-constant meromorphic functions

in |z| <∞, then

N(r, f1f2)−N(r,
1

f1f2
) = N(r, f1) +N(r, f2)−N(r,

1

f1
)−N(r,

1

f2
),

where 0 < r <∞.

Lemma 2.3. [6] Let f be a non-constant meromorphic function of ρ2(f) < 1, and

let c be a non-zero complex number. Then

T (r, f(z)) = T (r, f(z + c)) + S(r, f),

for all r outside of a possible exceptional set E with finite logarithmic measure.

Lemma 2.4. Let f be a transcendental meromorphic function of ρ2(f) < 1 such

that N(r, f) = S(r, f), let c be a nonzero constant, k be a positive integer, and

let a(z) be a small function of f(z + c) and f (k)(z). If f(z + c) and f (k)(z) share

a(z),∞ CM, and N(r, 1
f(k)(z+c)−a(k)(z)

) = S(r, f), then T (r, ep) = S(r, f), where p

is an entire function of order less than 1.

Proof. Since f is a transcendental meromorphic function of ρ2(f) < 1, N(r, f) =

S(r, f), and fc and f (k) share a and ∞ CM, then there is an entire function p of

order less than 1 such that

fc − a = ep(f (k) − a
(k)
−c ) + ep(a

(k)
−c − a).(2.1)

Suppose on the contrary that T (r, ep) ̸= S(r, f).

Set g = f
(k)
c − a(k). Differentiating (2.1) k times we have

g = (ep)(k)g−c + k(ep)(k−1)g′−c + · · ·+ k(ep)′g
(k−1)
−c + epg

(k)
−c +B(k),(2.2)

where B = ep(a
(k)
−c − a).

It is easy to see that g ̸≡ 0. Then we rewrite (2.2) as

1− B(k)

g
= Dep,(2.3)

where

D = e−p[(ep)(k)
g−c

g
+ k(ep)(k−1) g

′
−c

g
+ · · ·

+ k(ep)′
g
(k−1)
−c

g
+ (ep)

g
(k)
−c

g
].(2.4)

Since f is a transcendental meromorphic function with ρ2(f) < 1 and f (k) and fc

share ∞ CM, we can see from N(r, f) = S(r, f), Lemma 2.1 and Lemma 2.3 that

(1 + o(1))N(r, f) + S(r, f) = N(r, fc) = N(r, f (k)),
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and on the other hand

kN(r, fc) +N(r, fc) = N(r, f (k)c ), N(r, fc) = N(r, f (k)) = N(r, f),

which follows from above equalities that N(r, f (k)) = N(r, f
(k)
c ) + S(r, f), and

thus we can know that g and g−c share ∞ CM almost. It is easy to see from the

assumption fc and f (k) share ∞ CM that there exists no simple pole point of fc.

Now we estimate N(r,
g
(i)
−c

g ). Let z0 be a pole of f with multiplicity n, than z0 is

a pole of g with multiplicity n + 2k, and also z0 is a pole of g(i)−c with multiplicity

n + k + i. Then we can see that z0 is a zero point of g
(i)
−c

g with k − i. Let z1 be

a pole of fc with multiplicity m, then z1 is a pole of g with multiplicity m + k,

and also z1 is a pole of g(i)−c with multiplicity m + i. Then we can see that z1 is a

zero point of g
(i)
−c

g with k − i. Note that N(r, 1

f
(k)
c −a(k)

) = N(r, 1g ) = S(r, f), then

N(r,
g
(i)
−c

g ) = S(r, f), and hence

T (r,D) ≤
k∑

i=0

(T (r,
(ep)(i)

ep
) + T (r,

Ci
kg

(k−i)
−c

g
)) + S(r, f)

≤
k∑

i=0

(S(r, ep) +m(r,
g
(i)
−c

g−c
) +N(r,

g
(i)
−c

g
)) + S(r, f)

= S(r, ep) + S(r, f),(2.5)

where Ci
k is a combinatorial number. By (2.1) and Lemma 2.1, we get

T (r, ep) ≤ T (r, fc) + T (r, f (k)) + S(r, f) ≤ 2T (r, f) + S(r, f).(2.6)

Then it follows from (2.5) that T (r,D) = S(r, f). Next we discuss two cases.

Case 1. e−p −D ̸≡ 0. Rewrite (2.3) as

gep(e−p −D) = B(k).(2.7)

We claim that D ≡ 0. Otherwise, using the Lemma 2.8 to e−p, we get

m(r,
1

e−p −D
) +N(r,

1

e−p −D
) = T (r, e−p)

≤ N(r, e−p) +N(r,
1

e−p
) +N(r,

1

e−p −D
)

+ S(r, ep) = N(r,
1

e−p −D
) + S(r, f) ≤ T (r, e−p) + S(r, f),

that is to say

T (r, ep) = T (r, e−p) +O(1) = N(r,
1

e−p −D
) + S(r, f)

and

N(r,
1

e−p −D
) = N1(r,

1

e−p −D
) + S(r, f).
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It follows form above two equalities that

T (r, ep) = N1(r,
1

e−p −D
) + S(r, f).

Because the numbers of zeros and poles of B(k) are S(r, f), we can see from (2.7)

and N(r, f) = S(r, f) that the multiplicities of poles of g are almost 1. And then

N(r, f) + kN(r, f) = N(r, g) + S(r, f) = N(r,
1

e−p −D
) + S(r, f)

= N1(r, f) + S(r, f) ≤ N(r, f) + S(r, f) = S(r, f).

it follows from above that N(r, 1
e−p−D ) = S(r, f). Then by Lemma 2.8 in the

following we can obtain

T (r, ep) = T (r, e−p) +O(1)

≤ N(r, e−p) +N(r,
1

e−p
) +N(r,

1

e−p −D
)

+ S(r, ep) = S(r, f),(2.8)

which contradicts with present assumption. Thus D ≡ 0. Then by (2.7) we get

g = B(k).(2.9)

Integrating (2.9), we get

fc = ep(a
(k)
−c − a) + P + a,(2.10)

where P is a polynomial of degree at most k − 1. (2.10) implies

T (r, fc) = T (r, ep) + S(r, f).(2.11)

Substituting (2.9) and (2.10) into (2.1) we can obtain

ep(a
(k)
−c − a) + P = ep+p−cL−c,(2.12)

where L−c is the differential polynomial in

p′−c, . . . , p
(k)
−c , a−2c − a−c, (a−2c − a−c)

′, . . . , (a−2c − a−c)
(k),

and it is a small function of f(z + c). On the one hand

2T (r, ep) = T (r, e2p) = m(r, e2p) ≤ m(r, ep+p−c) +m(r,
ep

ep−c
) ≤ T (r, ep+p−c) + S(r, f).

(2.13)

On the other hand, we can prove similarly that

T (r, ep+p−c) ≤ 2T (r, ep) + S(r, f).(2.14)

So

T (r, ep+p−c) = 2T (r, ep) + S(r, f).(2.15)

By (2.11), (2.12) and (2.15) we can get T (r, ep) = 2T (r, ep) + S(r, f), which is

T (r, ep) = S(r, f), a contradiction.
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Case 2. e−p − D ≡ 0. Immediately, we get T (r, ep) = S(r, f), but it’s

impossible.

Of above discussions, we conclude that T (r, ep) = S(r, f). □

Lemma 2.5. Let f be a transcendental meromorphic function of ρ2(f) < 1 such

that N(r, f) = S(r, f), let k be a positive integer and c ̸= 0 a complex value, and

let a ̸≡ ∞ and b ̸≡ ∞ be two distinct small functions of f . Suppose

L(fc) =

∣∣∣∣ fc − a a− b
f ′c − a′ a′ − b′

∣∣∣∣
and

L(f (k)) =

∣∣∣∣ f (k) − a a− b
f (k+1) − a′ a′ − b′

∣∣∣∣ ,
and fc and f (k) share a,∞ CM, and share b IM, then L(fc) ̸≡ 0 and L(f (k)) ̸≡ 0.

Proof. Suppose that L(fc) ≡ 0, then we can get f ′
c−a′

fc−a ≡ a′−b′

a−b . Integrating both

side of above we can obtain fc − a = C1(a− b), where C1 is a nonzero constant. So

by Lemma 2.3, we have T (r, f) = T (r, fc) + S(r, f) = T (r, C(a− b) + a) = S(r, f),

a contradiction. Hence L(fc) ̸≡ 0.

Since f (k) and fc share a CM and b IM, and f is a transcendental meromorphic

function of ρ2(f) < 1 such that N(r, f) = S(r, f), then by the Lemma 2.8, we get

T (r, fc) ≤ N(r,
1

fc − a
) +N(r,

1

fc − b
) +N(r, fc) + S(r, f)

= N(r,
1

f (k) − a
) +N(r,

1

f (k) − b
) + S(r, f)

≤ 2T (r, f (k)) + S(r, f).(2.16)

Hence a and b are small functions of f (k). If L(f (k)) ≡ 0, then we can get f (k)−a =

C2(a − b), where C2 is a nonzero constant. And we get T (r, f (k)) = S(r, f (k)).

Combing (2.16) we obtain T (r, f) = T (r, fc)+S(r, f) = T (r, C(a−b)+a) = S(r, f),

a contradiction. □

Lemma 2.6. Let f be a transcendental meromorphic function, let kj(j = 1, 2, . . . , q)

be distinct constants, and let a ̸≡ ∞ and b ̸≡ ∞ be two distinct small functions of

f . Again let dj = a− kj(a− b) (j = 1, 2, . . . , q). Then

m(r,
L(fc)

fc − a
) = S(r, f), m(r,

L(fc)

fc − dj
) = S(r, f).

for 1 ≤ i ≤ q and

m(r,
L(fc)fc

(fc − d1)(fc − d2) · · · (fc − dm)
) = S(r, f),

where L(fc) is defined as in Lemma 2.5, and 2 ≤ m ≤ q.
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Proof. Obviously, we have

m(r,
L(fc)

fc − a
) ≤ m(r,

(a′ − b′)(fc − a)

fc − a
) +m(r,

(a− b)(f ′c − a′)

fc − a
) = S(r, f),

and
L(fc)fc

(fc − d1)(fc − d2) · · · (fc − dq)
=

q∑
i=1

CiL(fc)

fc − di
,

where Ci =
dj∏

j ̸=i

(di−dj)
are small functions of f . By Lemma 2.1 and above, we have

m(r,
L(fc)fc

(fc − d1)(fc − d2) · · · (fc − dq)
) = m(r,

q∑
i=1

CiL(fc)

fc − di
)

≤
q∑

i=1

m(r,
L(fc)

fc − di
) + S(r, f) = S(r, f). □(2.17)

Lemma 2.7. Let f and g be are two non-constant meromorphic functions such

that N(r, f) = S(r, f), and let a ̸≡ ∞ and b ̸≡ ∞ be two distinct small functions of

f and g. If

H =
L(f)

(f − a)(f − b)
− L(g)

(g − a)(g − b)
≡ 0,

where

L(f) = (a′ − b′)(f − a)− (a− b)(f ′ − a′)

and

L(g) = (a′ − b′)(g − a)− (a− b)(g′ − a′).

And if f and g share a,∞ CM, and share b IM, then either 2T (r, f) = N(r, 1
f−a )+

N(r, 1
f−b ) + S(r, f), or f = g.

Proof. Integrating H which leads to
g − b

g − a
= C

f − b

f − a
,

where C is a nonzero constant.

If C = 1, then f = g. If C ̸= 1, then from above, we have
a− b

g − a
≡ (C − 1)f − Cb+ a

f − a
,

and

T (r, f) = T (r, g) + S(r, f) + S(r, g).

It follows that N(r, 1
f−Cb−a

C−1

) = N(r, 1
a−b ) = S(r, f). Then by Lemma 2.8 in the

following,

T (r, f) ≤ N(r, f) +N(r,
1

f − a
) +N(r,

1

f − Cb−a
C−1

) + S(r, f)

≤ N(r,
1

f − a
) + S(r, f) ≤ T (r, f) + S(r, f),
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and

T (r, f) ≤ N(r, f) +N(r,
1

f − b
) +N(r,

1

f − Cb−a
C−1

) + S(r, f)

≤ N(r,
1

f − b
) + S(r, f) ≤ T (r, f) + S(r, f),

that is T (r, f) = N(r, 1
f−a ) + S(r, f) and T (r, f) = N(r, 1

f−b ) + S(r, f), and hence

2T (r, f) = N(r, 1
f−a ) +N(r, 1

f−b ) + S(r, f). □

Lemma 2.8. [22] Let f(z) be a non-constant meromorphic function, and let aj ∈
Ŝ(f) be q distinct small functions for all j = 1, 2, . . . , q. Then

(q − 2− ϵ)T (r, f) ≤
q∑

j=1

N(r,
1

f − aj
) + S(r, f), r ̸∈ E,

for all r outside of a possible exceptional set E with finite logarithmic measure.

Remark 2.1. Lemma 2.8 is true when ∞, a1, a2, · · · , aq ∈ Ŝ(f) with S(r, f) in our

notation, in other words, even if exceptional sets are of infinite linear measure. But

they are not of infinite logarithmic measure.

Lemma 2.9. [11] Let f and g be two non-constant meromorphic functions. If f and

g share 0, 1,∞ IM, and f is a bilinear transformation of g, then f and g assume

one of the following six relations: (i) fg = 1; (ii) (f −1)(g−1) = 1; (iii) f +g = 1;

(iv) f = cg; (v) f−1 = c(g−1); (vi) [(c−1)f+1][(c−1)g−c] = −c, where c ̸= 0, 1

is a complex number.

Lemma 2.10. [3] Let f , F and g be three non-constant meromorphic functions,

where g = F (f). Then f and g share three values IM if and only if there exist an

entire function h such that, by a suitable linear fractional transformation, one of

the following cases holds:

(i) f ≡ g;

(ii) f = eh and g = a(1 + 4ae−h − 4a2e−2h) have three IM shared values a ̸= 0,

b = 2a and ∞;

(iii) f = eh and g = 1
2 (e

h + a2e−h) have three IM shared values a ̸= 0, b = −a and

∞;

(iv) f = eh and g = a+ b− abe−h have three IM shared values ab ̸= 0 and ∞;

(v) f = eh and g = 1
b e

2h − 2eh + 2b have three IM shared values b ̸= 0, a = 2b and

∞;

(vi) f = eh and g = b2e−h have three IM shared values a ̸= 0, 0 and ∞.

Lemma 2.11. [10, 20, 21] Let f and g be two non-constant meromorphic functions,

and let ρ(f) and ρ(g) be the order of f and g, respectively. Then ρ(fg) ≤ max{ρ(f), ρ(g)}.
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Remark 2.2. We can see from the proof that Lemma 2.9 [11] and Lemma 2,10

[20] are still true when f and g share three value IM almost.

3. The proof of Theorem 1.1

If fc ≡ f (k), there is nothing to prove. Suppose fc ̸≡ f (k). Since f is a non-

constant meromorphic function of ρ2(f) < 1, fc and f (k) share a,∞ CM, then we

get

f (k) − a

fc − a
= eh,(3.1)

where h is an entire function, and it is easy to know from (2.1) that h = −p.
Since f is a transcendental meromorphic function of ρ2(f) < 1 and f (k) and fc

share ∞ CM, we can see from Lemma 2.1 and Lemma 2.3 that

(1 + o(1))N(r, f) + S(r, f) = N(r, fc) = N(r, f (k)),

which implies

N(r, f) = S(r, f).

Furthermore, from the assumption that f (k) and fc share a and ∞ CM and b IM,

then by Lemma 2.1, Lemma 2.8 and above equality, we get

T (r, fc) ≤ N(r,
1

fc − a
) +N(r,

1

fc − b
) +N(r, fc) + S(r, f)

= N(r,
1

f (k) − a
) +N(r,

1

f (k) − b
) + S(r, f)

≤ N(r,
1

fc − f (k)
) + S(r, f) ≤ T (r, fc − f (k)) + S(r, f)

≤ m(r, fc − f (k)) +N(r, fc − f (k)) + S(r, f)

≤ m(r, fc) +m(r, 1− f (k)

fc
) +N(r, fc) + S(r, f) ≤ T (r, fc) + S(r, f).

That is

T (r, fc) = N(r,
1

fc − a
) +N(r,

1

fc − b
) + S(r, f).(3.2)

By (3.1) and (3.2) we have

T (r, fc) = T (r, fc − f (k)) + S(r, f) = N(r,
1

fc − f (k)
) + S(r, f).(3.3)

and by Lemma 2.1,

T (r, eh) = m(r, eh) = m(r,
f (k) − a

(k)
−c + a

(k)
−c − a

fc − a
) ≤ m(r,

a
(k)
−c − a

fc − a
)

+m(r,
f (k) − a

(k)
−c

f
(k)
c − a(k)

) +m(r,
f
(k)
c − a(k)

fc − a
) ≤ m(r,

1

fc − a
) + S(r, f).(3.4)
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Then it follows from (3.1) and (3.3) that

m(r,
1

fc − a
) = m(r,

eh − 1

f (k) − fc
) ≤ m(r,

1

f (k) − fc
) +m(r, eh − 1) ≤ T (r, eh) + S(r, f).

(3.5)

Then by (3.4) and (3.5)

T (r, eh) = m(r,
1

fc − a
) + S(r, f).(3.6)

On the other hand, (3.1) can be rewritten as

f (k) − fc
fc − a

= eh − 1,(3.7)

which implies

N(r,
1

fc − b
) ≤ N(r,

1

eh − 1
) + S(r, f) = T (r, eh) + S(r, f).(3.8)

Thus, by (3.2), (3.6) and (3.8)

m(r,
1

fc − a
) +N(r,

1

fc − a
) = N(r,

1

fc − a
) +N(r,

1

fc − b
) + S(r, f)

≤ N(r,
1

fc − a
) +N(r,

1

eh − 1
) + S(r, f)

≤ N(r,
1

fc − a
) +m(r,

1

fc − a
) + S(r, f),

which implies

N(r,
1

fc − a
) = N(r,

1

fc − a
) + S(r, f).(3.9)

And then

N(r,
1

fc − b
) = T (r, eh) + S(r, f).(3.10)

Set

φ =
L(fc)(fc − f (k))

(fc − a)(fc − b)
,(3.11)

and

ψ =
L(f (k))(fc − f (k))

(f (k) − a)(f (k) − b)
.(3.12)

It is easy to know that φ ̸≡ 0 because of Lemma 2.5 and f ̸≡ f (k). We know that

N(r, φ) ≤ N(r, f) = S(r, f) by (3.11). By Lemma 2.1 and Lemma 2.6 we have

T (r, φ) = m(r, φ) +N(r, φ) = m(r,
L(fc)(fc − f (k))

(fc − a)(fc − b)
) + S(r, f)

≤ m(r,
L(fc)fc

(fc − a)(fc − b)
) +m(r, 1− f (k)

fc
) + S(r, f) = S(r, f),

that is

T (r, φ) = S(r, f).(3.13)
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Let d = a− j(a− b)(j ̸= 0, 1). Obviously, by Lemma 2.1 and Lemma 2.6, we obtain

m(r,
1

fc
) = m(r,

1

(b− a)φ
(
L(fc)

fc − a
− L(fc)

fc − b
)(1− f (k)

fc
))

≤ m(r,
1

φ
) +m(r,

L(fc)

fc − a
− L(fc)

fc − b
)

+m(r, 1− f (k)

fc
) + S(r, f) = S(r, f).(3.14)

and

m(r,
1

fc − d
) = m(r,

L(fc)(fc − f (k))

φ(fc − a)(fc − b)(fc − d)
)

≤ m(r, 1− f (k)

fc
) +m(r,

L(fc)fc
(fc − a)(fc − b)(fc − d)

)

+ S(r, f) = S(r, f).(3.15)

Set

ϕ =
L(fc)

(fc − a)(fc − b)
− L(f (k))

(f (k) − a)(f (k) − b)
.(3.16)

We discuss two cases.

Case 1 ϕ ≡ 0. Integrating the both sides of (3.16) which leads to

fc − a

fc − b
= C

f (k) − a

f (k) − b
,(3.17)

where C is a nonzero constant. Then by Lemma 2.7 we get

2T (r, fc) = N(r,
1

fc − a
) +N(r,

1

fc − b
) + S(r, f),(3.18)

which contradicts with (3.2).

Case 2 ϕ ̸≡ 0. By (3.3), (3.13) and (3.16) we can obtain

T (r, fc) = T (r, fc − f (k)) + S(r, f) = T (r,
ϕ(fc − f (k))

ϕ
) + S(r, f)

= T (r,
φ− ψ

ϕ
) + S(r, f) ≤ T (r, φ− ψ) + T (r, ϕ) + S(r, f)

≤ T (r, ψ) + T (r, ϕ) + S(r, f) ≤ T (r, ψ) +N(r,
1

fc − b
) + S(r, f).(3.19)

On the other hand,

T (r, ψ) = T (r,
L(f (k))(fc − f (k))

(f (k) − a)(f (k) − b)
)

= m(r,
L(f (k))(fc − f (k))

(f (k) − a)(f (k) − b)
) +N(r, ψ)

≤ m(r,
L(f (k))

f (k) − b
) +m(r,

fc − f (k)

f (k) − a
) +N(r, f) + S(r, f)

≤ m(r,
1

fc − a
) + S(r, f) = N(r,

1

fc − b
) + S(r, f).(3.20)
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Hence combining (3.19) and (3.20), we obtain

T (r, fc) ≤ 2N(r,
1

fc − b
) + S(r, f).(3.21)

If a(k)−c ≡ a, then by (3.1) and Lemma 2.1 we can get

T (r, eh) = m(r, eh) = m(r,
f (k) − a

(k)
−c

fc − a
)

≤ m(r,
f (k) − a

(k)
−c

f
(k)
c − a(k)

) +m(r,
f
(k)
c − a(k)

fc − a
) = S(r, f).(3.22)

It follows from (3.10), (3.21), (3.22) and Lemma 2.3 that T (r, f) = T (r, fc) +

S(r, f) = S(r, f). It’s impossible.

If a(k)−c ≡ b, then by (3.10), (3.21) and and Lemma 2.1,

T (r, fc) ≤ m(r,
1

fc − a
) +N(r,

1

f (k) − b
) + S(r, f)

≤ m(r,
f (k) − a

(k)
−c

f
(k)
c − a(k)

) +m(r,
f
(k)
c − a(k)

fc − a
) +m(r,

1

f (k) − b
)

+N(r,
1

f (k) − b
) + S(r, f) ≤ T (r, f (k)) + S(r, f),

which implies

T (r, fc) ≤ T (r, f (k)) + S(r, f).(3.23)

Lemma 2.3 implies

T (r, f (k)) ≤ T (r, f) + kN(r, f) + S(r, f) = T (r, fc) + S(r, f),(3.24)

and it follows from the fact fc and f (k) share a CM and b IM, (3.2) and (3.23) that

T (r, f (k)) = T (r, fc) + S(r, f)

= N(r,
1

fc − a
) +N(r,

1

fc − b
) + S(r, f)

= N(r,
1

f (k) − a
) +N(r,

1

f (k) − b
) + S(r, f).(3.25)

By Lemma 2.1, Lemma 2.8, (3.2) and (3.25), we have

2T (r, f (k)) ≤ N(r,
1

f (k) − a
) +N(r,

1

f (k) − b
) +N(r,

1

f (k) − d
) +N(r, f (k))

+ S(r, f) ≤ 2T (r, f (k))−m(r,
1

f (k) − d
) + S(r, f)

Immediately,

m(r,
1

f (k) − d
) = S(r, f).(3.26)
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By the First Fundamental Theorem, Lemma 2.1, Lemma 2.2, (3.14), (3.25),

(3.26) and f is a transcendental meromorphic function of ρ2(f) < 1, we obtain

m(r,
fc − d

f (k) − d
) ≤ m(r,

fc
f (k) − d

) +m(r,
d

f (k) − d
) +O(1)

≤ T (r,
fc

f (k) − d
)−N(r,

fc
f (k) − d

) + S(r, f)

= m(r,
f (k) − d

fc
) +N(r,

f (k) − d

fc
)−N(r,

fc
f (k) − d

) + S(r, f)

≤ N(r,
1

fc
)−N(r,

1

f (k) − d
) +N(r, f (k))−N(r, f) + S(r, f)

= T (r,
1

fc
)− T (r,

1

f (k) − d
) + S(r, f)

= T (r, fc)− T (r, f (k)) + S(r, f) = S(r, f).

Thus

m(r,
fc − d

f (k) − d
) = S(r, f).(3.27)

It’s easy to see that N(r, ψ) = S(r, f) and (3.12) can be rewritten as

ψ = [
a− d

a− b

L(f (k))

f (k) − a
− b− d

a− b

L(f (k))

f (k) − b
][
fc − d

f (k) − d
− 1].(3.28)

Then by Lemma 2.6, (3.27) and (3.28) we can get

T (r, ψ) = m(r, ψ) +N(r, ψ) = S(r, f).(3.29)

By (3.2), (3.19) and (3.29) we get

N(r,
1

fc − a
) = S(r, f).(3.30)

Moreover, by Lemma 2.1, (3.2), (3.25) and (3.30), we have

m(r,
1

(fc − a)(k)
) = m(r,

1

f
(k)
c − bc

) = m(r,
1

f (k) − b
) + S(r, f) = S(r, f),(3.31)

and it follows from above, (3.6) and (3.10) that

N(r,
1

fc − b
) = m(r,

1

fc − a
) + S(r, f)

≤ m(r,
1

(fc − a)(k)
) +m(r,

(fc − a)(k)

fc − a
) + S(r, f) = S(r, f).(3.32)

Then by (3.2), (3.30), (3.32) and Lemma 2.3, we obtain

T (r, f) = T (r, fc) + S(r, f) = N(r,
1

fc − a
)

+N(r,
1

fc − b
) + S(r, f) = S(r, f),(3.33)

which implies T (r, f) = S(r, f), a contradiction.
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So by (3.6), (3.10), (3.21), the First Fundamental Theorem, Lemma 2.8 and

Remark 2.1 we can get

T (r, fc) ≤ 2m(r,
1

fc − a
) + S(r, f) ≤ 2m(r,

1

f (k) − a
(k)
−c

)

+ S(r, f) = 2T (r, f (k))− 2N(r,
1

f (k) − a
(k)
−c

) + S(r, f)

≤ N(r,
1

f (k) − a
) +N(r,

1

f (k) − b
) +N(r,

1

f (k) − a
(k)
−c

)

+N(r, f (k))− 2N(r,
1

f (k) − a
(k)
−c

) + S(r, f)

≤ T (r, fc)−N(r,
1

f (k) − a
(k)
−c

) + S(r, f),

which implies that

N(r,
1

f (k) − a
(k)
−c

) = S(r, f).(3.34)

Consequently, Lemma 2.1 and Lemma 2.3 can deduce

N(r,
1

f (k) − a
(k)
−c

) = N(r,
1

f
(k)
c − a(k)

) = S(r, f).

Then applying Lemma 2.4, we have T (r, eh) = T (r, ep) + O(1) = S(r, f), and it

follows from (3.10) and (3.21) we can get T (r, f) = T (r, fc) + S(r, f) = S(r, f), a

contradiction. This completes the proof of Theorem 1.

4. The Proof of Theorem 1.2

If f(z) ≡ f(z + c), there is nothing to do. Assume that f(z) ̸≡ f(z + c). Since

f(z) is a transcendental meromorphic function of ρ2(f) < 1, f and f(z + c) share

a(z),∞ CM, then there is a nonzero entire function p(z) of order less than 1 such

that
f(z + c)− a(z)

f(z)− a(z)
= ep(z),(4.1)

then by Lemma 2.1 and a(z) is a periodic function with period c,

T (r, ep) = m(r, ep) = m(r,
f(z + c)− a(z + c)

f(z)− a(z)
) = S(r, f).(4.2)

On the other hand, (4.1) can be rewritten as

f(z + c)− f(z)

f(z)− a(z)
= ep(z) − 1,(4.3)

and then we get

N(r,
1

f(z)− b(z)
) ≤ N(r,

1

ep(z) − 1
) = S(r, f).(4.4)
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Denote N(m,n)(r,
1

f(z)−b(z) ) by the zeros of f(z) − b(z) with multiplicities m and

the zeros of fc(z)− b(z) with multiplicities n, where m,n are two positive integers.

Thus, we can obtain

N(r,
1

f(z)− b(z)
) =

n∑
k=2

N(1,k)(r,
1

f(z)− b(z)
) +

m∑
l=2

N(l,1)(r,
1

f(z)− b(z)
)

+

m∑
l=2

n∑
k=2

N(l,k)(r,
1

f(z)− b(z)
) ≤ N(r,

1

f(z)− b(z)
) +mN(r,

1

f(z + c)− b(z)
)

+N(r,
1

ep(z) − 1
) ≤ (m+ 1)N(r,

1

f(z)− b(z)
) + S(r, f) = S(r, f),

(4.5)

that is

N(r,
1

f(z + c)− b(z + c)
) = N(r,

1

f(z)− b(z)
) = S(r, f).(4.6)

Similarly, we also have

N(r,
1

f(z + c)− b(z)
) = S(r, f).(4.7)

Set

ψ(z) =
f(z + c)− b(z + c)

f(z)− b(z)
.(4.8)

It is easy to see that

N(r,
1

ψ(z)
) ≤ N(r,

1

f(z + c)− b(z + c)
) +N(r, b(z)) = S(r, f),(4.9)

N(r, ψ(z)) ≤ N(r,
1

f(z)− b(z)
) +N(r, b(z)) = S(r, f).(4.10)

Hence by Lemma 2.1 and above,

T (r, ψ(z)) = m(r, ψ(z)) +N(r, ψ(z)) = S(r, f)(4.11)

According to (4.1) and (4.8),we have

(ep(z) − ψ(z))f(z) + ψ(z)b(z) + a(z)− b(z + c)− a(z)ep(z) ≡ 0.(4.12)

We discuss following two cases.

Case 1 ep(z) ̸≡ ψ(z). Then by (4.2), (4.11) and (4.12) we obtain T (r, f) =

S(r, f), a contradiction.

Case 2 ep(z) ≡ ψ(z). Then by (4.1) we have

f(z + c) = ep(z)(f(z)− a(z)) + a(z),(4.13)

and

N(r,
1

f(z + c)− b(z)
) = N(r,

1

f(z)− a(z) + a(z)−b(z)
ep(z)

) = S(r, f).(4.14)
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If b(z) is a periodic function of period c, then by (4.12) we can get ep(z) ≡ 1,

which implies f(z) ≡ f(z + c), a contradiction. Obviously, a(z)− a(z)−b(z)
ep(z)

̸≡ a(z).

Otherwise, we can deduce a(z) ≡ b(z), a contradiction.

Next, we discuss three subcases.

Subcase 2.1 a(z) − a(z)−b(z)
ep(z)

̸≡ b(z) and a(z) − a(z)−b(z)
ep(z)

̸≡ b(z − c). Then

according to (4.6), (4.7),(4.14) and Lemma 2.8, we can get

T (r, f(z)) ≤ N(r,
1

f(z)− a(z)− a(z)−b(z)
ep(z)

) +N(r,
1

f(z)− b(z)
)

+N(r,
1

f(z)− b(z − c)
) + S(r, f) = S(r, f),(4.15)

that is T (r, f(z)) = S(r, f), a contradiction.

Subcase 2.2 a(z)− a(z)−b(z)
ep(z)

≡ b(z), but a(z)− a(z)−b(z)
ep(z)

̸≡ b(z− c). It follows

that ep(z) ≡ 1. Therefore by (4.1) we have f(z) ≡ f(z + c), a contradiction.

Subcase 2.3 a(z)− a(z)−b(z)
ep(z)

≡ b(z), a(z)− a(z)−b(z)
ep(z)

≡ b(z− c). It follows that

ep(z) ≡ 1. Therefore by (4.1) we have f(z) ≡ f(z + c), a contradiction.

Subcase 2.4 a(z)− a(z)−b(z)
ep(z)

̸≡ b(z) and a(z)− a(z)−b(z)
ep(z)

≡ b(z − c). It is easy

to see that
a(z)− b(z)

a(z − c)− b(z − c)
= ep(z).(4.16)

Furthermore, (4.12) implies

a(z + c)− b(z + c)

a(z)− b(z)
= ep(z),(4.17)

a(z)− b(z)

a(z − c)− b(z − c)
= ep(z−c).(4.18)

It follows from (4.16) and (4.18) that

ep(z) = ep(z+c).(4.19)

By (4.1), (4.8) and (4.19), we know that f(z) and f(z+nc) share a(z) and ∞ CM,

so we set

F (z) =
f(z)− a(z)

b(z)− a(z)
, G(z) =

f(z + nc)− a(z)

b(z + nc)− a(z + nc)
.(4.20)

Since f(z) and f(z+nc) share a(z) and ∞ CM, and (b(z), b(z+nc) CM, so F (z) and

G(z) share 0,∞ CM almost, and 1 CM almost. We claim that F is not a bilinear

transform of G. Otherwise, we can see from Lemma 2.9 that if (i) occurs, we have

N(r, f(z)) = N(r, F (z))+S(r, f) = S(r, f), then by Remark 1 and Theorem G, we

get f(z) ≡ f(z + c), a contradiction.

If (ii) occurs, we have N(r, f(z)) = N(r, F (z)) + S(r, f) = S(r, f), then by

Remark 1 and Theorem G, we get f(z) ≡ f(z + c), a contradiction.
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If (iii) occurs, we have

N(r,
1

f(z)− a(z)
) = S(r, f), N(r,

1

f(z)− b(z)
) = S(r, f).(4.21)

Then it follows from above, a(z) − a(z)−b(z)
ep(z)

̸≡ a(z), a(z) − a(z)−b(z)
ep(z)

̸≡ b(z) and

Lemma 2.8 that T (r, f) = S(r, f), a contradiction.

If (iv) occurs, we have F (z) ≡ jG(z), that is

b(z + nc)− a(z + nc)

b(z)− a(z)
= j(

f(z + nc)− a(z)

f(z)− a(z)
),(4.22)

where j ̸= 0, 1 is a finite constant. Then it follows from above, (4.17) and (4.19)

that enp(z) = jenp(z), therefore we have j = 1, a contradiction.

If (v) occurs, we have

N(r,
1

f(z)− a(z)
) = S(r, f).(4.23)

Then by Lemma 2.8, (4.7), (4.14) and b(z − c) ̸≡ a(z), we obtain T (r, f) = S(r, f),

a contradiction.

If (vi) occurs, we have

N(r, f(z)) = N(r, F (z)) + S(r, f) = S(r, f),(4.24)

and hence we can see from Theorem G and Remark 1 that f(z) ≡ f(z + c), a

contradiction.

Therefore, F (z) is not a linear fraction transformation of G(z). If b(z) is a small

function with period nc, that is b(z + (n− 1)c) ≡ b(z − c), we can set

D(z) = (f(z)− b(z))(b(z + nc)− b(z + (n− 1)c))

− (f(z + nc)− b(z + nc))(b(z)− b(z − c))

= (f(z)− b(z − c))(b(z + nc)− b(z + (n− 1)c))

− (f(z + nc)− b(z + (n− 1)c))(b(z)− b(z − c))

If D(z) ≡ 0, then we have f(z + nc)− b(z − c) ≡ −(f(z)− b(z − c)). And thus we

know that f(z) and f(z + nc) share a(z), b(z − c) and ∞ CM. We suppose

F1(z) =
f(z)− a(z)

b(z − c)− a(z)
, G1(z) =

f(z + nc)− a(z)

b(z − c)− a(z)
.(4.25)

Then we know that F1(z) and G1(z) share 0, 1,∞ CM almost and G1(z) = −F1(z).

So by Lemma 2.10, we will obtain either N(r, f(z)) = N(r, F1) + S(r, f) = S(r, f),

but in this case, according to Theorem G and Remark 1, we can deduce a contradiction.

Or F1(z) = G1(z), that is f(z) ≡ f(z + nc). Therefore, we obtain f(z) ≡ b(z − c),

that is T (r, f(z)) = S(r, f), a contradiction.
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Hence D(z) ̸≡ 0, and by (4.7)-(4.8), (4.14) and Lemma 2.1, we have

2T (r, f(z)) = m(r,
1

f(z)− b(z)
) +m(r,

1

f(z)− b(z − c)
) + S(r, f)

= m(r,
1

f(z)− b(z)
+

1

f(z)− b(z − c)
) + S(r, f)

≤ m(r,
D(z)

f(z)− b(z)
+

D(z)

f(z)− b(z − c)
) +m(r,

1

D(z)
) + S(r, f)

≤ m(r,D) +N(r,D) ≤ m(r, f(z)) +N(r, f(z)) + S(r, f)

= T (r, f) + S(r, f),(4.26)

which implies T (r, f) = S(r, f), a contradiction.

By (4.16) we have
∆cb(z)

1− ep(z)
+ b(z) = a(z).(4.27)

Combining (4.18) and the fact that a(z) is a small function with period c, we can

get
∆cb(z + c)

1− ep(z)
+ b(z + c) = a(z).(4.28)

According to (4.27) and (4.28), we obtain

ep(z) =
b2c(z)− bc(z)

∆cb(z)
.(4.29)

So if ρ(b(z)) < ρ(ep(z)), we can follows from (4.28) and Lemma 2.11 that

ρ(ep(z)) = ρ(
b2c(z)− bc(z)

∆2
cb(z)

) ≤ ρ(b(z)) < ρ(ep(z)),(4.30)

which is a contradiction.

If ρ(b(z)) < 1, we claim that p(z) ≡ B is a non-zero constant. Otherwise, the

order of right hand side of (4.28) is 0, but the left hand side is 1, which is impossible.

Therefore, by (4.1) we know that f(z + c) − a(z) = B(f(z) − a(z)), and then by

Lemma 2.10 we will get N(r, f) = S(r, f), so by Theorem G and Remark 1 we can

obtain f(z) ≡ f(z + c), a contradiction.

This completes Theorem 1.2.
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Abstract. Value-at-risk (VaR) serves as a measure for assessing the risk associated with
individual securities and portfolios. When calculating VaR for portfolios, the dimension of the
covariance matrix increases as more securities are included. In this study, we present a solution
to address the issue of dimensionality by directly computing the VaR of a portfolio using a single
security, therefore requiring only one variance and one mean. Our results demonstrate that, under
the assumption of Gaussian distribution, the deviation between the computed VaR and actual
values is relatively small.
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Keywords: Portfolio value-at-risk; sum of lognormal distribution; Fenton-Wilkinson
approximation.

1. Introduction

The computation of portfolio value-at-risk (VaR) typically involves a strict al-

gorithm that assumes a distribution close to normal and incorporates a correlation

matrix of security returns.

However, a challenge arises due to the increasing dimensionality of the covariance

matrix, resulting in exponential computational burden with the inclusion of each

new security (see [1]). In this paper, we propose an alternative calculation algorithm

that assumes a Gaussian distribution of returns, while significantly reducing the

computational burden. We examine this straightforward method and explore vari-

ations, focusing primarily on the maximum absolute difference between the two

approaches. Initially, we investigate the maximum deviation in the case of positively

correlated securities, followed by a general analysis encompassing various scenarios.

Existing literature primarily emphasizes the reduction of computational burden

through simplification of matrix-based calculations. As our primary concern is a

single quantity, it is more feasible to approximate the VaR itself. Other authors

1The research of the second author is partially supported by the Mathematical Studies Center
at Yerevan State University

56



PORTFOLIO VALUE-AT-RISK APPROXIMATION ...

concentrate on improved methods of estimating VaR when the underlying distri-

bution deviates from the Gaussian assumption (as seen in [2]). While we do not

delve into these alternative approaches for computing VaR in portfolios with a

sum of lognormal distributions, it may prove effective to incorporate third and

fourth moments (see [3]). Given that we primarily deal with the sum of lognormal

distributions, we employ existing approximation methods. Specifically, we utilize

the Fenton-Wilkinson approximation ([4, 5]) due to its simplicity, although more

accurate approximations exist (see [6, 7]). Remarkably, our findings indicate that

the simple Fenton-Wilkinson approximation sufficiently approximates VaR under

the assumption of normality.

The paper is organized as follows. In Section 2, we introduce the general framework

and the proposed method. Section 3 analyzes the maximum potential difference,

and finally, we conclude with a discussion of our results.

2. VaR computation and approximation

We deal with only two subsequent periods of time. Here we consider mixture of

n securities represented by geometric Brownian motions

(2.1) S(t) =

n∑
i=1

wiSi(t)

with wi ≥ 0,
∑n

i=1 wi = 1, and Si(t), i = 1, n are processes satisfying the following

stochastic differential equations (SDE).

(2.2) dSi(t) = µiSi(t)dt+ σiSi(t)dWi(t)

with Wi(t) ∼ N(0, t) not necessarily independent Brownian motions, i.e. for each i,

Wi(t+ 1)−Wi(t) ∼ N(0, 1) iid for each t ∈ {1, 2, ...} 2 with correlation coefficients

(2.3) ρi,j(t) = corr(Wi(t),Wj(t))

As we deal with only two periods (t = 0, 1) and having no randomness in period 0,

we take

(2.4) ρi,j(t) = ρij

Thus Si(t), i = 1, n have log-normal distribution

Si(t) = Si(0)e
(µi−σ2

i /2)t+σiWi(t)

Si(t) ∼ LogN

(
lnSi(0) +

(
µi −

σ2
i

2

)
t, σ2

i t

)(2.5)

2Note that we consider only discrete points of time. However, initially the Brownian motion
should be defined on continuous domain. We are only interested in two periods t = 0, 1
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The log-returns we denote by Xi(t) for individual stock, and X(t), for portfolio.

Xi(t) = ln

(
Si(t+ 1)

Si(t)

)
, Xi(t) ∼ N

(
µi −

σ2
i

2
, σ2

i

)
(2.6)

Note that correlation of log-returns is also ρ(Xi(t), Xj(t)) =: ρXi,Xj = ρij , thus

yielding the following vector-distribution.

(2.7)

(X1(t), ..., Xn(t)) ∼ N

µ =


µ1 − σ2

1

2
...

µn − σ2
n

2

 ,Σ =

 σ2
1 . . . σ1σnρ1n
...

. . .
...

σ1σnρ1n . . . σ2
n


 ,

where µ is vector of means and Σ is covariance matrix. From (2.1) and (2.7), the

portfolio VaR (the quantile of portfolio return X(t)), have the following form

V aRX =

n∑
i=1

wiSi(0)

(
µi −

1

2
σ2
i

)
+zα/2

√√√√√√(w1S1(0), ..., wnSn(0)) · Σ ·

 w1S1(0)
...

wnSn(0),


where V aRX is value at risk for given portfolio, and zα/2 is quantile of standard

normal distribution (with probability P (X ≤ zα/2) = 1− α
2 ) (see [1, 2]). Note that

S(t) in (2.1), is distributed as sum of lognormal distributions, i.e.

(2.8) S(t) ∼
n∑

i=1

wiLogN

(
lnSi(0) +

(
µi −

σ2
i

2

)
t, σ2

i t

)
By Fenton - Wilkinson ([3, 4]) approximation we have

(2.9) S(t) ∼approx LogN(µz(t);σ
2
z(t)) ∼: S̃(t),

where

σ2
z(t) =

1(∑n
i=1 wi

(
Si(0) + (µi − 1

2σ
2
i )
)
e

σ2
i
t

2

)2 ·

t n∑
i,j=1

ρSijσiσjwiwj

(
Si(0) + (µi −

1

2
σ2
i )

)(
Sj(0) + (µj −

1

2
σ2
j )

)
e

σ2
i t+σ2

j t

2


µz(t) = ln

(
n∑

i=1

wi

(
Si(0) + (µi −

1

2
σ2
i )

)
e

σ2
i t

2

)
− σ2

z(t)

2

(2.10)

Let’s approximate X(t) with return of S̃(t), X̃p(t) := ln

(
S̃(t+1)

S̃(t)

)
, with

(2.11) X̃p(t) ∼ N(µz(t+ 1), σ2
z(t+ 1))−N(µz(t), σ

2
z(t))

To completely determine the distribution, we additionally need covariance

C(t) = Cov
(
ln ˜S(t+ 1); ln S̃(t)

)
= E

(
ln ˜S(t+ 1) · ln S̃(t)

)
−E

(
ln ˜S(t+ 1)

)
·E
(
ln S̃(t)

)
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with E(ln S̃(t)) = µz(t). To find covariance C(t) we use formula for exponential

terms. So let’s consider E(eln S̃(t+1) · eln S̃(t)) .

(2.12) E
(
eln S̃(t+1) · eln S̃(t)

)
= eµz(t)+µz(t+1)+

σ2
z(t)+σ2

z(t)+2C(t)

2

On the other hand

(2.13) E
(
elnS(t+1) · elnS(t)

)
= E

(
n∑

i=1

wiSi(t) ·
n∑

i=1

wiSi(t)

)

The covariance may be approximated by 3

C(t) ≈ ln

(
E

(
n∑

i=1

wiSi(t) ·
n∑

i=1

wiSi(t)

))
−µz(t)−µz(t+1)− 1

2
σ2
z(t)−

1

2
σ2
z(t+1).

Hence we have the following approximate distribution

(2.14) X̃p(t) ∼approx N
(
µz(t+ 1)− µz(t), σ

2
z(t+ 1) + σ2

z(t)− 2C(t)
)

The idea is to approximate portfolio VaR using quantile of approximate distribution

of Xp(t) (for 2 consecutive days t = 0; t+ 1 = 1).

(2.15) V aRXp
= µz(t+ 1)− µz(t) + S(0)zα/2

√
σ2
z(t+ 1) + σ2

z(t)− 2C(t)

For t = 0, we have the following (by (2.10))

σ2
z(0) =

1(∑n
i=1 wi

(
Si(0) + (µi − 1

2σ
2
i )
))2 · 0 = 0

µz(0) = ln

(
n∑

i=1

wi

(
Si(0) + (µi −

1

2
σ2
i )

))(2.16)

So for t=0 we have random variable with 0 variance, which is obvious as nothing

is random in that period. For t+1=1 we have:

σ2
z(1) =

1(∑n
i=1 wi

(
Si(0) + (µi − 1

2σ
2
i )
)
e

σ2
i
2

)2 ·

 n∑
i,j=1

ρijσiσjwiwj

(
Si(0) + (µi −

1

2
σ2
i )

)(
Sj(0) + (µj −

1

2
σ2
j )

)
e

σ2
i
2 e

σ2
j
2


µz(1) = ln

(
n∑

i=1

wi

(
Si(0) + (µi −

1

2
σ2
i )

)
e

σ2
i
2

)
− σ2

z(1)

2

(2.17)

3It is indeed approximation, as in (2.12), S̃(t) is used, while in (2.13) S(t).
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Note that as one of our random variables has 0 variance the covariance can be taken

to be 0. So we have:

V aRXp
= ln

(
n∑

i=1

wi

(
Si(0) + (µi −

1

2
σ2
i )

)
e

σ2
i
2

)
− ln

(
n∑

i=1

wi

(
Si(0) + (µi −

1

2
σ2
i )

))
−

− 1

2
σ2
z(1) + zα/2

(
n∑

i=1

wiSi(0)

)√
σ2
z(1).

Hereafter, we will consider only risk neutral pricing, i.e. µi =
1
2σ

2
i .

3. Difference in methods

We claim that difference between V aRXp and V aRX is not big, in sense that

there exist C such that ∣∣∣∣V aRXp
− V aRX

V aRX

∣∣∣∣ < C

for any correlation coefficients ρij with i ̸= j; i, j = 1, n and any weights wi in risk

neutral setting. Or at least we attempt to prove similar result4.

Remark 3.1. We don’t yet know if C depends on general structure of ρ-s and σ-s,

or is there any absolute constant. At least we will try to show the existence of some

bounds. Also note that while we may not come to theoretically small C, in practice

C is quite small.

For the risk-neutral pricing (i.e. taking µi =
1
2σ

2
i ) we obtain

V aRX = zα/2

√√√√√√(w1S1(0), ..., wnSn(0)) · Σ ·

w1S1(0)
...

wnSn(0)


V aRXp = ln

(
n∑

i=1

wiSi(0)e
σ2
i
2

)
− ln

(
n∑

i=1

wiSi(0)

)
−

− 1

2

1(∑n
i=1 wiSi(0)e

σ2
i
2

)2

 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2

+

zα/2

(
n∑

i=1

wiSi(0)

)√√√√√√ 1(∑n
i=1 wiSi(0)e

σ2
i
2

)2

 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2



(3.1)

Let’s first consider the case where we deal only with non-negative correlations, i.e.

ρij ≥ 0.

4No formal derivations of approximation were given originally for log-normal approximation
with Fenton-Wilkinson. So some computational comparisons had been done later, see [6].
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3.1. First bounds. We have the following obvious (quite loose) bound for the

fourth term of V aRXp in (3.1)

zα/2

∑n
i=1 wiSi(0)∑n

i=1 wiSi(0)e
σ2
i
2

√√√√√
 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2

 ≤

zα/2

∑n
i=1 wiSi(0)∑n

i=1 wiSi(0)e
σ2
i
2

e
σ2
max
2 V aRX ≤ V aRXe

σ2
max
2 −σ2

min
2

(3.2)

And similarly

zα/2

∑n
i=1 wiSi(0)∑n

i=1 wiSi(0)e
σ2
i
2

√√√√√
 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2

 ≥

zα/2e
−σ2

max
2

√√√√√
 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2

 ≥ V aRXe
σ2
min
2 −σ2

max
2

(3.3)

Considering the first three terms of V aRXp
in (3.1), and using the same argumentation

we have the following bounds

ln

∑n
i=1 wiSi(0)e

σ2
i
2∑n

i=1 wiSi(0)

− 1

2

1(∑n
i=1 wiSi(0)e

σ2
i
2

)2

 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2

 ≥

1

2
σ2
min − 1

2
eσ

2
max−σ2

min

 n∑
i,j=1

ρijσiσjwiwj


which in turn, using the following σ2

max ≥
∑n

i,j=1 ρijσiσjwiwj ≥ σ2
min, we give

ln

∑n
i=1 wiSi(0)e

σ2
i
2∑n

i=1 wiSi(0)

− 1

2

1(∑n
i=1 wiSi(0)e

σ2
i
2

)2

 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2

 ≥

1

2
σ2
min − 1

2
σ2
maxe

σ2
max−σ2

min

(3.4)

Similarly one can derive

ln

∑n
i=1 wiSi(0)e

σ2
i
2∑n

i=1 wiSi(0)

− 1

2

1(∑n
i=1 wiSi(0)e

σ2
i
2

)2

 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2

 ≤

1

2
σ2
max − 1

2
σ2
mine

σ2
min−σ2

max

(3.5)
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Combining (3.2), (3.3), (3.4) and (3.5), we obtain the following bound
1

2
σ2
min − 1

2
σ2
maxe

σ2
max−σ2

min + V aRXe
σ2
min
2 −σ2

max
2 ≤ V aRXp

≤1

2
σ2
max − 1

2
σ2
mine

σ2
min−σ2

max + V aRXe
σ2
max
2 −σ2

min
2

(3.6)

Note that this bound is indeed loose, as right side can get quite big thanks to

exponent, while the left side can be quite small. Also note that, if σi = σmax = σmin,

we retrieve V aRXp
= V aRX .

3.2. Bounds for positive correlations. The better bound stated in the following

proposition can be obtained. First let’s make some notations value of portfolio

V P :=
∑n

i=1 wiSi(0) and

(3.7) σ2
wS :=

∑n
i,j=1 wiwjσiσjSi(0)Sj(0)∑n

i,j=1 wiwjSi(0)Sj(0)

Proposition 3.1. The following inequality holds if we assume non-negative correlations:

1

2
σ2
min − 1

2

(
1

zα/2

)2(
1

V P

)2

V aR2
X

2σ2
max − σ2

min

σ2
wS

+ V aRX ≤ V aRXp
≤

1

2
σ2
max − 1

2

(
1

zα/2

)2(
1

V P

)2

V aR2
X + V aRX

√
2σ2

max − σ2
min

σ2
wS

(3.8)

Proof. We make use of Holder’s inequality for left part, and Abel’s inequality

for right part (3.8).

Lemma 3.1. For positive values of xi and wi, the following inequality is true.

(3.9)
∑n

i=1 xiwie
xi∑n

i=1 wiexi
≥
∑n

i=1 xiwi∑n
i=1 wi

.

Proof. We define

(3.10) H(a) =

∑n
i=1 xiwie

axi∑n
i=1 wieaxi

and consider its derivative with respect to a.

(3.11) H ′(a) =

(∑n
i=1 x

2
iwie

axi
)
· (
∑n

i=1 wie
axi)− (

∑n
i=1 xiwie

axi)
2

(
∑n

i=1 wieaxi)
2

Due to Holder’s inequality the numerator is non-negative. Indeed, denote

(3.12) ak = xke
axk
2
√
wk; bk = e

axk
2
√
wk

Then the numerator is exactly(
n∑

k=1

ak

)2( n∑
k=1

bk

)2

−

(
n∑

h=1

ahbh

)2

≥ 0.

By exactly the same technique, one can show that the following lemma is also true.
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Lemma 3.2. For positive values of xi and wi and for some strictly increasing

function f(x), the following inequality holds.

(3.13)
∑n

i=1 xiwie
f(xi)∑n

i=1 wief(xi)
≥
∑n

i=1 xiwi∑n
i=1 wi

This inequality is enough to show the first part of (3.8).

Proof. Consider only the last part of V arXp
with zα/2, in (3.1).

A := zα/2

(
n∑

i=1

wiSi(0)

)√√√√√√ 1(∑n
i=1 wiSi(0)e

σ2
i
2

)2

 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2



= zα/2

(
n∑

i=1

wiSi(0)

)
∑n

i,j=1 ρijwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2(∑n

i=1 wiSi(0)e
σ2
i
2

)2

∑n
i,j=1 ρijσiσjwiwjSi(0)Sj(0)e

σ2
i
2 e

σ2
j
2∑n

i,j=1 ρijwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2




1/2

For which using the inequality once and as soon as ρ-s are positive, we have

A ≥zα/2

(
n∑

i=1

wiSi(0)

)
∑n

i,j=1 ρijwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2(∑n

i=1 wiSi(0)e
σ2
i
2

)2

[∑n
i,j=1 ρijσiσjwiwjSi(0)Sj(0)∑n

i,j=1 ρijwiwjSi(0)Sj(0)

])1/2

Note that here we have used the (3.13) twice 5. Let’s do it once more

A ≥zα/2

(
n∑

i=1

wiSi(0)

)
∑n

i,j=1 wiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2(∑n

i=1 wiSi(0)e
σ2
i
2

)2 ·

∑n
i,j=1 ρijwiwjSi(0)Sj(0)e

σ2
i
2 e

σ2
j
2∑n

i,j=1 wiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2

[∑n
i,j=1 ρijσiσjwiwjSi(0)Sj(0)∑n

i,j=1 ρijwiwjSi(0)Sj(0)

]
1/2

5We used it once for sum with i-s and once for sum with j-s.
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and using Lemma 3.2 once more (again two times)6, for the first term in square

root we have

A ≥V aRX

∑n
i,j=1 ρijwiwjSi(0)Sj(0)e

σ2
i
2 e

σ2
j
2∑n

i,j=1 wiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2

·

∑n
i,j=1 σiσjwiwjSi(0)Sj(0)∑n
i,j=1 ρijwiwjSi(0)Sj(0)

)1/2

= V aRX

(3.14)

where the equality can be easily checked, just by multiplying sums.

For the next part of inequality we will make use of Abel’s inequality. Denoting

xw =
∑

wixi, the following lemma holds.

Lemma 3.3. For positive values wi, the following inequality is true

(3.15)
∑n

i=1 xiwie
xi∑n

i=1 wiexi
·
∑n

i=1 wi∑n
i=1 xiwi

≤ |maxxi|+R

xw

with R = maxxi −minxi.

Without loss of generality, we can assume that xi are in increasing order. Hence,

by Abel’s inequality (see [8]), we have

(3.16)
n∑

i=1

xiwie
xi ≤ (|xn|+ xn − x1)max

j

j∑
i=1

wie
xi = (|xn|+ xn − x1)

n∑
i=1

wie
xi

Thus it will yield∑n
i=1 xiwie

xi ·
∑n

i=1 wi∑n
i=1 wiexi ·

∑n
i=1 xiwi

≤
(|xn|+ xn − x1)

∑n
i=1 wie

xi ·
∑n

i=1 wi∑n
i=1 wiexi ·

∑n
i=1 xiwi

=
(|xn|+ xn − x1)

∑n
i=1 wi∑n

i=1 xiwi
=

|maxxi|+R

xw

(3.17)

Using this inequality and considering A again, we obtain

A = zα/2

(
n∑

i=1

wiSi(0)

)
∑n

i,j=1 ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2(∑n

i=1 wiSi(0)e
σ2
i
2

)2


1/2

≤ zα/2


∑n

i,j=1 ρij
σiσj

2 wiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2(∑n

i=1 wiSi(0)e
σ2
i
2

)2 ·
(
∑n

i=1 wiSi(0))
2∑n

i,j=1 ρij
σiσj

2 wiwjSi(0)Sj(0)

 n∑
i,j=1

ρij
σiσj

2
wiwjSi(0)Sj(0)

1/2

6Note that numerator of expression in square brackets with zα/2 is V aRX itself.
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Using Lemma 3.3 for first two fractions, we come to the following result:

A ≤ zα/2

√√√√√
 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)

 max (σiσj) + (σ2
max − σ2

min)

2σ2
wS

(3.18)

or

(3.19) A ≤ V aRX

√
max (σiσj) + (σ2

max − σ2
min)

2σ2
wS

For the third term V aRXp
in (3.1), note that expression in square brackets is bigger

than ( 1
zα/2

V aRX)2 for positive correlations, we obtain

V aRXp ≥ ln

∑n
i=1 wiSi(0)e

σ2
i
2∑n

i=1 wiSi(0)

−

1

2

(
1

zα/2

)2(
1

V P

)2

V aR2
X

max (σiσj) + (σ2
max − σ2

min)

2σ2
wS

+ V aRX

≥1

2
σ2
min − 1

2

(
1

zα/2

)2(
1

V P

)2

V aR2
X + V aRX

(3.20)

and lastly the main formula can be derived.

1

2
σ2
min − 1

2

(
1

zα/2

)2(
1

V P

)2

V aR2
X

2σ2
max − σ2

min

σ2
wS

+ V aRX ≤ V aRXp
≤

1

2
σ2
max − 1

2

(
1

zα/2

)2(
1

V P

)2

V aR2
X + V aRX

√
2σ2

max − σ2
min

σ2
wS

3.3. Bounds for general case. The following result is immediate consequence of

above results. One can prove it by separating the stock considered into two groups:

positively correlated and negatively, in the following sense. Taking ρ+ = {ij|ρij =

ρji > 0} and ρ− = {ij|ρij = ρji < 0}, other indices does not contribute to sum and

using this grouping, we get the following result.

Proposition 3.2. The following inequality holds:

1

2
σ2
min − 1

2

(
1

zα/2

)2(
1

V P

)2

V aR2
X max

(
1,

2σ2
max − σ2

min

σ2
wS

)

+V aRX min

(
1,

√
2σ2

max − σ2
min

σ2
wS

)
≤ V aRXp

≤ 1

2
σ2
max − 1

2

(
1

zα/2

)2(
1

V P

)2

·

· V aR2
X min

(
1,

2σ2
max − σ2

min

σ2
wS

)
+ V aRX max

(
1,

√
2σ2

max − σ2
min

σ2
wS

)
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4. Discussion and conclusion

Our calculations have revealed tighter bounds, in scenarios involving either solely

positive correlation or both positive and negative correlations. This could be attri-

buted to the relatively small magnitudes of the volatilities themselves, suggesting

the potential for the derivation of improved bounds. Nevertheless, for portfolios

with relatively confined volatility values, the current bounds prove sufficiently tight.

It is worth noting that enhancing these bounds is primarily contingent on the

theoretical justification of the proposed methodology. Computations indicate signifi-

cantly tighter real bounds. For a three-stock portfolio, this translates to approxima-

tely 0.5 − 0.9% of the Gaussian-VaR value, or roughly 0.1 − 0.2% of the portfolio

value. As the number of stocks increases, the disparity diminishes gradually. It is

crucial to emphasize that the pursuit of better bounds is rooted in the theoretical

validation of the proposed procedure.

For the above case compared to Gaussian-VaR, our lower bound deviates by

no more than 0.00025%, showcasing its robustness. However, the upper bound

exhibits a substantial discrepancy of up to 7.5%, a noteworthy disparity. From

an empirical standpoint, particularly in domains where non-gaussian behavior may

dominate, our methodology could yield significant differences. However, as of now,

such disparities have not been observed in the context of stock portfolios.
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1. Introduction and main result

In this paper, a meromorphic function f always means it is meromorphic in

the whole complex plane C. We assume that the reader is familiar with standard

notation and main results of Nevanlinna Theory (see, e.g., [3, 8]). By S(r, f) we

denote any quantity that satisfies the condition S(r, f) = o(T (r, f)) as r → ∞
possibly outside of an exceptional set of finite linear measure. A meromorphic

function a is said to be a small function of f if T (r, a) = S(r, f). Moreover, we use

notation ρ(f) for the order of a meromorphic function f . As usual, the abbreviation

CM means counting multiplicities, while IM means ignoring multiplicities. Let f

and g be two non-constant meromorphic functions and a ∈ C. If g−a = 0 whenever

f − a = 0, we write f = a⇒ g = a.

In 1996, Brück [1] discussed the possible relation between f and f ′ when an entire

function f and it’s derivative f ′ share only one finite value CM. In this direction

an interesting problem still open is the following conjecture proposed by Brück [1].

Conjecture A. Let f be a non-constant entire function such that

ρ1(f) := lim sup
r→∞

log log T (r, f)

log r
̸∈ N ∪ {∞}.

If f and f ′ share one finite value a CM, then f ′ − a = c(f − a), where c ∈ C \ {0}.

The conjecture for the special cases (1) a = 0 and (2) N(r, 0; f ′) = S(r, f) had

been confirmed by Brück [1].
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Though the conjecture is not settled in its full generality, it gives rise to a long

course of research on the uniqueness of entire and meromorphic functions sharing

a single value with its derivatives. Specially, it was observed by Yang and Zhang

[9] that Brück’s conjecture holds if instead of an entire function one considers its

suitable power. They proved the following theorem.

Theorem A. [9] Let f be a non-constant entire function and n ∈ N such that

n ≥ 7. If fn and (fn)′ share 1 CM, then fn ≡ (fn)′ and f(z) = c exp( zn ), where

c ∈ C \ {0}.

In 2010, Zhang and Yang [12] improved and generalised Theorem A by considering

higher order derivatives and by lowering the power of the entire function. In one of

their results they also considered IM sharing of values. We now state two results of

Zhang and Yang [12].

Theorem B. [12] Let f be a non-constant entire function and k, n ∈ N such that

n ≥ k+ 1. If fn and (fn)(k) share 1 CM, then fn ≡ (fn)(k) and f(z) = c exp(λnz),

where c, λ ∈ C \ {0} such that λk = 1.

Theorem C. [12] Let f be a non-constant entire function and k, n ∈ N such that

n ≥ k + 2. If fn and (fn)(k) share 1 IM, then the conclusion of Theorem B holds.

In connection to Theorem C, Zhang and Yang [12] posed the problem of investigating

the validity of the result for n ≥ k+ 1. They could prove Theorem C for n ≥ k+ 1

but only in the case when k = 1. We now recall the result.

Theorem D. [12] Let f be a non-constant entire function and n ∈ N \ {1}. If fn

and (fn)′ share 1 IM, then fn ≡ (fn)′ and f(z) = c exp(z), where c ∈ C \ {0}.

In the paper, we have extended and improved above Theorems in the following

directions:

(1) We relax the nature of sharing with the idea of “partially"sharing value.

(2) We replace the first derivative (fn)′ in Theorem D by the general derivative

(fn)(k).

We now state our main result as follows.

Theorem 1.1. Let f be a non-constant entire function and k, n ∈ N such that

n ≥ k + 1. If fn = 1 ⇒ (fn)(k) = 1, then only one of the following cases holds:

(1) fn ≡ (fn)(k) and f(z) = c exp
(
λ
nz

)
, where c, λ ∈ C \ {0} such that λk = 1,

(2) n = 2 and f(z) = c0 exp
(
1
4z

)
+ c1, where c0, c1 ∈ C \ {0} such that c21 = 1.

68



POWER OF AN ENTIRE FUNCTION ...

If k ≥ 2, then from Theorem 1.1, we have the following corollary.

Corollary 1.1. Let f be a non-constant entire function and k, n ∈ N such that

k ≥ 2 and n ≥ k + 1. If fn = 1 ⇒ (fn)(k) = 1, then fn ≡ (fn)(k) and f(z) =

c exp
(
λ
nz

)
, where c, λ ∈ C \ {0} such that λk = 1.

Clearly Corollary 1.1 improves Theorems A-D for the case when k ≥ 2.

We now make the following observation on the conclusions of Theorem 1.1:

From the conclusion (2), we see that k = 1 and n = 2. Note that

f2 − 1 = c20 exp
(1
2
z
)
+ 2c0c1 exp

(1
4
z
)

and

(f2)′ − 1 =
1

2

(
c20 exp

(1
2
z
)
+ c0c1 exp

(1
4
z
)
− 2

)
.

It is easy to conclude that (f2)′ = 1 ̸⇒ f2 = 1. Therefore if we add the

condition that (f2)′ = 1 ⇒ f2 = 1 in Theorem 1.1, then the conclusion (2) will be

automatically ruled out.

As a result, from Theorem 1.1, we immediately have the following corollary.

Corollary 1.2. Let f be a non-constant entire function and k, n ∈ N such that

n ≥ k + 1. If fn and (fn)(k) share 1 IM, then the conclusion of Theorem B holds.

Obviously Corollary 1.2 improves Theorem D.

Now we exhibit the following example to show that the condition “n ≥ k+1” in

Theorem 1.1 and Corollary 1.2 is sharp.

Example 1.1. Let f(z) = exp( z2 )+2 exp( z4 )+1 and k = n = 1. It is easy to verify

that f(z) = 1 ⇒ f ′(z) = 1, but f(z) does not satisfy any case of Theorem 1.1.

Example 1.2. Let f(z) = 2 exp( z2 ) − 1 and k = n = 1. It is easy to verify that f

and f ′ share 1 IM, but f ̸≡ f ′.

2. Auxiliary lemmas

Lemma 2.1. ([5], [[4], Theorem 4.1]) Let f be a non-constant entire function such

that ρ(f) ≤ 1 and k ∈ N. Then m(r, f
(k)

f ) = o(log r) as r → ∞.

Lemma 2.2. [7] Let f be a non-constant meromorphic function and let an( ̸≡
0), an−1, . . . , a0 be small functions of f . Then T (r,

∑n
i=0 aif

i) = nT (r, f)+S(r, f).

Now we introduce some basic ideas about normal families.

Let F be a family of meromorphic functions in a domain D ⊂ C. We say that F
is normal in D if every sequence {fn}n ⊆ F contains a subsequence which converges

spherically and uniformly on the compact subsets of D (see [6]).
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Now we introduce the notation of the spherical derivative. Let h be a non-constant

meromorphic function. The spherical derivative of h at z ∈ C is given as

h#(z) =
|h′(z)|

1 + |h(z)|2
.

We remember that h is called a normal function if there exists a positive real

number M such that h#(z) ≤M ∀ z ∈ C.

Here we introduce some other results related to Zalcman’s lemma. We also use

Zalcman’s lemma to prove our Lemma 2.5 which plays an important role in the

proof of the main result of the paper.

The following lemma is the famous Marty’s Criterion.

Lemma 2.3. [6] A family F of meromorphic functions on a domain D is normal

and only if for each compact subset K ⊆ D, there exists a constant M such that

f#(z) ≤M ∀ f ∈ F and z ∈ K.

Zalcman’s lemma.[[11]] Let F be a family of functions holomorphic in a domain

D. If F is not normal at z0 ∈ D, then there exist a sequence of points zn ∈ D,

zn → z0, a sequence of positive numbers ρn, ρn → 0 and a sequence of functions

fn ∈ F such that

gn(ζ) = fn(zn + ρnζ) → g(ζ)

converges locally uniformly in C, where g is a non-constant entire function. The

function g may be taken to satisfy the normalization g#(ζ) ≤ g#(0) = 1 ∀ ζ ∈ C.

Lemma 2.4. [2] Let f be a non-constant entire function such that N(r, f) =

O(log r) as r → ∞. If f has bounded spherical derivative on C, then ρ(f) ≤ 1.

It does not seem that Theorem 1.1 can be proved by using the methods in [12]. In

order to prove Theorem 1.1, we need the following result related to normal families.

Lemma 2.5. Let f be a non-constant entire function such that

(fk+1)′(fk+1 − (fk+1)(k)) = φfk+1(fk+1 − 1),

where φ( ̸≡ 0) is an entire function and k ∈ N. If

f = 0 ⇒ (fk+1)(k) = 0 and fk+1 = 1 ⇒ (fk+1)(k) = 1,

then ρ(f) ≤ 1.

Proof. Let F = {Fω}, where Fω(z) = F (ω + z) = fk+1(ω + z), z ∈ C. Clearly

F is a family of entire functions defined on C. By assumption, we have F (ω+ z) =

0 ⇒ F (k)(ω + z) = 0 and F (ω + z) = 1 ⇒ F (k)(ω + z) = 1. If k = 1, then by

Theorem 1.3 [?], F is normal in C. Henceforth we assume that k ≥ 2.
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Since normality is a local property, it is enough to show that F is normal at

each point z0 ∈ C. Suppose on the contrary that F is not normal at z0. Again since

normality is a local property, we may assume that F is a family of holomorphic

functions in a domain D = {z : 0 < |z−z0| < R}, where R > 0. Then by Zalcman’s

lemma, there exist a sequence of functions Fn ∈ F , where Fn(z) = fk+1(ωn + z), a

sequence of complex numbers, zn, zn → z0 and a sequence of positive numbers ρn,

ρn → 0 such that

Hn(ζ) = Fn(zn + ρnζ) → H(ζ)(2.1)

locally uniformly in C, whereH is a non-constant entire function such thatH#(ζ) ≤
1, ∀ ζ ∈ C. Then by Lemma 2.4, we deduce that ρ(H) ≤ 1.

Also by Hurwitz’s theorem we conclude that all the zeros of H have multiplicity

at least k + 1. Clearly H(k) ̸≡ 0. It is easy to deduce from (2.1) that

H(i)
n (ζ) = ρinF

(i)
n (zn + ρnζ) → H(i)(ζ)(2.2)

locally uniformly in C for all i ∈ N.

Now we claim that 1 is not a Picard exceptional value of H. If not, suppose 1

is a Picard exceptional value of H. Then by the second fundamental theorem, we

have

T (r,H) ≤ N(r, 0;H) +N(r, 1;H) + S(r,H) ≤ 1

k + 1
N(r, 0;H) + S(r,H)

≤ 1

k + 1
T (r,H) + S(r,H),

which is impossible. Hence 1 is not a Picard exceptional value of H.

Suppose H(ζ0) = 1. Hurwitz’s theorem implies the existence of a sequence ζn →
ζ0 with

Hn(ζn) = Fn(zn + ρnζn) = 1.

Since F = 1 ⇒ F (k) = 1, we have H(k)
n (zn + ρnζn) = 1. Then from (2.2), we have

H(k)(ζ0) = lim
n→∞

H(k)
n (ζn) = lim

n→∞
ρkn = 0.

Hence H = 1 ⇒ H(k) = 0. First we suppose 0 is a Picard exceptional value of

H. Since H is a non-constant entire function of order at most one and H has no

zeros, then by Hadamard’s Factorization theorem, we get H(ζ) = A exp(λζ), where

A, λ ∈ C \ {0}. Since H = 1 ⇒ H(k) = 0, we get a contradiction.

Next we suppose that 0 is not a Picard exceptional value of H. Since all the zeros

ofH have multiplicity at least k+1, one can easily conclude thatH = 0 ⇒ H(k) = 0.

Also by the given condition, we have

φn(zn+ρnζ)Fn(zn+ρnζ)(Fn(zn+ρnζ)−1) = F ′
n(zn+ρnζ)

(
Fn(zn+ρnζ)−F (k)

n (zn+ρnζ)
)
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and so

ρk+1
n φn(zn + ρnζ)Fn(zn + ρnζ)(Fn(zn + ρnζ)− 1)(2.3)

= ρnF
′
n(zn + ρnζ)

(
ρknFn(zn + ρnζ)− ρknF

(k)
n (zn + ρnζ)

)
.

Then from (2.1), (2.2) and (2.3), we conclude that

ρk+1
n φn(zn + ρnζ) → ψ1(ζ)(2.4)

locally uniformly in C, where ψ1 is an entire function. Again using (2.1), (2.2) and

(2.4), we deduce from (2.3) that

ψ1(ζ)H(ζ)(H(ζ)− 1) = −H ′(ζ)H(k)(ζ).(2.5)

Since ρ(H) ≤ 1, it follows from (2.5) that ρ(ψ1) ≤ 1. Therefore applying Lemma

2.1, we deduce from (2.5) that m(r, ψ1) = o(log r) as r → ∞. Since N(r, ψ1) = 0,

we have T (r, ψ1) = o(log r) as r → ∞, which implies that ψ1 is a constant. We can

write ψ1 = c1, where c1 ∈ C \ {0}. Consequently from (2.5), we have

c1H(ζ)(H(ζ)− 1) = −H ′(ζ)H(k)(ζ).(2.6)

Let ζ0 be a zero of H of multiplicity m(≥ k+1). Then from (2.6), we conclude that

m = k + 1 and so all the zeros of H have multiplicity exactly k + 1.

We claim that H is a transcendental entire function. If not, suppose that H is a

polynomial. Since zeros of H are of multiplicity exactly k+1, H is a polynomial of

degree k + 1. Consequently we may assume that H(ζ) = a (ζ − ζ0)
k+1, where a ∈

C\{0}. ThereforeH(k)(ζ) = (k+1)!a(ζ−ζ0). Note thatH(ζ)−1 = a (ζ − ζ0)
k+1−1.

Since H = 1 ⇒ H(k) = 0, we obtain a contradiction. Hence H is a transcendental

entire function.

Therefore we may assume that

H = hk+1,(2.7)

where h is a transcendental entire function having only simple zeros. Now (2.7)

yields

H(k) = (hk+1)(k) = ((k + 1)hkh′)(k−1)(2.8)

= (k + 1)
(
kgk−1(h′)2 + hkh′′

)(k−2)

= k(k + 1)
(
(k − 1)hk−2(h′)3

)(k−3)
+ k(k + 1)

(
2hk−1h′h′′

)(k−3)

+(k + 1)
(
khk−1h′h′′

)(k−3)
+ (k + 1)

(
hkh′′′

)(k−3)

= · · · · · · · · · · · ·

= (k + 1)!h(h′)k +
k(k − 1)

4
(k + 1)!h2(h′)k−2h′′ + · · ·+ (k + 1)hkh(k)

= (k + 1)!h(h′)k +
k(k − 1)

4
(k + 1)!h2(h′)k−2h′′ +R1(h),
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where R1(h) is a differential polynomial in h with constant coefficients and each

term of R1(h) contains hm(3 ≤ m ≤ k) as a factor.

Denote by N(r, 1;H |≥ 2) the counting function of multiple 1-points of H.

Now we divide the following two cases.

Case 1. Suppose N(r, 1;H |≥ 2) = 0. Then from (2.6), we conclude that h′

has no zeros and so h
h′ is an entire function. Again from (2.6), we have h

h′ =

−k+1
c1

H(k)

H−1 and so by Lemma 2.1, we deduce that m(r, h
h′ ) = o(log r) as r → ∞.

Since N(r, h
h′ ) = 0, we have T (r, h

h′ ) = o(log r) as r → ∞, which implies that h
h′

is a constant. We can write h
h′ = c2, where c2 ∈ C \ {0}. On integration, we have

h(ζ) = c3 exp(
1
c2
ζ), where c3 ∈ C \ {0}. This shows that H has no zeros, which is

impossible.

Case 2. Suppose N(r, 1;H |≥ 2) ̸= 0. Now from (2.6), (2.7) and (2.8), we have

c1h
k+1(hk+1 − 1) = −(k + 1)hkh′

(
(k + 1)!h(h′)k +

k(k − 1)

4
(k + 1)!h2(h′)k−2h′′ +R1(h)

)
,

i.e.,

c1(h
k+1 − 1) = −(k + 1)(k + 1)!(h′)k+1−(2.9)

k(k − 1)(k + 1)

4
(k + 1)!h(h′)k−1h′′ +R1(h).

Differentiating (2.9) once, we get

c1(k + 1)hkh′ = −(k + 1)!(k + 1)2(h′)kh′′ −(2.10)
k(k − 1)(k + 1)(k + 1)!

4

(
(h′)kh′′ + (k − 1)h(h′)k−2(h′′)2 + h(h′)k−1h′′′

)
+R2(h),

where R2(h) is a differential polynomial in h.

Let ζ0 be a zero of h. Now from (2.9) and (2.10), we have respectively

c1 = (k + 1)(k + 1)!(h′(ζ0))
k+1(2.11)

and (
k + 1 +

k(k − 1)

4

)
(h′(ζ0))

kh′′(ζ0) = 0.(2.12)

If h′′(ζ0) ̸= 0, then from (2.11) and (2.12) we arrive at a contradiction. Hence

h′′(ζ0) = 0 and so h = 0 ⇒ h′′ = 0. Let H1 = h′′

h . Clearly H1 ̸≡ 0. One can easily

prove that H1 is a non-zero constant, say λ ∈ C. Therefore

h′′ = λ1h.(2.13)

Solving (2.13), we get

h(ζ) = A1 exp
(√

λ1ζ
)
+B1 exp

(
−

√
λ1ζ

)
,

where A1, B1 ∈ C \ {0}. Note that

h′(ζ) = A1

√
λ1 exp

(√
λ1ζ

)
−

√
λ1B1 exp

(
−

√
λ1ζ

)
.
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Again differentiating (2.13) and using it repeatedly, we have

h(2i) = λ1
ih and h(2i+1) = λ1

ih′, where i = 1, 2, . . . .(2.14)

Then from (2.7) and (2.14), one can easily deduce that

(hk+1)(k) = c̃1h(h
′)k + c̃2h

2(h′)k−1 + c̃3h
3(h′)k−2 + . . .+ c̃kh

kh′ + c̃k+1h
k+1,(2.15)

where c̃1 = (k + 1)! and c̃i ∈ C for i ≥ 2.

First we suppose c̃k+1 ̸= 0. Let ζ1 be a multiple zero of H − 1. Then obviously

H(ζ1) = 1, H ′(ζ1) = 0 and H(k)(ζ1) = 0. Note that H ′ = (k + 1)hkh′. Since

H ′(ζ1) = 0, it follows that h′(ζ1) = 0 and h(ζ1) ̸= 0. Therefore from (2.15), we get

c̃k+1 = 0, which is impossible.

Next we suppose c̃k+1 = 0. Let g = h′

h . Obviously both g −
√
λ1 and g +

√
λ1

have no zeros. Now from (2.6) and (2.15), we deduce that

c1h
k+1 + (k + 1)

(
c̃1(h

′)k+1 + c̃2h(h
′)k +

c̃3h
2(h′)k−1 + . . .+ c̃kh

k−1(h′)2
)
= c1.(2.16)

Putting h′ = gh into (2.16), we get

(k + 1)
(
c̃1g

k+1 + c̃2g
k + c̃3g

k−1 + . . .+ c̃kg
2
)
+ c1 =

c1
hk+1

.(2.17)

Note that the right hand side of (2.17) has no zeros. Consequently the left hand side

may not have no zeros. Since both g−
√
λ1 and g+

√
λ1 have no zeros, we conclude

that the left hand side of (2.17) must be one of the forms (i) (k+1)c̃1(g−
√
λ1)

k+1,

(ii) (k+1)c̃1(g+
√
λ1)

k+1 and (iii) (k+1)c̃1(g−
√
λ1)

m(g+
√
λ1)

n, where m+n =

k + 1. Note that

(k + 1)c̃1
(
g −

√
λ1

)k+1
= (k + 1)c̃1g

k+1 − (k + 1)2c̃1
√
λ1g

k + · · ·

+(−1)k(k + 1)2c̃1(
√
λ1)

kg + (−1)k+1(k + 1)c̃1(
√
λ1)

k+1.(2.18)

If the left hand side of (2.17) = (k + 1)c̃1(g −
√
λ1)

k+1, then the left hand side of

(2.17) and the right hand side of (2.18) must be identical. Note that the coefficient

of g of the right hand side of (2.18) is non-vanishing. Therefore from (2.17) and

(2.18), we arrive at a contradiction. Similarly if the left hand side of (2.17) =

(k + 1)c̃1(g +
√
λ1)

k+1, then we get a contradiction. Again if the left hand side

of (2.17) = (k + 1)c̃1(g −
√
λ1)

m(g +
√
λ1)

n, where m + n = k + 1, then by a

simple calculation we deduce that m = n and (−1)m(k + 1)c̃1(
√
λ1)

m+n = c1, i.e.,

2m = k + 1 and (−1)m(k + 1)(k + 1)!(
√
λ1)

k+1 = c1. Clearly k is odd. Note that

H(ζ) = (h(ζ))k+1 = Ak+1
1 exp

(
(k + 1)

√
λζ

)
+

. . .+Bk+1
1 exp

(
− (k + 1)

√
λζ

)
.(2.19)
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Now from (2.6) we get c1H2(ζ) + H ′(ζ)H(k)(ζ) = c1H(ζ) and so from (2.19) we

can easily conclude that c1 + (k + 1)k+1(
√
λ)k+1 = 0. Since (−1)m(k + 1)(k +

1)!(
√
λ1)

k+1 = c1, we get (−1)
k+1
2 (k + 1)! + (k + 1)k = 0, which is impossible for

k ≥ 2.

Hence all the foregoing discussion shows that F is normal at z0. Consequently

F is normal in C. Hence by Lemma 2.3, there exists M > 0 satisfying F#(ω) =

F#
ω (0) < M for all ω ∈ C. Consequently by Lemma 2.4, we conclude that ρ(F ) ≤ 1

and so ρ(f) ≤ 1. This completes the proof. □

3. Proof of the main result

Proof of Theorem 1.1. Let F = fn. We put

(3.1) φ =
F ′(F − F (k))

F (F − 1)
.

Differentiating (3.1) once, we get

F ′′(F − F (k)) + F ′(F ′ − F (k+1)) = φ′F (F − 1) + φF ′(2F − 1).(3.2)

Now we divide the following two cases.

Case 1. Suppose φ ̸≡ 0. Then F ̸≡ F (k) and from (3.1), we get

φ =
F ′

F − 1

(
1− F (k)

F

)
.(3.3)

Let z0 be a zero of f with multiplicity p0. Then z0 is a zero of F and F (k) of

multiplicities np0 and np0 − k respectively and so from (3.1), we get in some

neighbourhood of z0

(3.4) φ(z) = O
(
(z − z0)

np0−k−1
)
.

Since n ≥ k + 1, it follows from (3.4) that φ is analytic at z0. Let z1 be a

zero of F − 1 of multiplicity p1. Since F = 1 ⇒ F (k) = 1, it follows that z1 is

a zero of F (k) − 1 with multiplicity q1, say. By Taylor’s theorem we get in some

neighbourhood of z1

F (z) = 1 + ap1(z − z1)
p1 +O(z − z1)

p1+1,

F (k)(z) = 1 + bq1(z − z1)
q1 +O(z − z1)

q1+1

and

F ′(z) = p1ap1
(z − z1)

p1−1 +O(z − z1)
p1 ,
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where ap1
̸= 0 and bq1 ̸= 0. Consequently in some neighbourhood of z1

F (z)− F (k)(z) = ap1
(z − z1)

p1 +O(z − z1)
p1+1 if p1 < q1

= −bq1(z − z1)
q1 +O(z − z1)

q1+1 if q1 < p1

= (ap1
− bq1)(z − z1)

p1 +O(z − z1)
p1+1 if p1 = q1.

Then in some neighbourhood of z1, we get from (3.1) that φ(z) = O
(
(z−z1)t−1

)
,

where t = min{p1, q1} ≥ 1 if p1 ̸= q1 and t ≥ p1 = q1 ≥ 1 otherwise. Therefore we

conclude that φ is analytic at z1.

Since f is an entire function, from the above discussion, we deduce that φ is an

entire function. Also (3.3) gives m(r, φ) = S(r, f) and so T (r, φ) = S(r, f). Again

from (3.1), we get

1

F
=

1

φ

( F ′

F − 1
− F ′

F

)(
1− F (k)

F

)
.(3.5)

Therefore we have m(r, 1
F ) = S(r, f) and so m(r, 1f ) = S(r, f).

First we suppose n > k + 1. Then from (3.4) we get N(r, 0; f) ≤ N(r, 0;φ) =

S(r, f). Since m(r, 1f ) = S(r, f), we conclude that T (r, f) = T (r, 1f ) + O(1) =

S(r, f), which is impossible.

Next we suppose n = k+1. Let z0 be a zero of f with multiplicity p0. So z0 is a

zero of F and F (k) of multiplicities (k+1)p0 and (k+1)p0−k respectively. If p0 ≥ 2,

then from (3.1), we see that z0 is a zero of φ, i.e., φ(z0) = 0. Next we suppose that

p0 = 1. Clearly from (3.1), we get φ(z0) ̸= 0. Then in some neighbourhood of z0,

we get by Taylor’s expansion

F (z) = ãk+1(z − z0)
k+1 + ãk+2(z − z0)

k+2 + . . . (ãk+1 ̸= 0).(3.6)

Clearly
F ′(z) = (k + 1)ãk+1(z − z0)

k + (k + 2)ãk+2(z − z0)
k+1 + . . . ,

F ′′(z) = (k + 1)kãk+1(z − z0)
k−1 + (k + 2)(k + 1)ãk+2(z − z0)

k + . . . ,
. . . . . . ,
F (k)(z) = (k + 1)!ãk+1(z − z0) + . . . ,
F (k+1)(z) = (k + 1)!ãk+1 + . . .

(3.7)

Now from (3.2), (3.6) and (3.7), we deduce that

(φ(z0)− (k + 1)(k + 1)!ãk+1) (z − z0)
k +O

(
(z − z0)

k+1
)
≡ 0,

which implies that (k + 1)!ãk+1 = φ(z0)
k+1 , i.e., F (k+1)(z0) =

φ(z0)
k+1 . Consequently we

get

F = 0 ⇒ F (k+1) =
φ

k + 1
.(3.8)

Now from Lemma 2.5, we conclude that ρ(F ) ≤ 1. Consequently using Lemma

2.1, we deduce from (3.3) that m(r, φ) = o(log r) as r → ∞.
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Since N(r, φ) = 0, we have T (r, φ) = o(log r) as r → ∞, which implies that φ is

a constant. We can write φ = c, where c ∈ C \ {0}. Then from (3.1), we have

F ′(F − F (k)) = cF (F − 1).(3.9)

Also from (3.9), one can easily conclude that f has only simple zeros, i.e., all the

zeros of F have multiplicity exactly k + 1.

We claim that F is a transcendental entire function. If not, suppose that F is a

polynomial. Since zeros of F are of multiplicity exactly k+ 1, F is a polynomial of

degree k + 1. Consequently we may assume that F (z) = a (z − ẑ0)
k+1, where a ∈

C\{0}. Therefore F (k)(z) = (k+1)!a(z− ẑ0). Note that F (z)−1 = a (z − ẑ0)
k+1−1

and F (k)(z)−1 = (k+1)!a(z− ẑ0)−1. It is clear that F −1 has k+1 distinct zeros.

Since F = 1 ⇒ F (k) = 1, we obtain a contradiction. Hence F is a transcendental

entire function.

Now applying Lemma 2.1, we deduce from (3.5) that m
(
r, 1

F

)
= o(log r) as

r → ∞.

Let 0 be a Picard exceptional value of F . Then T (r, F ) = T
(
r, 1

F

)
+ O(1) =

m
(
r, 1

F

)
+O(1) = o(log r) as r → ∞, which implies that F is a constant. Therefore

we arrive at a contradiction. Hence 0 is not a Picard exceptional value of F .

If 1 is a Picard exceptional value of F , by the second fundamental theorem, we get

(k + 1)T (r, f) = T (r, F ) +O(1) ≤ N(r, 0;F ) +N(r, 1;F ) + S(r, F )

≤ 1

k + 1
N(r, 0; f) + S(r, f) ≤ 1

k + 1
T (r, f) + S(r, f),

which is impossible. Hence 1 is not a Picard exceptional value of F . Also we have

F = fk+1.(3.10)

Therefore from (3.10), we deduce that

F (k) = (k + 1)!f(f ′)k +
k(k − 1)

4
(k + 1)!f2(f ′)k−2f ′′ + · · ·+ (k + 1)fkf (k)(3.11)

= (k + 1)!f(f ′)k +
k(k − 1)

4
(k + 1)!f2(f ′)k−2f ′′ +R1(f),

where R1(f) is a differential polynomial in f with constant coefficients and each

term of R1(f) contains fm(3 ≤ m ≤ k) as a factor. Differentiating (3.11) once, we

get

F (k+1) = (fk+1)(k+1)(3.12)

= (k + 1)!(f ′)k+1 +
k(k + 1)

2
(k + 1)!f(f ′)k−1f ′′ + (k + 1)fkf (k+1)

= (k + 1)!(f ′)k+1 +
k(k + 1)

2
(k + 1)!f(f ′)k−1f ′′ + S1(f),
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where S1(f) is a differential polynomial in f and each term of S1(f) contains f and

its higher powers as a factor. Again differentiating (3.12) once, we get

(3.13) F (k+2) = (fk+1)(k+2) =
(k + 1)!(k + 1)(k + 2)

2
(f ′)kf ′′ + S2(f),

where S2(f) is a differential polynomial in f and each term of S2(f) contains f and

its higher powers as a factor.

Now from (3.9), we deduce that

(k + 1)f ′
(
fk+1 − (fk+1)(k)

)
f (fk+1 − 1)

= c,(3.14)

i.e.,

(k + 1)fk+1f ′ − (k + 1)f ′(fk+1)(k) − cfk+2 = −cf.(3.15)

Denote by N(r, 1;F |≥ 2) the counting function of multiple 1-points of F .

Now we divide the following two sub-cases.

Sub-case 1.1. Suppose N(r, 1;F |≥ 2) = 0. Then from (3.14), we conclude that

f ′ ̸= 0. Since f is a transcendental entire function and ρ(f) ≤ 1, it follows that

f ′(z) = d0 exp(λz),(3.16)

where d0, λ ∈ C \ {0}. On integration, we have

f(z) =
d0
λ

exp(λz) + d1,(3.17)

where d1 ∈ C. Since 0 is not a Picard exceptional value of F = fk+1, it follows that

d1 ̸= 0.

Let z0 be a zero of f . Then f(z0) = 0 and F (z0) = 0. Also (3.8) gives F (k+1)(z0) =
c

k+1 . Now from (3.12), we conclude that

(f ′(z0))
k+1

=
c

(k + 1)(k + 1)!
.(3.18)

Also from (3.17), we have

d0 exp (λz0) = −λd1, i.e., dk+1
0 exp ((k + 1)λz0) = (−λd1)k+1.(3.19)

Again from (3.16) and (3.18), we deduce that

dk+1
0 exp ((k + 1)λz0) =

c

(k + 1)(k + 1)!
.(3.20)

Therefore from (3.19) and (3.20), we deduce that

(−λd1)k+1 =
c

(k + 1)(k + 1)!
.(3.21)
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Now from (3.17), we have

fk+1(z) =

(
d0
λ

)k+1

exp((k + 1)λz) +

(
k + 1

1

)(
d0
λ

)k

d1 exp(kλz) + . . .

+

(
k + 1

k − 1

)(
d0
λ

)2

dk−1
1 exp(2λz) +

(
k + 1

k

)
d0
λ
dk1 exp(λz) + dk+1

1 .

and

fk+2(z) =

(
d0
λ

)k+2

exp((k + 2)λz) +

(
k + 2

1

)(
d0
λ

)k+1

d1 exp((k + 1)λz) + . . .

+

(
k + 2

k

)(
d0
λ

)2

dk1 exp(2λz) +

(
k + 2

k + 1

)
d0
λ
dk+1
1 exp(λz) + dk+2

1 .

Therefore

(fk+1(z))(k)

=

(
d0
λ

)k+1

((k + 1)λ)
k
exp((k + 1)λz) +

(
k + 1

1

)(
d0
λ

)k

(kλ)
k
d1 exp(kλz) + . . .

+

(
k + 1

k − 1

)(
d0
λ

)2

(2λ)kdk−1
1 exp(2λz) +

(
k + 1

k

)
d0
λ
λkdk1 exp(λz).

Now from (3.15), we deduce that{
k + 1

λk
− (k + 1)k+1 − c

λk+1

}
dk+2
0

λ
exp((k + 2)λz)(3.22)

+

{
(k + 1)2

λk
− (k + 1)2kk − c(k + 2)

λk+1

}
dk+1
0 d1 exp((k + 1)λz)

+ . . .+

{
(k + 1)2

λ
− (k + 1)2λ− c

(
k + 2

k

)
1

λ2

}
d20d

k
1 exp(2λz)

+

{
(k + 1)− c(k + 2)

λ

}
d0d

k+1
1 exp(λz)− cdk+2

1 = −cd0
λ

exp(λz)− cd1.

Clearly from (3.22), we have

dk+1
1 = 1 and

{
(k + 1)− c(k + 2)

λ

}
d0d

k+1
1 = −cd0

λ
, i.e., c = λ.(3.23)

Now from (3.21) and (3.23), we have

λk = (−1)k+1 1

(k + 1)(k + 1)!
.(3.24)

First we suppose k = 1. Then from (3.23) and (3.24), we have respectively d21 = 1

and c = λ = 1
4 . Also from (3.17), we have f(z) = c0 exp

(
1
4z

)
+ d1, where c0 = 4d0.

Next we suppose k ≥ 2. Now from (3.23) and (3.24), we calculate that

k + 1

λk
− (k + 1)k+1 − c

λk+1
= (k + 1)

(
(−1)k+1k(k + 1)!− (k + 1)k

)
̸= 0(3.25)

for k ≥ 2. Therefore one can easily arrive at a contradiction from Lemma 2.2 and

(3.22).
79



S. MAJUMDER, J. SARKAR

Sub-case 1.2. Suppose N(r, 1;F |≥ 2) ̸= 0. Now differentiating (3.15) once, we

have

(k + 1)2fk(f ′)2 + (k + 1)fk+1f ′′ − (k + 1)f ′′(fk+1)(k) −(3.26)

(k + 1)f ′(fk+1)(k+1) − c(k + 2)fk+1f ′ = −cf ′.

Again differentiating (3.26) once, we have

(k + 1)2kfk−1(f ′)3 + 3(k + 1)2fkf ′f ′′ + (k + 1)fk+1f ′′′ − (k + 1)f ′′′(fk+1)(k)

−2(k + 1)f ′′(fk+1)(k+1) − (k + 1)f ′(fk+1)(k+2) − c(k + 2)(k + 1)fk(f ′)2(3.27)

−c(k + 2)fk+1f ′′ = −cf ′′.

Now from (3.11) (3.12), (3.13) and (3.27), we get

−(k + 1)(k + 1)!
k2 + 3k + 6

2
(f ′)k+1f ′′ + S3(f) = −cf ′′,(3.28)

where S3(f) is a differential polynomial in f and each term of S3(f) contains f and

its higher powers as a factor. Let z0 be a zero of f . Now from (3.18) and (3.28), we

have respectively

(f ′(z0))
k+1 =

c

(k + 1)(k + 1)!
(3.29)

and

(k + 1)(k + 1)!
k2 + 3k + 6

2
(f ′(z0))

k+1f ′′(z0) = cf ′′(z0).(3.30)

If f ′′(z0) ̸= 0, then from (3.29) and (3.30) we arrive at a contradiction. Hence

f ′′(z0) = 0 and so f = 0 ⇒ f ′′ = 0. Let

H1 =
f ′′

f
.(3.31)

Clearly H1 ̸≡ 0. One can easily prove that H1 is a non-zero constant. Let us

suppose that H1 = λ̃ ∈ C \ {0}. Now from (3.31), we deduce that

f ′′ = λ̃f.(3.32)

Differentiating (3.32) and using it repeatedly, we have

f (2i) = λ̃if and f (2i+1) = λ̃if ′, where i = 1, 2, . . . .(3.33)

First we suppose k is odd. Then from (3.11) and (3.33), one can easily deduce

that

(fk+1)(k) = c1f(f
′)k + c3f

3(f ′)k−2 + . . .+ ckf
kf ′,(3.34)

where c1 = (k + 1)! and ci ∈ C for i ≥ 3.

Denote byN(r, 1;F, F (k) |≥ 2) the reduced counting function of common multiple

1-points of F and F (k).
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If z1 is a zero of F − 1 with multiplicity p1 ≥ 2 and a zero of F (k) − 1 with

multiplicity q1 ≥ 2, then from (3.9), we deduce that

N(r, 1;F, F (k) |≥ 2) = 0.(3.35)

Let z1 be a zero of F − 1 of multiplicity p1. Then from (3.35), we conclude

that z1 is a simple zero of F (k) − 1. Obviously F (z1) = 1 and F (k)(z1) = 1, i.e.,

(fk+1)(k)(z1) = 1. Note that F ′ = (k + 1)fkf ′. Since F ′(z1) = 0, it follows that

f ′(z1) = 0 and f(z1) ̸= 0. Therefore from (3.34), we conclude that 1 = 0, which is

impossible.

Next we suppose k is even. Solving (3.32), we get

f(z) = A1 exp
(√

λ̃z
)
+B1 exp

(
−
√
λ̃z

)
,(3.36)

where A1, B1 ∈ C \ {0}. Note that

f ′(z) = A1

√
λ̃ exp

(√
λ̃z

)
−

√
λ̃B1 exp

(
−
√
λ̃z

)
(3.37)

(f(z))k+1 = Ak+1
1 exp

(
(k + 1)

√
λ̃z

)
+ . . .+Bk+1

1 exp
(
− (k + 1)

√
λ̃z

)
(3.38)

(f(z))k+2 = Ak+2
1 exp

(
(k + 2)

√
λ̃z

)
+ . . .+Bk+2

1 exp
(
− (k + 2)

√
λ̃z

)
(3.39)

and so(
(f(z))k+1

)(k)
= Ak+1

1

(
(k + 1)

√
λ̃
)k

exp
(
(k + 1)

√
λ̃z

)
+ . . .(3.40)

+Bk+1
1 (−1)k

(
(k + 1)

√
λ̃
)k

exp
(
− (k + 1)

√
λ̃z

)
.

Therefore from (3.15) and (3.36)-(3.40), we deduce that

Ak+2
1

((
(k + 1)

√
λ̃
)k+1 − (k + 1)

√
λ̃+ c

)
exp

(
(k + 2)

√
λ̃z

)
+ . . .(3.41)

+Bk+2
1

(
(−1)k+1

(
(k + 1)

√
λ̃
)k+1

+ (k + 1)
√
λ̃+ c

)
exp

(
− (k + 2)

√
λ̃z

)
= A1c exp

(√
λ̃z

)
+B1c exp

(
−
√
λ̃z

)
.

Now from (3.41), one can easily conclude that(
(k + 1)

√
λ̃
)k+1 − (k + 1)

√
λ̃+ c = 0 and −

(
(k + 1)

√
λ̃
)k+1

+ (k + 1)
√
λ̃+ c = 0.

Solving we get c = 0, which is impossible.

Case 2. Suppose φ ≡ 0. Since F ′ ̸≡ 0, we get F ≡ F (k). Now F ≡ F (k)

implies that ρ(F ) = 1, i.e., ρ(f) = 1 and f has no zeros. Therefore we conclude

that f(z) = d exp
(
λ
nz

)
, where d, λ ∈ C\{0} such that λk = 1. This completes the

proof. □
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4. Some applications

From Theorem 1.1, we see that the problem of the entire function g and its k-th

derivative sharing one value a is related to the problem of the non-linear differential

equation g′(g − g(k))− φg(g − a) = 0 having a non-constant entire solution, where

φ is an entire function. In general, it is difficult to judge whether the differential

equation has a non-constant solution. However for the very special case g = fn,

where n ∈ N, we can solve the equation completely.

As the applications of Theorem 1.1, we now present the following results.

Theorem 4.1. Let φ be an entire function and k, n ∈ N. Suppose F is a non-

constant meromorphic solution of the differential equation F ′(F −F (k))−φF (F −
1) = 0, where F = fn and n ≥ k + 1. Then only one of the following cases holds:

(1) F ≡ F (k) and f(z) = c exp
(
λ
nz

)
, where c, λ ∈ C \ {0} such that λk = 1,

(2) n = 2 and f(z) = c0 exp
(
1
4z

)
+ c1, where c0, c1 ∈ C \ {0} such that c21 = 1.

Theorem 4.2. Let φ be a non-constant entire function and k, n ∈ N. Suppose F is

a non-constant meromorphic solution of the differential equation F ′ (F − F (k)
)
−

φF (F − 1) = 0, where F = fn and n ≥ k + 1. Then k = 1, n = 2 and f(z) =

c0 exp
(
1
4z

)
+ c1, where c0, c1 ∈ C \ {0} such that c21 = 1.

Proof of Theorem 4.1. We have

F ′(F − F (k)) = φF (F − 1),(4.1)

where F = fn and φ is a non-constant entire function. Let F be a non-constant

meromorphic solution of the equation (4.1). Now we divide the following two cases.

Case 1. Suppose φ ̸≡ 0. Since φ is a non-constant entire function, from (4.1),

one can easily conclude that F is a non-constant entire function. Now we prove

that F = 1 ⇒ F (k) = 1. If 1 is a Picard exceptional value of F , then obviously

F = 1 ⇒ F (k) = 1. Next we suppose that 1 is not a Picard exceptional value

of F . Let z0 be a zero of F − 1 of multiplicity p0. Clearly z0 is a zero of F ′ of

multiplicity p0 − 1. Then from (4.1), we deduce that z0 must be a zero of F −F (k).

Since F − F (k) = (F − 1) − (F (k) − 1), it follows that z0 is a zero of F (k) − 1. So

F = 1 ⇒ F (k) = 1. Since φ ̸≡ 0, we have F ̸≡ F (k). Now proceeding in the same

way as done in the proof of Case 1 of Theorem 1.1, one can easily conclude that

k = 1, n = 2 and f(z) = c0 exp
(
1
4z

)
+ c1, where c0, c1 ∈ C \ {0} such that c21 = 1.

Case 2. Suppose φ ≡ 0. Since F ′ ̸≡ 0, it follows that F ≡ F (k). We now want

to prove that F is an entire function. For this let z1 be a pole of F of multiplicity

p1. Then z1 is also a pole F (k) of multiplicity p1 + k. Since F ≡ F (k), we arrive
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at a contradiction. Hence F is an entire function. The fact F ≡ F (k) implies that

ρ(F ) = 1, i.e., ρ(f) = 1. Also F ≡ F (k) implies that f has no zeros. Therefore

we conclude that f(z) = d exp
(
λ
nz

)
, where d, λ ∈ C\{0} such that λk = 1. This

completes the proof. □

Proof of Theorem 4.2. Since φ is a non-constant entire function, it follows that

φ ̸≡ 0. Now the proof of Theorem 4.2 follows directly from the proof of Theorem

4.1. So we omit the proof. □

Now from Theorems 4.1 and 4.2, we immediately obtain the following corollary.

Corollary 4.1. Let φ be a non-constant entire function and k, n ∈ N such that

k ≥ 2. Then the differential equation F ′(F −F (k))−φF (F − 1) = 0, where F = fn

and n ≥ k + 1 has no solutions.

Following example shows that the condition “n ≥ k+1” in Theorem 4.1 is sharp.

Example 4.1. Let f(z) = exp(z) + exp(−z), k = 2, n = 1 and φ = 0. Clearly f

satisfies the differential equation (4.1), but f does not satisfy any case of Theorem

4.1.
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Abstract. In this paper, we study the following fractional Kirchhoff-type problem with
Liouville-Weyl fractional derivatives:

[
a+ b

( ∫
R(|u|

2 + |−∞Dβ
xu|2)dx

)ϱ−1
]
(xD

β
∞(−∞Dβ

xu) + u) = |u|2
∗
β−2u, in R,

u ∈ Iβ−(R),

where β ∈ (0, 1
2
), −∞Dβ

xu(·), xDβ
∞u(·) denote the left and right Liouville-Weyl fractional derivatives,

2∗β = 2
1−2β

is fractional critical Sobolev exponent a ≥ 0 and b > 0. Under suitable values of the
parameters ϱ, a and b, we obtain a non-existence result of nontrivial solutions of infinitely many
nontrivial solutions for the above problem.

MSC2020 numbers: 35R11, 35A15, 35J60, 47G20, 35J20.
Keywords: Liouville-Weyl fractional derivatives; Kirchhoff-type problem; non-existence
result; infinitely many nontrivial solutions.

1. Introduction

The purpose of this article is to study the non-existence results for the following
fractional Kirchhoff-type equation with Liouville-Weyl fractional derivatives:
[
a+ b

( ∫
R(|u|

2 + |−∞Dβ
xu|2)dx

)ϱ−1
]
(xD

β
∞(−∞Dβ

xu) + u) = |u|2
∗
β−2u, in R,

u ∈ Iβ−(R),
(1.1)

where β ∈ (0, 1
2 ), −∞Dβ

xu(·), xDβ
∞u(·) denote the left and right Liouville-Weyl

fractional derivatives, 2∗β = 2
1−2β is fractional critical Sobolev exponent, a ≥ 0 and

b > 0.
The theory of fractional operators for a long time remained hidden from the

scientific community, with its pioneering works involving the integrals and fractional
derivatives of Liouville, Riemann, Grunwald-Letnikov and Riemann-Liouville [6,
10, 30]. Then, around 1974, at a conference at the University of New Haven, in
the United States, the first international conference on fractional calculus took
place [24]. From that moment on, fractional calculus began to be disseminated and
disseminated and countless fractional derivatives have been introduced, each one
with its importance and relevance in the field of fractional operators [1, 8, 9, 12,
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14, 17, 18, 19, 22]. We highlight in a special way, when it comes to applications in:
medicine, engineering, physics, biology among other areas [6, 10, 11, 13, 20, 23].

We note that when a = 1, b = 0, problem (1.1) boils down to a fractional
differential equation of the type

xD
β
+∞(−∞Dβ

xu) = g(u), in R,

which is a special case of the fractional advection-dispersion equation proposed by
Benson et. all. [3, 4, 5]. When β ∈ ( 12 , 1) several existence and multiplicity results
can be found in [25, 26] and the reference therein. Recently, the case β ∈ (0, 1

2 ) was
considered in [28, 29].

On the other hand, in these last years, the study of Kirchhoff problems with
fractional derivatives have been attracted the attention from many mathematicians.
For instance, Nyamoradi and Zhou [15] dealt with the existence of nontrivial solutions
for a Kirchhoff type problem with Liouville-Weyl fractional derivatives by using
minimal principle and Morse theory. Nyamoradi et. all. [16] studied a class of
Schrödinger-Kirchhoff equation with Liouville-Weyl fractional derivatives and obtain-
ed the existence and multiplicity of solutions by using mountain pass theorem and
the symmetric mountain pass theorem. Tayyebi and Nyamoradi [21] established
the existence and multiplicity of nontrivial solutions for a Kirchhoff equation with
Liouville-Weyl fractional derivatives by using symmetric mountain pass theorem,
Morse theory combined with local linking arguments and the Clark’s theorem.
The authors in [2] by using local linking arguments and Morse theory studied
the existence and multiplicity of solutions for a fractional Kirchhoff equation with
Liouville-Weyl fractional derivatives.

Since we did not find in the literature any paper dealing with problems involving
fractional derivatives and critical exponent, motivated by the previous works, in
the present paper we intend to show the non-existence results for problem (1.1) by
applying suitable variational arguments.

2. Preliminaries and main results

In this section, we recall some useful preliminaries which will play an important
role to solve the problem (1.1), and we state the main results of this work.

Definition 2.1. The left and right Liouville-Weyl fractional integrals of order 0 <

β < 1 on the whole axis R are defined by

−∞Iβxϕ(x) =
1

Γ(β)

∫ x

−∞
(x− ξ)β−1ϕ(ξ)dξ,(2.1)

xI
β
∞ϕ(x) =

1

Γ(β)

∫ ∞

x

(ξ − x)β−1ϕ(ξ)dξ.(2.2)

respectively, where x ∈ R.
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The left and right Liouville-Weyl fractional derivatives of order 0 < β < 1 on
the whole axis R are defined by

−∞Dβ
xϕ(x) =

d

dx
−∞I1−β

x ϕ(x),(2.3)

xD
β
∞ϕ(x) = − d

dx
xI

1−β
∞ ϕ(x).(2.4)

respectively, where x ∈ R.

2.1. Fractional space of Sobolev type. By argument in [29], we will look for
weak solutions of the problem (1.1) hence the natural setting involves the fractional
space of Sobolev type Iβ−(R) defined as

Iβ−(R) = {u ∈ L2(R) : −∞Dβ
xu ∈ L2(R)}

endowed with the scalar product

⟨u, v⟩β =

∫
R
u(x)v(x)dx+

∫
R

−∞Dβ
xu(x) · −∞Dβ

xv(x)dx

and norm

∥u∥β =
(∫

R
u2dx+

∫
R
|−∞Dβ

xu(x)|2dx
)1/2

.

It is well known that (Iβ−(R), ⟨., .⟩β) is a Hilbert space. Moreover, for β ∈ (0, 1
2 ) we

have the continuous embedding

(2.5) Iβ−(R) ↪→ Lp(R) for every p ∈ [2, 2∗β ],

where 2∗β = 2
1−2β is the fractional critical Sobolev exponent.

In the case a = 1, b = 0, the problem (1.1) will be transformed into the following
critical problem with Liouville-Weyl fractional derivatives:

xD
β
∞(−∞Dβ

xu) + u = |u|2
∗
β−2u, in R.(2.6)

Set

Sβ := inf
u∈Iβ−(R)\{0}

∫
R(|u|

2 + |−∞Dβ
xu|2)dx(∫

R |u(x)|2
∗
βdx

) 2
2∗
β

.(2.7)

For any ε > 0, we can define ũ(x) as uε(x) =
√
εũ
(
x
ε

)
, where ũ(x) is a minimizer

for Sβ . Clearly, uε(x) is also a minimizer for Sβ , satisfying (2.6) and∫
R
(|uε|2 + |−∞Dβ

xuε|2)dx =

∫
R
|uε(x)|2

∗
βdx = S

2∗β
2∗
β
−2

β .(2.8)

Now, under suitable values of the parameters a, b and ϱ, we state the main results
of this paper as follow:

Theorem 2.1. Suppose that ϱ > 1 and β ∈ (0, 1
2 ). Then, problem (1.1) has no

nontrivial solution under one of the following conditions:
(i) ϱ =

2∗β
2 , a = 0 and b > S−ϱ

β ;
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(ii) ϱ =
2∗β
2 , a > 0 and b ≥ S−ϱ

β ;

(iii) ϱ >
2∗β
2 , a, b > 0 satisfy

2a(ϱ− 1)

2ϱ− 2∗β

 (2ϱ− 2∗β)bS

2∗β(ϱ−1)

2∗
β
−2

β

a(2∗β − 2)


2∗s−2

2(ϱ−1)

> 1;

(iv) ϱ = 1+2β
1−2β , a, b > 0 satisfy 1 < 4abSϱ+1

β .

Theorem 2.2. Suppose that ϱ > 1 and β ∈ (0, 1
2 ). Then the following properties

hold:
(i) ϱ ̸= 2∗β

2 , a = 0 and b > 0, then problem (1.1) has infinitely many positive
solutions and these solutions are

b
1

2∗
β
−2ϱS

2∗β(ϱ−1)

(2∗
β
−2ϱ)(2∗

β
−2)

β uε for any ε > 0.

(ii) ϱ =
2∗β
2 , a > 0 and b < S−ϱ

β , then problem (1.1) has infinitely many positive
solutions and these solutions are given by(

a

1− bSϱ
β

)
uε for any ε > 0.

(iii) ϱ >
2∗β
2 , a, b > 0 satisfy

(2.9)
2a(ϱ− 1)

2ϱ− 2∗β

 (2ϱ− 2∗β)bS

2∗β(ϱ−1)

2∗
β
−2

β

a(2∗β − 2)


2∗β−2

2(ϱ−1)

= 1,

then problem (1.1) has infinitely many positive solutions and these solutions are a(2∗β − 2)

(2ϱ− 2∗β)bS

2∗
β
(ϱ−1)

2∗
β
−2

β


1

2(ϱ−1)

uε for any ε > 0.

3. Proof of the main results

In this section, we deal with the proof of Theorems 2.1 and 2.2. Let us introduce
the energy functional associated with problem (1.1):

J(u) =
a

2
∥u∥2β +

b

2ϱ
∥u∥2ϱβ − 1

2∗β

∫
R
|u(x)|2

∗
βdx,(3.1)

which is well-defined for each u ∈ Iβ−(R). We know that J ∈ C1(Iβ−(R). Moreover,
it is easy to see that a weak solution of problem (1.1) is a critical point of the
functional J .

Firstly, we give the proof of Theorem 2.1.
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Proof of Theorem 2.1. Suppose that u ∈ Iβ−(R)\{0} is a solution of (1.1). Hence,
(i) from (2.7), we have

S
−

2∗β
2

β ∥u∥2ϱβ = S−ϱ
β ∥u∥2ϱβ < b∥u∥2ϱβ =

∫
RN

|u(x)|2
∗
βdx ≤ S

−
2∗β
2

β ∥u∥2
∗
β

β = S
−

2∗β
2

β ∥u∥2ϱβ .

which gives a contradiction. Then, (i) holds true.
(ii) In view of (2.7), one can get

S
−

2∗β
2

β ∥u∥2ϱβ = S−ϱ
β ∥u∥2ϱβ ≤ b∥u∥2ϱβ < a∥u∥2β + b∥u∥2ϱβ =

∫
RN

|u(x)|2
∗
βdx ≤ S

−
2∗β
2

β ∥u∥2ϱβ ,

which is impossible. Then, (ii) is satisfied.
(iii) Using the Young’s inequality and (2.7), we can get

S
−

2∗β
2

β ∥u∥2
∗
β

β = S
−

2∗β
2

β ∥u∥
2ϱ−2∗β
ϱ−1

β ∥u∥
ϱ2∗β−2ϱ

ϱ−1

β

≤ a∥u∥2β +
2∗β − 2

2(ϱ− 1)

(
2a(ϱ− 1)

2ϱ− 2∗β

)−
2ϱ−2∗β
2∗
β
−2

S
−

(ϱ−1)2∗β
2∗
β
−2

β ∥u∥2ϱβ

< a∥u∥2β + b∥u∥2ϱβ

=

∫
RN

|u(x)|2
∗
βdx ≤ S

−
2∗β
2

β ∥u∥2
∗
β

β ,

which leads to a contradiction. So, (iii) is verified.
(iv) From geometric-arithmetic inequality and (2.7) one can get

∥u∥ϱ+1
β < 2

√
abS

ϱ+1
2

β ∥u∥ϱ+1
β ≤ (a∥u∥2 + b∥u∥2ϱ)S

ϱ+1
2

β

≤ S
ϱ+1
2

β

∫
R
|u(x)|2

∗
βdx ≤ S

ϱ+1
2

β S
−

2∗β
2

β ∥u∥2
∗
β

β = ∥u∥ϱ+1
β

a contradiction. Hence, we get the result (iv). □

Secondly, we give the proof of Theorem 2.2. To this end, for any ε > 0, we set

(3.2) vε,β(x) = ϑ
1

2∗
β
−2uε(x),

and it is a positive solution of (2.6). So, vε,s satisfies

ϑ(xD
β
∞(−∞Dβ

xvε,β) + vε,β) = |vε,β |2
∗
β−2vε,β , in R.(3.3)

Then, if

ϑ = a+ b
(∫

R
(|vε,β |2 + |−∞Dβ

xvε,β |2)dx
)ϱ−1

,(3.4)

we can deduce that vε,β is a solution of (1.1). Since uε satisfies (2.8), then by
inserting (3.2) into (3.4) we can infer that

ϑ = a+ bS

2∗β(ϱ−1)

2∗
β
−2

β ϑ
2(ϱ−1)

2∗
β
−2 .(3.5)

Furthermore, if ϑ ∈ (0,+∞) is a solution of (3.5), then vε,β is a solution of problem
(1.1).
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Proof of Theorem 2.2. (i) If ϱ ̸= 2∗β
2 , then 2(ϱ−1)

2∗β−2 ̸= 1. So, if a = 0, (3.5) has
solution

ϑ = b

2∗β−2

2∗
β
−2ϱS

2∗β(ϱ−1)(2∗β−2)

(2∗
β
−2)(2∗

β
−2ϱ)

β .

Hence, in view of (3.2) we get the result (i).
(ii) If ϱ =

2∗β
2 , then 2(ϱ−1)

2∗β−2 = 1. So, (3.5) is equivalent to

ϑ = a+ bSϱ
βϑ,(3.6)

and then ϑ = 1
1−bSϱ

β
> 0. Hence, by (3.2) it follows that (ii) holds true.

(iii) If ϱ >
2∗β
2 , then 2(ϱ−1)

2∗β−2 > 1. Define

φ(ϑ) := aϑ−1 + bS

2∗β(ϱ−1)

2∗
β
−2

β ϑ

2ϱ−2∗β
2∗
β
−2

which implies that

φ(ϑ) = 1 iff ϑ solves (3.5).(3.7)

We can easily see that φ(ϑ) achieves its minimum at

ϑ0 =

 a(2∗β − 2)

(2ϱ− 2∗β)bS

2∗
β
(ϱ−1)

2∗
β
−2

β


2∗β−2

2(ϱ−1)

and

min
ϑ>0

φ(ϑ) = φ(ϑ0) =
2a(ϱ− 1)

2ϱ− 2∗β

 (2ϱ− 2∗β)bS

2∗β(ϱ−1)

2∗
β
−2

β

a(2∗β − 2)


2∗β−2

2(ϱ−1)

.

By condition (2.9) we have φ(ϑ0) = 1, and from (3.7) we get that ϱ0 is a solution
of (3.5). From (3.2), we have the result (iii).
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