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1. Introduction

Higman’s fundamental result establishing connection between group theory and

computability theory states: a finitely generated group G can be embedded in a

finitely presented group if and only if it is recursively presented [9]. The requirement

that G is finitely generated is not critical, and it can be replaced by the condition

that G has an effectively enumerable countable set of generators, see the remark

on p. 456 in [9].

Despite importance of this theorem, possibility of explicit embedding of any

recursively presented group into some finitely presented group is a less intelligible

issue, and it is open problem even for some well known groups. In particular,

construction of an explicit embedding of the additive group Q of rationals into a

finitely presented group was an open question mentioned by Bridson and de la Harpe

as “Well-known problem” 14.10 (a) in Kourovka notebook [12] and also announced

in [8]. Recently a direct solution to that problem was found by Belk, Hyde and

Matucci in [6]; and an algorithm how to build such an explicit embedding was

1The current work is supported by the 21T-1A213 grant of SCS MES RA.
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given in [17], without an explicit finitely presented group containing Q though. Also,

based on recent work [2]–[5] it is possible to embed Q as a center for a continuum

of non-isomorphic 2-generator groups. These along with some other remarks in the

literature [19, 1] motivate research on explicit embeddings of recursively presented

groups into finitely presented groups.

The key group-theoretic concept introduced in [9] is that of benign subgroup: a

subgroup H is benign in a finitely generated group G, if there is a finitely presented

overgroup K of G, and a finitely generated subgroup L of K such that G∩L = H.

Actually, the most part of [9] is dedicated to showing that if a subgroup H of a

specific type is benign in the free group G = ⟨a, b, c⟩ of rank 3, then applying some

specific kinds of operations to H (such as, the sequence building operation ωm, see

below) we again get a benign subgroup in G.

Denote by E the set of all functions f : Z → Z with finite supports. If f(i) = 0

for all i < 0 and i ≥ m (for a fixed m = 1, 2, . . .), then f can be recorded as a

sequence f = (j0, . . . , jm−1) assuming f(i) = ji for i = 0, . . . ,m− 1 [9]. Then the

following words are defined in the free group G = ⟨a, b, c⟩ with respect to f :

(1.1) bf = bj00 · · · bjm−1

m−1 and af = abf = b−1
f a bf

where bi = bc
i

for i = 1, . . . ,m − 1. Let Em be the subset of all functions f of

the above type. For any subset B of E denote AB = ⟨af | f ∈ B⟩, in particular,

AEm
= ⟨af | f ∈ Em⟩. See details and examples in [17].

For m and for any subset B ⊆ E the sequence building operation ωm is defined

on B as follows: ωm(B) consists of all f ∈ E for which for every i ∈ Z there exists a

sequence
(
f(mi + 0), . . . , f(mi +m − 1)

)
∈ B [9]. In other words, this operation

just constructs new sequences f by concatenation of some sequences of length m

picked from B. For details see [17], and also check Section 3 below where the new

sequence (3.4) is built from the sequences (6, 4, 5, 3), (7, 2, 4, 9) ∈ B and from the

zero sequence using ω4. Having the subgroup AB = ⟨af | f ∈ B⟩ of G one may

construct the subgroup AωmB = ⟨aωmB | f ∈ B⟩. And if B ⊆ Em, then AB ≤ AωmB,

see subsection 3.2 where samples of AB and Aω4B are given.

If for some B ⊆ E the group AB is benign in G for a given finitely presented

overgroup K holding G, and for the finitely generated subgroup L ≤ K, we stress

that by denoting K = KB and L = LB, and writing G ∩ LB = AB in KB. Clearly,

KB and LB may not be unique for a given B.

A main strategy of [9] is to start from a set B ⊆ E for which the subgroup AB

is benign in G, and to show that if a new set B′ is obtained from B by means of

certain operations, then AB′ also is benign in G. In this terms [9, Lemma 4.10]
4
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states that if for the given B ⊆ E the subgroup AB is benign in G, then AωmB also

is benign in G for any m.

The objective of this note is to additionally show that if the respective groups KB

and LB can be constructed explicitly, then KωmB and LωmB can also be constructed

explicitly :

Theorem 1.1. Let B ⊆ E be a sequences set such that AB is benign in G and,

moreover, the respective finitely presented group KB and its finitely generated subgroup

LB are given explicitly. Then for any m = 1, 2, . . . the subgroup AωmB also is benign

in G, and the finitely presented group KωmB and its finitely generated subgroup

LωmB can also be given explicitly.

The promised explicit group KωmB is given in (5.9), LωmB is given in (5.10), while

the components Ψ, ∆̄, L′, etc., used in those formulas all are defined in Section 5

using some free constructions. And under explicitly given KB and LB one may

understand, say, their presentations with generators and defining relations.

The proof of this theorem occupies sections 3–5 below. In particular, in Section 3

we build an initial embedding construction in which AωmB is an intersection of G

with certain subgroup WB. As this construction is not yet finitely presented, we

in Section 4 suggest some auxiliary “nested” free constructions (such as (4.3)), and

using them we obtain the finitely presented KωmB in Section 5.

In order to avoid any repetition of material already published in [16, 17] or

elsewhere, we below often adopt constructions from other work. This makes parts

of the current text dependant on other articles, but the provided exact references,

we hope, alleviate any inconvenience.

2. Preliminary information

2.1. Free constructions. For background information on free products with amal-

gamation and on HNN-extensions we refer to [7] and [10]. Notations vary in the

literature, and to maintain uniformity we are going to adopt notations we used in

[16].

If any groups G and H have subgroups, respectively, A and B isomorphic under

φ : A → B, then the (generalized) free product of G and H with amalgamated

subgroups A and B is denoted by G ∗φ H (an alternative notation in the literature

being G ∗A=B H). When G and H are overgroups of the same subgroup A, and φ

is just the identical isomorphism on A, we write Γ = G ∗A H.

If G has subgroups A and B isomorphic under φ : A → B, then the HNN-

extension of the base G by some stable letter t with respect to the isomorphism φ

5
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is denoted by G ∗φ t. In case when A = B and φ is identity on A, we may write

Γ = G ∗A t. We also use HNN-extensions G ∗φ1,φ2,... (t1, t2, . . .) with more than one

stable letters, see [16] for details.

Our usage of the normal forms in free constructions is close to [7].

2.2. Benign subgroups and Higman operations. For detailed informaton on

bening subgroups we refer to Sections 3, 4 in [9], see also Section 3 in [16]. Higman

operations and their basic properties can be found in Section 2 in [9], see also

Section 3 in [16] and Section 2 in [17].

From definition of bening subgroup it is very easy to see that arbitrary finitely

generated subgroup H in any finitely presented group G is benign in G, for, the

group G itself acts as a finitely presented overgroup of G with a finitely generated

subgroup H, such that H ∩ H = H. We are going to often use this remark in the

sequel.

2.3. Subgroups in free constructions. The following two auxiliary facts are

adopted from [16], and they follow from more general Lemma 2.2 and Lemma 2.4

in [16].

Corollary 2.1 (Corollary 2.3 in [16]). Let Γ = G ∗A H, and let G′ ≤ G, H ′ ≤ H

be subgroups such that G′ ∩ A = H ′ ∩ A. Then for Γ′ = ⟨G′, H ′⟩ and A′ = G′ ∩ A

we have:

(1) Γ′ = G′∗A′ H ′, in particular, if A ≤ G′, H ′, then Γ′ = G′ ∗A H ′;

(2) Γ′ ∩ A = A′, in particular, if A ≤ G′, H ′, then Γ′ ∩ A = A ;

(3) Γ′ ∩ G = G′ and Γ′ ∩ H = H ′.

Corollary 2.2 (Corollary 2.5 in [16]). Let Γ = G∗At, and let G′ ≤ G be a subgroup.

Then for Γ′ = ⟨G′, t⟩ and A′ = G′ ∩ A we have:

(1) Γ′ = G′∗A′ t, in particular, if A ≤ G′, then Γ′ = G′ ∗A t;

(2) Γ′ ∩ A = A′, in particular, if A ≤ G′, then Γ′ ∩ A = A ;

(3) Γ′ ∩ G = G′.

Remark 2.1. It is easy to adapt Corollary 2.2 for the case of multiple stable

letters t1, . . . , tk which fix the same subgroup A in G. In such a case point (1)

in Corollary 2.2 will read: Γ′ = G′ ∗A′ (t1, . . . , tk) for Γ′ = ⟨G′, t1, . . . , tk⟩ and

A′ = G′ ∩ A. We are going to use this fact only once, in the proof of Lemma 5.4.

2.4. The “conjugates collecting” process. Let X and Y be some disjoint subsets

in any group G. Then any element w ∈ ⟨X,Y⟩ can be written as:

w = u · v = x±v1
1 x±v2

2 · · ·x±vk
k · v

6
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with some v1, v2, . . . , vk, v ∈ ⟨Y⟩, and x1, x2, . . . , xk ∈ X. The proof, examples and

variations of this fact can be found in Subsection 2.6 in [16]. We use the name

“conjugates collecting” just because we heavily used it in [16], and we need a name

to refer to (we were unable to find a conventional name to this in the literature).

3. The initial embedding construction

3.1. Construction of ∆. The free group ⟨b, c⟩ contains a free subgroup ⟨bi | i ∈ Z⟩
of infinite rank, which for any m = 1, 2, . . . decomposes into a free product Bm∗ B̄m

with Bm = ⟨. . . b−2, b−1; bm, bm+1, . . .⟩ and B̄m = ⟨b0, . . . , bm−1⟩.
Introducing three stable letters g, h, k, all fixing Bm, build the HNN-extension:

(3.1) Γ = ⟨b, c⟩ ∗Bm
(g, h, k).

Denote Ḡ = ⟨g, h, k⟩, and in analogy with bi, bf , af of (1.1) introduce hi = hki

, hf ,

and gf = ghf in the free group Ḡ. Fixing the subgroup R = ⟨gfb−1
f | f ∈ Em⟩ of Γ

by means of a new stable letter a build the HNN-extension Γ ∗R a.

The intersection ⟨b, c⟩ ∩R is trivial because the non-trivial words of type gfb
−1
f

generate R freely, and so any non-trivial word they generate must involve at least

one g, and hence it need to be outside ⟨b, c⟩. Then by (1) in Corollary 2.2 the

subgroup generated in Γ ∗R a by ⟨b, c⟩ together with a is equal to ⟨b, c⟩ ∗⟨b,c⟩ ∩R a =

⟨b, c⟩ ∗{1} a = ⟨b, c⟩ ∗ a which is the free group G = ⟨a, b, c⟩. So a, b, c generate a

free subgroup in Γ, and hence the map sending a, b, c to a, bc
m

, c can be continued

to an isomorphism ρ : G → ⟨a, bcm, c⟩. Identifying this ρ to a further stable letter r

we arrive to the final HNN-extension of this section:

(3.2) ∆ =
(
Γ ∗R a

)
∗ρ r =

((
⟨b, c⟩ ∗Bm

(g, h, k)
)
∗R a

)
∗ρ r.

3.2. Obtaining G ∩ WB = AωmB in ∆. For any subset B of E denote WB =

⟨gf, a, r | f ∈ B⟩, and show that in ∆ we have

(3.3) G ∩WB = AωmB.

Firstly notice that if Bm = B ∩Em, then ωm(B) = ωm(Bm). Hence we may without

loss of generality suppose B ⊆ Em below (if a short sequence contains less than m

integers, we can without loss of generality extend its length to m by adding some

extra 0’s at the end).

For arbitrary sequence f ∈ ωmB the element af = abf is inside WB. Let us

display this uncomplicated fact by a routine step-by-step construction example.

Let m = 4 and let (6, 4, 5, 3), (7, 2, 4, 9) ∈ B. Then by sequence building operations

ω4B contains the sequence, say,

(3.4) f = (0, 0, 0, 0, 7, 2, 4, 9, 0, 0, 0, 0, 0, 0, 0, 0, 6, 4, 5, 3, 7, 2, 4, 9).

7
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To show that abf ∈ WB start by the initial functions l1 = (7, 2, 4, 9) and l2 =

(6, 4, 5, 3) in B, and then use them by a few steps to arrive to the function f above.

We are going to use the evident fact that the relation (gfb
−1
f ) a = gfb

−1
f is equivalent

to agf = abf .

Step 1. Since l1 = (7, 2, 4, 9) is in B, then gl1 ∈ WB, and so agl1 = abl1 =

ab
7
0 b21b

4
2b

9
3 ∈ WB.

Step 2. Since bri = bρi = (bρ)(c
i) ρ

= (bc
4

)c
i

= bc
i+4

= bi+4, then conjugating the

above obtained element abl1 by r we get:(
abl1

)r
=

(
ar
)(b70 b21b

4
2b

9
3)

r

= ab
7
4 b25b

4
6b

9
7 = ab

0
0 b01b

0
2b

0
3 · b74 b25b

4
6b

9
7 = abl3 ∈ WB

for the sequence l3 = (0, 0, 0, 0, 7, 2, 4, 9).

Next, conjugating abl3 by gl2 we have:(
abl3

)gl2 = abl3 · gl2 = ab
7
4 b25b

4
6b

9
7 · gl2 .

Step 3. Each of stable letters g, h, k commutes with any bi for i < 0 or i ≥ m = 4,

and so gl2 commutes with b74 b
2
5b

4
6b

9
7 and so:

ab
7
4 b25b

4
6b

9
7 · gl2 = agl2 · b74 b25b

4
6b

9
7 .

Then once more applying step 1 to agl2 we transform the above to:(
agl2

)b74 b25b
4
6b

9
7 = ab

6
0 b41b

5
2b

3
3 · b74 b25b

4
6b

9
7 = abl4

for the sequence l4 = (6, 4, 5, 3, 7, 2, 4, 9). Then we repeat the above step 2 for

three times i.e., conjugate the above by r3 to get the element abl5 for the sequence:

l5 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 4, 5, 3, 7, 2, 4, 9).

Next apply step 3 and step 1 again to conjugate abl5 by gl1 . We get the element

abl6 for the sequence:

l6 = (7, 2, 4, 9, 0, 0, 0, 0, 0, 0, 0, 0, 6, 4, 5, 3, 7, 2, 4, 9).

Then we again apply step 2, i.e., conjugate abl6 by r to discover in WB the element

abf = af with the sequence f promised in (3.4) above.

Since such a procedure can easily be performed for an arbitrary f ∈ ωmB, we

get that AωmB ≤ WB. And since also AωmB ≤ G, we have AωmB ≤ G ∩WB.

Next assume some word w from WB = ⟨gf, a, r | f ∈ B⟩ is in G. Since w also is in

∆, it can be brought to its normal form involving stable letter r and some elements

from Γ∗L a. The latter elements, in turn, can be brought to normal forms involving

stable letter a and some elements from Γ. Then the latters can further be brought to

normal forms involving stable letters g, h, k and some elements from ⟨b, c⟩. That is,
8
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w can be brought to a unique “nested” normal form reflecting three “nested” HNN-

extensions in the right-hand side of (3.2). Let us detect the cases when it involves

nothing but the letters a, b, c. The only relations of Γ involve g, h, k, and they are

equivalent to agf = abf . Thus, the only way by which g, h, k may be eliminated

in the normal form is to have in w subwords of type g−1
f a gf = agf which can be

replaced by respective subwords abf ∈ G. If after this procedure some subwords gf

still remain, then three scenario cases are possible:

Case 1. The word w may contain a subword of type w′ = g−1
f ablgf for such an l

that l(i) = 0 for i = 0, . . . ,m−1. Check the example of step 1, when this is achieved

for l = l3 = (0, 0, 0, 0, 7, 2, 4, 9) and f = l2 = (6, 4, 5, 3). Then just replace w′ by

abl′ for an l′ ∈ ωmB (such as l′ = l4 = (6, 4, 5, 3, 7, 2, 4, 9) in our example).

Case 2. If w′ = g−1
f ablgf , but the condition l(i) = 0 fails for an i = 0, . . . ,m−1,

then gf does not commute with bl, so we cannot apply the relation agf = abf , and

so w /∈ G. Turning to example in steps 1–3, notice that for, say, f = (7, 2, 4, 9) ∈ B
we may never get something like a(gf )

2

=
(
ab

7
0 b21 b42 b93

)gf = a(b
7
0 b21 b42 b93)

2

because gf

does not commute with b0, b1, b2, b3. That is, all the new functions l we get are from

ωmB only.

Case 3. If gf is in w, but is not in a subword g−1
f ablgf , we again have w /∈ G,

unless all such gf trivially cancel each other.

This means, if w ∈ G, then elimination of g, h, k turns w to a product of elements

from ⟨r⟩ and of some abf for some f ∈ ωmB (a also is of that type, as (0) ∈ B).

Now apply 2.4 for X = {abf | f ∈ ωmB} and Y = {r} to state that w is a product

of some power ri and of some elements each of which is an abf conjugated by a

power rni of r. These conjugates certainly are in ωmB (see step 2 above), and so

w ∈ G if and only if i = 0, i.e., if w ∈ AωmB.

Hence, equality (3.3) is established for any subset B of E .

Remark 3.1. However, (3.3) cannot yet guarantee that AωmB is benign in G as

soon as AB is benign in G, because the group ∆ in (3.2) is not finitely presented,

and its subgroup WB = ⟨gf, a, r | f ∈ B⟩ may not be finitely generated, when B is

infinite. The sections below will add these missing features replacing ∆ by a much

bulkier construction.

4. Auxiliary free constructions

In this section we generalize some of the results in Section 3 in [9]. Hence, the

lemmas below may be of some independent interest also.
9
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For any subgroup A of an arbitrary group G the well known equality G∩Gt = A

holds in the HNN-extension G ∗A t. It trivially follows, say, from uniqueness of the

normal form in G ∗A t. We need the following generalization of this fact:

Lemma 4.1. Let A1, . . . , Ar be arbitrary subgroups in a group G. Then the following

equality holds in the HNN-extension G ∗A1,..., Ar
(t1, . . . , tr):

(4.1) G ∩Gt1··· tr =
⋂ r

i=1 Ai.

Proof. Choose a transversal TAi to Ai in G, i = 1, . . . , r. Take any g ∈ G,

and show that if gt1··· tr ∈ G, then g is inside each of Ai. Write g = a1l1 where

a1 ∈ A1 and l1 ∈ TA1
. In turn, a1 can be written as a1 = a2l2 where a2 ∈ A2 and

l2 ∈ TA1
. This process can be continued for A3, . . . , Ar. (the case when some of ai

or li, i = 1, . . . , r, are trivial is not ruled out). Since the inverse t−1
i of the stable

letter ti also fixes Ai, calculation of the normal form for gt1··· tr can be started via

the following steps:

(4.2)

gt1··· tr = t−1
r · · · t−1

1 a1l1 t1 · · · tr

= t−1
r · · · t−1

2 a1t
−1
1 l1 t1 · · · tr

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

= ar t
−1
r lr t

−1
r−1lr−1 · · · l3 t−1

2 l2 t
−1
1 l1 t1 · · · tr

The above belongs to G only if it contains no stable letters ti. But the last line of

(4.2) does not contain t1 only when l1 = 1, hence t−1
1 l1 t1 = 1, and t−1

2 l2t
−1
1 l1 t1 t2 =

t−1
2 l2 t2. Then to exclude t2 we must have l2 = 1, hence t−1

2 l2 t2 = 1. At the end we

get (4.2) reduced to art
−1
r lrtr = ar where lr = 1, and therefore ar ∈

⋂ r
i=1 Ai.

On the other hand, any g ∈
⋂ r

i=1 Ai is fixed by each of ti, and so gt1···tr = g ∈ G,

and thus,
⋂ r

i=1 Ai ⊆ G ∩Gt1···tr . □

Another proof of this lemma could be deduced from Corollary 2.1 and Corollary 2.2

(in a manner rather similar to the proof of Lemma 4.3 below), but we prefer this

version as it follows from more basic properties already.

Later we are going to use a specific free construction built for a system of

groups via HNN-extensions and free products with amalgamation. Namely, let

G ≤ K1, . . . ,Kr be arbitrary groups such that Ki ∩ Kj = G for any distinct

indices i, j = 1, . . . , r. If in each Ki we pick a subgroup Li, and denote G∩ Li = Ai,

i = 1, . . . , r, we can build the following “nested” free construction:

(4.3) Θ =
(
· · ·

((
(K1 ∗L1

t1) ∗G (K2 ∗L2
t2)

)
∗G (K3 ∗L3

t3)
)
· · ·

)
∗G (Kr ∗Lr

tr).

By these notations:

10
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Lemma 4.2. In the free construction Θ the following equality holds:

⟨G, t1, . . . , tr⟩ = G ∗A1,..., Ar
(t1, . . . , tr).

Proof. Applying induction over r we for r = 2 have to display ⟨G, t1, t2⟩ =

G ∗A1, A2 (t1, t2) in Θ = (K1 ∗L1 t1) ∗G (K2 ∗L2 t2).

In K1 ∗L1 t1 we by (1) in Corollary 2.2 have ⟨G, t1⟩ = G ∗G∩L1 t1 = G ∗A1 t1.

Similarly, ⟨G, t2⟩ = G ∗A2
t2 in K2 ∗L2

t2. And since in Θ the intersection of both

⟨G, t1⟩ and ⟨G, t2⟩ with G clearly is G, we apply (1) in Corollary 2.1 to get:

⟨G, t1, t2⟩ =
〈
⟨G, t1⟩, ⟨G, t2⟩

〉
= (G ∗A1 t1) ∗G (G ∗A2 t2).

But the above amalgamated free prodcut is noting but G ∗A1, A2
(t1, t2), which is

trivial to see by listing all the defining relations of both constructions: relations of G

followed by relations stating that t1 fixes the A1 and t2 fixes A2 (plus the relations

identifying both copies of G, if we initially assume them to be disjoint).

Next assume the proof is done for r − 1, i.e.,

⟨G, t1, . . . , tr−1⟩ = G ∗A1,..., Ar−1 (t1, . . . , tr−1).

Again by (1) in Corollary 2.2 write ⟨G, tr⟩ = G ∗G∩Lr
tr = G ∗Ar

tr. We have

⟨G, t1, . . . , tr−1⟩ and ⟨G, tr⟩ both intersect with G in G, and we by (1) in Corollary 2.1

get:

⟨G, t1, . . . , tr⟩ =
(
G∗A1,..., Ar−1

(t1, . . . , tr−1)
)
∗G (G∗Ar

tr) = G∗A1,..., Ar
(t1, . . . , tr).

□

Remark 4.1. The reader familiar with more general interpretations of free products

with amalgamation (see Neumann’s fundamental survey [18]) would notice that Θ

in (4.3) is noting but the free product of the HNN-extensions Ki ∗Li
ti with an

amalgamated subgroup G. Indeed, the defining relations of this product can well

be listed in an order matching the sintaxis of (4.3). Using the terms of [18] would

allow us to avoid the bulky formula of (4.3), but it would require to involve here

some new elements from [18] which would make the construction more complicated.

An immediate consequence of the above lemmas is:

Corollary 4.1. If the subgroups A1, . . . , Ar are benign in a finitely generated group

G, then their intersection
⋂ r

i=1 Ai also is benign in G. Moreover, if the finitely

presented groups Ki with their finitely generated subgroups Li can be given for each

Ai explicitly, then the finitely presented K with its finitely generated subgroup L can

be given for this intersection explicitly.
11
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Proof. By hypothesis we have some finitely presented overgroups K1, . . . ,Kr

of G and finitely generated L1, . . . , Lr such that Li ≤ Ki and G ∩ Li = Ai for

each i = 1, . . . , r. Then the free construction Θ of (4.3) is finitely presented, since

to the finitely many relations of Ki we only add the relations stating that ti fixes

the finitely many generators of Li, plus (if needed) relations identifying the finitely

many generators of all copies of G in Ki ∗Li ti, i = 1, . . . , r.

By Lemma 4.2 Θ contains the finitely generated subgroup ⟨G, t1, . . . , tr⟩ =

G ∗A1,..., Ar
(t1, . . . , tr), and by Lemma 4.1 we in that group have G∩L =

⋂ r
i=1 Ai

for the finitely generated subgroup L = Gt1··· tr. □

Lemma 4.3. Let A1, . . . , Ar be arbitrary subgroups in a group G. Then in the

HNN-extension G ∗A1,..., Ar
(t1, . . . , tr) the following equality holds:

(4.4) G ∩
〈⋃ r

i=1 Gti
〉
=

〈⋃ r
i=1 Ai

〉
.

Proof. For simplicity write the proof for the case r=3. Set T = ⟨A1, A2, A3⟩.
By Lemma 4.2:

G ∗A1, A2, A3
(t1, t2, t3) =

(
(G ∗A1

t1) ∗G (G ∗A2
t2)

)
∗G (G ∗A3

t3).

G ∗A1
t1 contains G ∗A1

Gt1 , and in this subgroup we by (3) in Corollary 2.1 have

⟨T,Gt1⟩ ∩ G = T . For the same reason ⟨T,Gt2⟩ ∩ G = T . Noticing ⟨T,Gt1, Gt2⟩ =〈
⟨T,Gt1⟩, ⟨T,Gt2⟩

〉
and applying to it (2) of Corollary 2.1 inside the group (G ∗A1

t1) ∗G (G ∗A2
t2) we have ⟨T,Gt1, Gt2⟩ ∩ G = T . Since also ⟨T,Gt3⟩ ∩ G = T , we

again by (2) have 〈
⟨T,Gt1, Gt2⟩, ⟨T, Gt3⟩

〉
∩G = T.

But since

T ≤ ⟨Gt1, Gt2, Gt3⟩,

it remains to notice 〈
⟨T,Gt1, Gt2⟩, ⟨T, Gt3⟩

〉
= ⟨Gt1, Gt2, Gt3⟩. □

Corollary 4.2. If the subgroups A1, . . . , Ar are benign in a finitely generated

group G, then their join
〈⋃ r

i=1 Ai

〉
also is benign in G. Moreover, if the finitely

presented groups Ki with their finitely generated subgroups Li can be given for each

Ai explicitly, then the finitely presented K with its finitely generated subgroup L can

be given for this join explicitly.

Proof. Using the same constructions and notations as in the proof of Corollary 4.1

just notice that Θ is finitely presented, the join L =
〈⋃ r

i=1 Gti
〉

is finitely generated,

and G ∩ L =
〈⋃ r

i=1 Ai

〉
by Lemma 4.3. □

12
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5. Adding finite presentation to the construction

5.1. The HNN-extension Ξm. In free group ⟨b, c⟩ we for any integer m can define

a pair of isomorphisms ξm and ξ′m via:

(5.1) ξm(b) = b−m+1, ξ′m(b) = b−m and ξm(c) = ξ′m(c) = c2.

It is easy to verify that ξm(bi) = b2i−m+1 and ξ′m(bi) = b2i−m. The pair ξm, ξ′m can

be used to define the HNN-extension

Ξm = ⟨b, c⟩ ∗ξm,ξ′m
(tm, t′m).

Here tm, t′m are any stable letters, and the subscript m is used to stress the correlation

with ξm, ξ′m, as below we are going to use this construction for multiple values of

m.

Lemma 5.1. In the above notations we for any m have:

⟨b, c⟩ ∩ ⟨bm, tm, t′m⟩ = ⟨bm, bm+1, . . .⟩,

⟨b, c⟩ ∩ ⟨bm−1, tm, t′m⟩ = ⟨bm−1, bm−2, . . .⟩.

Proof. For any integer m and i we have btmi = ξm(bi) = b2i−m+1 and b
t′m
i =

ξ′m(bi) = b2i−m from where we collect:

. . . btmm−2=bm−3, btmm−1=bm−1, btmm =bm+1, btmm+1=bm+3, btmm+2=bm+5, . . .

. . . b
t′m
m−2=bm−4, b

t′m
m−1=bm−2, b

t′m
m =bm, b

t′m
m+1=bm+2, b

t′m
m+2=bm+4, . . .

(5.2)

The action of t−1
m and t′

−1
m can be deduced from the list above. From (5.2) it is

straightforward that each of bm, bm+1, . . . indeed is in ⟨bm, tm, t′m⟩. Say, bm+8 =

b
t′m
m+4 = b

t′2m
m+2 = b

t′3m
m+1 = b

tm·t′3m
m ∈ ⟨bm, tm, t′m⟩.

And on the other hand, bringing any word w on letters bm, tm, t′m to the normal

form in HNN-extension Ξm we first have to do cancellations like t−1
m bmtm = bm+1,

and t′
−1

m bmt′m = bm. Repeated applications of such steps may create in w some

new letters bm, bm+1, . . . so that we may also have to do “reverse” cancellations like

tmbm+1t
−1
m = bm, tmbm+3t

−1
m = bm+1, etc... or t′mbmt′

−1
m = bm, t′mbm+2t

′−1
m =

bm+1, etc... That is, bringing w to normal form we never get a bi outside ⟨bm, bm+1, . . .⟩.
If, in addition, w is in ⟨b, c⟩, then the normal form we obtained should contain no

letters t±1
m or t′

±1
m . That is, if w is in ⟨b, c⟩, it in fact is in ⟨bm, bm+1, . . .⟩, and we

have ⟨b, c⟩ ∩ ⟨bm, tm, t′m⟩ = ⟨bm, bm+1, . . .⟩.
The second equality stated by the lemma is proved analogously. □

Rules (5.1) define isomorphisms inside the free group G = ⟨a, b, c⟩ of rank

3 also, and we can define the HNN-extension G ∗ξm,ξ′m
(tm, t′m) which is noting

13
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but the ordinary free product ⟨a⟩ ∗ Ξm. Since G = ⟨a⟩ ∗ ⟨b, c⟩ and the subgroup

⟨b, c⟩∩⟨bm, tm, t′m⟩ = ⟨bm, bm+1, . . .⟩ involves no occurrence of the letter a, we from

Lemma 5.1 deduce:

Lemma 5.2. In the above notations we for any m have:

G ∩ ⟨bm, tm, t′m⟩ = ⟨bm, bm+1, . . .⟩,

G ∩ ⟨bm−1, tm, t′m⟩ = ⟨bm−1, bm−2, . . .⟩.

5.2. Some special benign subgroups. With above information we obtain three

types of benign subgroups:

Corollary 5.1. In the above notations for any integer m:

(1) ⟨bm, bm+1, . . .⟩ is benign in ⟨b, c⟩ for the finitely presented group Ξm and its

3-generator subgroup ⟨bm, tm, t′m⟩,
(2) ⟨bm−1, bm−2, . . .⟩ is benign in ⟨b, c⟩ for the finitely presented group Ξm and

its 3-generator subgroup ⟨bm−1, tm, t′m⟩,
(3) Bm = ⟨. . . b−2, b−1; bm, bm+1, . . .⟩ is benign in ⟨b, c⟩ for the finitely presented

group

Θm =
(
Ξm ∗⟨bm,tm,t′m⟩ x

)
∗⟨b,c⟩

(
Ξ0 ∗⟨b−1,t0,t′0⟩ x

′)
and its 4-generator subgroup Pm =

〈
⟨b, c⟩x, ⟨b, c⟩x′

〉
.

Proof. Points (1) and (2) directly follow Lemma 5.1.

Bm is the (free) product of ⟨bm, bm+1, . . .⟩ and ⟨b−1, b−2, . . .⟩. Hence, point (3)

follows from Lemma 4.3 and Corollary 4.2 for r = 2, G = ⟨b, c⟩, K1 = Ξm, K2 = Ξ0,

L1 = ⟨bm, tm, t′m⟩, L2 = ⟨b−1, t0, t
′
0⟩, A1 = ⟨bm, bm+1, . . .⟩, A2 = ⟨b−1, b−2, . . .⟩.

Then Θm is noting but the group Θ from (4.3). □

Now we are able to replace our initial Γ from (3.1) by a finitely presented

alternative:

(5.3) Γ̄ = Θm ∗Pm
(g, h, k)

with fixing action for g, h, k on the finitely generated subgroup Pm.

Lemma 5.3. In above notations the following equalities hold in Γ̄:

(1) ⟨b, c⟩ ∩ Pm = Bm,

(2) ⟨b, c, g, h, k⟩ = Γ.

Proof. The first point follows fom (3) in Corollary 5.1 (it holds in Θm, as it

holds in Γ̄). Next ⟨b, c, g, h, k⟩ = ⟨b, c⟩ ∗⟨b,c⟩ ∩Pm
(g, h, k) = Γ by (1) in Corollary 2.2

and Remark 2.1. □

14
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5.3. Presenting R as a join of benign subgroups. Following the original steps

in subsection 3.1 we now would have to build the HNN-extension Γ̄ ∗R a by fixing

the subgroup R = ⟨gfb−1
f | f ∈ Em⟩ of Γ̄ by some stable letter a. But since R is

not finitely generated, that HNN-extension would not be finitely presented, and we

need some extra complications to arrive to a finitely presented free construction.

Denote the subgroup Φm = ⟨b0, . . . , bm−1, g, h0, . . . , hm−1⟩ in Γ̄, and notice that:

Lemma 5.4. Φm is freely generated by 2m+1 elements b0, . . . , bm−1, g, h0, . . . , hm−1

in Γ̄.

Proof. Firstly, B̄m = ⟨b0, . . . , bm−1⟩ has trivial intersection with Pm because

(1) in Lemma 5.3 implies B̄m ∩ Pm ≤
(
B̄m ∩ ⟨b, c⟩

)
∩ Pm = B̄m ∩

(
⟨b, c⟩ ∩ Pm

)
=

B̄m ∩ Bm = frm[o]−− due to ⟨Bm, B̄m⟩ = Bm ∗ B̄m. Therefore, we in Γ̄ by (1)

in Corollary 2.2 and by Remark 2.1 have:

⟨b0, . . . , bm−1, g, h, k⟩ = B̄m∗B̄m ∩ Pm
(g, h, k) = B̄m∗frm[o]−−(g, h, k) = B̄m∗⟨g, h, k⟩

which simply is a free group of rank m + 3. Since h0, . . . , hm−1 generate a free

subgroup inside ⟨g, h, k⟩, they together with b0, . . . , bm−1 generate a free subgroup

(of rank 2m+ 1) inside ⟨b0, . . . , bm−1, g, h, k⟩. □

Next we need a series of auxiliary benign subgroups inside Γ̄. For an s = 1, . . . ,m

and for a sequence f = (j0, . . . , js−2, js−1) ∈ Es denote f+ = (j0, . . . , js−2, js−1+1)

in Es, i.e., to get f+ we just add 1 to the last coordinate of f . In these notations

for any f the group Γ̄ contains the elements gf+· b−1
s−1 ·g

−1
f , such as, gh

2
0h

5
1h

3
2h

8
3 · b−1

3 ·
g−h2

0h
5
1h

3
2h

7
3 for f = (2, 5, 3, 7) with s = 4. Denote:

VEs =
〈
gf+ · b−1

s−1 · g
−1
f | f ∈ Es

〉
=

=
〈
gh

i0
0 ···h

is−2
s−2 h

is−1+1

s−1 · b−1
s−1 · g

−h
i0
0 ···h

is−2
s−2 h

is−1
s−1 | i0 . . . , is−2, is−1 ∈ Z

〉
,

and establish a property for VEs :

Lemma 5.5. VEs
is a benign subgroup in Γ̄ for the some explicitly given finitely

presented group and its finitely generated subgroup.

Proof. By Lemma 5.4 for any s = 1, . . . ,m the elements bs−1, g, h0, . . . , hs−1

are free generators for the (s+2)-generator subgroup ⟨bs−1, g, h0, . . . , hs−1⟩ of Φm.

Hence, each of the following maps λi, j can be continued to some isomorphism on
15
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⟨bs−1, g, h0, . . . , hs−1⟩:
(5.4)
λs−1, 0 sends bs−1, g, h0, . . . , hs−2, hs−1 to bs−1, g

h0 , h0, . . . , hs−2, hs−1;

λs−1, 1 sends bs−1, g, h0, . . . , hs−2, hs−1 to bs−1, g
h1 , hh1

0 , . . . , hs−2, hs−1;

...
...

...

λs−1, s−1 sends bs−1, g, h0, . . . , hs−2, hs−1 to bs−1, g
hs−1 , h

hs−1

0 , . . . , h
hs−1

s−2 , hs−1.

In particular, for m = 1 the map λ0,0 sends b0, g, h0 to b0, g
h0 , h0; for m = 2 the map

λ1,0 sends b1, g, h0, h1 to b1, g
h0 , h0, h1 and λ1,1 sends b1, g, h0, h1 to b1, g

h1 , hh1
0 , h1,

etc...

Introducing for each isomorphism λi, j a respective stable letter li, j we construct

the HNN-extension:

Λs = Γ̄ ∗λs−1, 0, ... ,λs−1, s−1
(ls−1, 0, . . . , ls−1, s−1)

for each of s = 1, . . . ,m.

The effects of conjugation by elements ls−1, 0, . . . , ls−1, s−1 on the products gf+ ·
b−1
s−1 · g

−1
f is very easy to understand: ls−1, i just adds 1 to the i’th coordinate of f ,

say, for s = 4, f = (2, 5, 3, 7) and l3, 2 = l4−1, 3−1 we have:

(5.5)(
gf+ · b−1

3 · g−1
f

)l3, 2
=

(
gh2

)(hh2
0

)2(
h
h2
1

)5
h3
2 h8

3 · b−1
3 ·

(
gh2

)−(
h
h2
0

)2(
h
h2
1

)5
h3
2 h7

3

= gh2·h−1
2 h2

0h2h
−1
2 h5

1h2h
3
2h

8
3 · b−1

3 · g−h2·h−1
2 h2

0h2h
−1
2 h5

1h2h
3
2h

7
3

= gh
2
0h

5
1h

4
2h

8
3 · b−1

3 · g−h2
0h

5
1h

4
2h

7
3 = gf ′ + · b−1

3 · g−1
f ′ ∈ VE4

where f ′ = (2, 5, 3+1, 7) = (2, 5,4, 7). In particular, actions of the above letters li, j
keep the elements from VEs inside VEs .

For the sequence f0 = (0, . . . , 0) ∈ Es we have g
f+
0

· b−1
s−1 · g

−1
f0

= ghs−1 · b−1
s−1 · g−1.

Applying the conjugate collection process of subsection 2.4 for X = {ghs−1·b−1
s−1·g−1}

and for Y = {ls−1, 0, . . . , ls−1, s−1} we see that any element w from ⟨X,Y⟩ ≤ Λs is

a product of elements of gf+·b−1
s−1 ·g

−1
f (for certain sequences f ∈ Es) and of certain

powers of the stable letters ls−1, 0, . . . , ls−1, s−1. And w is inside Γ̄ if and only if all

those powers are cancelled out in the normal form, and w in fact is in VEs
, that is,

denoting Ls = ⟨ghs−1 · b−1
s−1 · g−1, ls−1, 0, . . . , ls−1, s−1, ⟩ we have:

Γ̄ ∩ Ls = VEs ,

i.e., VEs
is benign in Γ̄ for the above finitely presented group Λs and for its (s+1)-

generator subgroup Ls. □

Lemma 5.6. R = ⟨gfb−1
f | f ∈ Em⟩ is a benign subgroup in Γ̄ for some explicitly

given finitely presented group and its finitely generated subgroup.
16
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Proof. First show that R is generated by its m+1 subgroups ⟨g⟩, VE1
, . . . , VEm

.

For each s = 1, . . . ,m denote ZEs = ⟨gfb−1
f | f ∈ Es⟩. In these notation R is noting

but ZEm
for s = m. It is easy to see that ⟨ZEs−1

, VEs
⟩ = ZEs

for each s (when s = 1,

then take ⟨g⟩ as ZE0
), see details in [17] based on an original idea from [9]. Then:

ZEm
= ⟨ZEm−1

, VEm
⟩ = ⟨ZEm−2

, VEm−1
, VEm

⟩ = · · · =
〈
⟨g⟩, VE1

, . . . VEm−1
, VEm

〉
.

By Lemma 5.5 each VEs is benign Γ̄ for an explicitly given finitely presented group

Λs and its finitely generated subgroup Ls. And the finitely generated ⟨g⟩ is clearly

benign in Γ̄ for the finitely presented group Λ0 = Γ̄ and its finitely generated

subgroup L0 = ⟨g⟩.
It remains to load these components into Corollary 4.2 and into (4.3) to get the

following finitely presented overgroup holding Γ̄:

(5.6) Θ̄ =
(
· · ·

((
(Λ0 ∗L0 t0) ∗Γ̄ (Λ1 ∗L1 t1)

)
∗Γ̄ (Λ2 ∗L2

t2)
)
· · ·

)
∗Γ̄ (Λm ∗Lm

tm),

and its finitely generated subgroup Q =
〈
Γ̄ t0 , . . . , Γ̄ tm

〉
. □

5.4. Proof for Theorem 1.1. Now we can use the above constructions to finish

the main proof. The last two steps of the construction in Section 3 are effortless

to mimic. As Θ̄ of (5.6) is finitely presented, and Q is finitely generated, the HNN-

extension Θ̄∗Q a is finitely presented. Inside Θ̄∗Q a the elements a, b, c generate the

same free subgroup discussed in Section 3, and we can again define an isomorphism

ρ sending a, b, c to a, bc
m

, c together with the finitely presented analog of ∆ from

(3.2):

(5.7) ∆̄ =
(
Θ̄ ∗Q a

)
∗ρ r.

For any B ⊆ Em we in analogy with Section 3 can denote WB = ⟨gf, a, r | f ∈ B⟩ in

∆̄. Since each gf , a, r from ∆̄, in fact, is from ∆ already, we in ∆̄ have the analog

of (3.3) also:

(5.8) G ∩WB = AωmB.

Since AB is benign in G, by Theorem 1.1 hypothesis there is a finitely presented

(explicitly given) overgroup KB of G with a finitely generated subgroup LB so that

G ∩ LB = AB in KB.

As ∆̄ was built purely via free constructions in which we are in position to

control which new elements (such as, stable letters) to adjoin, we can make sure no

element of ∆̄ outside G is contained in KB, and hence, we can construct the finitely

presented amalgamated product ∆̄ ∗G KB.
17



V. S. ATABEKYAN, V. H. MIKAELIAN

The subgroup AB is benign also in ∆̄. Indeed, the group ∆̄ ∗G KB is finitely

presented, and to its subgroup LB = ⟨AB, LB⟩ we may apply (3) in Corollary 2.1

to get ∆̄ ∩ LB = AB, because AB ∩G = AB and LB ∩G = AB.

Next, being finitely generated ⟨b, c⟩ is benign in ∆̄ for the finitely presented ∆̄

and for the finitely generated ⟨b, c⟩, see remark in subsection 2.2.

Hence by Corollary 4.2 the join
〈
AB, ⟨b, c⟩

〉
= WB is benign in ∆̄. As its finitely

presented overgroup we may take:

Ψ =
(
(∆̄ ∗G KB) ∗LB y

)
∗∆̄

(
∆̄ ∗⟨b,c⟩ y′

)
(see (4.3)), and as a finitely generated subgroup we may take L′ =

〈
∆̄y, ∆̄y′〉

.

G clearly is benign in ∆̄. Hence by (5.8) and by Corollary 4.1 the intersection

G ∩WB = AωmB is benign in ∆̄ for the finitely presented group:

(5.9) KωmB = (Ψ ∗L′ z) ∗∆̄ (∆̄ ∗G z′),

and its finitely generated subgroup:

(5.10) LωmB = ∆̄z z′
,

i.e., ∆̄ ∩ LωmB = AωmB in KωmB. But since G ≤ ∆̄ and AωmB ≤ G, we conclude

that G ∩ LωmB = AωmB also holds in KωmB.

This completes the proof of Theorem 1.1.
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linear processes with memory.
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1. Introduction

The present paper is concerned with the following general parametric estimation

problem. Let θ := (θ1, . . . , θp) ∈ Θ ⊂ Rp be an unknown vector parameter appearing

(a) in the probability density of some random variable X, or (b) in the finite-

dimensional probability densities of a random process {X(t), t ∈ U}, where U = R
in the continuous-time (c.t.) case and U = Z in the discrete-time (d.t.) case. The

problem of interest is to estimate the value of the parameter θ based on the sample

XT , where in case (a) XT := {X1, . . . , XT }, X1, . . . , XT being T independent

observations of the random variable X, and in case (b) XT is an observed finite

realization of the process X(t): XT := {X(t), t ∈ DT }, where DT := [0, T ]

in the c.t. case and DT := {1, . . . , T} in the d.t. case. The usual methods of

constructing estimators of the unknown parameter θ used in mathematical statistics

(for example, the method of moments, the maximum likelihood method, the least-

squares method, the Whittle method, etc.), as a rule, require finding the roots

of some system of (possibly non-linear) estimating equations with respect to the

unknown θ = (θ1, . . . , θp) of the form:

(1.1) Fi(XT , θ) = 0, i = 1, . . . p,
20
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where Fi(θ) := Fi(XT , θ) are certain functionals of XT depending on θ.

The classical estimation methods often lead to estimators with good asymptotic

properties. For example, in many cases one can prove that for sufficiently large

values T there exist, with probability near 1, a root θ̂T of the system of estimating

equations (1.1) which is a consistent estimator of θ, that is, p − limT→∞θ̂T =

θ0, where p − lim denotes the limit in probability, and θ0 ∈ Θ is the unknown

true value of the parameter θ. Moreover, under broad regularity conditions, the

classical estimation methods often lead to τT -consistent and asymptotically normal

estimators, where τT is a comparatively rapidly increasing function. (Recall that

for a non-random function τT = τ(T ) increasing without bound as T → ∞, we

say that the statistic θ̂T is a τT -consistent estimator for θ if the distribution of the

random vector τT (θ̂T −θ0) converges (as T → ∞) to a non-degenerate distribution.

These classical estimation methods, however, have two disadvantages. First, it is

only for relatively simple situations that the system of estimating equations (1.1) has

an explicit solution, and finding the roots of the system (1.1) often turns out to be

very hard problem. Second, for the roots to be consistent, the estimating equations

need to behave well throughout the parameter set. Another issue that arise in the

statistical analysis of stationary models is that the data are frequently tapered

before calculating the statistic of interest, and the statistical inference procedure,

instead of the original data XT , is based on the tapered data: Xh
T := {hT (t)X(t), t ∈

DT }, where hT (t) := h(t/T ) with h(t), t ∈ R being a taper function.

Therefore it is of considerable interest to find more easily constructed (simplified)

estimators θ̌T that are asymptotically statistically equivalent to θ̂T , that is, having

the same asymptotic (as T → ∞) properties as the estimator θ̂T . The problem of

constructing simplified estimators with good asymptotic properties based on the

standard (non-tapered) data XT goes back to the classical work of Le Cam [16],

and then it was developed by Dzhaparidze [8, 9] (see also Beinicke and Dzhaparidze

[1] and Dzhaparidze [10]).

In this paper we focus on the Whittle estimation method of the spectral parameters

of stationary models with tapered data. We provide sufficient conditions for the

tapered Whittle estimator to be
√
T -consistent and asymptotically normal. Then

we construct simplified Whittle estimators based on the tapered data, and show that

under broad regularity conditions on the spectral density of the model the Whittle

estimator and the simplified Whittle estimator are asymptotically statistically equi-

valent, in the sense that these estimators possess the same asymptotic properties.
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The processes considered will be discrete-time and continuous-time Gaussian, linear

or Lévy-driven linear processes with memory.

2. The model

We will consider here stationary processes possessing spectral density functions,

and will distinguish the following three models.

(a) Discrete-time linear model. The process {X(t), t ∈ Z} is a discrete-time linear

process of the form:

(2.1) X(t) =

∞∑
k=−∞

a(t− k)ξ(k),

∞∑
k=−∞

|a(k)|2 < ∞,

where {ξ(k), k ∈ Z} ∼ WN(0,1) is a standard white-noise, that is, a sequence

of orthonormal random variables. The spectral density f(λ) of X(t) is given by

formula:

(2.2) f(λ) =
1

2π

∣∣∣∣∣
∞∑

k=−∞

a(k)e−ikλ

∣∣∣∣∣
2

=
1

2π
|â(λ)|2, λ ∈ [−π, π].

In the case where ξ(k) is a sequence of Gaussian random variables, the process X(t)

is Gaussian.

(b) Continuous-time linear model. The process {X(t), t ∈ R} is a continuous-time

linear process of the form:

(2.3) X(t) =

∫
R
a(t− s)dξ(s),

∫
R
|a(s)|2ds < ∞,

where {ξ(s), s ∈ R} is a process with orthogonal increments and E|d ξ(s)|2 = ds.

The spectral density f(λ) of X(t) is given by formula:

(2.4) f(λ) =
1

2π

∣∣∣∣∫
R
e−iλta(t)dt

∣∣∣∣2 =
1

2π
|â(λ)|2, λ ∈ R.

In the case where ξ(s) is a Gaussian process, the process X(t) is Gaussian.

(c) Lévy-driven linear model. We first recall that a Lévy process, {ξ(s), s ∈ R} is

a process with independent and stationary increments, continuous in probability,

with sample-paths which are right-continuous with left limits and ξ(0) = ξ(0−) = 0.

The Wiener process {B(s), s ≥ 0} is a typical example of centered Lévy processes.

A Lévy-driven linear process {X(t), t ∈ R} is a real-valued c.t. stationary process

defined by (2.3), where ξ(s) is a Lévy process satisfying the conditions: Eξ(s) = 0,

Eξ2(1) = 1 and Eξ4(1) < ∞. In the case where ξ(s) = B(s), X(t) is a Gaussian

process.

The function a(·) in representations (2.1) and (2.3) plays the role of a time-

invariant filter, and the linear processes defined by (2.1) and (2.3) can be viewed
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as the output of a linear filter a(·) applied to the process {ξ(u), u ∈ U}, called the

innovation or driving process of X(t).

3. Data tapers and the tapered periodogram

In this section we introduce the data tapers and tapered periodogram. Our

inference procedures will be based on the tapered data Xh
T :

(3.1) Xh
T := {hT (t)X(t), t ∈ DT },

where DT := [0, T ] in the c.t. case and DT := {1, . . . , T} in the d.t. case, and

(3.2) hT (t) := h(t/T )

with h(t), t ∈ R being a taper function to be specified below.

For k ∈ N := {1, 2, . . .}, denote by Hk,T (λ) the tapered Dirichlet type kernel,

defined by

(3.3) Hk,T (λ) :=


∑T

t=1 h
k
T (t)e

−iλt in the d.t. case,∫ T

0
hk
T (t)e

−iλtdt in the c.t. case,

and put

(3.4) Hk,T := Hk,T (0).

Define the finite Fourier transform of the tapered data (3.1):

(3.5) dhT (λ) :=


∑T

t=1 hT (t)X(t)e−iλt in the d.t. case,∫ T

0
hT (t)X(t)e−iλtdt in the c.t. case.

and the tapered periodogram IhT (λ) of the process X(t):

IhT (λ) :=
1

CT
dhT (λ)d

h
T (−λ),(3.6)

where

(3.7) CT := 2πH2,T (0) = 2πH2,T ̸= 0.

Notice that for non-tapered case (h(t) = I[0,1](t)), we have CT = 2πT .

Throughout the paper, we will assume that the taper function h(·) satisfies the

following assumption.

Assumption 3.1. The taper h : R → R is a continuous nonnegative function of

bounded variation and of bounded support [0, 1], such that Hk ̸= 0, where

(3.8) Hk := lim
T→∞

(1/T )Hk,T , and Hk,T is as in (3.4).

Observe that in the c.t. case we have Hk =
∫ 1

0
hk(t)dt.
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Remark 3.1. The data taper h(t) normally has a maximum at t = 1/2 and

decreases smoothly to zero as t tends to 0 or 1. For the d.t. case, an example of a

taper function h(t) satisfying Assumption 3.1 is the Tukey-Hanning taper function

h(t) = 0.5(1− cos(πt)) for t ∈ [0, 1]. For the c.t. case, a simple example of a taper

function h(t) satisfying Assumption 3.1 is the function h(t) = 1− t for t ∈ [0, 1].

The benefits of tapering the data have been widely reported in the literature

(see, e.g., Brillinger [2], Dahlhaus [3]–[6], Dahlhaus and Künsch [7], Ginovyan and

Sahakyan [13, 14], Guyon [15], and references therein). For example, data-tapers

are introduced to reduce the so-called ’leakage effects’, that is, to obtain better

estimation of the spectrum of the model in the case where it contains high peaks.

Tapering also can be used to reduce the so-called ’trough effects’, that is, to obtain

better estimator of the spectrum in the case where it contains strong troughs.

Other application of data-tapers is in situations in which some of the data values

are missing. Also, the use of tapers leads to bias reduction, which is especially

important when dealing with spatial data. In this case, the tapers can be used to

fight the so-called ’edge effects’ (for details see Dahlhaus [5, 6], and Ginovyan and

Sahakyan [14]).

4. Estimation of linear spectral functionals

Linear and non-linear functionals of the periodogram play a key role in the

parametric estimation of the spectrum of stationary processes, when using the

minimum contrast estimation method with various contrast functionals (see, e.g.,

Ginovyan and Sahakyan [14], and references therein). The result that follow is used

to prove consistency and asymptotic normality of the minimum contrast estimators

based on the Whittle functionals for linear models with tapered data. Specifically,

we are interested in the nonparametric estimation problem, based on the tapered

data (3.1), of the following linear spectral functional:

(4.1) J = J(f, g) :=

∫
Λ

f(λ)g(λ)dλ,

where g(λ) ∈ Lq(Λ), 1/p + 1/q = 1. Here, and in what follows, Λ = R in the c.t.

case, and Λ = [−π.π] in the d.t. case.

As an estimator Jh
T for functional J(f), given by (4.1), based on the tapered

data (3.1), we consider the averaged tapered periodogram (or a simple ’plug-in’

statistic), defined by

Jh
T = J(IhT , g) :=

∫
Λ

IhT (λ)g(λ)dλ,(4.2)
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where IhT (λ) is the tapered periodogram of the process X(t) given by (3.6). We

will refer to g(λ) and to its Fourier transform ĝ(t) as a generating function and

generating kernel for the functional Jh
T , respectively. To state the corresponding

results we first introduce the following assumptions.

Assumption 4.1. The spectral density f and the generating function g are such

that f, g ∈ L1(Λ) ∩ L2(Λ) (f, g ∈ L2(Λ) in the d.t. case) and g is of bounded

variation.

Assumption 4.2. (A) (d.t. case). The spectral density f and the generating

function g are such that f ∈ Lp(Λ) (p ≥ 1) and g ∈ Lq(Λ) (q ≥ 1) with 1/p+1/q ≤
1/2.

(B) (c.t. case). The spectral density f and the generating function g are such that

f ∈ L1(Λ) ∩ Lp(Λ) (p ≥ 1) and g ∈ L1(Λ) ∩ Lq(Λ) (q ≥ 1) with 1/p+ 1/q ≤ 1/2.

(C) (c.t. Lévy-driven case). The filter a and the generating kernel ĝ are such that

a ∈ L2(Λ) ∩ Lp(Λ) and ĝ ∈ Lq(Λ) with 1 ≤ p, q ≤ 2 and 2/p+ 1/q ≥ 5/2.

Denote

(4.3) e(h) := lim
T→∞

TH4,T

H2
2,T

,

where Hk,T is as in (3.4), and

(4.4) σ2
h(J) := 4πe(h)

∫
Λ

f2(λ)g2(λ)dλ+ κ4e(h)

[∫
Λ

f(λ)g(λ)dλ

]2
,

where κ4 is the fourth cumulant of ξ(1).

The proof of the next theorem can be found in Ginovyan and Sahakyan [13] (see

also Ginovyan [11]).

Theorem 4.1. Let the functionals J := J(f, g) and Jh
T := J(IhT , g) be defined by

(4.1) and (4.2), respectively. Then under Assumptions 3.1, 4.1 and 4.2 the following

asymptotic relation holds:

(a) E(Jh
T )− J → 0 as T → ∞.

(b) T 1/2
[
E(Jh

T )− J
]
→ 0 as T → ∞.

(c) lim
T→∞

TVar(Jh
T ) = σ2

h(J),

(d) T 1/2
[
Jh
T − J

] d→ η as T → ∞,

where E[·] is the expectation operator, the symbol d→ stands for convergence in

distribution, and η is a normally distributed random variable with mean zero and

variance σ2
h(J) given by (4.4).
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5. The Whittle estimation procedure

We assume here that the spectral density f(λ) belongs to a given parametric

family of spectral densities F := {f(λ, θ) : θ ∈ Θ}, where θ := (θ1, . . . , θp) is an

unknown parameter and Θ is a subset of the Euclidean space Rp. The problem

of interest is to estimate θ on the basis of the tapered data (3.1), and investigate

the asymptotic (as T → ∞) properties of the suggested estimators. We use here

the Whittle estimation method to estimate θ. This method, originally devised

by P. Whittle for d.t. stationary processes (see Whittle [17]), is based on the

smoothed periodogram analysis on a frequency domain, involving approximation of

the likelihood function and asymptotic properties of empirical spectral functionals.

The Whittle procedure of estimation of a spectral parameter θ based on the tapered

sample (3.1) is to choose the estimator θ̂T,h to minimize the weighted tapered

Whittle functional:

(5.1) UT,h(θ) :=
1

4π

∫
Λ

[
log f(λ, θ) +

IhT (λ)

f(λ, θ)

]
· w(λ) dλ,

where IhT (λ) is the tapered periodogram of X(t), given by (3.6), and w(λ) is a weight

function (that is, w(−λ) = w(λ), w(λ) ≥ 0, w(λ) ∈ L1(R)) for which the integral

in (5.1) is well defined. In the d.t. case as a weight function we take w(λ) ≡ 1. In

the c.t. case, an example of common used weight function is w(λ) = 1/(1+λ2). So,

the Whittle estimator θ̂T,h of θ based on the tapered sample (3.1) is defined by

(5.2) θ̂T,h := Argmin
θ∈Θ

UT,h(θ),

where UT,h(θ) is given by (5.1). Thus, the tapered Whittle estimator θ̂T,h of θ is

the root of the following system of estimating equations:

Fh,i(θ) = FT,h,i(θ) := (∂/∂θi)UT,h(θ)

=
1

4π

∫
Λ

[
(∂/∂θi) log f(λ, θ) + IhT (λ)(∂/∂θi)f

−1(λ, θ)
]
· w(λ) dλ = 0, i = 1, . . . , p.

(5.3)

The tapered Whittle estimator θ̂T,h of θ possesses good asymptotic properties. To

state these properties of θ̂T,h, we first introduce the following set of assumptions.

Assumption 5.1. The true value θ0 of the parameter θ belongs to a compact set Θ

in the p-dimensional Euclidean space Rp, and f(λ, θ1) ̸= f(λ, θ2) whenever θ1 ̸= θ2

almost everywhere in Λ with respect to the Lebesgue measure.

Assumption 5.2. The functions f(λ, θ), f−1(λ, θ) and (∂/∂θk)f
−1(λ, θ), k =

1, . . . , p, are continuous in (λ, θ).
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Assumption 5.3. The functions f := f(λ, θ) and g := w(λ)(∂/∂θk)f
−1(λ, θ)

satisfy Assumption 4.1 for all k = 1, . . . , p and θ ∈ Θ.

Assumption 5.4. The functions f , g, a := a(λ, θ) and b := ĝ, where g is as in

Assumption 5.3, satisfy Assumption 4.2.

Assumption 5.5. The functions (∂2/∂θk∂θj)f
−1(λ, θ) and (∂3/∂θk∂θj∂θl)f

−1(λ, θ),

k, j, l = 1, . . . , p, are continuous in (λ, θ) for λ ∈ Λ, θ ∈ Nδ(θ0), where Nδ(θ0) :=

{θ : |θ − θ0| < δ} is some neighborhood of θ0.

Assumption 5.6. The matrices

W (θ) := ∥wij(θ)∥, A(θ) := ∥aij(θ)∥, B(θ) := ∥bij(θ)∥, i, j = 1, . . . , p(5.4)

are positive definite, where

wij(θ) =
1

4π

∫
Λ

∂

∂θi
ln f(λ, θ)

∂

∂θj
ln f(λ, θ)w(λ)dλ,(5.5)

aij(θ) =
1

4π

∫
Λ

∂

∂θi
ln f(λ, θ)

∂

∂θj
ln f(λ, θ)w2(λ)dλ,(5.6)

bij(θ) =
κ4

16π2

∫
Λ

∂

∂θi
ln f(λ, θ)w(λ)dλ

∫
Λ

∂

∂θj
ln f(λ, θ)w(λ)dλ,(5.7)

and κ4 is the fourth cumulant of ξ(1).

The next theorem, which was proved in Ginovyan [12], contains sufficient conditions

for the tapered Whittle estimator θ̂T,h to be
√
T -consistent and asymptotically

normal.

Theorem 5.1. Suppose that Assumptions 3.1 and 5.1–5.6 are satisfied. Then the

Whittle estimator θ̂T,h of an unknown spectral parameter θ based on the tapered

data (3.1) is
√
T -consistent and asymptotically normal, that is,

T 1/2
(
θ̂T,h − θ0

)
d→ Np (0, e(h)Γ(θ0)) as T → ∞,(5.8)

where Np(·, ·) denotes the p-dimensional normal law, d→ stands for convergence in

distribution, and

Γ(θ0) = W−1(θ0) (A(θ0) +B(θ0))W
−1(θ0).(5.9)

Here the matrices W, A and B are defined in (5.4)-(5.7), and the tapering factor

e(h) is given by formula (4.3).

Remark 5.1 (The variance effect). Since tapering of the data, roughly speaking,

reduces the effective length of the data, it is not surprising that the corresponding

tapered estimators, generally, will have larger variances than their non-tapered

counterparts. Specifically, using the Cauchy-Schwartz inequality for the tapering
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factor e(h) (defined by formula (4.3)) we have e(h) ≥ 1, and the equality is attained

in the non-tapered case, that is, for h(t) = I[0,1](t). Thus, the use of tapers, generally,

will result in an efficiency loss. However, as it was observed by Dahlhaus (see [6],

p.161), ’it is not correct to conclude from this that tapering always increases the

variance of the estimators’, because a taper function h can be chosen to satisfy

e(h) = 1. Moreover, in the classical asymptotic setting, for d.t. Gaussian processes

it is possible to choose the taper function h(t) so that the corresponding tapered

estimator will be asymptotically Fisher-efficient (for details see Dahlhaus [4, 6],

Ginovyan and Sahakyan [14]).

6. The Le Cam-Dzhaparidze simplified estimators

We describe here the Le Cam-Dzhaparidze approach of constructing simplified

estimators in the general setting (see Le Cam [16] and Dzhaparidze [8, 9]).

We first introduce the following set of assumptions (see Dzhaparidze [8]). In what

follows, τT = τ(T ) stands for a non-random function increasing without bound as

T → ∞.

Assumption 6.1. The system of estimating equations (1.1) has a root θ̂T which

is a consistent estimator of θ, that is, p− limT→∞θ̂T = θ0.

Assumption 6.2. For θ ∈ Θ the derivatives F (k)
i (θ) = (∂/∂θk)Fi(θ), i, k = 1, . . . p,

exist, and for any arbitrarily small ε > 0 and δ > 0

(6.1) P
(
|F (k)

i (θ0)− wik(θ0)| < ε
)
≥ 1− δ,

where Fi(θ) is as in (1.1) and W (θ) := ∥wik(θ), i, k = 1, . . . , p∥ is a non-random

matrix, which is non-degenerate for θ = θ0.

Assumption 6.3. The second derivatives F
(k,j)
i (θ) = (∂2/∂θk∂θj)Fi(θ) exist,

which are continuous for θ ∈ Θ and i, k, j = 1, . . . , p, and such that for any

arbitrarily small δ > 0 and some M < ∞,

(6.2) P
(
|F (k,j)

i (θ)| < M
)
≥ 1− δ.

Assumption 6.4. Along with (6.1), for sufficiently large T , the following stronger

inequality holds:

(6.3) P
(√

τT |F (k)
i (θ0)− wik(θ0)| < ε

)
≥ 1− δ.

Assumption 6.5. There exists a random matrix D∗ := ∥d∗ik∥, i, k = 1, . . . , p, such

that for any arbitrarily small ε > 0 and δ > 0, the inequality

(6.4) P (
√
τT |d∗ik − dik(θ0)| < ε) ≥ 1− δ
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holds for sufficiently large T and all i, k = 1, . . . , p, where dik(θ0) are the elements

of the matrix D(θ0) := W−1(θ0), and W (θ) is as in Assumption 6.2.

Theorem 6.1 (Dzhaparidze [8]). Let F(θ) be a p-dimensional vector with elements

Fi(θ), i = 1, . . . p, F(θ) be a matrix with elements F
(k)
i (θ) i, k = 1, . . . p, and θ∗T

be an arbitrary τ∗T -consistent estimator of θ, where
√
τT /τ

∗
T → 0 as T → ∞. The

following assertions hold:

(a) Under Assumptions 6.1-6.3 the estimator θ̌1,T := θ∗T − F−1(θ∗T )F (θ∗T ) is

asymptotically equivalent to θ̂T in the sense that

p− lim
T→∞

τT

(
θ̂T − θ̌1,T

)
= 0.

(b) Under Assumptions 6.1-6.5 the estimators of the form θ̌T := θ∗T −D∗F (θ∗T )

are asymptotically equivalent to θ̂T in the sense that

p− lim
T→∞

τT

(
θ̂T − θ̌T

)
= 0.

Remark 6.1. Comparing assertions (a) and (b) of Theorem 6.1 one easily sees

that if D∗ = F−1(θ∗T ), then the estimator θ̌1,T coincides with θ̌T .

7. Simplified Whittle estimators for spectral parameters with

tapered data

As it was stated above (see Theorem 5.1), the tapered Whittle estimator θ̂T,h of

θ possesses good asymptotic properties, that is, the estimator θ̂T,h is
√
T -consistent

and asymptotically normal. Moreover, for d.t. Gaussian models it is also asymptoti-

cally Fisher-efficient (see Remark 5.1).

However, generally, the estimating equations (5.3) are non-linear, and it is a

challenging problem to find the estimator θ̂T,h. So, it is important finding simpler

estimators of the parameter θ having the same asymptotic properties as θ̂T,h. The

estimators proposed here are asymptotically equivalent to the estimator θ̂T,h under

rather broad regularity conditions on the spectral density function f(λ, θ).

Theorem 7.1. Let Fh(θ) be a p-dimensional vector with elements Fi,h(θ) (i =

1, . . . p) given by (5.3), θ∗T,h be an arbitrary τ∗T -consistent estimator of θ, where
4
√
T/τ∗T → 0 as T → ∞, and let D∗ := ∥d∗ik∥, i, k = 1, . . . , p, be a random matrix

whose elements d∗ik satisfy the condition (6.4). Then under assumptions of Theorem

5.1 the estimators of the form

(7.1) θ̌T,h := θ∗T,h −D∗Fh(θ
∗
T,h)

are asymptotically equivalent to the tapered Whittle estimator θ̂T,h in the sense that

p− lim
T→∞

√
T
(
θ̂T,h − θ̌T,h

)
= 0.
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Proof. The result we deduce from Theorem 6.1 by using Theorem 4.1. We show

that the Assumptions 6.2–6.4 are satisfied for functions Fh,i(θ) (i = 1, . . . p).

First, applying Theorem 4.1(a) we easily conclude that for k, j = 1, . . . , p,

lim
T→∞

E0

[
U

(kj)
T,h (θ0)

]
= wkj(θ0) =

=
1

4π

∫
Λ

∂

∂θk
ln f(λ, θ0)

∂

∂θj
ln f(λ, θ0)w(λ)dλ,(7.2)

where E0[ξ] stands for expectation with respect to probability P0, corresponding

to spectral density f(λ, θ0), and U
(kj)
T,h (θ) = (∂2/∂θk∂θj)UT,h(θ) with UT,h(θ) as in

(5.1) (for details see Ginovyan [12]).

Next, by applying Theorem 4.1(c), for the variance of U (kj)
T,h (θ0) (k, j = 1, . . . , p),

we have

lim
T→∞

√
TVar

(
U

(kj)
T,h (θ0)

)
= 0.(7.3)

Therefore, by Chebyshev’s inequality it follows that, for sufficiently large T ,

(7.4) P
(

4
√
T |F (k)

h,i (θ0)− wik(θ0)| < ε
)
≥ 1− δ,

where ε > 0 and δ > 0 are arbitrary small numbers. Hence, Assumption 6.4 is

satisfied with τT =
√
T . Since the matrix W (θ) := ∥wik(θ), i, k = 1, . . . , p∥ is

assumed to be non-degenerate for θ = θ0, Assumption 6.2 also holds. Finally, using

Theorem 4.1(a) and (c), we easily infer that the function

F
(kj)
T,h,i(θ) =

1

4π

∫
Λ

IhT (λ)
∂3

∂θi∂θk∂θj
f−1(λ, θ)w(λ)dλ

satisfies Assumption 6.3. Thus, the result follows from Theorem 6.1(b). □

Corollary 7.1. Let F(θ) be a matrix with elements F
(k)
h,i (θ) (i, k = 1, . . . p). Then

under the conditions of Theorem 7.1 the estimator

(7.5) θ̌1,T,h := θ∗T,h −F−1(θ∗T,h)Fh(θ
∗
T,h),

is also asymptotically equivalent to the estimator θ̂T,h.

Corollary 7.2. Assume that for θ ∈ Θ there exist continuous derivatives (∂/∂θi)wk,j(θ)

(i, k, j = 1, . . . , p) satisfying |(∂/∂θi)wi,k(θ)| < C, where the constant C does not

depend on θ. Then under the conditions of Theorem 7.1, the estimator

(7.6) θ̌2,T,h := θ∗T,h −W−1(θ∗T,h)Fh(θ
∗
T,h),

is also asymptotically equivalent to the estimator θ̂T,h.

Indeed, applying the theorem on the mean we easily conclude that the elements

of the matrix D(θ∗T,h) = W−1(θ∗T,h) satisfy the condition (6.4), and hence may be

chosen as the d∗i,k.
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Remark 7.1. It is easy to see that, similar to the non-tapered case (see Dzhaparidze

[8]), the estimators θ̌1,T,h and θ̌2,T,h can be constructed comparatively easily. In

fact, to find them it is necessary to have available some τ∗T -consistent estimator

with 4
√
T/τ∗T → 0 as T → ∞ and to determine the matrices F−1(θ) and W−1(θ),

respectively. Observe also that the estimators θ̌T,h, θ̌1,T,h and θ̌2,T,h are of interest

only if it is too difficult to solve the system of estimating equation (5.3) directly

for practical use. In the cases where the equations in (5.3) are linear (and so easily

solved), then clearly the estimator θ̌1,T,h coincides with θ̂T,h.
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tapered data”, Acta Appl Math., 169, 79 – 97 (2020).

[13] M. S. Ginovyan, A. A. Sahakyan, “Estimation of spectral functionals for Levy-driven
continuous-time linear models with tapered data”, Electronic Journal of Statistics, 13, 255
– 283 (2019).

[14] M. S. Ginovyan, A. A. Sahakyan, “Statistical inference for stationary models with tapered
data”, Statistics Surveys, 15, 154 – 194 (2021).

[15] X. Guyon, Random Fields on a Network: Modelling, Statistics and Applications, Springer,
New York (1995).

[16] L. Le Cam, “On the asymptotic theory ofestimation and testing hypotheses”, Proc. 3rd
Berkeley Sympos. Math. Stat. Probab., 1, 129 – 156 (1956).

[17] P. Whittle, Hypothesis Testing in Time Series, Hafner, New York (1951).

Поступила 03 апреля 2023

После доработки 03 апреля 2023

Принята к публикации 15 августа 2023

31



Известия НАН Армении, Математика, том 59, н. 1, 2024, стр. 32 – 53.

MOVABILITY OF MORPHISMS IN AN ENRICHED
PRO-CATEGORY AND IN A J-SHAPE CATEGORY

P. S. GEVORGYAN, I. POP

Moscow State Pedagogical University, Moscow, Russia
Al. I. Cuza University, Iasi, Romania

E-mails: pgev@yandex.ru; ioanpop@uaic.ro

Abstract. Various types of movability for abstract classical pro-morphisms or coherent mappings,
and for abstract classical or strong shape morphisms was given by the same authors in some
previous paper [10], [11], [12]. In the present paper we introduce and study the notions of (uniform)
movability, and (uniform) co-movability for a new type of pro-morphisms and shape morphisms
belonging to the so called enriched pro-category proJ -C and to the corresponding shape category
ShJ

(C,D)
, which were introduced by N. Uglešić [27].
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1. Introduction

The notion of movability for metric compacta was introduced by K. Borsuk

[2] as an important shape invariant. The movable spaces are a generalization of

spaces having the shape of ANR’s. The movability assumption allows a series of

important results in algebraic topology (like the Whitehead and Hurewicz theorems)

to remain valid when the homotopy pro-groups are replaced by the corresponding

shape groups. The term "movability"comes from the geometric interpretation of

the definition in the compact case: if X is a compactum lying in a space M ∈ AR,

one says that X is movable if for every neighborhood U of X in M there exists a

neighborhood V ⊂ U of X such that for every neighborhood W ⊂ U of X there

is a homotopy H : V × [0, 1] → U such that H(x, 0) = x and H(x, 1) ∈ W for

every x ∈ V . One shows that the choice of M ∈ AR is irrelevant [2]. After the

notion of movability had been expressed in terms of ANR-systems for arbitrary

topological spaces [16], [17], it became clear that one could define it in arbitrary

pro-categories. The definition of a movable object in an arbitrary pro-category and

that of uniform movability were both given by Maria Moszyńska [20]. Uniform

movability is important in the study of mono- and epi-morphisms in pro-categories

and in the study of the shape of pointed spaces. In the book of Sibe Mardešić and
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Jack Segal [17] all these approaches and applications of various types of movability

are discussed.

Besides the classic case of movability pro-objects and shape objects, some notions

of movability for some morphisms appear in the papers of T. Yagasaki [28] and [29],

Z.Čerin [3], and D. A. Edwards and P. Tulley McAuley [6]. Unfortunately, these

approaches are just particular cases and they do not deal with the movability of

shape morphisms in the general case of an abstract shape theory.

Some categorical approaches to movability in shape theory were given by P.S.

Gevorgyan [7], [8], P.S. Gevorgyan and I. Pop [9], Avakyan and Gevorgyan [1], and

I. Pop [21], [23].

The idea of considering the notions of movability for abstract pro-morphisms

and shape morphisms came from the article [22] of the second author, in which the

notion of movability is defined for a covariant functor and for a natural transformation

(functorial morphism). Then, considering the inverse systems as functors and the

pro-morphisms as natural transformations, various types of movability can be obtained,

for pro-morphisms and shape morphisms, which is done in the papers of P.S.

Gevorgyan and I. Pop [10], [11], [12]. But what is achieved by introducing this

property? In short: if m : X → Y is a pro-morphism or a shape morphism and if X

or Y is a movable pro-object or a shape-object thenm is a movable morphism. And if

Y = X and m = 1X , then X is movable if and only if the morphism 1X is movable.

We see that the movability of morphisms (pro- or shape-) is a generalization of

the movability of objects in that category. And then, to obtain a theorem on the

morphism m, assuming that X or Y is movable, it may happen that the same result

should be obtained with the weaker condition that m be movable.

In the present paper we introduce and study the notions of movability for a

new type of pro-morphisms and shape morphisms associated with a category C and

a pair (C,D) respectively, namely belonging to a so called enriched pro-category

proJ -C, and respectively to the corresponding shape category ShJ(C,D) having as the

realizing subcategory the category proJ -D for (J,≤) a directed partially ordered

set, according to the article [27] by N. Uglešić.

Because by particularization of the set (J,≤) one can obtain the classical abstract

shape theory and the so-called coarse shape theory, the results of this article can

be considered as generalizations of the corresponding results from the papers [9],

[10], and [12].
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2. Enriched pro-category and J-shape category

In this section are given the notions and results from [27] necessary for the

approach of our paper. Other notions and necessary results from shape theory can

be found in the books [17] and [4].

Definition 2.1. Let C be a category, let X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, qµµ′ ,M)

be inverse systems in C and let J = (J,≤) be a directed partially ordered set. A

J-morphism (of X to Y in C) is every triple (X, ((f jµ), ϕ),Y), denoted (f jµ, ϕ) :

X → Y, where ((f jµ), ϕ) is an ordered pair consisting of a function ϕ : M → Λ ,

called the index function, and, for each µ ∈ M , of a family (f jµ) of C-morphisms

f jµ : Xϕ(µ) → Yµ, j ∈ J , such that, for every related pair µ′ ≥ µ in M , there exists

a λ ∈ Λ, λ ≥ ϕ(µ), ϕ(µ′), and there exists a j ∈ J so that for every j′ ≥ j,

(2.1) f j
′

µ pϕ(µ)λ = qµµ′f j
′

µ′pϕ(µ′)λ,

i.e., makes the following diagram commutative

Xλ

pϕ(µ)λ

||

pϕ(µ′)λ

##
Xϕ(µ)

fj
′
µ

��

Xϕ(µ′)

fj
′

µ′

��
Yµ Yµ′

qµµ′oo

If the index function ϕ is increasing and, for every pair µ ≤ µ′, one may put

λ = ϕ(µ′), then (f jµ, ϕ) is said to be a simple J-morphism.

If, in addition,M = Λ and ϕ = 1Λ, then (f jλ, 1Λ) is said to be a level J-morphism.

Further, if the equality (2.1) holds for every j ∈ J , then (f jµ, ϕ) : X → Y is said

to be a commutative J-morphism.

Remark 2.1. a) The composition of two J-morphisms (f jµ, ϕ) : X = (Xλ, pλλ′ ,Λ) →
Y = (Yµ, qµµ′ ,M) and (gjν , ψ) : Y → Z = (Zν , rνν′ , N) is defined as (hjν , χ) : X →
Z, with χ = ϕ◦ψ and hjν = gjν ◦f

j
ψ(ν), j ∈ J , ν ∈ N . This composition is associative.

b) The identity J-morphism of the inverse system X = (Xλ, pλλ′ ,Λ) is (1jXλ , 1Λ) :

X → X with 1jXλ = 1Xλ for any j ∈ J , where 1Xλ is the identity morphism of Xλ

in the category C.

c) For a category C and a directed partially ordered set J there exists a category

invJ -C having the object class Ob(invJ -C) = Ob(inv-C) and the morphism class

Mor(invJ -C) of all sets (invJ -C)(X,Y) of all J-morphisms (f jµ, ϕ) of X to Y,

endowed with the composition and identities described in a) and b).
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Definition 2.2. A J-morphism (f jµ, ϕ) : X → Y of inverse systems in C is said to

be equivalent to a J-morphism (f ′
j
µ), ϕ

′) : X → Y, denoted by (f jµ, ϕ) ∼ (f ′
j
µ, ϕ

′),

if every µ ∈ M admits a λ ∈ Λ, λ ≥ ϕ(µ), ϕ′(µ), and a j ∈ J such that, for every

j′ ≥ j,

(2.2) f j
′

µ pϕ(µ)λ = f ′
j′

µ pϕ′(µ)λ,

i.e., makes the following diagram commutative

Xλ

pϕ′(µ)λ

��

pϕ(µ)λ // Xϕ(µ)

fj
′
µ

��
Xϕ′(µ)

f ′j′
µ

// Yµ

Remark 2.2. a) The defining equality (2.2) holds for every λ′ ≥ λ;

b) The relation ∼ is an equivalence relation on each set (invJ -C)(X,Y);

c) The equivalence class [(f jµ, ϕ)] of a J-morphism is denoted by f ;

d) Let (f j , ϕ), (f ′
j
µ, ϕ

′) : X → Y and (gjν , ψ), (g
′j
ν , ψ

′) : Y → Z be J-morphisms

of inverse systems in C. If (f jµ, ϕ) ∼ (f ′
j
µ, ϕ

′) and (gjν , ψ) ∼ (g′
j
ν , ψ

′), then (gjν , ψ)(f
j
µ, ϕ) ∼

(g′
j
ν , ϕ

′)(f ′
j
µ, ϕ

′);

e) By the above remarks one may compose the equivalence classes of J-morphisms

of inverse systems in C by means of any pair of their representatives, i.e., gf = h,

where h is the equivalence class of (hjν , h) = (gjν , ψ)(f
j
µ, ϕ) = (gjνf

j
g(ν), ϕψ). The

corresponding quotient category (invJ -C)/ ∼ is denoted by proJ -C. The morphisms

of this category are called J-pro-morphisms. There exists a subcategory (proJ -C)c ⊆
proJ -C determined by all equivalence classes having commutative representatives.

This category is isomorphic to the quotient category (invJ -C)c/ ∼. Also pro-C =

(inv-C)/ ∼ can be considered as a subcategory of (proJ -C)c and, consequently as a

subcategory of proJ -C
f) Now using the fact that if (Λ,≤) is a directed set and (M,≤) is a cofinite

directed set, then every function ϕ : M → Λ admits an increasing function ϕ′ :

M → Λ such that ϕ ≤ ϕ′ (see [17], Ch.I, §1.2, Lemma 1), it can be proved that: if

f : X = (Xλ, pλλ′ ,Λ) → Y = (Yµ, qµµ′ ,M) is a morphism in proJ -C, with (M,≤)

cofinite, then f admits a simple representative (f ′
j
µ, ϕ

′) : X → Y ([27], Lemma 6).

g) There exists a covariant functor I ≡ IJC : pro-C → proJ -C, by: I(X) = X, for

every inverse system X in C, and if f ∈ pro-C(X,Y) and f = [(fµ, ϕ)], then I(f) =

[(f jµ, ϕ)] ∈ (proJ -C)(X,Y), where for each µ ∈ M , f jµ = fµ for all j ∈ J . Thus,

every induced J-morphism is commutative, and therefore IJC : pro-C → (proJ -C)c ⊆
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proJ -C. It is easy to see that this functor is faithful ([27], Theorem 1), but it is not

full ([27], Remark 2).

h) Every inverse system X in C is isomorphic in proJ -C to a cofinite inverse

system X′.

An important theorem is the following ([27], Theorem 2; [17], Ch.I, §1.3, Theorem 3):

Theorem 2.1. Let f : X → Y ∈ (proJ -C)(X,Y). Then there exist inverse systems

X′ and Y′ in C having the same cofinite index set (N,≤), there exists a morphism

f ′ : X′ → Y′ having a level representative (f ′
j
ν , 1N ) and there exists isomorphisms

i : X → X′ and j : Y → Y′ of proJ -C such that the following diagram in proJ -C
commutes

X

i
��

f // Y

j

��
X′

f ′
// Y′

Remark 2.3. a) If J = {1}, then pro(1)-C = pro-C;

b) If (J,≤) = (N,≤), then proN-C = pro∗-C is the pro-category obtained from

the category (inv∗-C) with so-called, ∗-morphisms [14];

c) If J is a directed partially ordered set having maxJ , then proJ -C ∼= pro-C.

The "inclusion"functor I : pro-C → proJ -C is a category isomorphism;

d) If J and K are finite directed partially ordered sets, then there exist the

isomorphisms: proJ -C ∼= proK-C ∼= pro-C;

e) If there exists maxJ , then for every L there exists the canonical inclusion

functor I : proJ -C → proL-C keeping the objects fixed;

f) Let J be a well ordered set and let K be a directed partially ordered set, both

without maximal elements, such that there exists an increasing function ϕ : J → K

such that ϕ[J ] is cofinal in K. Then there exists a functor T : proJ -C → proK-C
which keeps the objects fixed and does not depend on ϕ. Furthermore, for every

pair X and Y of inverse systems in C, X ∼= Y in proJ -C iff X ∼= Y in proK-C.

Remark 2.4. A proJ -C category is called an enriched pro-category. An enriched pro-

category is interesting and useful by itself because, in general, it divides (classifies)

the objects into larger classes (isomorphisms types) than the underling pro-category

pro-C. In addition, with the help of such an enriched pro-category one can construct

in the usual way a corresponding J-shape theory.

Definition 2.3. A J-pro-morphism f : X → Y is said to be proJ -D equivalent to

a J-pro-morphism f ′ : X′ → Y′, denoted by f ∼ f ′, if there exist two canonical
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isomorphisms i : X → X′ and j : Y → Y′ of pro-D such that the following diagram

in pro-D commutes:

X

f

��

i // X′

f ′

��
Y

j
// Y′

The equivalence class of a J-pro-morphism f : X → Y is denoted by ⟨f⟩.

Remark 2.5. If f ∼ f ′ and g ∼ g′, then gf ∼ g′f ′, so the composition ⟨g⟩⟨f⟩ = ⟨gf⟩
is well defined.

Definition 2.4. For a pair of categories (C,D) with D a dense full (equivalent, full

and pro-reflective, [26]) subcategory of C, the (abstract) J-shape category ShJ(C,D) is

defined as follows. The objects of this category are all the objects of C. A morphism

F ∈ ShJ(C,D)(X,Y ) is the (proJ -D)-equivalence class ⟨f⟩ of a J-morphism f : X →
Y of proJ -D for an arbitrary choice of D-expansions p : X → X, q : Y → Y. In

other words, a J-shape morphism F : X → Y is given by a diagram

X

f
��

X

F
��

poo

Y Y
q
oo

The composition of two J-shape morphisms F : X → Y , F = ⟨f⟩ and G : Y → Z,

G = ⟨g⟩, is defined by representatives, i.e., GF : X → Z, GF = ⟨gf⟩.
The identity J-shape morphism on an object X, 1X : X → X, is the (proJ -D)-

equivalence class ⟨1X⟩ of the identity morphism 1X of X in proJ -D.

Since ShJ(C,D)(X,Y ) ≈ proJ -D(X,Y) is a set, the J-shape category ShJ(C,D) is

well defined, and that its realizing category is proJ -D.

An interesting particular case of J-shape morphism is the following: If f : X → Y

is a morphism in the category C and p : X → X, q : Y → Y are D-expansions, then

there exists a morphism f : X → Y in proJ -D, such that the following diagram in

proJ -C commutes:

X

f
��

X

f

��

poo

Y Y
q
oo

This is a result of the definition of an expansion, [17] (Ch. I, §2.1). If we take other

D-expansions p′ : X → X′, q′ : Y → Y′, we obtain another morphism f ′ : X′ → Y′

in proJ -D, such that f ′p′ = q′f . And because (f ′i)p = f ′p′ = q′f = jqf = (jf)p,
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which implies f ′i = jf , such that f ∼ f ′ in proJ -D, and in this way we can associate

with every f ∈ C(X,Y ) a proJ -D-equivalence class ⟨f⟩, i.e., a J-shape morphism

F ∈ ShJ(C,D)(X,Y ).

If one defines SJ(X) = X, X ∈ ObC, and SJ(f) = F = ⟨f⟩, f ∈ C(X,Y ), we

obtain a covariant functor SJ ≡ SJ(C,D) : C → ShJ(C,D), called (abstract) J-shape

functor.

Theorem 2.2 ([27], Theorem 5). Let D be a full and pro-reflective subcategory

of C and J a directed partially ordered set. Then, for every pair P,Q ∈ ObD, the

following statements are equivalent:

(i) P and Q are isomorphic objects of D, P ∼= Q in D ⊆ C;

(ii) P and Q have the same shape, Sh(P ) = Sh(Q), i.e., P ∼= Q in Sh(C,D);

(iii) P and Q have the same J-shape, ShJ(C,D)(P ) = ShJ(C,D)(Q), i.e., P ∼= Q in

ShJ(C,D).

Theorem 2.3 ([27], Corollary 2). Let C a category and D a full and pro-reflective

subcategory. Then

(i) Sh(C,D) = Sh
{1}
(C,D);

(ii) Sh∗(C,D) = ShN(C,D), where Sh∗(C,D) is the coarse shape category [14];

(iii) If J is a directed partially ordered set having maxJ , then ShJ(C,D)
∼= Sh(C,D).

3. Movability and uniform movability properties for J-morphisms

All sets of indices of inverse systems are supposed to be cofinite directed sets.

This condition is not restrictive (cf. [17], Ch.I, §1.2).

First we recall from [17] the notions of movable and uniform movable inverse

systems.

An object X = (Xλ, pλλ′ ,Λ) of pro-C is movable provided every λ ∈ Λ admits a

λ′ ≥ λ (called a movability index of λ) such that each λ′′ ≥ λ admits a morphism

r : Xλ′ → Xλ′′ of C which satisfies

(3.1) pλλ′′ ◦ r = pλλ′ ,

i.e., makes the following diagram commutative

Xλ′
pλλ′ //

r
""

Xλ

Xλ′′

pλλ′′

<<

An object X = (Xλ, pλλ′ ,Λ) of pro-C is called a uniform movable if every λ ∈ Λ

admits a λ′ ≥ λ (called a uniform movability index of λ) such that there is a
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morphism r : Xλ′ → X in pro-C satisfying

(3.2) pλ ◦ r = pλλ′ ,

where pλ : X → Xλ is the morphism of pro-C given by 1λ : Xλ → Xλ.

Definition 3.1. Let X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, qµµ′ ,M) be inverse systems

in a category C and (f jµ, ϕ) : X → Y be a J-morphism of inverse systems. We say

that the J-morphism (f jµ, ϕ) is movable (J-movable) if every µ ∈M admits λ ∈ Λ,

λ ≥ ϕ(µ) and j ∈ J , such that each µ′ ∈M , µ′ ≥ µ, and j′ ≥ j admit a morphism

uj
′
: Xλ → Yµ′ in the category C, which satisfies

(3.3) f j
′

µ ◦ pϕ(µ)λ = qµµ′ ◦ uj
′
,

i.e., makes the following diagram commutative

Xϕ(µ)

fj
′
µ // Yµ

Xλ

pϕ(µ)λ

OO

uj
′
// Yµ′

qµµ′

OO

The pair of indices (λ, j) is called a J-movability pair of µ with respect to the

J-morphism (f jµ, ϕ).

The composition f jµ ◦pϕ(µ)λ for λ ≥ ϕ(µ) is denoted by f jµλ (cf. [17], Ch.II, §2.1).

With this notation the relation (3.3) becomes

f j
′

µλ = qµµ′ ◦ uj
′
.

Note that if (λ, j) is a J-movability pair of µ with respect to (f jµ, ϕ), then so is

any pair (λ̃, j̃), with λ̃ ≥ λ and j̃ ≥ j.

Example 3.1. Let (X) be a rudimentary system in the category C and (f jµ, ϕ) :

(X) → Y = (Yµ, qµµ′ ,M), ϕ(µ) = 1,∀µ ∈ M , a J-morphism of inverse systems. It

is not hard to verify that (f jµ, ϕ) is movable.

More generally, if we consider a morphism (f jµ, ϕ) : X = (Xλ, pλλ′ ,Λ) → Y =

(Yµ, qµµ′ ,M) such that there exists λM ∈ Λ satisfying λM ≥ ϕ(µ) for any µ ∈ M ,

then (f jµ, ϕ) is J-movable. Indeed, for an arbitrary index µ ∈ M and µ′ ≥ µ there

exists j ∈ J such that for j′ ∈ J , j′ ≥ j, we have f j
′

µ ◦pϕ(µ)λM = qµµ′◦f j
′

µ′◦pϕ(µ′)λM =

qµµ′ ◦ uj′ , where uj
′
= f j

′

µ′ ◦ pϕ(µ′)λM is a morphism from XλM to Yµ′ . So, (λM , j)

is a J-movability pair for µ ∈M .

Remark 3.1. a) If J = {1}, that is, invJ -C = inv-C, then the condition of movability

for a morphism of inverse systems (fµ, ϕ) : X → Y is written as fµ ◦pϕ(µ)λ = qµµ′u,
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for a λ ∈ Λ, λ ≥ ϕ(µ), µ′ ≥ µ, and u : Xλ → Yµ′ a morphism in C. And this

is the definition of movability for an usual morphism of inverse systems (cf. [10],

Definition 2.2).

b) If (J,≤) = (N,≤), i.e., invJ -C = inv∗-C, the condition of movability for a

∗-morphism (fnµ , ϕ) : X → Y is the following: every µ ∈M admits λ ∈ Λ, λ ≥ ϕ(µ)

and n ∈ N, such that each µ′ ∈ M , µ′ ≥ µ, and m ≥ n, admit a morphism

um : Xλ → Yµ′ in the category C, which satisfies

(3.4) fmµ ◦ pϕ(µ)λ = qµµ′ ◦ um.

Proposition 3.1. An inverse system X = (Xλ, pλλ′ ,Λ) is movable if and only if

the identity J-morphism (1jXλ , 1Λ) is movable.

Proof. If λ′ is a movability index of λ with respect to X, then a pair (λ′, j),

j ∈ J , is a J-movability pair for λ with respect to the identity J-morphism, and

conversely. □

Theorem 3.1. Let X = (Xλ, pλλ′ ,Λ), Y = (Yµ, qµµ′ ,M), Z = (Zν , rνν′ , N) be

inverse systems in the category C and let (f jµ, ϕ) : X → Y, (gjν , ψ) : Y → Z

be J-morphisms of inverse systems. If (gjν , ψ) is movable, then the composition

(hjν , χ) = (gjν , ψ) ◦ (f jµ, ϕ) is also a movable J-morphism.

Proof. Recall that by definition of the composition of J-morphisms we have

χ = ϕ ◦ ψ and hjν = gjν ◦ f
j
ψ(ν). If (gjν , ψ) is movable, and if (µ, j) is a J-movability

pair of an index ν ∈ N , then for any index ν′ ∈ N , ν′ ≥ ν, there is an index j ∈ J

and a morphism uj
′
: Yµ → Zν′ , j′ ≥ j, such that gj

′

ν ◦ qψ(ν)µ = rνν′ ◦ uj′ or the

next diagram is commutative

Yψ(ν)
gj

′
ν // Zν

Yµ

qψ(ν)µ

OO

uj
′
// Zν′

rνν′

OO

Now consider λ ∈ Λ such that λ ≥ ϕ(µ), λ ≥ ϕ(ψ(ν)), and f j
′

ψ(ν) ◦ pϕ(ψ(ν))λ =

qψ(ν)µ ◦f j
′

µ ◦pϕ(µ)λ. Consider the morphism u′
j′
= uj

′ ◦f j′µ ◦pϕ(µ)λ : Xλ → Zν′ . For

this morphism we obtain: rνν′◦u′j
′
= (rνν′◦uj′)◦fµ◦pϕ(µ)λ = gν◦qψ(ν)◦f j

′

µ ◦pϕ(µ)λ =

gν ◦ f j
′

ψ(ν) ◦ pϕ(ψ(ν)) = hj
′

ν ◦ pχ(ν)λ, i.e., the following diagram is commutative
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Xχ(ν)

hj
′
ν // Zν

Xλ

pχ(ν)λ

OO

u′j′
// Zν′

rνν′

OO

Thus, (hjν , χ) is a movable J-morphism. □

Corollary 3.1. Let X = (Xλ, pλλ′ ,Λ) be an arbitrary inverse system and Y =

(Yµ, qµµ′ ,M) be a movable inverse system. Then any J-morphism (f jµ, ϕ) : X → Y

is movable.

Proof. Since (f jµ, ϕ) = (1jYµ , 1M )◦(f jµ, ϕ) and (1jYµ , 1M ) : Y → Y is a movable J-

morphism by Proposition 3.1, then (f jµ, ϕ) is also J-movable according to Theorem

3.1. □

Theorem 3.2. Let X = (Xλ, pλλ′ ,Λ), Y = (Yµ, qµµ′ ,M), Z = (Zν , rνν′ , N) be

inverse systems in the category C, and let (f jµ, ϕ) : X → Y, (gjν , ψ) : Y → Z be

J-morphisms. If (f jµ, ϕ) is movable, then the composition (hjν , χ) = (gjν , ψ) ◦ (f jµ, ϕ)
is also a movable J-morphism.

Proof. For a given index ν ∈ N , consider a movability pair (λ, j) of ψ(ν),

λ ≥ ϕ(ψ(ν)), with respect to (f jµ, ϕ). Let us prove that (λ, j) is a movability pair of

ν with respect to the J-morphism (hjν , χ).

Let ν′ ∈ N , ν′ ≥ ν, be any index and let µ′ ≥ ψ(ν′), ψ(ν) be an index such that

for j′ ≥ j

rj
′

νν′ ◦ gj
′

ν′ ◦ qψ(ν′)µ′ = gj
′

ν ◦ qψ(ν)µ′ .

By the J-movability of (f jµ, ϕ) : X → Y, for qψ(ν)µ′ there exists a morphism

uj
′
: Xλ → Yµ′ such that

f j
′

ψ(ν) ◦ pϕ(ψ(ν))λ = qψ(ν)µ′ ◦ uj
′
.

Define U j
′
: Xλ → Zν′ by

U j
′
= gj

′

ν′ ◦ qψ(ν′)µ′ ◦ uj
′
.

Now we have: rj
′

νν′ ◦ U j
′
= rj

′

νν′ ◦ gj
′

ν′ ◦ qψ(ν′)µ′ ◦ uj′ = gj
′

ν ◦ qψ(ν)µ′ ◦ uj′ = gj
′

ν ◦
qψ(ν)µ ◦ f j′µ ◦ pϕ(µ)λ = gj

′

ν ◦ f j
′

ψ(ν) ◦ pχ(ν)λ = hj
′

ν ◦ pχ(ν)λ. □

Corollary 3.2. Let X = (Xλ, pλλ′ ,Λ) be a movable inverse system and let Y =

(Yµ, qµµ′ ,M) be an arbitrary inverse system. Then any J-morphism (f jµ, ϕ) : X →
Y is movable.
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Proof. Since (f jµ, ϕ) = (f jµ, ϕ)◦(1
j
Xλ
, 1Λ) and the identity J-morphism (1jXλ , 1Λ) :

X → X is movable by Proposition 3.1, then (f jµ, ϕ) is also J-movable according to

Theorem 3.2. □

Corollary 3.3. Let X = (Xλ, pλλ′ ,Λ) be a movable inverse system in the category

C. If an inverse system Y = (Yµ, qµµ′ ,M) is J-dominated by X, i.e., there exist two

J-morphisms (f jµ, ϕ) : X → Y and (gjλ, ψ) : Y → X such that (f jµ, ϕ) ◦ (gjλ, ψ) =

(1jYµ , 1M ), then Y is movable.

Proof. By hypothesis and Proposition 3.1, (1jXλ , 1Λ) is J-movable. Then by the

equality (1jXλ , 1Λ) ◦ (g
j
λ, ψ) = (gjλ, ψ) and by Theorem 3.1 it follows that (gjν , ψ) is

J-movable. Hence, the composition (f jµ, ϕ) ◦ (g
j
λ, ψ) = (1jYµ , 1M ) is also J-movable

by Theorem 3.2. Therefore, Proposition 3.1 implies that Y is a movable inverse

system. □

Remark 3.2. Corollary 3.3 is a generalization of a classical result for the movability

of inverse systems [17] (Ch. II, §6.1, Theorem 1) here with a proof based on the

J-movability property of J-morphisms.

Definition 3.2. Let X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, qµµ′ ,M) be inverse systems in

a category C and let (f jµ, ϕ) : X → Y be a J-morphism. We say that the J-morphism

(fµ, ϕ) is uniformly movable(J-uniformly movable) if every µ ∈ M admits λ ∈ Λ,

λ ≥ ϕ(µ) and j ∈ J such that for j′ ≥ j there is a J-morphism of inverse systems

uj′ : Xλ → Y satisfying

(3.5) f j
′

µλ = qµ ◦ uj
′

i.e., the following diagram commutes

Xλ

fj
′
µλ //

uj
′
  

Yµ

Y

qµ

>>

where f j
′

µλ = f j
′

µ ◦ pϕ(µ)λ and qµ : Y → Yµ is the J-morphism of inverse systems

given by 1jYµ : Yµ → Yµ.

The pair (λ, j) is called a J-uniform movability pair of µ with respect to (f jµ, ϕ).

Remark 3.3. If (λ, j) is a J-uniform movability pair, then so is any pair (λ̃, j̃),

λ̃ ≥ λ, j̃ ≥ j.

Remark 3.4. Note that the J-morphism uj
′
: Xλ → Y determines for every µ1 ∈M

a morphism uj
′

µ1
: Xλ → Yµ1

in C such that for µ1 ≤ µ2 we have qµ1µ2
◦ uj′µ2

= uj
′

µ1
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and uj
′

µ = f j
′

µλ. In particular, for µ′ ∈M , µ′ ≥ µ, we have qµµ′ ◦ uj
′

µ′ = uj
′

µ = f j
′

µλ, so

that J-uniform movability of J-morphisms implies J-movability.

Proposition 3.2. An inverse system X = (Xλ, pλλ′ ,Λ) is uniformly movable if

and only if the identity J-morphism 1X = (1jXλ , 1Λ) is J-uniformly movable.

Proof. Suppose X is uniformly movable. Let λ ∈ Λ. Note that a uniform

movability index λ′ ≥ λ together with j ∈ J arbitrary constitutes a pair (λ′, j) of

J-uniform movability of λ with respect to the identity 1X = (1jXλ , 1Λ). Conversely,

suppose 1X : X → X is a uniformly movable J-morphism. Note that for any λ ∈ Λ

if (λ′, j) is a J-uniform movability pair of λ with respect to 1X, then λ′ is a uniform

movability index of λ for X. □

Example 3.2. Let (X) be a rudimentary system in the category C. It is easy to

see that any J-morphism of inverse systems (f jµ) : (X) → Y = (Yµ, qµµ′ ,M) is

J-uniformly movable.

More generally, if we consider a J-morphism (f jµ, ϕ) : X = (Xλ, pλλ′ ,Λ) → Y =

(Yµ, qµµ′ ,M) such that there exists λM ∈ Λ satisfying λM ≥ ϕ(µ) for any µ ∈ M ,

then (f jµ, ϕ) is J-uniformly movable. Indeed, it is not difficult to verify that for any

index µ ∈M , a J-uniformly movable pair is (λM , j), for an arbitrary j ∈ J .

Theorem 3.3. Let X = (Xλ, pλλ′ ,Λ), Y = (Yµ, qµµ′ ,M), Z = (Zν , rνν′ , N) be

inverse systems in the category C and (f jµ, ϕ) : X → Y, (gjν , ψ) : Y → Z morphisms

of inverse systems. If (gjν , ψ) is J-uniformly movable, then the composition (hjν , χ) =

(gjν , ψ) ◦ (f jµ, ϕ) is also a J-uniformly movable morphism.

Proof. We use the notations from the proof of Theorem 3.1 replacing rνν′ :

Zν′ → Zν by rν : Z → Zν and uj
′
: Yµ → Zν′ by uj

′
: Yµ → Z. Then we have

gj
′

ν ◦ qψ(ν)µ = rj
′

ν ◦ uj
′
. And by defining u′j′ = uj

′ ◦ f j
′

µλ : Xλ → Z, we obtain

rν ◦ u′j′ = hj
′

νλ. □

Corollary 3.4. Let X = (Xλ, pλλ′ ,Λ) be an arbitrary inverse system and let

Y = (Yµ, qµµ′ ,M) be a uniformly movable inverse system. Then any J-morphism

(f jµ, ϕ) : X → Y is J-uniformly movable.

Proof. Since (f jµ, ϕ) = 1JY ◦ (f jµ, ϕ) and 1JY : Y → Y is J-uniformly movable by

Proposition 3.2, then (f jµ, ϕ) is also uniformly movable according to Theorem 3.3.

Theorem 3.4. Let X = (Xλ, pλλ′ ,Λ), Y = (Yµ, qµµ′ ,M), Z = (Zν , rνν′ , N) be

inverse systems in the category C and let (f jµ, ϕ) : X → Y, (gjν , ψ) : Y → Z be

morphisms of inverse systems. Suppose that (f jµ, ϕ) is J-uniformly movable. Then

the composition (hjν , χ) = (gjν , ψ) ◦ (f jµ, ϕ) is also a uniformly movable morphism.
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Proof. Using the notations from the proof of Theorem 3.2, there exists uj
′
:

Xλ → Y, such that f j
′

ψ(ν)λ = qψ(ν) ◦ uj
′
. Then for Uj′ : Xλ → Z, Uj′ = gj

′

ν ◦ uj′ ,
we have hj

′

νλ = gj
′

ν ◦ f j
′

ψ(ν)λ = rν ◦Uj′ . □

Corollary 3.5. Let X = (Xλ, pλλ′ ,Λ) be uniformly movable inverse system and let

Y = (Yµ, qµµ′ ,M) be an arbitrary inverse system. Then any J-morphism (f jµ, ϕ) :

X → Y is uniformly movable.

Proof. Since (f jµ, ϕ) = (f jµ, ϕ)◦ (1
j
Xλ
, 1Λ) and the identity J-morphism (1jXλ , 1Λ)

is uniformly movable by Proposition 3.2, then (f jµ, ϕ) is also J-uniformly movable

according to Theorem 3.4. □

Corollary 3.6. Let X and Y be inverse systems in the category C. Suppose that X

is uniformly movable and Y is J-dominated by X. Then Y is uniformly movable.

Proof. We use the notations from Corollary 3.3. By hypothesis and Proposition

3.2, (1jXλ , 1Λ) is J-uniformly movable. Then by the equality (1jXλ , 1Λ) ◦ (gjν , ψ) =

(gjν , ψ) and by Theorem 3.3 we have that (gjν , ψ) is J-uniformly movable. Hence,

by Theorem 3.4 the composition (f jµ, ϕ) ◦ (gjλ, ψ) = (1jYµ , 1M ) is also J-uniformly

movable. Finally, using Proposition 3.2 we conclude that Y is a uniformly movable

inverse system. □

4. Co-movability properties for J-morphisms

Definition 4.1. Let X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, qµµ′ ,M) be inverse systems

in a category C and let (f jµ, ϕ) : X → Y be a J-morphism in C. We say that the

(fµ, ϕ) is a co-movable J-morphism provided every µ ∈M admits λ ∈ Λ, λ ≥ ϕ(µ)

and j ∈ J (the pair (λ, j) being called a co-movability pair of µ relative to (f jµ, ϕ))

such that each λ′ ≥ ϕ(µ) and j′ ∈ J , j′ ≥ j admit a morphism rj
′
: Xλ → Xλ′ of C

which satisfies

(4.1) f j
′

µλ = f j
′

µλ′ ◦ rj
′
,

i.e., makes the following outside diagram commutative

Yµ

Xϕ(µ)

fj
′
µ

OO

Xλ

fj
′
µλ

EE

pϕ(µ)λ

<<

rj
′

// Xλ′

pϕ(µ)λ′

cc
fj

′

µλ′

YY
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Definition 4.2. Let X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, qµµ′ ,M) be inverse systems

in a category C and let (f jµ, ϕ) : X → Y be a J-morphism of inverse systems. We

say that the (f jµ, ϕ) is a uniformly co-movable J-morphism provided every µ ∈ M

admits λ ∈ Λ, λ ≥ ϕ(µ) and j ∈ J (the pair (λ, j) being called a uniform co-

movability pair of µ relative to (f jµ, ϕ)) such that, for j′ ∈ J , j′ ≥ j, there is a

morphism rj
′
: Xλ → X of inverse systems satisfying

(4.2) f j
′

µλ = f j
′

µ ◦ rj
′
,

i.e., makes the following outside diagram commutative

Yµ

Xϕ(µ)

fj
′
µ

OO

Xλ

fj
′
µλ

EE

pϕ(µ)λ

<<

rj
′

// X

pϕ(µ)

bb
fj

′
µ

XX

where f j
′

µ = f j
′

µ ◦ pϕ(µ).

Remark 4.1. Note that the morphism rj
′
: Xλ → X is given by some morphisms

rj
′

λ′ : Xλ → Xλ′ such that if λ′1 ≤ λ′2 then rj
′

λ′
1
= pλ′

1λ
′
2
◦ rj

′

λ′
2
. The relation f j

′

µλ =

f j
′

µ ◦rj′ means f j
′

µλ = f j
′

µ ◦rj
′

ϕ(µ). Therefore, λ′ ≥ ϕ(µ) implies f j
′

µλ = f j
′

µ ◦pϕ(µ)λ′◦rj
′

λ′ =

f j
′

µλ′ ◦rj
′

λ′ . In this way we have that uniform J-co-movability implies J-co-movability.

Remark 4.2. If (λ, j) is a co-movability (uniform co-movability) pair of µ relative

to the J-morphism (f jµ, ϕ) then so is any pair (λ̃, j̃), with λ̃ ≥ λ and j ≥ j.

Definition 4.3. A J-morphism (f jµ, ϕ) : ((Xλ, ∗), pλλ′ ,Λ) → ((Yµ, ∗), qµµ′ ,M) of

pointed sets is said to have the Mittag-Leffler property provided every µ ∈ M

admits a pair (λ, j), λ ≥ ϕ(µ), j ∈ J , (an ML pair for µ with respect to (f jµ, ϕ)),

such that for any λ′ ∈ Λ, with λ′ ≥ λ, and j′ ≥ j one has

(4.3) f j
′

µλ′(Xλ′) = f j
′

µλ(Xλ).

Note that if J = {1} and (f jµ, ϕ) is replaced by 1(X,∗) we obtain the Mittag-Leffler

property for an inverse sistems in the category Set∗ (cf. [17], Ch. II, §6.2).

Theorem 4.1. A J-morphism of inverse systems of pointed sets is co-movable if

and only if it has the Mittag-Lefler property.

Proof. Let (f jµ, ϕ) : ((Xλ, ∗), pλλ′ ,Λ) → ((Yµ, ∗), qµµ′ ,M) be a J-morphism with

the Mittag-Leffler property. Then for µ ∈ M there is a ML pair (λ, j), λ ≥ ϕ(µ)
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such that (4.3) holds for each λ′ ≥ λ and j′ ≥ j. We can prove that (λ, j) is a

co-movability pair of µ with respect to (f jµ, ϕ). If λ′ ≥ ϕ(µ) and λ′ ≥ λ, the relation

(4.3) defines a map of pointed sets rj
′
: (Xλ, ∗) → (Xλ′ , ∗) such that f j

′

µλ′ ◦rj
′
= f j

′

µλ.

For any other λ′′ ≥ ϕ(µ), one choose λ′′′ ≥ λ′′, ϕ(µ) and consider r′j
′
: Xλ → Xλ′′′

such that f j
′

µλ′′′ ◦ r′j
′
= f j

′

µλ. Then the composition rj
′
:= pλ′′λ′′′ ◦ r′j

′
satisfies the

relation f j
′

µλ′′ ◦ rj
′
= f j

′

µλ′′ ◦ pλ′′λ′′′ ◦ r′j
′
= f j

′

µλ′′′ ◦ r′j
′
= f j

′

µλ.

Conversely, let (f jµ, ϕ) be a co-movable J-morphism. Let µ ∈M and λ ∈ Λ with

λ ≥ ϕ(µ) and j ∈ J a co-movability pair of µ with respect to (f jµ, ϕ). Then, for

λ′ ≥ λ and j′ ≥ j there exists rj
′
: (Xλ, ∗) → (Xλ′ , ∗) such that f j

′

µλ′ ◦ rj
′
= f j

′

µλ.

This implies the inclusion f j
′

µλ(Xλ) ⊆ f j
′

µλ′(Xλ′). The converse inclusion follows

from the relation f j
′

µλ ◦ pλλ′ = f j
′

µλ′ . □

Proposition 4.1. Let X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, qµµ′ ,M) be inverse systems

in a the category C and let (f jµ, ϕ) : X → Y be a J-morphism of inverse systems. If

X is a movable (uniformly movable) inverse system and Y is an arbitrary inverse

system, then (f jµ, ϕ) is a co-movable (uniformly co-movable) J-morphism.

Proof. It is easy to prove that if µ ∈ M and λ ∈ Λ is a movability (uniform

movability) index for ϕ(µ), then a pair (λ, j) with an arbitrary j ∈ J is a co-

movability (uniform co-movability) pair for µ with respect to the J-morphism

(f jµ, ϕ). □

Theorem 4.2. An inverse system X = (Xλ, pλλ′ ,Λ) is movable (uniformly movable)

if and only if the identity J-morphism 1JX is co-movable (uniformly co-movable) for

an arbitrary directed partially ordered set J .

Proof. IfX is movable (uniformly movable), then by Proposition 4.1 the morphism

1JX is co-movable (uniformly co-movable). Conversely, let 1JX be a co-movable (uniformly

co-movable) J-morphism and let (λ′, j) be a co-movability (uniform co-movability)

pair of a given λ ∈ Λ with respect to 1JX = (1Xλ , 1Λ). It is easy to verify that λ′ is

a movability (uniform movability) index of λ for the inverse system X. □

Using Theorems 4.1, 4.2 and Proposition 4.1, we obtain the following corollary

(see [17], Ch. II, §6.2, Corollary 4).

Corollary 4.1. An inverse system of pointed set (X, ∗) is movable if and only if it

has the Mittag-Leffler property, in particular, if all bonding functions are surjective.

The following theorem is a generalization of Proposition 4.1.

Theorem 4.3. Let X = (Xλ, pλλ′ ,Λ), Y = (Yµ, qµµ′ ,M), Z = (Zν , rνν′ , N) be

inverse systems in the category C and let (f jµ, ϕ) : X → Y, (gjν , ψ) : Y → Z be
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J-morphisms. Suppose that (f jµ, ϕ) is co-movable (uniformly co-movable). Then the

composition (hjν , χ) = (gjν , ψ) ◦ (f jµ, ϕ) is also a co-movable (uniformly co-movable)

J-morphism.

Proof. At first we note that hjνλ = gjν ◦ f
j
ψ(ν)λ. Then if (λ, j) is a co-movability

pair for ψ(ν), we have f j
′

ψ(ν)λ = f j
′

ψ(ν)λ′ ◦ rj
′
, for λ′ ≥ λ and j′ ≥ j. By this we

have hj
′

νλ = gj
′

ν ◦ f j
′

ψ(ν)λ′ ◦ rj
′
= hj

′

νλ′ ◦ rj
′
, which is the condition of co-movability for

J-morphism (hjν , χ). For the property of uniform co-movability the proof is similar.

□

Remark 4.3. The assertion of Corollary 3.1 in the case of co-movability of J-

morphisms is false even if J = {1}. To show this, consider the following inverse

sequences of groups:

G = (Gn, pnn′),where Gn = Z and pnn′(m) = 2n
′−nm;

H = (Hn, qnn′),where Hn = ⊕nZ = Z⊕ . . .⊕ Z and

qnn+1(m1, . . . ,mn′) = (m1, . . . ,mn′−n)

The pro-group H is movable (see [17], Ch.II, §6.1, Example 2).

Now consider the following morphism (fn, 1N) : G → H with

fn : Gn → Hn, fn(m) = (2n−1m, 2n−2m, . . . , 2m,m).

We can verify that in this way we obtain a level morphism of pro-groups. Indeed,

(fn◦pnn′)(m) = fn(2
n′−nm) = (2n−12n

′−nm, 2n−22n
′−nm, . . . , 2·2n

′−nm, 2n
′−nm) =

= (2n
′−1m, 2n

′−2m, . . . , 2n
′−n+1m, 2n

′−nm)

and

(qnn′◦fn′)(m) = qnn′(2n
′−1m, 2n

′−2m, . . . , 2m,m) = (2n
′−1m, 2n

′−2m, . . . , 2n
′−nm).

So fn ◦ pnn′ = qnn′ ◦ fn′ and hence, (fn, 1N) : G → H is a level morhism of

pro-groups.

Now the condition of co-movability (4.1) for the morphism (fn, 1N) becomes

fnn′ = fnn′′ ◦ r or fn ◦ pnn′ = fn ◦ pnn′′ ◦ r.

Consider the last relation written for n = 1 and n′′ = n′ + 1:

(f1◦p1n′)(m) = (f1◦p1n′+1◦r)(m) ⇔ 2n
′−1m = 2n

′
r(m) ⇔ m = 2·r(m) ⇔ r(m) =

m

2

for any m ∈ Z, which is impossible because r is an endomorphism of Z. Thus, the

morphism (fn, 1N) is not co-movable although H is movable.
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In addition, by Proposition 4.1, we conclude that G is not movable (the result

also proved in [17], Ch.II, §6.1).

Remark 4.4. Since Corollary 3.1 is a consequence of Theorem 3.1, Remark 4.3

suggests that a result for the properties of co-movability and uniform co-movability

analogous to that from Theorem 3.1 for movability and uniform movability is false.

But imposing for (f jµ, ϕ) to be a J-isomorphism, we obtain a positive result.

Theorem 4.4. Let X = (Xλ, pλλ′ ,Λ), Y = (Yµ, qµµ′ ,M), Z = (Zν , rνν′ , N) be

inverse systems in a category C. Let (f jµ, ϕ) : X → Y be a J-isomorphism and let

(gjν , ψ) : Y → Z be a (uniformly) co-movable J-morphism. Then the composition

(hjν , χ) = (gjν , ψ) ◦ (f jµ, ϕ) is also a (uniformly) co-movable J-morphism.

Proof. Without loss of generality, we can assume that ϕ : Λ →M is an increasing

function [17] (Ch.I, §1.2, Lemma 2). Since (f jµ, ϕ) : X → Y be a J-isomorphism we

can also assume that ϕ is a bijection. Let (f ′
j
λ, ϕ

′) : Y → X, where ϕ′ = ϕ−1, be

an inverse J-morphism of (f jµ, ϕ).

Now suppose that (gjν , ψ) is a co-movable J-morhiasm. To prove that the composition

(hjν , χ) = (gjν , ψ) ◦ (f jµ, ϕ) is also a co-movable J-morphism, consider an arbitrary

ν ∈ N and take a co-movability pair (µ, j) of ν with respect to J-morphism (gjν , ψ).

Let’s prove that (ϕ(µ), j) is a co-movability pair of ν with respect to J-morphism

(hjν , χ). Consider any λ′ ≥ χ(ν), χ(ν) = ϕ(ψ(ν)). Note that ϕ′(λ′) ≥ ψ(ν) because

ϕ′ is an increasing function. Hence, for any j′ ≥ j there exists a morphism rj
′
:

Yµ → Yϕ′(λ′) in the category C satisfying the relation

(4.4) gj
′

νµ = gj
′

νϕ′(λ′) ◦ r
j′ , i.e., gj

′

ν ◦ qψ(ν)µ = gj
′

ν ◦ qψ(ν)ϕ′(λ′) ◦ rj
′
.

Now define the morphism Rj
′
: Xϕ(µ) → Xλ′ by

(4.5) Rj
′
= f ′

j′

λ′ ◦ rj
′
◦ f j

′

µ

and prove that hj
′

νϕ(µ) = hj
′

νλ′ ◦Rj
′
, i.e.,

(4.6) gj
′

ν ◦ f j
′

ψ(ν) ◦ pϕ(ψ(ν))ϕ(µ) = gj
′

ν ◦ f j
′

ψ(ν) ◦ pϕ(ψ(ν))λ′ ◦Rj
′
.

Indeed, by (4.4) and (4.5), one has

gj
′

ν ◦ f j
′

ψ(ν) ◦ pϕ(ψ(ν))λ′ ◦Rj
′
= gj

′

ν ◦
(
f j

′

ψ(ν) ◦ pϕ(ψ(ν))λ′

)
◦ f ′j

′

λ′ ◦ rj
′
◦ f j

′

µ =

= gj
′

ν ◦
(
qψ(ν)ϕ′(λ′) ◦ f j

′

ϕ′(λ′)

)
◦ f ′j

′

λ′ ◦ rj
′
◦ f j

′

µ = gj
′

ν ◦ qψ(ν)ϕ′(λ′) ◦ 1Yϕ′(λ′) ◦ r
j′ ◦ f j

′

µ =

= gj
′

ν ◦ qψ(ν)µ ◦ f j
′

µ = gj
′

ν ◦ f j
′

ψ(ν) ◦ pϕ(ψ(ν))ϕ(µ).

So, the composition (hjν , χ) = (gjν , ψ) ◦ (f jµ, ϕ) is co-movable. In the same way one

can prove the case of uniform co-movability. □
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5. Properties of movability and co-movability for J-pro-morphisms

Proposition 5.1. Let (f jµ, ϕ), (f ′
j
µ, ϕ

′) : X = (Xλ, pλλ′ ,Λ) → Y = (Yµ, qµµ′ ,M) be

two equivalent J-morphisms of inverse systems.

(i) If the J-morphism (f jµ, ϕ) is movable (uniformly movable) then the J-morphism

(f ′
j
µ, ϕ

′) is also movable (uniformly movable).

(ii) If the J-morphism (f jµ, ϕ) is co-movable (uniformly co-movable) then the

J-morphism (f ′
j
µ, ϕ

′) is also co-movable (uniformly co-movable).

Proof. (i) Suppose that (f jµ, ϕ) is J-movable and (f jµ, ϕ) ∼ (f ′
j
µ, ϕ

′). We need to

prove that (f ′jµ , ϕ
′) is also J-movable.

Let µ ∈ M be any index. Consider a movability pair (λ, j) of µ with respect to

J-morphism (f jµ, ϕ). There is no loss of generality in assuming that λ ≥ ϕ(µ), ϕ′(µ)

and

(5.1) f jµ ◦ pϕ(µ)λ = f ′jµ ◦ pϕ′(µ)λ.

Consider any µ′ ≥ µ. By assumption for any j′ ≥ j there is a morphism uj
′
:

Xλ → Yµ′ such that

(5.2) f j
′

µλ = qµµ′ ◦ uj
′
.

Then by (5.1) and (5.2) we have

f ′j
′

µλ = f ′j
′

µ ◦ pϕ′(µ)λ = f j
′

µ ◦ pϕ(µ)λ = f j
′

µλ = qµµ′ ◦ uj
′

which means that (λ, j) is also movability pair of µ with respect to J-morphism

(f ′jµ , ϕ
′).

The case of uniform movability is proved similarly.

(ii) Let µ ∈ M be any index and let (λ, j) be a co-movability pair for µ with

respect to J-morphism (f jµ, ϕ). We can assume that λ ≥ ϕ(µ), ϕ′(µ) and (5.1) holds.

Now we prove that (λ, j) is also a co-movability pair of µ with respect to (f ′jµ , ϕ
′).

Let λ′ ≥ ϕ′(µ) be any index and let λ′′ be an index with λ′′ ≥ λ′, ϕ(µ) which satisfies

(5.3) f j
′

µ ◦ pϕ(µ)λ′′ = f ′j
′

µ ◦ pϕ′(µ)λ′′

for given j′ ≥ j. By assumption there is a morphism rj
′
: Xλ → Xλ′′ such that

(5.4) f j
′

µλ = f j
′

µλ′′ ◦ rj
′
.

Define the morphism Rj
′
: Xλ → Xλ′ by

(5.5) Rj
′
= pλ′λ′′ ◦ rj

′
.
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By (5.1), (5.3), (5.4), and (5.5) one has

f ′j
′

µλ′ ◦Rj
′
= f ′j

′

µλ′ ◦ pλ′λ′′ ◦ rj
′
= f ′j

′

µ ◦ pϕ′(µ)λ′ ◦ pλ′λ′′ ◦ rj
′
=

= f j
′

µ ◦ pϕ(µ)λ′′ ◦ rj
′
= f j

′

µ ◦ pϕ(µ)λ = f ′j
′

µ ◦ pϕ′(µ)λ = f ′j
′

µλ,

which is the condition for co-movability for the J-morphism (f ′
j
µ, ϕ

′). The case of

uniform movability can be proved similarly. □

Thanks to Proposition 5.1, we can give the following definition.

Definition 5.1. (i) A J-pro-morphism fJ : X → Y is called movable (uniformly

movable) if fJ admits a representation (f jµ, ϕ) which is J-movable (uniformly J-

movable).

(ii) A J-pro-morphism fJ : X → Y is called co- movable (uniformly co-movable)

if fJ admits a representation (f jµ, ϕ) which is J-co-movable (uniformly J-co-movable).

The next theorem follows from Theorems 3.1, 3.2, 3.3, 3.4 and Corollaries 3.1,

3.2, 3.4, 3.5.

Theorem 5.1. A (pre- or post-) composition of an arbitrary J-pro-morphism with

a movable (uniformly movable) J-pro-morphism is a movable (uniformly movable)

J-pro-morphism. In particular, if X or Y is a movable (uniformly movable) inverse

system, then fJ : X → Y is a movable (uniformly movable) J-pro-morphism.

Taking into account Corollaries 3.3 and 3.6, we obtain

Proposition 5.2. Let X and Y be J-pro-morphisms. If Y is a movable (uniformly

movable) and X is dominated by Y in proJ -C, then X is also movable (uniformly

movable).

The following theorem is an immediate consequence of Theorem 4.3

Theorem 5.2. Let X, Y, Z be inverse systems in the category C and let fJ : X →
Y, gJ : Y → Z be J-pro-morphisms in proJ -C. If fJ is a co-movable (uniformly co-

movable) J-pro-morphism, then the composition hJ = gJ ◦ fJ is also a co-movable

(uniformly co-movable) J-pro-morphism.

Remark 5.1. It follows from the example from Remark 4.3 that if gJ is a co-movable

J-pro-morphism and fJ is an arbitrary J-pro-morphism, then the composition hJ =

gJ ◦ fJ is not necessarily a co-movable J-pro-morphism.

However, the following theorem is true (follows from Theorem 4.4).
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Theorem 5.3. Let X, Y, Z be inverse systems in the category C and let fJ : X →
Y, gJ : Y → Z be J-pro-morphisms in proJ -C. If gJ is a co-movable (uniformly

co-movable) J-pro-morphism and fJ is a J-pro-isomorphism, then the composition

hJ = gJ ◦ fJ is a co-movable (uniformly co-movable) J-pro-morphism.

6. Properties of movability and co-movability for J-shape morphisms

Consider (C,D) a pair of categories with D a dense subcategory of C. If X,Y ∈
ObC and p : X → X, q : Y → Y are D-expansions, then by Remark 2.4 and

Definitions 2.3 and 2.4, a J-shape morphism from X to Y is an equivalence class

⟨f⟩ of a J-pro-morphism f : X → Y.

Theorem 6.1. In the above conditions, let p′ : X → X′ and q′ : Y → Y′ be

other D-expansions of X and Y , respectively. If the J-pro-morphisms f : X → Y,

f ′ : X′ → Y′ define the same J-shape morphism F : X → Y and if f is a movable

(uniformly movable) J-pro-morphism, then f ′ is the same.

Proof. By Definition 2.3 there exists a commutative diagram

X

f

��

i // X′

f ′

��
Y

j
// Y′

where i and j are J-pro-isomorphisms. If f is a movable (uniformly movable), then

by Theorem 5.1 the composition j◦f is J-movable (uniformly J-movable). Therefore,

by the same theorem, f ′ = (j ◦ f) ◦ i′−1 is J-movable (uniformly J-movable). □

Definition 6.1. A J-shape morphism F : X → Y is called movable (uniformly

movable) if it can be represented by a movable (uniformly movable) J-pro-morphism

f : X → Y, F = ⟨f⟩.

Theorem 6.2. With the notation from Theorem 6.1, if f is a co-movable (uniformly

co-movable) J-pro-morphism, then f ′ is the same.

Proof. As above we have j◦ f = f ′ ◦ i. If f is co-movable (uniformly co-movable),

then by Theorem 5.2, the composition j ◦ f is co-movable (uniformly co-movable).

Then f ′ = (j ◦ f) ◦ i−1 is co-movable (uniformly co-movable) by Theorem 5.3. □

Definition 6.2. A J-shape morphism F : X → Y is called co-movable (uniformly

co-movable) if it can be represented by a co-movable (uniformly co-movable) J-pro-

morphism f : X → Y, F = ⟨f⟩.
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Remark 6.1. All properties of movability (uniform movability) and co-movability

(uniform co-movability) of J-morphisms and J-pro-morphisms of inverse systems

can be transferred to appropriate properties for J-shape morphisms and for morphisms

in the category C of a shape theory ShJ(C,D). For example, by Theorems 5.1, 5.2,

and 5.3 we obtain the following theorem.

Theorem 6.3. (i) A (pre-or post-) composition of an arbitrary J-shape morphism

with a movable (uniformly movable) J-shape morphism is a movable (uniformly

movable) J-shape morphism. In particular, if X or Y is a movable (uniformly

movable) object, then any J-shape morphism F : X → Y is movable (uniformly

movable);

(ii) Let F : X → Y , G : Y → Z be J-shape morphisms in the J-shape category

ShJ(C,D). If F is co-movable (uniformly co-movable), then the composition H = G◦F
also is co-moavble (uniformly co-movable).

(iii) If F : X → Y is a J-shape isomorphism and G : Y → Z is a co-

movable (uniformly co-movable) J-shape morphism, then H = G◦F is a co-movable

(uniformly co-movable) J-shape morphism.
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[14] N. Kocieć Bilan and N. Uglešić, “The coarse shape”, Glas. Mat., 42(62), 145 – 187 (2007).
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Abstract. The concept of covariogram is extended from bounded convex bodies in Rd to the
entire space Rd by obtaining integral representations for the distribution and density functions of
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1. Introduction

Consider two fundamental characteristics of a bounded body D ⊂ Rd. Let the

first be the covariogram of D which has a geometric nature: for any vector t ∈ Rd,

it represents the d-dimensional Lebesgue measure of the region shared between D
and its translated copy by vector t. We denote the covariogram of D by CD(t).

Let the second characteristic be the Euclidean distance between two random

points chosen independently and uniformly from D ⊂ Rd. This is a well-known

random variable studied in geometric probability (see, for example [1]). We denote

it by Dd(D). Extensive research has been conducted on this random variable for

various bounded bodies D, including computation of the average distance within a

cube [2], on the surface of a cube [3], within a hyperball [4], as well as bounding the

average distance within a hypercube [5] or furthermore, within compact subsets of

Rd with unit diameter [4]. In dimensions d ≤ 3, closed-form expressions are obtained

for the density function of Dd(D) in [6]-[11] for numerous geometric shapes of D. A

unified approach for determining the density function of Dd(D) for typical compact

sets is suggested in [12]. It also provides a good list of references for related results

of theoretical and applied character.

1The research of the first author is supported by the Science Committee of the Ministry of
Science, Education, Culture and Sports RA: Grant 21AA-1A024. The research of the second
author is partially supported by the Mathematical Studies Center at Yerevan State University.
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When D is a bounded convex body with a non-empty interior in Rd, then the

two considered characteristics of D are interrelated as follows:

(1.1) fDd(D)(h) =
hd−1

L2
d(D)

∫
Sd−1

CD(hu)du, h > 0,

where Sd−1 is the (d−1)-dimensional unit sphere in Rd, centered at the origin, and

Ld(D) is Lebesgue d-measure of D.

In this paper, we aim to extend the concepts of covariogram CD(t) and interpoint

distance Dd(D) from bounded convex bodies to the entire space Rd and establish

a relation between them.

The first problem that arises in our way is the nature of randomness of choosing

a point from D = Rd. The uniform distribution is no longer applicable to this case

and therefore we will naturally replace it with a multivariate normal distribution.

The second obstacle lies in the challenge of applying the language and sense of

geometry to define the covariogram of Rd. We will define it analytically based on

the following observation. If D is a convex body and P1, P2 are chosen uniformly

and independently from D, then it is easy to check (see, for example, [11]) that

fP1−P2
(t) =

CD(t)

L2
d(D)

,

which can be equivalently written as

(1.2) fP1−P2
(t) =

CD(t)

C2
D(0)

.

Thus, the covariogram should be a positive function defined on the entire space

that satisfies (1.2).

We have defined the normal covariogram of Rd and established an analogous

relationship to (1.1) in section 4, with the foundational basis of the proof presented

in the preceding section. Notably, section 3 unveils novel findings, including integral

representations for the distribution and density functions of the Euclidean distance

between two d-dimensional Gaussian points, characterized by correlated coordinates

through a covariance matrix. Precise bounds for the moments of the considered

distance in terms of the extreme eigenvalues of the covariance matrix are found.

When d = 2, an expression for the density function in terms of a modified Bessel

function is obtained. In section 2, we independently address the scenario of uncorre-

lated coordinates and deduce the density and moments of the interpoint distance,

drawing upon the results by Mathai and Provost [13].

In the upcoming text, a d-dimensional vector v ∈ Rd will be assumed to be a

column vector, or, equivalently, a d× 1 matrix. The transpose of matrix A will be

denoted by AT . 0 will stand for the vector with all zero coordinates, 1 for the vector
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whose all coordinates are equal to 1. Id will represent the identity d × d matrix,

∥ · ∥d the Euclidean norm in Rd, and |A| the determinant of matrix A.

If X is a d-variate normal random vector having mean µ and covariance matrix

Σ then we denote this condition by X ∼ Nd(µ,Σ). We denote λ = [λ1, λ2, ..., λd]
T ,

where λ1 ≥ λ2 ≥ ... ≥ λd > 0 are the eigenvalues of Σ.

From now onwards, we assume µ = 0 and the diagonal of Σ consisting of 1s. If

X1,X2 ∼ Nd(0,Σ) are independent, we denote

Dd = ∥X1 −X2∥d.

2. The density of Dd

Let U = X1 −X2. Since U ∼ Nd(0, 2Σ) and D2
d = UTU , then the distribution

function of D2
d can be written in the following form (see [13], page 95):

Theorem 2.1.

(2.1) P(D2
d ≤ y)

def
= FD2

d
(Σ, y) =

∞∑
k=0

(−1)kck
y

d
2+k

Γ
(
d
2 + k + 1

) , y > 0,

where

(2.2) c0 =
1

2d
√

|Σ|
, ck =

1

k

k−1∑
r=0

δk−rcr, k ≥ 1,

(2.3) δk =
1

22k+1

d∑
i=1

1

λki
,

and Γ is the Gamma function

Γ(x) =

∫ ∞

0

tx−1e−tdt, x > 0.

When the coordinates of the Gaussian points are uncorrelated univariate standard

normal variables, then Σ = Id is the identity d × d matrix and, consequently,

λ = 1. In this case, one can obtain from Theorem 2.1 that Dd follows GG(a, d, p),

a generalized Gamma distribution, introduced by E. W. Stacy [14], which has the

probability density function

f(x; a, d, p) =

(
p/ad

)
xd−1e−(x/a)p

Γ(d/p)
, x > 0,

where d > 0 and p > 0 are the shape parameters, and a is a scale parameter. The

result is formulated below.

Let fDd
(Σ, ·) be the density function of Dd.
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Theorem 2.2.

(2.4) fDd
(Id, R) =

Rd−1e−
R2

4

2d−1Γ
(
d
2

) , R > 0,

that is, if Σ = Id then Dd ∼ GG(2, d, 2).

Proof. Since λ = 1, (2.3) and (2.2) imply c0 = 2−d and

ck =
d

k22k+1

k−1∑
r=0

4rcr, k ≥ 1.

It is easy to verify by mathematical induction that

ck =
1

2dk!4k

k−1∏
j=0

(
d

2
+ j

)
, k ≥ 1,

which, based on the identity xΓ(x) = Γ(x+ 1), x > 0, can be rewritten as

(2.5) ck =
Γ(d2 + k)

2dk!4kΓ(d2 )
, k ≥ 1.

By substituting (2.5) in (2.1) and using fDd
(Id, R) = 2R ∂

∂RFD2
d
(Id, R

2), we obtain

fDd
(Id, R) = 2R

∞∑
k=0

(−1)k
Γ(d2 + k)(R2)

d
2+k−1(d2 + k)

2dk!4kΓ(d2 )Γ(
d
2 + k + 1)

=

= 2R · Rd−2

2dΓ(d2 )

∞∑
k=0

1

k!

(
− R2

4

)k

=
Rd−1e−

R2

4

2d−1Γ
(
d
2

) .
□

The moments of the generalized Gamma distribution are well known. If X ∼
GG(a, d, p), then (see, for example [15], section 17.8.7)

E (Xr) = ar
Γ
(

d+r
p

)
Γ
(

d
p

) , r = 0, 1, 2, ... .

As a result, from Theorem 2.2 we immediately obtain the corresponding formula

for the moments of Dd.

Corollary 2.1. If Σ = Id, then

(2.6) E (Dr
d) = 2r

Γ
(
d+r
2

)
Γ
(
d
2

) , r = 0, 1, 2, ... .

In general, when Σ ̸= Id, even when d = 2, it is hard to compute the coefficients

ck from the recursive formulas (2.2) and evaluate the infinite sum (2.1).
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3. An integral representation of the distribution function of Dd

As usual, we denote by FDd
(Σ, ·) the distribution function of Dd.

Theorem 3.1. Let Ed(λ, R) be the ellipsoid

{y = [y1, y2, ..., yd]
T : λ1y

2
1 + λ2y

2
2 + ...+ λdy

2
d ≤ R2}.

Then

(3.1) FDd
(Σ, R) =

1

(2
√
π)d

∫
E(λ,R)

exp

(
−1

4
yTy

)
dy, R > 0.

Proof. Consider the probability density function of U = X1 −X2:

(3.2) fU (u) =
1

(2
√
π)d|Σ|1/2

exp

(
− 1

4
uTΣ−1u

)
, u ∈ Rd.

We denote

diag(λ) =

λ1 . . .
λd

 , diag(λ−1) =

λ
−1
1

. . .
λ−1
d

 .
Due to orthogonal diagonalization theorem for symmetric matrices, there exists

an orthogonal matrix Q = [qij ]d×d such that Σ = Qdiag(λ)QT , and therefore,

Σ−1 = Qdiag(λ−1)QT . Denoting the i-th column of Q by qi, we obtain

uTΣ−1u = [uTq1, u
Tq2, ..., u

Tqd ]diag(λ−1)


qT
1 u

qT
2 u
...

qT
d u

 =

d∑
i=1

(qT
i u)

2

λi
,

and therefore,

(3.3) fU (u) =
1

(2
√
π)d|Σ|1/2

exp

(
− 1

4

d∑
i=1

(qT
i u)

2

λi

)
, u ∈ Rd.

Let x1, x2, ..., xd > 0, U = [U1, U2, ..., Ud]
T , U∗ = [|U1|, |U2|, ..., |Ud|]T and

u = [u1, u2, ..., ud]
T . Then, due to (3.3),

P(|U1| ≤ x1, |U2| ≤ x2, ..., |Ud| ≤ xd))
def
= FU∗(x1, x2, ..., xd) =

=
1

(2
√
π)d|Σ|1/2

∫ x1

−x1

du1

∫ x2

−x2

du2...

∫ xd

−xd

exp

(
− 1

4

d∑
i=1

(qT
i u)

2

λi

)
dud.

The joint density function of the random variables |U1|, |U2|, ..., |Ud| can be reached

by partial differentiation of the last iterated integral, i.e.

fU∗(x1, x2, ..., xd) =
∂d

∂xd∂xd−1 ... ∂x1
FU∗(x1, x2, ..., xd).

Applying the Leibnitz’s rule of differentiation d times, we conclude

(3.4) fU∗(x1, x2, ..., xd) =
1

(2
√
π)d|Σ|1/2

∑
w∈Ω(x1,x2,...,xd)

exp

(
− 1

4

d∑
i=1

(qT
i w)2

λi

)
,
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where Ω(x1, x2, ..., xd) = {w = [w1, w2, ..., wd]
T : |wi| = xi, i = 1, 2, ..., d}.

We now aim to replace the summing index in (3.4) and run it over all the binary

strings of length d. For any s = (s1, s2, ..., sd) ∈ {0, 1}d consider the unique vector

ws = [w
(s)
1 , w

(s)
2 , ..., w

(s)
d ]T ∈ Ω(x1, x2, ..., xd) such that

w
(s)
i =

{
xi if si = 0

−xi if si = 1
.

Formula (3.4) can be equivalently written in the following form:

(3.5) fU∗(x1, x2, ..., xd) =
1

(2
√
π)d|Σ|1/2

∑
s∈{0, 1}d

exp

(
− 1

4

d∑
i=1

(qT
i ws)

2

λi

)
.

Since FDd
(Σ, R) = P(∥U∗∥ ≤ R), R > 0, the formula (3.4) implies

(3.6) FDd
(Σ, R) =

1

(2
√
π)d|Σ|1/2

∫
B0

d(R)

∑
s∈{0, 1}d

exp

(
− 1

4

d∑
i=1

(qT
i ws)

2

λi

)
dx,

where B0
d (R) = {(x1, x2, ..., xd) : x21 + x22 + ... + x2d ≤ R2, xi > 0, i = 1, 2, ..., d}

is an 2d-quadrant of the d-dimensional ball Bd(R) of radius R centered at the

origin, and dx = dx1dx2...dxd. Hereinafter, for any s = (s1, s2, ..., sd) ∈ {0, 1}d,
the symbol Bs

d(R) will stand for the 2d-quadrant of Bd(R) consisting of the points

(x1, x2, ..., xd) such that xi > 0, if si = 0 and xi < 0, if si = 1.

By interchanging the sum with the integral in (3.6) and denoting

gs(x1, x2, ..., xn) = exp

(
− 1

4

d∑
i=1

(qT
i ws)

2

λi

)
,

we receive

(3.7) FDd
(Σ, R) =

1

(2
√
π)d|Σ|1/2

∑
s∈{0, 1}d

∫
B0

d(R)

gs(x1, x2, ..., xd)dx1dx2...dxd.

Let us perform the following change of variable in the integral of gs over B0
d (R):

ti = xi, if si = 0,

ti = −xi, if si = 1.

The Jacobian D(x1,x2,...,xd)
D(t1,t2,...,td)

is either 1 or −1, therefore after this change of variable

we obtain

(3.8)
∫
B0

d(R)

gs(x1, x2, ..., xd)dx1dx2...dxd =

∫
Bs

d(R)

g0(x1, x2, ..., xd)dx1dx2...dxd.

Since the sets Bs
d(R), s ∈ {0, 1}d are pairwise disjoint and the union of their

closures is exactly equal to Bd(R), from (3.7) and (3.8) we establish

(3.9) FDd
(Σ, R) =

1

(2
√
π)d|Σ|1/2

∫
Bd(R)

g0(x1, x2, ..., xd)dx1dx2...dxd.
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We have w0 = x = [x1, x2, ..., xd]
T , which means that

(3.10) g0(x1, x2, ..., xd) = exp

(
− 1

4

d∑
i=1

(qT
i x)

2

λi

)
.

To finish the proof, we make one more change of variable in the integral of g0 over

the ball Bd(R). Consider a new variable y = [y1, y2, ..., yd], where

(3.11) yi =
qT
i x√
λi
, i = 1, 2, ..., d.

Using orthogonality of Q, we will have

(3.12)
D(x1, x2, ..., xd)

D(y1, y2, ..., yd)
=

√
λ1

√
λ2...

√
λd |Q| = |Σ|1/2

and

(3.13)
d∑

i=1

x2i =

d∑
i=1

(
√
λ1qi1y1 +

√
λ2qi2y2 + ...+

√
λdqidyd)

2 =

d∑
i=1

λiy
2
i .

Now (3.1) follows from (3.9)-(3.13).

Corollary 3.1. The probability density function of Dd is representable as follows:

(3.14) fDd
(Σ, R) =

Rd−1

(2
√
π)d|Σ|1/2

∫
Sd−1

exp

(
− R2

4
uTΣ−1u

)
du.

Proof. As we saw in the last part of the proof of Theorem 3.1, the formula (3.1)

is equivalent to

(3.15) FDd
(Σ, R) =

1

(2
√
π)d|Σ|1/2

∫
Bd(R)

exp

(
− 1

4
xTΣ−1x

)
dx.

The change of variable x = ru, u ∈ Sd−1, dx = rd−1drdu in (3.15) produces

FDd
(Σ, R) =

1

(2
√
π)d|Σ|1/2

∫
Sd−1

du

∫ R

0

exp

(
− r2

4
uTΣ−1u

)
rd−1dr.

By taking the derivatives of both sides in the last equation, we establish (3.14). □

As an application of the obtained integral representations, we easily found the

probability density function of the Euclidean distance between two bivariate Gaussian

points in the case when there is an intercoordinate correlation ρ.

Theorem 3.2. If Σ =

[
1 ρ
ρ 1

]
, then

fD2
(Σ, R) =

Re−
R2

4|Σ|

2
√

|Σ|
I0

(
ρR2

4|Σ|

)
,

where

I0(x) =

∞∑
k=0

x2k

((2k)!!)2

is the modified Bessel function of the first kind of order zero.
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Proof. It is easy to see that λ1 = 1 + ρ, λ2 = 1− ρ. By (3.14), we have

fD2
(Σ, R) =

R

4π
√
1− ρ2

∫ 2π

0

exp

(
− R2 cos2 φ

4 + 4ρ
− R2 sin2 φ

4− 4ρ

)
dφ =

=
Re

− R2

4(1−ρ2)

2π
√
1− ρ2

∫ π

0

ea cos 2φdφ,

where

a =
ρR2

4(1− ρ2)
.

Since |Σ| = 1− ρ2, to complete the proof it remains to show that

1

π

∫ π

0

ea cos 2φdφ = I0(a).

Indeed, Taylor’s expansion for ex solves this problem:

1

π

∫ π

0

ea cos 2φdφ =
1

π

∞∑
k=0

ak

k!

∫ π

0

cosk 2φdφ =
1

2π

∞∑
k=0

ak

k!

∫ 2π

0

cosk ψdψ =

=
2

π

∞∑
k=0

a2k

(2k)!

∫ π/2

0

cos2k ψdψ =
2

π

∞∑
k=0

a2k

(2k)!

(2k − 1)!!

(2k)!!

π

2
=

∞∑
k=0

a2k

((2k)!!)2
= I0(a).

□

As another application, we established lower and upper bounds for the moments

of Dd in terms of the largest and the smallest eigenvalues of the covariance matrix.

Theorem 3.3. Let E (Dr
d) be the r-th moment of Dd. Then

(3.16)
2rΓ

(
d+r
2

)
Γ
(
d
2

) λ
d+r
2

d

|Σ|1/2
≤ E (Dr

d) ≤
2rΓ

(
d+r
2

)
Γ
(
d
2

) λ
d+r
2

1

|Σ|1/2
, r = 0, 1, 2, ... .

Proof. As λ1 ≥ λ2 ≥ ... ≥ λd > 0 then we have

(3.17)
1

λ1

d∑
i=1

(qT
i u)

2 ≤ uTΣ−1u ≤ 1

λd

d∑
i=1

(qT
i u)

2.

Due to orthogonality of Q,
d∑

i=1

(qT
i u)

2 = ∥u∥2d = 1, if u ∈ Sd−1,

therefore, the integral representation (3.14) and inequalities (3.17) yield

e
− R2

4λdRd−1

(2
√
π)d|Σ|1/2

∫
Sd−1

du ≤ fDd
(Σd, R) ≤

e−
R2

4λ1Rd−1

(2
√
π)d|Σ|1/2

∫
Sd−1

du.

The surface area of Sd−1 is well-known and equal to 2(
√
π)d

Γ( d
2 )

, so we obtain

(3.18)
Rd−1e

− R2

4λd

2d−1Γ(d2 )|Σ|1/2
≤ fDd

(Σd, R) ≤
Rd−1e−

R2

4λ1

2d−1Γ(d2 )|Σ|1/2
.
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Multiplying all sides of (3.18) by Rr and applying integral over (0, +∞) to all sides

leads to

λ
d+r
2

d

|Σ|1/2
I(d) ≤ E (Dr

d) ≤
λ

d+r
2

1

|Σ|1/2
I(d),

where

I(d) =
1

2d−1Γ(d2 )

∫ +∞

0

Rd+r−1e−
R2

4 dR.

It remains to apply (2.4) and (2.6) to see that

I(d) = 2r
Γ
(
d+r
2

)
Γ
(
d
2

) .

4. The normal covariogram of Rd

The covariogram of a bounded domain D ⊂ Rd is known to be the function

CD(t) = Ld(D ∩ {D+ t}), t ∈ Rd,

where D+ t = {P + t : P ∈ D} and Ld(·) is the d-dimensional Lebesgue measure

in Rd. If D is a convex body and P1, P2 are chosen uniformly and independently

from D, then the probability density function of P1 − P2 can be expressed by the

covariogaram of D as shown in (1.2). This motivates us to extend the concept of

the covariogram for D = Rd.

Definition 4.1. Let P1, P2 ∼ Nd(0, Σ) be independent and fP1−P2
be the probability

density function of P1 − P2. The function CΣ : Rd → (0, +∞) that satisfies

fP1−P2
(t) =

CΣ(t)

C2
Σ(0)

,

is called the normal covariogram of Rd associated with Σ.

By taking t = 0 in this definition and using (3.2) we immediately obtain

CΣ(0) = (2
√
π)d|Σ|1/2,

and then

(4.1) CΣ(t) = (2
√
π)d|Σ|1/2 exp

(
− 1

4
tTΣ−1t

)
, t ∈ Rd.

It is remarkable that CId(t) = (2
√
π)d exp

(
− 1

4∥t∥
2
d

)
. It illustrates that if Rd is

considered as a space of points with uncorrelated coordinates then the covariogram

of the space is naturally independent on the direction of translation.

Taking into account (1.1), the following identity provides a further argument to

ensure that the normal covariogram naturally extends the concept of covariogram.
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Theorem 4.1.

(4.2) fDd
(Σ, R) =

Rd−1

C2
Σ(0)

∫
Sd−1

CΣ(Ru)du, R > 0.

Proof. By (4.1),

Rd−1

C2
Σ(0)

∫
Sd−1

CΣ(Ru)du =
Rd−1

(2
√
π)d|Σ|1/2

∫
Sd−1

exp

(
− R2

4
uTΣ−1u

)
du.

Now due to (3.14), the right-hand-side of the above equality coincides with the

left-hand-side of (4.2).
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1. Introduction

Let N be the set of natural numbers and C = C ∪ {∞}. Throughout the paper

by meromorphic functions we shall mean it is meromorphic in the complex plane

and by L-functions we mean it is L-functions in the Selberg class which is defined

[7, 8] to be a Dirichelet series

(1.1) L(s) =
∞∑

n=1

a(n)

n−s

satisfying the following axioms:

• (i) Ramanujan hypothesis : a(n) ≪ nε for every ε > 0;

• (ii) Analytic continuation : There is a non-negative integer m such that

(s− 1)mL(s) is an entire function of finite order;

• (iii) Functional equation: L satisfies a functional equation of type

(1.2) ΛL(s) = ωΛL(1− s),

1The first author is thankful to the Department of Atomic Energy (DAE), India, for financial
support to pursue this work [No. 0203/13(41)/2021-R&D-II/13168]. The second author is
thankful to“Science and Engineering Research Board, Department of Science and Technology,
Government of India"for financial support to pursue this research work under the Project File No.
EEQ/2021/000316.
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where

(1.3) ΛL(s) = L(s)Qs
k∏

j=1

Γ(λjs+ νj),

with positive real numbers Q,λj and complex numbers νj , ω with Reνj ≥ 0

and |ω| = 1;

• (iv) Euler product hypothesis : logL(s) =
∞∑

n=1

b(n)
ns , where b(n) = 0 unless n

is a positive power of a prime and b(n) ≪ nθ for some θ < 1
2 .

This class includes many of the known entire Dirichlet series with Euler product,

including the Riemann zeta function and the Dirichlet L-functions. Since an L-

function can be analytically continued to a meromorphic function, the study of

uniquely determining an L-function, gradually moved towards uniquely determining

the L-functions with respect to the meromorphic functions having finitely many

poles. A lot of research has already been pursued by various researchers [7, 8, 6, 9, 3]

in this direction. Below we recall some of these results and the gradual development.

But before that, we recall some basic definitions. For standard notations of Nevanlinna

theory, we suggest our reader to follow [2].

Definition 1.1. [4, 5] Let k be a non-negative integer or infinity. For a ∈ C we

denote by Ek(a; f) the set of all a-points of f, where an a-point of multiplicity m is

counted m times if m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g), we say

that f , g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k.

Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also

we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)

respectively.

Definition 1.2. [4] For A ⊂ C we define Ef (A, k) = ∪a∈AEk(a; f), where k is a

non-negative integer or infinity. If Ef (A, k) = Eg(A, k), then we say that f and g

share the set A with weight k.

We write f , g share (A, k) to mean that f , g share the set A with weight k. We

say that f , g share a set A IM or CM if and only if f , g share (A, 0) or (A,∞)

respectively.

2. Gradual development and motivation

In 2010, B. Q. Li proved the following theorem.
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Theorem A. [6] Let a and b be two distinct finite values, and let f be a meromorphic

function in the complex plane such that f has finitely many poles in the complex

plane. If f and a non-constant L-function L share (a,∞) and (b, 0), then L = f .

In 2018, Yuan, Li and Yi [9] considered the uniqueness of L-functions with

meromorphic functions having finitely many poles under set sharing and proved

the following theorem.

Theorem B. [9] Let S = {ω1, ω2, ..., ωl}, where ω1, ω2, ..., ωl are all distinct zeros

of the polynomial P (ω) = ωn + aωm + b. Here l is a positive integer satisfying

1 ≤ l ≤ n, n and m are relatively prime positive integers with n ≥ 5 and n > m,

and a, b, c are nonzero finite constants, where c ̸= ωj for 1 ≤ j ≤ l. Let f be a non-

constant meromorphic function such that f has finitely many poles in the complex

plane, and let L be a non-constant L-function. If f and L share S CM and c IM,

then L = f.

In 2020, Kundu and Banerjee [3] considered the case c = 0 of Theorem B and

provided the following theorem.

Theorem C. [3] Let f be a meromorphic function in C with finitely many poles

and S be as defined in Theorem B. Here a, b are two non-zero constants and n,m

are relatively prime positive integers such that n > 2m. If f and a non-constant L

-function L share (S,∞) and (0, 0), then L = f .

Very recently, Banerjee and Kundu [1] proved the following result.

Theorem D. [1] Let S be defined as in Theorem B, f be a meromorphic function

having finitely many poles in C and let L be a non-constant L -function. Suppose

Ef (S, s) = EL(S, s) and for some finite c /∈ S, f and L share (c, 0). Also let ai(i =

1, 2, . . . , n − m) be the zeros of nzk + ma, where k = n − m(≥ 1) and denote

S′ = {a1, a2, . . . , an−m} .
I. Suppose c = 0.

When (i) s ≥ 2, n > 2m + 2 or (ii) s = 1, n > 2m + 3 or (iii) s = 0, n > 2m + 8;

then f ≡ L.

II. Suppose c ̸= 0.

(A) Let c ∈ S′. When l = n and (i) s = 1, n > 2k + 2 or (ii) s = 0, n > 2k + 5;

or when l = n − 1 and (i) s ≥ 2, n > 2k + 2 or (ii) s = 1, n > 2k + 3 or (iii)

s = 0, n > 2k + 8; then f ≡ L.

(B) Next let c /∈ S′. When (i) s ≥ 2, n > 2k + 4 or (ii) s = 1, n > 2k + 5 or (iii)

s = 0, n > 2k + 10; then f ≡ L.
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From the above discussion, one would naturally observe that in Theorem B-

D all the authors always considered the set S to be the zeros of the polynomial

P (z) = zn + azm + b. Now if we take m = n− 1, then the condition of Theorem C

and condition I of Theorem D become absurd; i.e., for m = n− 1 Theorem C and

I of Theorem D is not applicable. Also one can notice that all the authors always

considered a special class of meromorphic functions; i.e., they always considered

meromorphic functions having finitely many poles. Therefore the uniqueness of

L-functions with general meromorphic functions is yet to be dealt with. At this

moment naturally, the following two questions come into mind.

Question 2.1. For m = n − 1, if a non-constant meromorphic function having

finitely many poles and an L-function share (S, t) and (c, 0), are they equal?

Question 2.2. If a general non-constant meromorphic function and an L-function

share (S, t) and (c, 0), then are they equal?

In this paper, we have answered the above two questions affirmatively. Not only

that by considering the polynomial P (z) = zn + azn−1 + b, we have shown the

uniqueness of a general non-constant meromorphic function with a non-constant

L-function when they share the set (S, t) and (η, 0), where η is the zero of P ′(z).

As a corollary of our main theorem, we have shown that our result not only fills the

gap of Theorem C and I of Theorem D for m = n−1 but also significantly improves

Theorem B-C and I of Theorem D.

3. Main result

Now we state the following theorem which is the main result of the paper.

Theorem 3.1. Let P (z) = zn + azn−1 + b, with n ≥ 3 and a, b are non-zero

constants such that the polynomial has no multiple zero. Suppose that f , L share

(S, t) and (η, 0), where t ∈ N ∪ {0}, S be the set of zeros of P (z), η be the zero

of P ′(z), f be a non-constant meromorphic function and L be a non-constant L-

function.

(I) Suppose η = 0. If

(i) t ≥ 5, with

• n > 2 + (2 + 3
n−2 )(1−Θ(∞; f));

(ii) t = 4, with

• n > max{2 + (2 + 3
n−2 )(1−Θ(∞; f)), 3};

• n = 3 and Θ(∞; f) > 5
6 ;
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(iii) t = 3, with

• n > max{2 + (2 + 3
n−2 ) (1−Θ(∞; f)) , 4};

• n = 4 and Θ(∞; f) > 11
23 ;

• n = 3 and Θ(∞; f) > 7
8 ;

(iv) t = 2, with

• n > 2 +
(
2 + 12

3n−8

)
(1−Θ(∞; f));

(v) t = 1, with

• n > max{2 + 5
2 + ( 6

n−3 )(1−Θ(∞; f)), 4};
• n = 4 and Θ(∞; f) > 13

17 .

(vi) t = 0, with

• n > max{2 +
(
4 + 14

n−4

)
(1−Θ(∞; f)), 4};

then we get f ≡ L.

(II) Suppose η ̸= 0. If

(i) t ≥ 2, with

• n > max{4 + 2(1−Θ(∞; f)), 4};
(ii) t = 1, with

• n > max{5 + 5
2 (1−Θ(∞; f)), 4};

(iii) t = 0, with

• n > max{8 + 4(1−Θ(∞; f)), 4};
then we get f ≡ L.

Corollary 3.1. Let P (z) = zn + azn−1 + b, with n ≥ 3 and a, b are non-zero

constants such that the polynomial has no multiple zero. Suppose that f , L share

(S, t) and (η, 0), where t ∈ N ∪ {0}, S be the set of zeros of P (z), η be the zero of

P ′(z), f be a non-constant meromorphic function having finitely many poles and L
be a non-constant L-function.

(I) Suppose η = 0. If (i) n ≥ 3 when t ≥ 2, (ii) n ≥ 4 when t = 1, (iii) n ≥ 5

when t = 0; then we get f ≡ L.

(II) Suppose η ̸= 0. If (i) n ≥ 5 when t ≥ 2, (ii) n ≥ 6 when t = 1, (iii) n ≥ 9

when t = 0; then we get f ≡ L.

Remark 3.1. In Corollary 3.1 one can observe that for η = 0 the least cardinality

of the set S is 3, 4 and 5 when t ≥ 2, t = 1 and t = 0 respectively, whereas in

Theorem D it was 5, 6 and 11. Again in Theorem C the cardinality 3 was achieved

in the case of CM sharing but from Corollary 3.1 the same is achieved for weight 2

only. Also in Theorem 3.1 we deal with general meromorphic functions instead of

meromorphic functions having finitely many poles. Therefore our result is not only

improved but also an extended version of Theorem B-C and I of Theorem D.
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4. Lemmas

In this section, we discuss some lemmas which will play key role to prove our

main result. For the convenience of the reader, let us shortly recall some definitions

and notations which will be required to prove the lemmas.

Definition 4.1. Let f be a meromorphic function. We denote the order of f by

ρ(f), where

(4.1) ρ(f) = lim sup
r→∞

log(T (r, f))

log r
.

By S(r, f) we mean any quantity satisfying S(r, f) = O(log(rT (r, f))) for all r

possibly outside a set of finite linear measure. If f is a function of finite order, then

S(r, f) = O(log r) for all r.

Definition 4.2. Let f and g be two non-constant meromorphic functions such that

f and g share (a, 0), where a ∈ C. Let z0 be an a-point of f with multiplicity p, an

a-point of g with multiplicity q. Then

• Nd(r, a; f) denotes the reduced counting function of those a-points of f and

g where p > q.

• N
1)
E (r, a; f) denotes the counting function of those a-points of f and g where

p = q = 1.

In the same way we can define Nd(r, a; g) and N
1)
E (r, a; g).

• N(r, a; f | = 1) denotes the reduced counting function of simple a-points of

f .

• N∗(r, a; f, g) denotes the reduced counting function of those a-points of f

and g where p ̸= q. Clearly N∗(r, a; f, g) = N∗(r, a; g, f) = Nd(r, a; f) +

Nd(r, a; g).

• N(r, a; f |≥ m) denotes the reduced counting function of those a points of

f whose multiplicities are not less than m.

• N(r, a; f | g ̸= b1, b2, . . . , bq) denotes the counting function of those a-

points of f , counted according to multiplicity, which are not the bi-points of

g for i = 1, 2, . . . , q; where a, b1, b2, . . . , bq ∈ C.

Definition 4.3. Let f(z) be a non-constant meromorphic function in the complex

plane and a ∈ C. Then

Θ(a, f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)
.

Observe that 0 ≤ Θ(a, f) ≤ 1.
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For two non-constant meromorphic functions F and G, set

(4.2) H =

(
F

′′

F ′ − 2F
′

F − 1

)
−

(
G

′′

G′ − 2G
′

G− 1

)
,

and

(4.3) Φ =
F ′

F − 1
− G′

G− 1
.

Lemma 4.1. [10] Let F , G share (1, 0) and H ̸≡ 0. Then

N
1)
E (r, 1;F ) = N

1)
E (r, 1;G) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 4.2. Let f be a non-constant meromorphic function and L be an non-

constant L-function sharing a set S IM, where |S| ≥ 3. Then ρ(f) = ρ(L) = 1.

Furthermore, S(r, f) = O(log r) = S(r,L).

Proof. Proceeding in a similar method as done in the proof of Theorem 5, [9,

see p. 6], we can obtain ρ(f) = ρ(L) = 1. So we omit it.

Since ρ(f) = ρ(L) = 1, so from the definition of S(r, f) we get S(r, f) = O(log r) =

S(r,L). □

Lemma 4.3. Let f , g be two non-constant meromorphic functions sharing (1,t),

where t ∈ N ∪ {0}. Then

N(r, 1; f) +N(r, 1; g) ≤ N
1)
E (r, 1; f) + (1− t)N∗(r, 1; f, g) +N(r, 1; f).

Proof. Since f and g share (1, t), we observe that

N(r, 1; f) +N(r, 1; g) = 2N(r, 1; f).

Case-I : Suppose t ≥ 2.

Let z0 be a 1 point of f with multiplicity p and a 1 point of g of multiplicity q.

Since f and g share (1, t), therefore p ≤ t implies p = q.

Subcase - I : When p ≤ t. If p = 1, then z0 is counted once in both N
1)
E (r, 1; f)

and N(r, 1; f). On the other hand z0 is not counted in N∗(r, 1; f, g). Again if p ̸= 1,

then z0 is counted p times (i.e., at least 2 times) in N(r, 1; f) and in this case z0

is not counted in N
1)
E (r, 1; f) and N∗(r, 1; f, g). Therefore z0 is counted at least 2

times in N
1)
E (r, 1; f) + (1− t)N∗(r, 1; f, g) +N(r, 1; f).

Subcase - II : When p ≥ (t+1). If p = q, then z0 is counted p time (i.e., at least 3

times) in N(r, 1; f) and z0 is not counted in N
1)
E (r, 1; f) and N∗(r, 1; f, g). When p ̸=

q, then z0 is counted (1−t) times in (1−t)N∗(r, 1; f, g) and counted p times (i.e., at

least t+1 times) in N(r, 1; f) and z0 is not counted in N
1)
E (r, 1; f); i.e., z0 is counted
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at least (1− t)+ (t+1) = 2 times in N
1)
E (r, 1; f)+ (1− t)N∗(r, 1; f, g)+N(r, 1; f).

Now since z0 is counted two times in N(r, 1; f) + N(r, 1; g). Therefore in any sub

case we have

N(r, 1; f) +N(r, 1; g) ≤ N
1)
E (r, 1; f) + (1− t)N∗(r, 1; f, g) +N(r, 1; f).

Case-II : Suppose t = 1.

Then clearly

N(r, 1; f) ≤ N(r, 1; f | = 1) +N(r, 1; f) = N
1)
E (r, 1; f) +N(r, 1; f).

Therefore, for t = 1

N(r, 1; f) +N(r, 1; g) ≤ N
1)
E (r, 1; f) + (1− t)N∗(r, 1; f, g) +N(r, 1; f).

Case-III : Suppose that t = 0. Let z0 be a 1 point of f with multiplicity p and

a 1 point of g of multiplicity q. If p = q = 1, then z0 is counted 2 times in both

2N(r, 1; f) and N
1)
E (r, 1; f)+ (1− t)N∗(r, 1; f, g)+N(r, 1; f), as N∗(r, 1; f, g) does

not count z0. If p = 1, q ̸= 1, then also z0 is counted 2 times in both 2N(r, 1; f) and

N
1)
E (r, 1; f) + (1− t)N∗(r, 1; f, g) +N(r, 1; f), as in this case N

1)
E (r, 1; f) does not

count z0. Finally if p ̸= 1, then z0 is counted at least 2 times in (1− t)N∗(r, 1; f, g)+

N(r, 1; f) and z0 is not counted in N
1)
E (r, 1; f).

Therefore, for t = 0,

N(r, 1; f) +N(r, 1; g) ≤ N
1)
E (r, 1; f) + (1− t)N∗(r, 1; f, g) +N(r, 1; f).

And hence in any case,

N(r, 1; f) +N(r, 1; g) ≤ N
1)
E (r, 1; f) + (1− t)N∗(r, 1; f, g) +N(r, 1; f). □

Lemma 4.4. Let P (z) = zn+azn−1+b, with n ≥ 3 and a, b are non-zero constants

such that the polynomial has no multiple zero and S be the set of all zeros of P (z).

Define

F =
fn + afn−1

−b
and G =

L+ aLn−1

−b
(4.4)

and

(4.5) P
′
(z) = n

2∏
i=1

(z − ηi)
qi ,

where η1 = 0, η2 = a(n−1)
n , q1 = n− 2 and q2 = 1.

Let f be a non-constant meromorphic functions and L be a non-constant L-

function such that f,L share (S, t) and ηj IM and if Φ ̸≡ 0 then

N(r, ηj ; f) ≤
1

qj
[N∗(r, 1;F,G) +N(r,∞; f)] +O(log r).
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Proof. By the given condition clearly F and G share (1, t). Also by (4.5) we have

F ′ = −n

b

2∏
i=1

(f − ηi)
qi f ′ and G′ = −n

b

2∏
i=1

(L − ηi)
qi L′.

Thus we see that

(4.6) Φ =
−n
∏2

i=1 (f − ηi)
qi f ′

b(F − 1)
−

−n
∏2

i=1 (L − ηi)
qi L′

b(G− 1)
.

Let z0 be a zero of f−ηj with multiplicity r and a zero of L−ηj with multiplicity v.

Then that would be a zero of Φ of multiplicity µ = min {qjr + r − 1, qjv + v − 1} ≥
qj . So by a simple calculation we can write

N (r, ηj ; f) = N (r, ηj ;L) ≤
1

µ
N(r, 0; Φ) ≤ 1

µ
T (r,Φ)

≤ 1

µ
[N(r,Φ) + S(r, F ) + S(r,G)]

≤ 1

µ

[
N∗(r, 1;F,G) +N(r,∞;F ) +N(r,∞;G)

]
+ S(r, F ) + S(r,G)

≤ 1

qj

[
N∗(r, 1;F,G) +N(r,∞; f) +N(r,∞;L)

]
+ S(r, f) + S(r,L).

Now using Lemma (4.2) and the fact that N(r,∞;L) = O(log r), we have

N (r, ηj ; f) = N (r, ηj ;L) ≤
1

qj

[
N∗(r, 1;F,G) +N(r,∞; f)

]
+O(log r). □

Lemma 4.5. Let F ∗− 1 = an
n∏

i=1

(f −wi) and G∗− 1 = an
n∏

i=1

(L−wi), where f be

a non-constant meromorphic function, L be an non-constant L-function, an, wi ∈
C−{0} for all i ∈ {1, 2, . . . , n}. Further suppose that F ∗ and G∗ share (1, t), where

t ∈ N ∪ {0} and ηj ̸= wi for i = 1, 2, · · · , n. Then

Nd(r, 1;F
∗) ≤ 1

t+ 1

[
N(r, ηj ; f) +N(r,∞; f)−N1(r, 0; f

′)
]
+O(log r),

where N1(r, 0; f
′) = N(r, 0; f ′|f ̸= 0, η1, w1, w2, ..., wn). Similar expression also

holds for Nd(r, 1;G
∗).
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Proof. Since F ∗ and G∗ share (1, t), in view of Lemma (4.2) and N(r,∞;L) =
O(log r), we find by using first fundamental theorem that

Nd(r, 1;F
∗) ≤ N(r, 1;F ∗| ≥ t+ 2) ≤ 1

t+ 1

[
N(r, 1;F ∗)−N(r, 1;F ∗)

]
≤ 1

t+ 1

[
n∑

i=1

(
N(r, wi; f)−N(r, wi; f)

)]

≤ 1

t+ 1
[N(r, 0; f ′|f − ηj ̸= 0)−N1(r, 0; f

′)]

≤ 1

t+ 1

[
N(r, 0;

f ′

f − ηj
)−N1(r, 0; f

′)

]
≤ 1

t+ 1

[
T (r,

f ′

f − ηj
)−N1(r, 0; f

′)

]
+O(1)

≤ 1

t+ 1

[
N(r,∞;

f ′

f − ηj
)−N1(r, 0; f

′)

]
+ S(r, f)

≤ 1

t+ 1

[
N(r,∞; f) +N(r, ηj ; f)−N1(r, 0; f

′)
]
+O(log r).

This proves the lemma. □

Remark 4.1. Let F and G be defined by (4.4). If F , G share (1, t) and f , L share

ηj IM, then using Lemma (4.4) and Lemma (4.5), in view of N(r,∞;L) = O(log r),

we get

N∗(r, 1;F,G) = Nd(r, 1;F ) +Nd(r, 1;G)

≤ 1

t+ 1

[
N (r, ηj ; f) +N(r,∞; f) +N (r, ηj ;L)

]
+O(log r)

≤ 2

t+ 1
N (r, ηj ; f) +

1

t+ 1
N(r,∞; f) +O(log r)(4.7)

≤ 2

qj(t+ 1)

[
N∗(r, 1;F,G) +N(r,∞; f)

]
+

1

t+ 1
N(r,∞; f) +O(log r).

This implies that(
1− 2

qj(t+ 1)

)
N∗(r, 1;F,G) ≤ (2 + qj)

qj(t+ 1)
N(r,∞; f) +O(log r)

((t+ 1)qj − 2)N∗(r, 1;F,G) ≤ (2 + qj)N(r,∞; f) +O(log r).(4.8)

Lemma 4.6. Let P (z) = zn+azn−1+b, with n ≥ 3 and a, b are non-zero constants

such that the polynomial has no multiple zero. Suppose that f , L share (S, t) and

(η, 0), where t ∈ N ∪ {0}, η be the zero of P ′(z), f be a non-constant meromorphic

function and L be a non-constant L-function. Further suppose that

(4.9)

F =
fn + afn−1

−b
= −1

b
fn−1(f + a) and G =

Ln + aLn−1

−b
= −1

b
Ln−1(L+ a).

When η = 0 and
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(i) t ≥ 5, with

• n > 2 + (2 + 3
n−2 )(1−Θ(∞; f));

(ii) t = 4, with

• n > max{2 + (2 + 3
n−2 )(1−Θ(∞; f)), 3};

• n = 3 and Θ(∞; f) > 5
6 ;

(iii) t = 3, with

• n > max{2 + (2 + 3
n−2 ) (1−Θ(∞; f)) , 4};

• n = 4 and Θ(∞; f) > 11
23 ;

• n = 3 and Θ(∞; f) > 7
8 ;

(iv) t = 2, with

• n > 2 +
(
2 + 12

3n−8

)
(1−Θ(∞; f));

(v) t = 1, with

• n > max{2 + 5
2 + ( 6

n−3 )(1−Θ(∞; f)), 4};
• n = 4 and Θ(∞; f) > 13

17 .

(vi) t = 0, with

• n > max{2 +
(
4 + 14

n−4

)
(1−Θ(∞; f)), 4};

or, η ̸= 0 and

(i) t ≥ 2, with

• n > 4 + 2(1−Θ(∞; f));

(ii) t = 1, with

• n > 5 + 5
2 (1−Θ(∞; f));

(iii) t = 0, with

• n > 8 + 4(1−Θ(∞; f));

we get 1
F−1 = A

G−1 +B, where A(̸= 0), B ∈ C.

Proof. According to the assumptions of the lemma, we clearly have F , G share

(1, t) and f , L share (η, 0). Here

F ′ = −1

b
fn−2(nf + a(n− 1))f ′ = −n

b
fn−2

(
f − a(1− n)

n

)
f ′

and

G′ = −1

b
Ln−2(nL+ a(n− 1))L′ = −n

b
Ln−2

(
L − a(1− n)

n

)
L′.

Now consider H as given by (4.2) for F and G. Firstly we suppose that H ̸≡ 0.

Now we distinguish the following cases.

Case 1. Φ ≡ 0.

Then by integrating we get, (F − 1) = A(G − 1), where A(̸= 0) ∈ C. Therefore,

F ′ = AG′ and F ′′ = AG′′. Which implies that H ≡ 0. Which is a contradiction.

Case 2. Φ ̸≡ 0.
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First let us assume that η = η1 = 0. Then clearly q1 = n−2. Also let η2 = a(1−n)
n .

Since H ̸≡ 0, it can be easily verified that H has only simple poles and these poles

come from the following points.

(i) η2 -points of f and L.

(ii) η1-points of f and L having different multiplicity.

(iii) Poles of f and L.

(iv) 1 -points of F and G having different multiplicities.

(v) Those zeros of f ′ and L′, which are not zeros of
∏2

i=1 (f − ηi) (F − 1) and∏2
i=1 (L − ηi) (G − 1) respectively. Therefore we obtain

N(r,H) ≤ N (r, η2; f) +N (r, η2;L) +N(r,∞; f) +N(r,∞;L)(4.10)

+N∗ (r, η1; f,L) +N∗(r, 1;F ,G) +N0 (r, 0; f
′) +N0 (r, 0;L′) ,

where N0 (r, 0; f
′) and N0 (r, 0;L′) denotes the reduced counting functions of those

zeros of f ′ and L′, which are not zeros of
∏2

i=1 (f − ηi) (F−1) and
∏2

i=1 (L − ηi) (G−
1) respectively.

Using the second fundamental theorem, we get,

(n+ 1)T (r, f) ≤ N(r, 1;F) +
∑2

i=1 N (r, ηi; f) +

+N(r,∞; f)−N0 (r, 0; f
′) + S(r, f),(4.11)

and

(n+ 1)T (r,L) ≤ N(r, 1;G) +
∑2

i=1 N (r, ηi;L) +

+N(r,∞;L)−N0 (r, 0;L′) + S(r,L).(4.12)

Now combining (4.11) and (4.12) with the help of Lemmas (4.1) – (4.4) and then

using N(r,∞;L) = O(log r), and (4.10) we get,

(n+ 1){T (r, f) + T (r,L)} ≤ N(r, 1;F) +N(r, 1;G) +
2∑

i=1

[
N (r, ηi; f) +N (r, ηi;L)

]
+[N(r,∞; f) +N(r,∞;L)]−N0 (r, 0; f

′)−N0 (r, 0;L′) + S(r, f) + S(r,L)

≤ N
1)
E (r, 1;F) + (1− t)N∗(r, 1;F ,G) +N(r, 1;F ) +
2∑

i=1

[N(r, ni; f) +N(r, ηi;L)] +N(r,∞; f)−N0(r, 0; f
′)−N0(r, 0;L) + O(log r)
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≤
[
N (r, η2; f) +N (r, η2;L)

]
+N(r,∞; f) +N∗(r, η1; f,L)(4.13)

+ N∗(r, 1;F ,G) +N0(r, 0; f
′) +N0(r, 0;L′) + (1− t)

N∗(r, 1;F ,G) +N(r, 1;F) +

2∑
i=1

[N(r, ni; f) +N(r, ηi;L)]

+N(r,∞; f)−N0(r, 0; f
′)−N0(r, 0;L′) +O(log r)

≤ 2
[
N (r, η2; f) +N (r, η2;L)

]
+ 2N(r,∞; f) + 3N(r, η1; f)

+N(r, 1;F) + (2− t)N∗(r, 1;F ,G) +O(log r)

≤ 2{T (r, f) + T (r,L)}+ 2N(r,∞; f) +
3

n− 2
[N∗(r, 1;F ,G)

+N(r,∞; f)] + nT (r, f) + (2− t)N∗(r, 1;F ,G) +O(log r)

≤ 2{T (r, f) + T (r,L)}+ (2 +
3

n− 2
)N(r,∞; f) +

3

n− 2
N∗(r, 1;F ,G)

+nT (r, f) + (2− t)N∗(r, 1;F ,G) +O(log r)

≤ (2 + n)T (r, f) + (2 +
3

n− 2
)N(r,∞; f) + 2T (r,L)

+(2 +
3

n− 2
− t)N∗(r, 1;F ,G) +O(log r).

Therefore,

nT (r,L) ≤ T (r, f) + T (r,L) + (2 + 3
n−2 )N(r,∞; f) +

+(2 + 3
n−2 − t)N∗(r, 1;F ,G) + O(log r).(4.14)

In a similar manner, we get

nT (r, f) ≤ T (r, f) + T (r,L) + (2 + 3
n−2 )N(r,∞; f) +

+(2 + 3
n−2 − t)N∗(r, 1;F ,G) + O(log r).(4.15)

Let T (r) = max{T (r, f) , T (r,L)}. Then from (4.14) and (4.15) we get,

nT (r) ≤ 2T (r) + (2 + 3
n−2 )N(r,∞; f) +(4.16)

+(2 + 3
n−2 − t)N∗(r, 1;F ,G) +O(log r).

Again from (4.13) we get

(n+ 1){T (r, f) + T (r,L)} ≤
[
N (r, η2; f) +N (r, η2;L)

]
+N(r,∞; f)
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+N∗(r, η1; f,L) + N∗(r, 1;F ,G) + (1− t)N∗(r, 1;F ,G) +N(r, 1;F)

+

2∑
i=1

[N(r, ni; f) +N(r, ηi;L)] +N(r,∞; f) +O(log r)

≤
[
N (r, η2; f) +N (r, η2;L)

]
+N(r,∞; f) +Nd(r, η1; f)

+Nd(r, η1;L) + N∗(r, 1;F ,G) + (1− t)N∗(r, 1;F ,G)

+N(r, 1;F) + [N(r, n2; f) +N(r, η2;L)] +N(r, n1; f)

+N(r, η1;L) +N(r,∞; f) +O(log r)

≤ 2{T (r, f) + T (r,L)}+ 2N(r,∞; f) + (2− t)N∗(r, 1;F ,G)

+nT (r, f) +N2(r, η1; f) +N2(r, η1;L) +O(log r)

≤ (n+ 3)T (r, f) + 3T (r,L) + 2N(r,∞; f)

+(2− t)N∗(r, 1;F ,G) +O(log r)

nT (r,L) ≤ 2T (r, f) + 2T (r,L) + 2N(r,∞; f) +

+(2− t)N∗(r, 1;F ,G) +O(log r).(4.17)

In a similar manner, we get

nT (r, f) ≤ 2T (r, f) + 2T (r,L) + 2N(r,∞; f) +

+(2− t)N∗(r, 1;F ,G) +O(log r).(4.18)

Then combining (4.17) and (4.18) we get

nT (r) ≤ 4T (r) + 2N(r,∞; f) + (2− t)N∗(r, 1;F ,G) +O(log r).(4.19)

Subcase 2.1. When t ≥ 5 or t = 4 with n ≥ 4, we get from (4.16) that

nT (r) ≤ 2T (r) + (2 +
3

n− 2
)N(r,∞; f) +O(log r);

i.e.,

nT (r) ≤ (2 + (2 +
3

n− 2
)(1−Θ(∞; f)) + ϵ)T (r) +O(log r),

which is a contradiction for n > 2 + (2 + 3
n−2 )(1−Θ(∞; f)).

When t = 4 and n = 3, we get from (4.16) that

(4.20) 3T (r) ≤ 2T (r) + 5N(r,∞; f) +N∗(r, 1;F ,G) +O(log r).

Now from (4.8) we get, N∗(r, 1;F,G) ≤ N(r,∞; f) + O(log r). Hence (4.20) gives

T (r) ≤ 6(1−Θ(∞; f)+ϵ)T (r)+O(log r), which is a contradiction as Θ(∞; f) > 5
6 .

Subcase 2.2. When t = 3 and n ≥ 5, we get from (4.16) that

nT (r) ≤ 2T (r) + (2 +
3

n− 2
)N(r,∞; f) +O(log r);

77



R. SAHA, S. MALLICK

i.e.,

nT (r) ≤ (2 + (2 +
3

n− 2
) (1−Θ(∞; f) + ϵ))T (r) +O(log r),

which is a contradiction for n > 2 + (2 + 3
n−2 )(1−Θ(∞; f)).

When n = 4, we get from (4.16) that

(4.21) 4T (r) ≤ 2T (r) +
7

2
N(r,∞; f) +

1

2
N∗(r, 1;F ,G) +O(log r).

Now using (4.8) in (4.21) we get,

4T (r) ≤ 2T (r) +

(
7

2
+

1

3

)
N(r,∞; f) +O(log r);

i.e.,

4(r) ≤ 2T (r) +
23

6
(1−Θ(∞; f) + ϵ)T (r) +O(log r),

which is a contradiction for Θ(∞; f) > 11
23 .

When t = 3 and n = 3 from (4.16) we get

3T (r) ≤ 2T (r) + 5N(r,∞; f) + 2N∗(r, 1;F ,G) +O(log r).

Now using (4.8) we get 3T (r) ≤ 2T (r) + 8N(r,∞; f) +O(log r); i.e.,

3T (r) ≤ 2T (r) + 8(1−Θ(∞; f) + ϵ)T (r) +O(log r);

which is a contradiction for Θ(∞; f) > 7
8 .

Subcase 2.3. When t = 2, from (4.8) we get

(3n− 8)N∗(r, 1;F ,G) ≤ nN(r,∞; f) +O(log r).

Since (3n− 8) > 0, we get

(4.22) N∗(r, 1;F ,G) ≤ n

3n− 8
N(r,∞; f) +O(log r).

Now from (4.16) using (4.22) we get

nT (r) ≤ 2T (r) + (2 +
3

n− 2
)N(r,∞; f) +

3

n− 2
N∗(r, 1;F ,G) +O(log r)

≤
(
2 +

(
2 +

12

3n− 8

)
(1−Θ(∞; f) + ϵ)

)
T (r) +O(log r),

which is a contradiction for n > 2 +
(
2 + 12

3n−8

)
(1−Θ(∞; f).

Subcase 2.4. When t = 1, n ≥ 5 then (2n− 6) > 0.

Therefore from (4.8) we get

(4.23) (2n− 6)N∗(r, 1;F ,G) ≤ nN(r,∞; f) +O(log r).
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Now from (4.16) using (4.23), we get

nT (r) ≤ 2T (r) + (2 +
3

n− 2
)N(r,∞; f) + (1 +

3

n− 2
)N∗(r, 1;F ,G) +O(log r),

≤ 2T (r) +

(
2 +

1

2
+

6

n− 3

)
(1−Θ(∞; f) + ϵ)T (r) +O(log r)

which is a contradiction for n > 2 + 5
2 + ( 6

n−3 )(1−Θ(∞; f)).

When t = 1 and n = 4, we get from (4.8) that

(4.24) N∗(r, 1;F ,G) ≤ 2N(r,∞; f) +O(log r).

Now from (4.16) using (4.24), we get

4T (r) ≤ 2T (r) +
7

2
N(r,∞; f) +

5

2
N∗(r, 1;F ,G) +O(log r)

≤ 2T (r) +
17

2
(1−Θ(∞; f) + ϵ)T (r) +O(log r),

which is a contradiction for Θ(∞; f) > 13
17 .

Subcase 2.5. When t = 0, n ≥ 5 then (n− 4) > 0.

Therefore from (4.8), we get

(4.25) (n− 4)N∗(r, 1;F ,G) ≤ nN(r,∞; f) +O(log r).

Now from (4.16) using (4.25), we get

nT (r) ≤ 2T (r) + (2 +
3

n− 2
)N(r,∞; f) + (2 +

3

n− 2
)N∗(r, 1;F ,G) +O(log r)

≤ 2T (r) +

(
4 +

14

n− 4

)
(1−Θ(∞; f) + ϵ)T (r) +O(log r),

which is a contradiction for n > 2 +
(
4 + 14

n−4

)
(1−Θ(∞; f)).

Next suppose that η = η2(̸= 0). Hence q2 = 1. Then proceeding similarly as we

have done above for (4.16) and (4.19) we can easily get the following

(4.26) nT (r) ≤ 2T (r) + 5N(r,∞; f) + (5− t)N∗(r, 1;F ,G) +O(log r)

and

nT (r) ≤ 4T (r) + 2N(r,∞; f) + (2− t)N∗(r, 1;F ,G) +O(log r).(4.27)

Subcase 2.6. When t ≥ 2, we get from (4.27) that

nT (r) ≤ 4T (r) + 2N(r,∞; f) +O(log r);

i.e.,

nT (r) ≤ (4 + 2(1−Θ(∞; f)) + ϵ)T (r) +O(log r),
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which is a contradiction for n > 4 + 2(1−Θ(∞; f)).

Subcase 2.7. When t = 1, then from (4.7) we get

(4.28) N∗(r, 1;F ,G) ≤ N(r, η; f) +
1

2
N(r,∞; f) +O(log r).

Now from (4.27) using (4.28), we get

nT (r) ≤ 4T (r) + 2N(r,∞; f) +N∗(r, 1;F ,G) +O(log r)

≤ 5T (r) +
5

2
(1−Θ(∞; f) + ϵ)T (r) +O(log r),

which is a contradiction for n > 5 + 5
2 (1−Θ(∞; f)).

Subcase 2.8. When t = 0, then from (4.7) we get

(4.29) N∗(r, 1;F ,G) ≤ 2N(r, η; f) +N(r,∞; f) +O(log r).

Now from (4.27) using (4.29), we get

nT (r) ≤ 4T (r) + 2N(r,∞; f) + 2N∗(r, 1;F ,G) +O(log r)

≤ 8T (r) + 4(1−Θ(∞; f) + ϵ)T (r) +O(log r),

which is a contradiction for n > 8 + 4(1−Θ(∞; f)).

Thus we see from above that H ≡ 0. Hence on integration, we obtain

1

F − 1
=

A

G − 1
+B,

where A(̸= 0), B ∈ C. □

Lemma 4.7. Let F and G be defined by (4.9), then FG ̸= a, where a is non-zero

complex constant.

Proof. On the contrary, suppose that FG = ζ ̸= 0. Then

(4.30) fn−1(f + a)Ln−1(L+ a) = ζb2 = ζ1(say) ̸= 0.

Let α1 = 0 and α2 = −a. Then it is clear from (4.30 ) that each αi-point of f is a

pole of L and vice-versa.

Let z0 be a α2 point of L of multiplicity r, then it will be a pole of f of multiplicity

ν, such that r = νn. Since ν ≥ 1, so r ≥ n ; i.e., 1
r ≤ 1

n . Similar argument can

be made for α1 point of L. Now using the second fundamental theorem in view of
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N(r,∞;L) = O(log r) we get

T (r,L) ≤ N(r, α1;L) +N(r, α2;L) +N(r,∞;L) + S(r,L)

≤ 2

n
T (r,L) +O(log r),

which is a contradiction as n ≥ 3. □

5. Proof Of the theorems

Proof of Theorem 3.1 Let f be a non-constant meromorphic function and L
be a non-constant L-function. Suppose Ef (S, t) = EL(S, t) and Ef (η, 0) = EL(η, 0)

where t ∈ N∪{0} and η is the zero of P ′(z). Consider F and G as defined by (4.9).

Therefore in view of the Lemma 4.6 we get

(5.1)
1

F − 1
=

A

G − 1
+B,

where A(̸= 0), B ∈ C. Hence we have

(5.2) T (r,F) = T (r,G) +O(1).

Since

(5.3) T (r,F) = nT (r, f) +O(1) and T (r,G) = nT (r,L) +O(1).

So (5.2) implies that

(5.4) T (r, f) = T (r,L) +O(1).

Case 1. If B ̸= 0. Then from (5.1) we get,

(5.5) F =
(B + 1)G + (A−B − 1)

BG + (A−B)
.

Subcase 1.1. If B ̸= −1. Then from (5.5) we get,

(5.6) F =
(B + 1)

(
G − B−A+1

B+1

)
B
(
G − B−A

B

) .

Now clearly, B−A+1
B+1 ̸= B−A

B , as if B−A+1
B+1 = B−A

B then A = 0, which is absurd.

Subcase 1.1.1. If B − A ̸= 0. Then from (5.6) it is clear that N
(
r, B−A

B ;G
)
=

N(r,∞;F).
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Now using second fundamental theorem, (5.4) and N(r,∞;L) = O(log r) we get,

T (r,G) ≤ N(r, 0;G) +N

(
r,
B −A

B
;G
)
+N(r,∞;G) + S(r,G)

≤ N(r, 0;L) +N(r,−a;L) +N(r,∞; f) +N(r,∞;L) + S(r,G)

≤ 2T (r,L) + (1−Θ(∞; f) + ϵ)T (r, f) + S(r,G)

≤ (3−Θ(∞; f) + ϵ)T (r,L) + S(r,G)

≤
(
3−Θ(∞; f) + ϵ

n

)
T (r,G) + S(r,G),

which is a contradiction.

Subcase 1.1.2. If B −A = 0. Then from (5.6) we get,

(5.7) F =
(B + 1)

(
G − 1

B+1

)
BG

.

Now it is clear from (5.7) that N
(
r, 1

B+1 ;G
)
= N(r, 0;F) and N(r, 0;G) = N(r,∞;F).

Now using second fundamental theorem, (5.4) and N(r,∞;L) = O(log r) we get,

T (r,G) ≤ N(r, 0;G) +N

(
r,

1

B + 1
;G
)
+N(r,∞;G) + S(r,G)

≤ N(r,∞; f) +N(r, 0; f) +N(r,−a; f) +N(r,∞;L) + S(r,G)

≤ 2T (r, f) + (1−Θ(∞; f) + ϵ)T (r, f) + S(r,G)

≤ (3−Θ(∞; f) + ϵ)T (r,L) + S(r,G)

≤
(
3−Θ(∞; f) + ϵ

n

)
T (r,G) + S(r,G),

which is a contradiction.

Subcase 1.2. If B = −1. Then from (5.5) we get,

(5.8) F =
A

−G +A+ 1
.

Subcase 1.2.1. If A ̸= −1. Then from (5.8) it is clear that N (r, (A+ 1);G) =
N(r,∞;F).

Now using second fundamental theorem, (5.4) and N(r,∞;L) = O(log r) we get,

T (r,G) ≤ N(r, 0;G) +N (r, (A+ 1);G) +N(r,∞;G) + S(r,G)

≤ N(r, 0;L) +N(r,−a;L) +N(r,∞; f) +N(r,∞;L) + S(r,G)

≤ (3−Θ(∞; f) + ϵ)T (r,L) + S(r,G)

≤
(
3−Θ(∞; f) + ϵ

n

)
T (r,G) + S(r,G),
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which is a contradiction.

Subcase 1.2.2. If A = −1. Then from (5.8) we get,

FG = 1,

which is a contradiction in view of Lemma (4.7).

Case 2. If B = 0. Then from (5.1) we get,

(5.9) G − 1 = A(F − 1).

Subcase 2.1. A ̸= 1. Then from (5.9) we get,

(5.10) AF = G − (1−A).

Suppose η is not an e.v.P. of f and L. Then there exists z0 such that f(z0) =

L(z0) = η.

Let ξ = −1

b
ηn−1(η + a). Then clearly F (z0) = G(z0) = ξ and since P (z) has only

simple zeros, we have ξ ̸= 1.

Now from (5.10) we get,

(ξ − 1)(A− 1) = 0,

which is a contradiction.

Now let η be an e.v.P of L and hence it will be an e.v.P of f also.

Subcase 2.1.1. Suppose that η = 0. Then 0 is an e.v.P of f and L.

Again, it is clear from (5.10) that N (r, (1−A);G) = N(r, 0;F).

Now using second fundamental theorem, (5.4) and N(r,∞;L) = O(log r) we get,

T (r,G) ≤ N(r, 0;G) +N (r, (1−A);G) +N(r,∞;G) + S(r,G)

≤ N(r, 0;L) +N(r,−a;L) +N(r, 0; f) +N(r,−a; f) +N(r,∞;L) + S(r,G)

≤ T (r,L) + T (r, f) + S(r,G) ≤
(
2

n

)
T (r,G) + S(r,G),

which is a contradiction as n ≥ 3.

Subcase 2.1.2. let η ̸= 0, then using second fundamental theorem, (5.4) and

N(r,∞;L) = O(log r) we get,

T (r,G) ≤ N(r, 0;G) +N (r, (1−A);G) +N(r,∞;G) + S(r,G)

≤ N(r, 0;L) +N(r,−a;L) +N(r, 0; f) +N(r,−a; f) +N(r,∞;L) + S(r,G)

≤ 2T (r,L) + 2T (r, f) + S(r,G) ≤
(
4

n

)
T (r,G) + S(r,G),

which is a contradiction as n ≥ 5.
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Subcase 2.2. A = 1 and hence F = G. That is, we get

−1

b
fn−1(f + a) = −1

b
Ln−1(L+ a)(5.11)

=⇒ (fn − Ln) + a(fn−1 − Ln−1) = 0.(5.12)

Let h = f
L . Then from (5.11) we get,

(5.13) L(hn − 1) + a(hn−1 − 1) = 0.

If h ̸= 1, then we can write (5.13) as

(5.14) L = −a
(h− v)(h− v2)...(h− vn−2)

(h− u)(h− u2)...(h− un−1)
,

where u = exp(2πi/n) and v = exp(2πi/(n − 1)). Noting that n and (n − 1) are

relatively prime positive integers, then the numerator and denominator of (5.14)

have no common factors. Since L can have atmost one pole in the complex plane,

hence whenever n ≥ 3 we can see that there exists at least one distinct roots of

hn = 1 such that they are Picard exceptional values of h.

Subcase 2.2.1. When η = 0; i.e., f and L share (0, 0), then from (5.11) it is

clear that f and L have same zeros and poles with counting multiplicity. Therefore,

h is an entire function with no zeros; i.e., when n ≥ 3 there are at least two Picard

exceptional value of h, and so it follows by (5.14) that h and thus L are constants,

which is impossible.

Therefore, we must have h = 1; i.e., f = L.

Subcase 2.2.2. When η ̸= 0, for n ≥ 5 there are at least three Picard exceptional

value of h, and so it follows by (5.14) that h and thus L are constants, which is

impossible.

Therefore, we must have h = 1; i.e., f = L.

Proof of Corollary 3.1 If f be a meromorphic function having finitely many

poles, then we have

(5.15) Θ(∞; f) = 1.

Therefore using (5.15), the desired results follow from the proofs of Theorem 3.1.

Список литературы

[1] A. Banerjee and A. Kundu, “Weighted value sharing and uniqueness problems concerning
L-functions and certain meromorphic functions”, Lith. Math. J., 61, 161 -– 179 (2021).

[2] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon
Press, Oxford (1964).

[3] A. Kundu and A. Banerjee, “Uniqueness of L-function with special class of meromorphic
function in the light of two shared sets”, Rendiconti del Circolo Matematico di Palermo
Series 2, no. 70, 1227 – 1244 (2021).

[4] I. Lahiri, “Weighted sharing and uniqueness of meromorphic functions”, Nagoya Math. J.,
161, 193 – 206 (2001).

84



UNIQUENESS OF L-FUNCTIONS AND ...

[5] I. Lahiri, “Weighted value sharing and uniqueness of meromorphic functions”, Complex Var.
Theory Appl., 46, 241 – 253 (2001).

[6] B. Q. Li, “A result on value distribution of L-functions”, Proc. Amer. Math. Soc., 138, 2071
– 2077 (2010).

[7] A. Selberg, “Old and new conjectures and results about a class of Dirichlet series”, Proccedings
of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Univ. Salerno, Salerno,
367 – 385 (1992).

[8] J. Steuding, Value Distribution of L-Functions, Lect. Notes Math., 1877, Springer-Verlag,
Berlin (2007).

[9] X. M. Li, Q. Q. Yuan and H. X. Yi, “Value distribution of L-functions and uniqueness questions
of F. Gross”, Lithuanian Math. J., 58 (2), 249 – 262 (2018).

[10] H. X. Yi, “Meromorphic functions that share one or two values II”, Kodai Math. J., 22, 264
– 272 (1999).

Поступила 14 декабря 2022

После доработки 07 сентября 2023

Принята к публикации 17 сентября 2023

85



Известия НАН Армении, Математика, том 59, н. 1, 2024, стр. 86 – 100.

UNICITY OF MEROMORPHIC FUNCTIONS CONCERNING
DIFFERENTIAL-DIFFERENCE POLYNOMIALS

M. L. ZENG, J. Y. FAN, M. L. FANG

Hangzhou Dianzi University, Hangzhou, China1

E-mails: zengml@hdu.edu.cn; fanjinyu1997@163.com; mlfang@hdu.edu.cn

Abstract. In this paper, we study unicity of meromorphic functions concerning differential-
difference polynomials and mainly prove: Let k1, k2, · · · , kn be non-negative integers and k =

max{k1, k2, · · · , kn}, let l be the number of distinct values of {0, c1, c2, · · · , cn}, let s be the
number of distinct values of {c1, c2, · · · , cn}, let f(z) be a non-constant meromorphic function of
finite order satisfying N(r, f) ≤ 1

8(lk+l+2s−1)+1
T (r, f), let m1(z),m2(z), · · · ,mn(z), a(z), b(z) be

small functions of f(z) such that a(z) ̸≡ b(z), let (c1, k1), (c2, k2), · · · , (cn, kn) be distinct and let
F (z) = m1(z)f (k1)(z+c1)+m2(z)f (k2)(z+c2)+ · · ·+mn(z)f (kn)(z+cn). If f(z) and F (z) share
a(z), b(z) CM, then f(z) ≡ F (z). Our results improve and extend some results due to [1, 18, 20].

MSC2020 numbers: 30D35.
Keywords: meromorphic function; small function; difference polynomial.

1. Introduction and main results

In this paper, a meromorphic function always means meromorphic in the whole

complex plane. We use the following standard notations in value distribution theory,

see [7, 15, 16]: T (r, f), N(r, f),m(r, f), · · · .
We denote by S(r, f) any quantity satisfying S(r, f) = o(T (r, f)) as r → ∞

possible outside of an exceptional set E with finite logarithmic measure
∫
E
dr/r <

∞. A meromorphic function α(z) is said to be a small function of f(z) if it satisfies

T (r, α) = S(r, f).

Let α(z) be a small function of both f(z) and g(z). If f(z)−α(z) and g(z)−α(z)
have the same zeros counting multiplicities (ignoring multiplicities), then we call

that f(z) and g(z) share α(z) CM (IM). Let N(r, α) be the counting function of

common zeros of both f(z)− α(z) and g(z)− α(z) with counting multiplicities. If

N

(
r,

1

f − α

)
+N

(
r,

1

g − α

)
− 2N(r, α) ≤ S(r, f) + S(r, g),

then we call that f(z) and g(z) share α(z) CM almost.

1This paper is supported by the NNSF of China(Grant No 12171127) and the NSF of Zhejiang
Province (LY21A010012).
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Let f(z) be a non-constant meromorphic function. Define

ρ(f) = lim
r→∞

log+ T (r, f)

log r

by the order of f(z).

For a nonzero complex constant η ∈ C, we define the difference operators of f(z)

as △ηf(z) = f(z + η) −f(z) and △k
ηf(z) = △η(△k−1

η f(z)), k ∈ N, k ≥ 2.

Let f(z) be a non-constant meromorphic function, let n0, n1, · · · , nk be non-

negative integers, let c0, c1, · · · , ck be finite values, we call that M(f) = fn0(z +

c0)(f
′)n1(z + c1) · · · (f (k))nk(z + ck) is a differential-difference monomial, and its

degree γM = n0 + n1 + · · ·+ nk. Let H = a1M1(f) + a2M2(f) + · · ·+ anMn(f) be

a homogeneous differential-difference polynomial, where a1(z), a2(z), · · · , an(z) are

small functions of f(z) and γM1 = γM2 = · · · = γMn .

Let Nk)(r, f) be the counting function for poles of f(z) with multiplicity ≤ k

and let N(k(r, f) be the counting function for poles of f(z) with multiplicity ≥ k.

Nevanlinna [7, 15, 16] proved the famous five-value theorem.

Theorem A. Let f(z) and g(z) be two non-constant meromorphic functions, and

let aj(j = 1, 2, · · · , 5) be five distinct values on extend complex plane. If f(z) and

g(z) share aj(j = 1, 2, · · · , 5) IM, then f(z) ≡ g(z).

Li and Qiao[11] proved the five-small function theorem.

Theorem B. Let f(z) and g(z) be two non-constant meromorphic functions, and

let aj(z)(j = 1, 2, · · · , 5) be five distinct small functions of both f(z) and g(z) (one

may be ∞). If f(z) and g(z) share aj(z)(j = 1, 2, · · · , 5) IM, then f(z) ≡ g(z).

In 1976, Rubel and Yang[14] proved the following result.

Theorem C. Let f(z) be a non-constant entire function, and let a, b be two distinct

finite values. If f(z) and f ′(z) share a, b CM, then f(z) ≡ f ′(z).

In 1992, Zheng and Wang[19] proved:

Theorem D. Let f(z) be a non-constant entire function, and let a(z), b(z) be two

distinct small functions of f(z). If f(z) and f ′(z) share a(z), b(z) CM, then f(z) ≡
f ′(z).

In 1995, Fang[5] proved the following theorem.

Theorem E. Let f(z) be a non-constant meromorphic function such that N(r, f) =

S(r, f), let n be a positive integer, let a, b be two distinct finite complex values, and

let F (z) = f (n)(z)+a1(z)f
(n−1)(z)+ · · ·+an(z)f(z), where a1(z), a2(z), · · · , an(z)

are small functions of f(z). If f(z) and F (z) share a, b CM almost, then f(z) ≡
F (z).

In 2006, Chen[1] studied the case of meromorphic function satisfying N(r, f) ≤
1

8n+17T (r, f), and proved the following result.
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Theorem F. Let n be a positive integer, let f(z) be a non-constant meromorphic

function satisfying N(r, f) ≤ 1
8n+17T (r, f), and let a(z), b(z) be two distinct small

functions of f(z), and let F (z) = f (n)(z) + a1(z)f
(n−1)(z) + · · ·+ an(z)f(z), where

a1(z), a2(z), · · · , an(z) are small functions of f(z). If f(z) and F (z) share a(z), b(z)

CM, then f(z) ≡ F (z).

Recently, a number of articles focused on value distribution in shifts or difference

operators of meromorphic functions. In particular, some papers studied the unicity

of meromorphic functions sharing values with their shifts or difference operators

(see [3, 4, 6, 9, 12, 13, 20]).

In 2011, Heittokangas et al.[9] proved the following result.

Theorem G. Let f(z) be a non-constant entire function of finite order, let η be

a nonzero constant, and let a, b be two distinct finite values. If f(z) and f(z + η)

share a, b CM, then f(z) ≡ f(z + η).

In 2014, Zhang and Liao[20] proved the following result.

Theorem H. Let f(z) be an entire function of finite order, let η be a nonzero

constant, and let a, b be two distinct finite values. If f(z) and △ηf(z) share a, b

CM, then f(z) ≡ △ηf(z).

Liu et al.[12] replaced △ηf(z) by the general difference polynomial and proved

the following result:

Theorem I. Let f(z) be a non-constant entire function of finite order, let n be a

positive integer, let a(z), b(z) be be two distinct small functions of f(z), and let

F (z) = m1f(z+ c1) +m2f(z+ c2) + · · ·+mnf(z+ cn), where m1,m2, · · · ,mn are

nonzero complex numbers and c1, c2, · · · , cn are distinct finite values. If f(z) and

F (z) share a(z), b(z) CM, then f(z) ≡ F (z).

In 2017, Yang and Liu[18] extended Theorem J and proved the following theorem.

Theorem J. Let f(z) be a non-constant meromorphic function of finite order,

let n be a positive integer, let a(z), b(z) be two distinct small functions of f(z),

let m1,m2, · · · ,mn be nonzero complex numbers, let c1, c2, · · · , cn be distinct finite

complex numbers, and let

F (z) = m1f(z + c1) +m2f(z + c2) + · · ·+mnf(z + cn).

If f(z) and F (z) share a(z), b(z) CM almost and N(r, f) ≤ 1
27nT (r, f), then f(z) ≡

F (z).

In this paper, we extend and improve the above results.

Theorem 1.1. Let k1, k2, · · · , kn be non-negative integers and k = max{k1, k2, · · · ,
kn}, let l be the number of distinct values of {0, c1, c2, · · · , cn}, let s be the number of

distinct values of {c1, c2, · · · , cn}, let f(z) be a non-constant meromorphic function
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of finite order satisfying N(r, f) ≤ 1
8(lk+l+2s−1)+1T (r, f), let m1(z), m2(z), · · · ,

mn(z), a(z), b(z) be small functions of f(z) such that a(z) ̸≡ b(z), let (c1, k1),(c2, k2),

· · · , (cn, kn) be distinct and let

(1.1) F (z) = m1(z)f
(k1)(z + c1) +m2(z)f

(k2)(z + c2) + · · ·+mn(z)f
(kn)(z + cn).

If f(z) and F (z) share a(z), b(z) CM, then f(z) ≡ F (z).

Remark 1.1. Let l = s = 1, k = n, 0 = c1 = c2 = · · · = cn, then Theorem 1 is also

valid. If F (z) = f (n)(z)+a1(z)f
(n−1)(z)+· · ·+an(z)f(z), where a1(z), a2(z) · · · , an(z)

are small functions of f(z). Then by Theorem 1.1 we get Theorem F.

Corollary 1.1. Let k = 0, let f(z) be a non-constant meromorphic function

of finite order, let n be a positive integer, let a(z), b(z) be be two distinct small

functions of f(z), let m1,m2, · · · ,mn be nonzero complex numbers, let c1, c2, · · · , cn
be distinct finite complex numbers, and let

F (z) = m1f(z + c1) +m2f(z + c2) + · · ·+mnf(z + cn).

If f(z) and F (z) share a(z), b(z) CM almost and N(r, f) ≤ 1
24n+1T (r, f), then

f(z) ≡ F (z).

By Corollary 1.1, we get Theorem J.

The following example illustrates that the condition

N(r, f) ≤ 1

8(lk + l + 2s− 1) + 1
T (r, f)

is necessary in Theorem 1.1.

Example 1.1. Let f(z) = ez+1
ez−1 and F (z) = f(z)−f(z+ c)−f(z+2c) = − ez+c+1

ez+c−1 ,

where c = πi. It is easy to see that f(z) and F (z) share 1,−1 CM. But f(z) ̸≡ F (z).

Theorem 1.2. Let F (z), l, k, s be the same as Theorem 1, let f(z) be a non-

constant meromorphic function of finite order satisfying N1)(r, f) ≤ 1
5(lk+l+2s−1)T (r, f),

and let a(z), b(z) be distinct small functions of f(z). If f(z) and F (z) share a(z), b(z),∞
CM, then f(z) ≡ F (z).

The following example illustrates that the condition

N1)(r, f) ≤
1

5(lk + l + 2s− 1)
T (r, f)

is necessary in Theorem 1.2.

Example 1.2. Let f(z) = ez+1
ez−1 and F (z) = f(z) + f(z + c)− f(z + 2c)− f(z +

3c)− f(z + 4c) = − ez+1
ez−1 , where c = 2πi. It is easy to see that f(z) and F (z) share

1,−1,∞ CM. But f(z) ̸≡ F (z).
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Theorem 1.3. Let f(z) be a non-constant meromorphic function of finite order,

let a(z), b(z) be two distinct small functions of f(z), and let H(f) be a homogeneous

differential-difference polynomial of f with degH = m. If fm(z)(m ≥ 2) and H(f)

share a(z), b(z),∞ CM, then fm(z) ≡ H(f).

2. Some Lemmas

For the proof of our results, we need the following lemmas.

Lemma 2.1. [7, 15, 16]. Let f(z) be a non-constant meromorphic function, and

let ai(z)(i = 1, 2) be two distinct small functions of f(z). Then

T (r, f) ≤ N(r, f) +N

(
r,

1

f − a1

)
+N

(
r,

1

f − a2

)
+ S(r, f).

Lemma 2.2. [17]. Let f(z) be a non-constant meromorphic function, and let

ai(z)(i = 1, 2, 3) be three distinct small functions of f(z). Then for any 0 < ε < 1,

2T (r, f) ≤ N(r, f) +

3∑
i=1

N

(
r,

1

f − ai

)
+ εT (r, f) + S(r, f).

Lemma 2.3. [2]. Let f(z) be a non-constant meromorphic function of finite order,

and let η be a non-zero finite complex number. Then

N(r, f(z + η)) = N(r, f(z)) + S(r, f).

Lemma 2.4. [2, 8, 10]. Let f(z) be a non-constant meromorphic function of finite

order, let k be a positive integer and let η be a non-zero finite complex number.

Then

m

(
r,
f (k)

f

)
= S(r, f), m

(
r,
f(z + η)

f(z)

)
= S(r, f).

Lemma 2.5. [5]. Let f(z) and g(z) be two non-constant meromorphic functions

satisfying

N(r, f) +N

(
r,

1

f

)
= S(r, f), N(r, g) +N

(
r,
1

g

)
= S(r, g).

If f(z) and g(z) share 1 CM almost, then either f(z)g(z) ≡ 1 or f(z) ≡ g(z).

Lemma 2.6. [7, 15, 16]. Let f(z) be a non-constant meromorphic function, let

n(≥ 2) be a positive integer, and let a1(z), a2(z) · · · an(z) be distinct small functions

of f(z). Then

m

(
r,

1

f − a1

)
+ · · ·+m

(
r,

1

f − an

)
≤ m

(
r,

1

f − a1
+ · · ·+ 1

f − an

)
+ S(r, f).
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Lemma 2.7. [16]. Let k be a positive integer and let f(z) be a meromorphic function

such that f (k)(z) ̸≡ 0. Then

T (r, f (k)) ≤T (r, f) + kN(r, f) + S(r, f),

N

(
r,

1

f (k)

)
≤N

(
r,

1

f

)
+ kN(r, f) + S(r, f).

Lemma 2.8. [1]. Let 0 ≤ λ ≤ 1
4 and let f(z) and g(z) be two meromorphic

functions satisfying

N(r, f) ≤ λT (r, f), N(r, g) ≤ λT (r, g).

If f(z) and g(z) share 0, 1 CM almost, and

lim
r→∞
r∈I

N(r, 0) +N(r, 1)

T (r, f) + T (r, g)
<

2− 8λ

3
,

where I ⊂ [0,∞) is a set of infinite linear measure, then 1
f−1 − c

g−1 = d, where

c(̸= 0), d are two constants.

By imitating the proof of Lemma 2.8, we can prove the following lemma.

Lemma 2.9. Let 0 ≤ λ < 1 and let f(z) and g(z) be two meromorphic functions

satisfying

N(r, f) ≤ λT (r, f), N(r, g) ≤ λT (r, g).

If f(z) and g(z) share 0, 1, ∞ CM almost, and

lim
r→∞
r∈I

N(r, 0) +N(r, 1)

T (r, f) + T (r, g)
<

2− 2λ

3
,

where I ⊂ [0,∞) is a set of infinite linear measure, then 1
f−1 − c

g−1 = d, where

c(̸= 0), d are two constants.

Lemma 2.10. Let k, l be non-negative integers. Then

(1)
9lk + 25l − 8

15lk + 45l − 13
<

16lk + 48l − 22

24lk + 72l − 21
(k ≥ 1, l ≥ 1),

(2)
9lk + 25l − 24

15lk + 45l − 43
<

16lk + 48l − 54

24lk + 72l − 69
(k ≥ 0, l ≥ 2),

(3)
6lk + 16l − 6

9lk + 27l − 9
<

10lk + 30l − 12

15lk + 45l − 15
(k ≥ 1, l ≥ 1),

(4)
6lk + 16l − 16

9lk + 27l − 27
<

10lk + 30l − 32

15lk + 45l − 45
(k ≥ 0, l ≥ 2).
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3. Proof of Theorems

Proof of Theorem 1.1. Set

(3.1) g(z) =
f(z)− a(z)

b(z)− a(z)
,

G(z) =
F (z)− a(z)

b(z)− a(z)
.(3.2)

Since f(z) and F (z) share a(z), b(z) CM, we know that g(z) and G(z) share 0, 1

CM almost.

It follows from (3.1) and (3.2) that

(3.3) T (r, g) = T (r, f) + S(r, f),

(3.4) T (r,G) = T (r, F ) + S(r, f),

(3.5) N(r, g) = N(r, f) + S(r, f).

Hence, by (1.1), (3.2) and Lemma 2.3, we get

N(r,G) =N(r, F ) + S(r, f) ≤ s
(
N(r, f) + kN(r, f)

)
+ S(r, f).(3.6)

It follows that

T (r, F ) ≤ (s+ sk)T (r, f) + S(r, f).(3.7)

Hence, we obtain

S(r, g) = S(r, f), S(r, f) = S(r, g),

S(r, F ) = S(r, f), S(r,G) = S(r, f).

Since g(z) and G(z) share 0, 1 CM almost, we have

N(r, 0) +N(r, 1) ≤ N

(
r,

1

G− g

)
+ S(r, f)

≤ N

(
r,

1

F − f

)
+ S(r, f)

≤ T (r, F − f) + S(r, f)

= m(r, F − f) +N(r, F − f) + S(r, f).(3.8)

It follows from Lemmas 2.3 and 2.4 that

m(r, F − f) ≤m
(
r,
F − f

f

)
+m(r, f) + S(r, f) ≤ m(r, f) + S(r, f),(3.9)

N(r, F − f) ≤lN(r, f (k)) + S(r, f) ≤ l
(
N(r, f) + kN(r, f)

)
+ S(r, f).(3.10)
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By (3.8)-(3.10) and N(r, f) ≤ 1
8(lk+l+2s−1)+1T (r, f), we obtain

N(r, 0) +N(r, 1) ≤m(r, f) + l
(
N(r, f) + kN(r, f)

)
+ S(r, f)

≤T (r, f) + (l − 1 + lk)N(r, f) + S(r, f)

≤ 9lk + 9l + 16s− 8

8(lk + l + 2s− 1) + 1
T (r, f) + S(r, f).(3.11)

By Nevanlinna’s first fundamental theorem and (3.11), we have

2T (r, f) = 2T (r, g) + S(r, f) = T

(
r,
1

g

)
+ T

(
r,

1

g − 1

)
+ S(r, f)

≤N(r, 0) +N(r, 1) +m

(
r,
1

g

)
+m

(
r,

1

g − 1

)
+ S(r, f)

≤ 9lk + 9l + 16s− 8

8(lk + l + 2s− 1) + 1
T (r, f) +m

(
r,

1

f − a

)
+m

(
r,

1

f − b

)
+ S(r, f).(3.12)

Set

a1(z) =m1a
(k1)(z + c1) +m2a

(k2)(z + c2) + · · ·+mna
(kn)(z + cn),

b1(z) =m1b
(k1)(z + c1) +m2b

(k2)(z + c2) + · · ·+mnb
(kn)(z + cn).(3.13)

By Lemma 2.4, we obtain

m

(
r,
F − a1
f − a

)
= S(r, f), m

(
r,
F − b1
f − b

)
= S(r, f).

Set

W (F, a1, b1) =

∣∣∣∣∣∣
F a1 b1
F ′ a′1 b′1
F ′′ a′′1 b′′1

∣∣∣∣∣∣ .
By Lemma 2.4, we have

(3.14) m

(
r,
W (F, a1, b1)

f − a1

)
= S(r, f), m

(
r,
W (F, a1, b1)

f − b1

)
= S(r, f).

If W (F, a1, b1) ≡ 0, then b1 ≡ ka1, where k is a nonzero constant. Obviously,

W (F, a1) ̸≡ 0, where

W (F, a1) =

∣∣∣∣ F a1
F ′ a′1

∣∣∣∣ .
Then by Lemma 2.4, we have

(3.15) m

(
r,
W (F, a1)

f − a1

)
= S(r, f), m

(
r,
W (F, a1)

f − ka1

)
= S(r, f).
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By (3.3), (3.15), Lemmas 2.3, 2.4 and 2.6, we obtain

m

(
r,

1

f − a

)
+m

(
r,

1

f − b

)
≤m

(
r,
F − a1
f − a

)
+m

(
r,
F − b1
f − b

)
+m

(
r,

1

F − a1

)
+m

(
r,

1

F − b1

)
+ S(r, f)

≤m
(
r,

1

F − a1
+

1

F − ka1

)
+ S(r, f)

≤m
(
r,
W (F, a1)

F − a1
+
W (F, a1)

F − ka1

)
+m

(
r,

1

W (F, a1)

)
+ S(r, f)

≤T (r,W (F, a1)) + S(r, f)

≤T (r, c1F ′ + c2F ) + S(r, f) ≤ T (r, F ) +N(r, F ) + S(r, f)

≤T (r, F ) + s

8(lk + l + 2s− 1) + 1
T (r, f) + S(r, f),

(3.16)

where c1 and c2 are small functions of f .

If W (F, a1, b1) ̸≡ 0, then by (3.14), Lemmas 2.4 and 2.6, we have

m

(
r,

1

f − a

)
+m

(
r,

1

f − b

)
≤m

(
r,
F − a1
f − a

)
+m

(
r,
F − b1
f − b

)
+m

(
r,

1

F − a1

)
+m

(
r,

1

F − b1

)
+ S(r, f)

≤m
(
r,

1

F − a1
+

1

F − b1

)
+ S(r, f)

≤m
(
r,
W (F, a1, b1)

F − a1
+
W (F, a1, b1)

F − b1

)
+m

(
r,

1

W (F, a1, b1)

)
+ S(r, f)

≤T (r,W (F, a1, b1)) + S(r, f)

≤T (r, d1F ′′ + d2F
′ + d3F ) + S(r, f) ≤ T (r, F ) + 2N(r, F ) + S(r, f)

≤T (r, F ) + 2s

8(lk + l + 2s− 1) + 1
T (r, f) + S(r, f),

(3.17)

where d1, d2 and d3 are small functions of f .

It follows from (3.16) and (3.17), we deduce that

m

(
r,

1

f − a

)
+m

(
r,

1

f − b

)
≤T (r, F ) + 2s

8(lk + l + 2s− 1) + 1
T (r, f) + S(r, f).(3.18)

By (3.12) and (3.18), we have

2T (r, f) ≤ 9lk + 9l + 16s− 8

8(lk + l + 2s− 1) + 1
T (r, f) + T (r, F )

+
2s

8(lk + l + 2s− 1) + 1
T (r, f) + S(r, f),
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that is

7lk + 7l + 14s− 6

8(lk + l + 2s− 1) + 1
T (r, f) ≤ T (r, F ) + S(r, f).(3.19)

Taking λ = 1
8(lk+l+2s−1)+1 . Then by (1), (2) of Lemma 2.10, (3.11), (3.19) and

N(r, f) ≤ 1
8(lk+l+2s−1)+1T (r, f), we get

lim
r→∞
r∈I

N(r, 0) +N(r, 1)

T (r, g) + T (r,G)
= lim

r→∞
r∈I

N(r, 0) +N(r, 1)

T (r, f) + T (r, F ) + S(r, f)

≤ lim
r→∞
r∈I

9lk+9l+16s−8
8(lk+l+2s−1)+1T (r, f) + S(r, f)

T (r, f) + 7lk+7l+14s−6
8(lk+l+2s−1)+1T (r, f) + S(r, f)

≤ 9lk + 9l + 16s− 8

15lk + 15l + 30s− 13
<

16lk + 16l + 32s− 22

24(lk + l + 2s− 1) + 3
=

2− 8λ

3
.(3.20)

Hence, by Lemma 2.8, we have

(3.21)
1

G− 1
− c

g − 1
= d,

where c(̸= 0), d are two constants. Now we consider two cases.

Case 1. d = 0. Hence

(3.22) G =
g − 1

c
+ 1.

Next, we consider three subcases.

Case 1.1. N(r, 0) ̸= S(r, f).

Thus there exists z0 such that g(z0) = G(z0) = 0. It follows from (3.22) that

g(z) ≡ G(z).

Case 1.2. N(r, 0) = S(r, f), N(r, 1) ̸= S(r, f).

Obviously,

(3.23) N

(
r,

1

G

)
= N

(
r,

1

g − 1 + c

)
.

Suppose that c ̸= 1. Then by (3.3), (3.5) and (3.23), we obtain

T (r, f) =T (r, g) + S(r, f)

≤N
(
r,
1

g

)
+N

(
r,

1

g − 1 + c

)
+N(r, g) + S(r, f)

≤N
(
r,
1

g

)
+N

(
r,

1

G

)
+N(r, f) + S(r, f)

≤ 1

8(lk + l + 2s− 1) + 1
T (r, f) + S(r, f).

It follows T (r, f) ≤ S(r, f), a contradiction. So c = 1, that is g(z) ≡ G(z).

Case 1.3. N(r, 0) = S(r, f), N(r, 1) = S(r, f).
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By (3.3), (3.5) and Lemma 2.1, we have

T (r, f) =T (r, g) + S(r, f)

≤N
(
r,

1

g − 1

)
+N

(
r,
1

g

)
+N(r, g) + S(r, f)

≤N(r, 1) +N(r, 0) +N(r, f) + S(r, f)

≤ 1

8(lk + l + 2s− 1) + 1
T (r, f) + S(r, f).

It follows T (r, f) ≤ S(r, f), a contradiction.

Case 2. d ̸= 0. In the following, we consider two subcases.

Case 2.1. c
d ̸= 1, 0.

By (3.3), (3.5), (3.6), (3.11) and Lemma 2.2, we have

2T (r, f) = 2T (r, g) + S(r, f)

≤N
(
r,
1

g

)
+N

(
r,

1

g − 1

)
+N

(
r,

1

g −
(
1− c

d

))+N(r, g) + S(r, f)

≤N(r, 0) +N(r, 1) +N(r, g) +N(r,G) + S(r, f)

≤ 9lk + 9l + 16s− 8

8(lk + l + 2s− 1) + 1
T (r, f) + (s+ 1)N(r, f) + skN(r, f) + S(r, f)

≤9lk + 9l + 17s+ sk − 7

8(lk + l + 2s− 1) + 1
T (r, f) + S(r, f).

It follows T (r, f) ≤ S(r, f), a contradiction.

Case 2.2. c
d = 1. Hence c = d(d ̸= 0),

(3.24)
1

G(z)− 1
=

dg(z)

g(z)− 1
.

Obviously N(r, 0) = S(r, f). Otherwise, there exists z0 such that g(z0) = G(z0) = 0.

Thus by (3.24) G(z0) = ∞, a contradiction. If d ̸= −1, then we have

T (r, f) = T (r, g) + S(r, f)

≤N
(
r,
1

g

)
+N

(
r,

1

g − 1
d+1

)
+N(r, g) + S(r, f) ≤ N(r, f) + S(r, f)

≤ 1

8(lk + l + 2s− 1) + 1
T (r, f) + S(r, f).

It follows T (r, f) ≤ S(r, f), a contradiction.

If d = −1, then by (3.24), we obtain g(z)G(z) ≡ 1. Thus, we have

(f − a)2 =
(b− a)2(f − a)

F − a
.(3.25)
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By Nevanlinna’s first fundamental theorem and (3.25), we have

2T (r, f) ≤T
(
r, (f − a)2

)
+ S(r, f)

=T

(
r,
(b− a)2(f − a)

F − a

)
+ S(r, f)

≤T
(
r,
F − a

f − a

)
+ S(r, f)

=N

(
r,
F − a

f − a

)
+m

(
F − a

f − a

)
+ S(r, f)

≤m
(
r,
F − a1
f − a

)
+m

(
r,
a1 − a

f − a

)
+N(r, F ) + S(r, f)

≤m
(
r,

1

f − a

)
+N(r, F ) + S(r, f)

≤T (r, f) +N(r, F ) + S(r, f).

It follows that

T (r, f) ≤N(r, F ) + S(r, f)

≤s
(
N(r, f) + kN(r, f)

)
+ S(r, f)

≤ s+ sk

8(lk + l + 2s− 1) + 1
T (r, f) + S(r, f),

that is T (r, f) ≤ S(r, f), a contradiction.

Combining Case 1 with Case 2, we deduce that g(z) ≡ G(z). It follows that

f(z) ≡ F (z). This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Set

g(z) =
f(z)− a(z)

b(z)− a(z)
, G(z) =

F (z)− a(z)

b(z)− a(z)
.

By f(z) and F (z) share a(z), b(z),∞ CM, we know that g(z) and G(z) share 0, 1,

∞ CM almost.

We prove Theorem 1.2 by contradiction, suppose that f(z) ̸≡ F (z), that is g(z) ̸≡
G(z). Let

(3.26) ϕ =
G(g − 1)

g(G− 1)
.

Obviously, we know that ϕ(z) ̸≡ 0,∞, and

N(r, ϕ) +N

(
r,

1

ϕ

)
= S(r, g) + S(r,G) = S(r, f).

By (3.26), we have

(3.27) g −G = (ϕ− 1)g(G− 1).
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Let z0 be a common pole of both g(z) and G(z) with multiplicity m ≥ 2. Since

g(z) and G(z) share ∞ CM almost, then by (3.27), we know that z0 is the zero of

ϕ(z)− 1 with multiplicity at least m.

Next, we consider two cases.

Case 1. ϕ′(z) ̸≡ 0, by (3.27), Lemma 2.7 and N1)(r, f) ≤ 1
5(lk+l+2s−1)T (r, f), we

obtain

N(r, f) = N(r, g) = N1)(r, g) +N(2(r, g)

≤ 1

5(lk + l + 2s− 1)
T (r, f) + 2N

(
r,

1

ϕ′

)
+ S(r, g)

≤ 1

5(lk + l + 2s− 1)
T (r, f) + 2N

(
r,

1

ϕ

)
+ 2N(r, ϕ) + S(r, g)

≤ 1

5(lk + l + 2s− 1)
T (r, f) + S(r, g).

Thus, we have

(3.28) N(r, f) ≤ 1

5(lk + l + 2s− 1)
T (r, f) + S(r, f).

Case 2. ϕ′(z) ≡ 0, that is ϕ(z) ≡ c. If c = 1, then by (3.26), we get g(z) ≡ G(z), a

contradiction. If c ̸= 1, then by G(g−1)
g(G−1) ≡ c, we know that (3.28) is valid also.

By means of (3), (4) of Lemma 2.10 and Lemma 2.9, it is easy to prove Theorem

1.2 by imitating the proof of Theorem 1.1 and replacing (3.11), (3.19) and (3.20)

respectively with the following three formulas:

N(r, 0) +N(r, 1) ≤m(r, f) + l
(
N(r, f) + kN(r, f)

)
+ S(r, f)

≤T (r, f) + (l − 1 + lk)N(r, f) + S(r, f)

≤6lk + 6l + 10s− 6

5(lk + l + 2s− 1)
T (r, f) + S(r, f).

4lk + 4l + 8s− 4

5(lk + l + 2s− 1)
T (r, f) ≤ T (r, F ) + S(r, f).

lim
r→∞
r∈I

N(r, 0) +N(r, 1)

T (r, g) + T (r,G)
= lim

r→∞
r∈I

N(r, 0) +N(r, 1)

T (r, f) + T (r, F ) + S(r, f)

≤ lim
r→∞
r∈I

6lk+6l+10s−6
5(lk+l+2s−1) T (r, f) + S(r, f)

T (r, f) + 4lk+4l+8s−4
5(lk+l+2s−1)T (r, f) + S(r, f)

≤ 6lk + 6l + 10s− 6

9lk + 19l + 18s− 9
<

10lk + 10l + 20s− 12

15lk + 15l + 30s− 15
=

2− 2λ

3
.

Proof of Theorem 1.3. Set

g(z) =
fm − a(z)

b(z)− a(z)
,
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G(z) =
H − a(z)

b(z)− a(z)
.

By fm and H share a(z), b(z),∞ CM, we know that g(z) and G(z) share 0, 1, ∞
CM almost. Next, we consider two cases.

Case 1. a(z) ≡ 0, b(z) ̸≡ 0. In the following, we consider two subcases.

Case 1.1. N(r, 1
G ) ̸= S(r,G). From the conditions of Theorem 1.3, we have

N(r, 0)−N(r, 0) ̸= S(r,G) + S(r, g).(3.29)

Set ψ(z) = G′(z)
1−G(z) −

g′(z)
1−g(z) . If ψ(z) ̸≡ 0, then by Nevanlinna’s first fundamental

theorem, we get

N(r, 0)−N(r, 0) ≤N(r,
1

ψ
) ≤ T (r, ψ) +O(1)

=m(r, ψ) +N(r, ψ) +O(1) = S(r,G) + S(r, g),

which contradicts with(3.29). Hence ψ(z) ≡ 0, we get G(z) − 1 = c(g(z) − 1). By

(3.29), we know that there exists z0 satisfying g(z0) = G(z0) = 0. Hence c = 1, that

is g(z) ≡ G(z). It follows fm(z) ≡ F (z).

Similarly, N(r,G) = S(r,G) and N(r, g) = S(r, g).

Case 1.2. N(r, 1
G ) = S(r,G).

Obviously, N(r, 1g ) = S(r, g), by Lemma 2.5, N(r, 1
G ) + N(r,G) = S(r,G),

N(r, 1g ) + N(r, g) = S(r, g). It follows from g(z) and G(z) share 1 CM almost,

that g(z)G(z) ≡ 1, we have fmF ≡ b2, that is F
fm = b2

f2m . Hence, we get

m

(
r,
F

fm

)
= m

(
r,

b2

f2m

)
= 2mT (r, f) + S(r, f),(3.30)

it follows fromm
(
r, F

fm

)
≤ S(r, f) and (3.30) that T (r, f) = S(r, f), a contradiction.

Case 2. a(z) ̸≡ 0.

In the following, we consider two subcases.

Case 2.1. a(z) ̸≡ 0, b(z) ̸≡ 0.

Let fm(z) ̸≡ F (z), by Lemma 2.2, we have

2T (r, fm) ≤N
(
r,

1

fm

)
+N(r, fm) +N

(
r,

1

fm − a

)
+N

(
r,

1

fm − b

)
+ εT (r, fm) + S(r, fm)

≤ 1

m
N

(
r,

1

fm

)
+N

(
r,

1

fm − F

)
+ εT (r, fm) + S(r, fm)

≤ 1

m
T (r, fm) + T (r, fm − F ) + εT (r, fm) + S(r, fm)

≤ 1

m
T (r, fm) + T (r, fm) + εT (r, fm) + S(r, fm)

≤
(

1

m
+ 1 + ε

)
T (r, fm) + S(r, fm).
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Let ε = 1
4 <

1
2 , and m ≥ 2. It follows that T (r, fm) ≤ S(r, fm), a contradiction.

Case 2.2. a(z) ̸≡ 0, b(z) ≡ 0.

By using the same argument as used in Case 1, we obtain a contradiction. So

fm(z) ≡ H (f(z)). This completes the proof of Theorem 1.3.
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