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SIMPLE PROOF OF THE RISK BOUND FOR DENOISING BY
EXPONENTIAL WEIGHTS FOR ASYMMETRIC NOISE
DISTRIBUTIONS

A. S. DALALYAN

Institut Polytechnique de Paris, France'
E-mail: arnak.dalalyan@ensae. fr

Abstract. In this note, we consider the problem of aggregation of estimators in order to
denoise a signal. The main contribution is a short proof of the fact that the exponentially weighted
aggregate satisfies a sharp oracle inequality. While this result was already known for a wide class
of symmetric noise distributions, the extension to asymmetric distributions presented in this note

is new.

MSC2020 numbers: 62J05; 62H12.
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1. INTRODUCTION

Let us consider the problem of denoising an n dimensional noisy signal Y using

a family of candidates 64, ...,0,,. More precisely, we assume that
Y =0"+¢

where 8* € R" is the n dimensional true signal and £ is random noise. Only the
noisy vector Y is observed and the goal is to construct an estimator 6 such that
the expected error E[Hé\— 0*||?] is as small as possible, where ||v|| stands for the
Euclidean norm of v € R™. We consider the framework in which to achieve the
aforementioned goal we are given a set of vectors {01,...,0,,}. An estimator 0 is

considered a good estimator, if the regret
(1.1) B(16— 6"~ min [0~ 6"

is as small as possible. This problem has been coined model-selection aggregation

in (17), where it is also proved that the optimal rate of the difference in (1.1) is

logm. The problem of aggregation has been extensively studied in the literature,

see for instance (3; 20; 22; 21; 13; 2; 16; 18; 1; 14; 4). In this note, we consider the

IThe work of the author was supported by the grant Investissements d’Avenir (ANR-11-IDEX-

0003/Labex Ecodec/ANR-11-LABX-0047), the FAST Advance grant and the center Hi! PARIS.
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A. S. DALALYAN

exponentially weighted aggregate (EWA) defined as follows. Let mo(1),...,m(m)
be some nonnegative weights summing to one. Each m((j) represents our prior
confidence in the approximation of 8* by ;. Based on these prior weights and the

observed vector Y, we define

R e : ~ exp{—|Y — 6;|%/B}m0(4)
0=> 0,7(5), with () = .
; ’ >iy exp{—[Y — 6,]]/B}mo(£)
In this expression, § > 0 is a tuning parameter of the method. As established in the
aforementioned references, in different settings one can prove that EWA satisfies

the inequality

(12) Bl — 6| < _min_ (]/6; — 6"+ Blog(1/mo(s)) ).

In particular, if mo is the uniform distribution over {1,...,m}, one obtains the

rate-optimal remainder term /3 logm for the difference in (1.1).

As pointed out in some papers (8; 9; 6), it is helpful to extend the above-described
framework to the case of aggregating a family of estimators which is potentially
infinite. This is equivalent to considering a subset Sy C R™ and aiming at finding
an “optimal” way of combining all its elements in order to estimate 8*. These types
of considerations have led to the following extension of the estimator (1.2):

AT o exp{—|Y — 0|*/8}
dmo Jon exp{= Y — u|?/B}mo(du)

Notice that this estimator is the Bayesian posterior mean in the case where &

(9)

(1.3) 6:/ 07(d9),  with

is drawn from the Gaussian distribution with zero mean and covariance matrix
(8/2)1,,. The goal of this note is to provide an alternative and simple proof of the
fact that EWA @ satisfies (1.2) and its extension to aggregating an infinite set,
provided that the distribution of the noise £ satisfies some suitable conditions. We
also slightly extend the existing results by including noise distributions that are not
symmetric with respect to the origin. This is particularly suitable for estimating

the parameters of Bernoulli or binomial distributions.

Notation. We use boldface letters for vectors, which are always seen as one-column
matrices. For any vector v, ||v]| and ||v|| are respectively the Euclidean norm and
the sup-norm. By convention, throughout this work, 0 - co = 0. For a probability
distribution 7 on R™, we denote by Var,(0) the variance with respect to 7w defined
by [en 1012 7(d0) — || [5. O7(d6)|*>. For two probability distributions p and v
defined on the same probability space and such that p is absolutely continuous

with respect to v, the Kullback-Leibler divergence is defined by Dxr(p|lv) =
f%(m) log %(w) v(dx).
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2. MAIN RESULT

This section is devoted to stating and briefly discussing the main result, the
proof being postponed to Section 4 below. Prior to stating the result, we recall the
Bernstein condition. For some v > 0 and b > 0, we say that a random variable 7
satisfies the (v, b)-Bernstein condition, if

,U2 2
Ble"] < exp {2(1_7’;'“)} Wt € (=1/b,1/b).

This condition is clearly on the distribution of the random variable. One can check
that if 7 satisfies the (v, b)-Bernstein condition, then it is sub-exponential with zero
mean, and the variance of 7 is at least equal to v. Many common distributions
satisfy this assumption. For instance, any sub-Gaussian distribution with variance
proxy T satisfies the (7,0)-Bernstein condition. Any random variable supported
by [—A, A] satisfies the Bernstein condition with (v,b) = (A2,0) but also with
(v,b) = (Var(n), A/3) (19). We will see that the latter is more useful for our purposes

than the former.

Similarly, if F is a sigma-algebra and v and b are two F- measurable random
variables, we say that 7 is (v, b)-Bernstein conditionally to F, if almost surely, the
inequality E[e!|F] < exp{v?t?/(1 — bt|)} is satisfied for every t € R such that
t]b < 1.

Theorem 1. Let my be a probability distribution supported by Sy C R™ with a
diameter measured in sup-norm bounded by Dy. Assume that the distribution of
& satisfies the following assumption: for some sigma algebra F and for some b :
[0,1] — [0,00) and continuously differentiable function v : [0,1] — [0, 00) vanishing
at the origin, for every a € (0,1], there exists an n-dimensional random vector ¢

such that
E[C[F]=0, £+C¢Z(1+a).

and, conditionally to F, the entries (; are independent and satisfy the (v(a), b(a))-
Bernstein condition. Then, for every 8 = 2b(0)Dy, we have

E[|6 - 67 < inf { [ 1o 6| xtae) +5DKL<7T||W0>}
™ Rn

20/ (0)
+(M(O)Do - 1)E[Vafﬁ(19)],
5
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where the inf is over all the probability distributions. As a consequence, for B >
20'(0) + 2b(0)Dyg, we get

@0 G- 0 <int{ [ 100" n(a0) + BDra(rllm)

Let us briefly comment on this result. First, the link between (2.1) and (1.2)
might not be easy to see. It is obtained by considering a prior distribution mg
supported by the finite set {6y,...,60,,} and by upper bounding the infimum in
(2.1) by the minimum over all the Dirac measures dg,. One easily checks that
Dx1 (0, ||m0) = log(1/m0(j)), which allows to infer (1.2) from (2.1).

Second, one may wonder where the form of the upper bound in (2.1) comes from.
The presence of the KL-divergence in this bound may seem surprising. The reason
is that there is a deep connection between the KL-divergence and the exponential
weights. Indeed, according to the Varadhan-Donsker variational formula, the “pos-
terior” distribution 7 defined in (1.3) is solution to following problem:

7 € argmin { / 160 — Y |*>(d0) + 6DKL(7T||7TO)},
™ R

n

where the min is over all the probability distributions. This result will be the starting

point of the proof.

Finally, one can wonder how restrictive the assumptions of this theorem are. We

will show below that they are satisfied for a broad class of noise distributions.

3. INSTANTIATION TO SOME WELL-KNOWN NOISE DISTRIBUTIONS

The main theorem stated in the previous section requires a general and a rather
abstract condition to be satisfied by the noise distribution. This section shows that
many distributions encountered in applications satisfy this assumption with some

parameters v’(0) and b(0) which are easy to determine.

3.1. Centered Bernoulli noise. Assume that each ¢; is a centered Bernoulli
random variable: it takes the value 1 — p; with probability p; and the value —p;
with probability 1 — p;. Here, p; € (0,1). Then, one can set
1+a—alg] af&i|
P(G=0a&|&) = , P(G=~— )1 —a|&l) &) = .
(G = atil &) = ——— (G = —sen(€)(1 +a — algi]) | &) = 220
We see that conditionally to &;, the random variable (; is zero mean and takes its

values in an interval of length «(1 — p;) +ap; +1 = ap;+ 1+ a—ap; = 1+ . This

implies that ¢; satisfies the ((1 4 «)?/4,0)-Bernstein condition, conditionally to &;.

In other terms, (; is sub-Gaussian with variance proxy (1 + «)?/4. However, this
6
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does not help in applying Theorem 1, since the function v(a) = (1 + «)?/4 does
not vanish at the origin. On the positive side, since the conditional variance of (;
given &; is smaller than a(1 + «) and the support is included in [—(1 + «), (1 + «)],
the conditional distribution of (; given &; satisfies the Bernstein condition with
v(a) = a(l + o) and b(o) = (1 4 «)/3, see (19, Exercise 2.8.5). This yields the

following result.

Corollary 1. Let my be a probability distribution supported by Sy C R™ such
that Dy = supg g/, [0 — 0'l|cc < 00. Assume that £ has independent entries &;
satisfying P(§; = 1 —p;) =1 —P(&§ = —p;) = p; for some p; € (0,1). Then, for
every 8 > (2/3)Dy, we have

Bl 6" <t { [ 116~ 6" n(a6) + 5D (o) |

(3.1) +<35—szo — 1) E[Varz(9)].

In particular, if 8 > 24 (2/3)Dy, the last term in (3.1) is nonpositive and, therefore,

can be neglected.

This corollary can be used in cases where the observations Y; are independent
Bernoulli random variables with mean 6. In such a situation, it is natural to
choose a prior distribution my that is concentrated on the unit hypercube [0,1]",
the diameter of which in sup-norm is equal to 1. The corollary implies that in such
a situation the inequality stated in (2.1) is true provided that 8 > 8/3. We refer

the reader to (10) for an application of this result to graphon estimation.

3.2. Gaussian noise. In the case of the Gaussian noise £ with independent entries
having 0 mean and variance equal to o2, one can check that the conditions of
Theorem 1 are satisfied with the random vector ¢ which is independent of € and
has independent entries drawn from the Gaussian distribution N'(0, (2a + a?)o?).
This means that in the Bernstein condition one can choose F = (&), b = 0 and

v(a) = (20 + o) maxi<icn 07, which leads to the following result.

Corollary 2. Let 7wy be a probability distribution on R™. Assume that £ has
independent entries & ~ N(0,02), i = 1,...,n. Then, for every 8 > 0, we have
(3.2)

E[|6 - 6*[%] < int { /IR 16 — 0% |12 7(d6) + 5DKL(7r||7m)} + (40287 — 1)E[Varz (9)],

where 0 = max;<;<n, 0;. In particular, if 8 > 402, the last term in (3.2) is nonpositive

and, therefore, can be neglected.
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Some preliminary versions of this result can be traced back to (12; 11). In the
form (2.1), and with an extension to aggregation of projection estimators, the result
appeared in (15). Further generalisations to various families of linear estimators
have been explored in (7). The proof of the oracle inequality in all these papers
is very specific to the Gaussian distribution since it is based on Stein’s lemma
(integration by parts for the Gaussian measure). The alternative proof presented

in this work relies on techniques developed in (8; 5; 6).

3.3. Bounded noise. For every a,b > 0, let B(a, b) be the distribution of a random
variable that takes the values a and —b with probabilities b/(a + b) and a/(a + b),
respectively. If the distribution of §; can be written as a mixture of the distributions
B(a,b) with a mixing distribution with bounded support, then our main theorem
can be applied. More precisely, assume that the distribution of &; is given by

A B
boe(dx) + ad_p(dx)
(dz) = (da, db),
pe; (dz) /0/0 P vi(da, db)

where y; is a probability distribution on [0, A] x [0, B]. This means that & = nf‘“ﬁ

with random variables («;, ;) drawn from v; and nf’b drawn from the binary

%j}f*b(dm). Akin to the first subsection of this section, one can

choose ¢** so that (1 4 a)n™” has the same distribution as n®®

pair (a,b). Then, clearly, (1 + «)¢; has the same distribution as §; + C{"’ﬂ. Let

distribution

+ Cf’b, for every

F be the sigma algebra generated by the random variables «, 3, {n?’b : (a,b) €
[0, 4] x [0, B],i € [n]}. Conditionally to F, ¢*” is a binary random variable with
zero mean and takes its values in the interval [—B, A], it satisfies the Bernstein
condition with b(a) = (A + B)(1 + a)/3 and v(a) = (A + B)?a(1 + ). Therefore,

we get the following result.

Corollary 3. Let my be a probability distribution supported by Sy C R™ such
that Dy = supg grcs, [0 — 0’|l < 00. Assume that £ has independent entries &;,

i =1,...,n, taking values in an interval I; of length at most L. Then, for every
B > (2/3) LDy, we have

(16— 67 <int{ [ 10 - 017 (db) + Do)}
2
(3.3) +<35E7Lzm)0 - 1>E[Var%(19)].

In particular, if 8 > 2L% + (2/3)LDy, the last term in (3.3) is nonpositive and,

therefore, can be neglected.
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This result is well suited for the setting where the components Y; of the observation
Y are bounded. For instance, if we know that P(Y; € [0,L]) = 1 for every
i € {1,...,n}, then it is also natural to choose a prior distribution satisfying
Dy = L. Inequality (2.1) is then satisfied for every 8 > (8/3)L?. Note that, to the
best of our knowledge, this is the first time that such a precise bound is obtained
for asymmetric noise distributions. The similar result established in (6, Theorem

2) deals with symmetric distributions only.

3.4. Centered binomial noise. Consider the case where &;’s are independent and
drawn from a centered and scaled binomial distribution aB(k, p;)—akp;, where a > 0
is the scaling factor. This distribution is a particular case of distributions supported
by a finite interval considered in the previous subsection. One can therefore apply
the last corollary with L = ak. However, this leads to a bound which is too crude.
Indeed, one can use the fact that &; is equal in distribution to a(n; +. ..+ nx) where
n,’s are iid centered Bernoulli variables. Defining (1, ..., (s as independent random
variables satisfying

P (¢ = anj|n;) = Hzf;flml P (G = —sgn(n)(1 + o —aln;]) [n;) = S‘:ﬂ
one easily checks that n; + (; has the same distribution as (1 + «)n;. Therefore,

&+, for ¢ = a((y+. ..+ Cr), has the same distribution as (1 +a)&;. Furthermore,

conditionally to the sigma-algebra generated by {n1,...,nx}, ¢; has zero mean and
satisfies the Bernstein condition with b(a) = a(1 + )/3 and v(a) = a?ka(l + ).

Corollary 4. Let my be a probability distribution supported by Sy C R™ such that
Dy = supg gres, |10 — 0’|l < 00. Assume that £ has independent entries &;, i =
1,...,n, drawn from the scaled and centered binomial distribution a(B(k, p;)—kp;))-
Then, for every 5 > (2/3)aDy, we have

E[|6 - ") < int { / 16 — 6%[|* 7(d6) + 5DKL(7T||7T0)}
as Rn
6a’k
4 — —1|E =(19)].
(3.4 (552 gu, ~ 1 JElVars(0)]
In particular, if 8 > 2a?k + (2/3)aDy, the last term in (3.4) is nonpositive and,

therefore, can be neglected.

A typical application of this result concerns the case of observing the average of
k Bernoulli variables, that is Y; ~ (1/k)B(k, 0F). In this case, all the 67 belong to
[0, 1] and, therefore, it is reasonable to choose a prior distribution 7y supported by
[0,1]™. This ensures that Dy < 1, and, therefore, inequality (2.1) follows from the
last corollary provided that 5 > 8/(3k) (this is obtained by choosing a = 1/k).
9
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3.5. Double exponential noise. All the previous examples considered in this
section are distributions with sub-exponential tails. Let us check that Theorem 1 can
also be applied to some distributions that have heavier, say sub-exponential, tails.
Let &; be independent drawn from the Laplace distribution? with parameters p; > 0,

i = 1,...,n. Then, one can choose F = u(€) and (,...,{, to be independent,

independent of &, and drawn from the distribution (1_:@2 do + (Qf‘jacﬁz Lap((1+a)w;).
The fact that & + (; has the same distribution as (1 + )& can be checked by
computing the characteristic functions of these variables and by verifying that they
are equal. As for the Bernstein condition, for every t such that (1 4+ a)u;|t| <1 we

have
1 20 + a? 1
+ X
(+aP  (taP T-(1+ a0
(p=1-(14a)%z:=(14a)tu)

Ele'%] =

2 2
p bz bz
=1- =1 <1
P12 L +1—|z|
2 ) 242
gexp{ pz }:exp{w}
1— 2] 1— (1 + a)ut]

This means that the (conditional) Bernstein condition is satisfied with v(a) =

a(2 + a)p? and b(a) = (1 + a)u, where p is the largest value among ;.

Corollary 5. Let my be a probability distribution supported by Sy C R™ such
that Dy = supg gres, [0 — 0’|l < 00. Assume that £ has independent entries &,
i =1,...,n, drawn from the Laplace distribution Lap(u;). Set p = maxiicn -

Then, for every 8 > 2uDy, we have

E[|6 - 6" < in { [ 100" x(ao) +/3DKL<w||7ro>}
s Rn
4p2
(3.5) +(7B e

In particular, if 3 > 42+ 2uDy, the last term in (3.5) is nonpositive and, therefore,

1>E[Var;r(19)].

can be neglected.

The last claim improves on (9, Prop. 1), since the latter requires the condition
8> (164) v (VB uDy).

Remark 1. Let us finally remark that the construction of (;’s used in this section
can be extended to the case where &;’s are scale-miztures of Laplace distributions
with a mizing density supported by a compact set. The only modification in the

statement of the final result should be the definition of u, which should correspond

2This means that the density of &; is equal to (2u;) ™1 exp(—|a|/ps).
10
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to the smallest real number such that the mizing density has no mass in (p,00).

Similar extension can be carried out in the case of scale-miztures of Gaussians.

4. PROOF OF THEOREM 1

Since 7 minimizes the criterion 7 — [, |Y —0]|* 7(d@) + 8Dky(7||mo), we have

/ 1Y — 0|*7(d6) + BDxv(7||mo) < /R 1Y — ||* 7(d8) + B Dxv(7||mo)
Rn n

for all densities m over R™. The KL-divergence being always nonnegative, we infer

from the last display that

v =8}~ [ v ol 7de)~ [ o]} 7ip)

() < [ 1Y = 61F x(d6) + 5Dw(rllmo) ~ [ 116 617 (ao).

Using the decompositions [|[Y —8||2 = [|6—6*||2+2(8—6%)T&¢+|€[|? and | Y —6]|2 =
|0 —6%||> +2(0* —0) "¢+ /&> and taking the expectation of the two sides of (4.1),

we get
E(|6 — (%] + 2E[(6 — 6")T¢] < / |6 — 6°|* w(a6)
RTL
+opwtalmE| [ 68 (as)
R’n
which can be equivalently written as

E[|6 - 0*|*) < / 16 — & |* (d6) + B D (]| o)
Rn

(4.2) 12E[TE] - /R [0 — 8]27(0)] 6.

In addition, we have

[e%

A E[ / 1og62(a/ﬂ>9757?(d0>},

11
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where a > 0 is an arbitrary number. Since the logarithm is concave, the Jensen

inequality yields

10g</ e|9*+se|2/ﬁﬂo(d9))]
RTI,

_ iE{log (/ (214008 €~ 67 —8][%)/5 wO(d0)>

(4.3) —log</ e(nge—|0*—9|2)/5F0(d9>>}

Let ¢ = ¢, be the n dimensional random vector the existence of which is required

in the statement of the theorem. Recall that it satisfies
9
E[¢|F] =0, §+¢=(1+a),

These conditions imply that in the first expectation in (4.3), one can replace (1+a)€
by & + ¢, which yields

2E[07¢] < gE o </ (267 €+207 ¢ [l6"—6])/5 ﬂo(dg))]
_ iE{k’g (/ (2076~ 67 ~6]*)/5 Wo(dg)>]
(44) = gE log </ (207 ¢/ %(de)ﬂ - gE[log (/ (20-0)7¢/p %(d@))].

Since conditionally to F, (;’s are independent and each (; satisfies the (v(«), b(ev))-
Bernstein condition, one can use the Jensen inequality to upper bound the expectation

in (4.4) as follows
E[log (/ E[e2(0-0)"¢/8| 7] %(de))]

F [log </ ex | (8 2_||zb?a(’;‘:|29u£a%”w) j ﬂde)ﬂ

for every f satisfying 8 > 2b(a)||@ — 0’||» for every 0,8’ € Sy := supp(mg). Note

that for every 8 € Sy, we have |0 — 4’9\||OO < Dy. The inequality in (4.5) being true
12
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for any a > 0, one can check that

(4.6)

— 0 2U 8] e
2E[0 ¢] < 1i£n_}glf§E[log </ exp{ﬁ(ﬁ 2_”;(;;:'9 E %Iloo) } w(da)ﬂ
26 — 8]*'(0)
- EU - 5 —2(0)]6 - 8] ”(da)}

20/(0) G
SEo 2b<0>Dw<So)E[/Rn 16 —el (‘w)}

Combining (4.2) and (4.6), we see that

This

1

2]

3]

4]

[5]

[6]

7]

18]

9]

B0 - 6I7) < [ 6~ 6" n(d8) + Dy (wlmo) +
R™

20'(0)
+<5 ~35(0) D (S0) — 1>E[Varﬁ(19)].

completes the proof.
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Abstract. The purpose of this note is to recall one remarkable theorem of Khinchin about
the special role of the Gaussian distribution. This theorem allows us to give a new interpretation
of the Lindeberg condition: it guarantees the uniform integrability of the squares of normed sums
of random variables and, thus, the passage to the limit under the expectation sign. The latter

provides a simple proof of the central limit theorem for independent random variables.
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1. Let {&,i} = {&nj, 1 <Jj < kp,n>1}, ky, — 00 as n — o0, be a triangular array
(double sequence) of independent in each row random variables on a probability

space (X, %, P). For the sake of simplicity, we always assume that E¢, ; = 0 for
k"l

all j and n. For any n > 1, denote S,, = >_ &, j, and let DS, be its variance. The
j=1

Gaussian (normal) distribution function with parameters a and 02, a,0 € R, o > 0,
is defined by

a)?

1 (t—
exp{ —————— » dt, x eR.
o2 / p{ 202 }

Khinchin [4] (translation into English can be found in [6]) noted that the Gauss

(I)a,o'z ('r) =

law, as a limiting law for sums of independent random variables, has a very special
role that distinguishes it from all infinitely divisible laws. Namely, we arrive at
the Gauss law in all cases when the limiting negligibility of the components of the
sum of terms under study reaches a sufficiently strong degree; and this happens
completely independently of the special properties of the laws of distribution of
these terms.
The condition of asymptotic infinitesimality (or, equivalently, limiting negligibility)

on the summands &, ;, in the general case, is formulated as the condition that for
any € > 0, probability of the inequality |¢, ;| > € tends to zero uniformly in j as

n — oo:

. > )
. 1%1%);(@" P(|€n,jl >e) =0 asn— oo
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Khinchin showed (Theorem 42 in [4]) that if we assume that not only this probability
but the probability that all |&, ;|, 1 < j < k,, are greater than € tends to zero as
n — oo, that is,

>
(2) P (12;?](% 1€, > 5) —0 asn— oo,

then the only possible limiting law for normed row sums is the Gauss law.

Theorem 1 (Khinchin). Let {&, ;} be a double sequence of independent in each
row random variables. If a limiting non-degenerate distribution for the sums S,
exists, then for it to be Gaussian, it is necessary and sufficient that for any € > 0,
random variables {&, ;} satisfy .

Since condition represents only a somewhat strengthened requirement for
the limiting negligibility of summands and does not contain any special assumptions
about the nature of the laws of distribution of summands, the above result characterizes
the Gauss law as, in a certain sense, a universal limiting law for sums of independent
random variables and justifies the exclusive place given to this law in classical
studies.

In the bibliographical notes [4], Khinchin mention, that a more general result
was obtained by Lévy in [5], however, Khinchin was not able to find the proof of
the latter based on the sketch suggested by Lévy. Khinchin’s proof is based on the
direct investigation of the characteristic functions of summands. Another (shorter)
proof, based on the Lévy—Khinchin formula for the decomposition of characteristic
functions, was suggested by Gnedenko [2]. The latter can be found in the book [3]
by Gnedenko and Kolmogorov (see Theorem 1 on p. 126).

Under conditions of the Khinchin theorem, the limiting distribution (in the case
of centered random summands) is @ ,2 with some parameter o2. Since the limiting
law is non-degenerate, 02> > 0. Note that Khinchin do not impose any restriction
on the second moments of the summands, which is a minimal condition on the
moments in the central limit theorem (CLT). We say that for a sequence {&, ;} of

(centered) random variables, the CLT holds if

n—00 VDS,

The Khinchin theorem cannot be considered a CLT since the limiting Gaussian

lim P( Sn Sm) =g 1(2), xR

distribution is not necessarily the standard one with ¢2 = 1. However, if we impose
the uniform integrability condition on the squares of normed row sums, we will be
able to prove CLT based on the Khinchin result.

16
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We will need the following statements (see, for example, Lemma 1 on p. 322
and Theorem 5 on p. 189 in [7]). Under convergence of distribution functions we
understand convergence in general, i.e., at each point of continuity of the limiting

distribution function.

Proposition 1. Let {F,} = {F,,n > 1} be a sequence of distribution functions.
Suppose that any convergent subsequence {F,} of {F,}, {n'} C {n}, converges to

the same distribution function F. Then the sequence {F,} converges to F as well.

Proof. Let ZF be the set of continuity points of the distribution function F.
Fix some z € ZF and assume that F,,(x) does not converge to F'(x). Then there

exists € > 0 and an infinite sequence {n’} of natural numbers such that
3) |F () = F(z)| > e.

By the Helly theorem, from the sequence { F;,» }, one can select a convergent subsequence
{F,}, and let generalized distribution function G be its limit. By the hypothesis
of the proposition, G = F', and thus, F,»(z) — F(z) as n — oo, which contradicts
with . This completes the proof. O

We remind that a family of random variables {7,,,n > 1} is uniformly integrable
if

sup / [n|dP — 0 as C' — oo.
n

‘777L|>C
Theorem 2. Letn,, n > 1 be a sequence of positive random variables with En, <

oo such that n, — n as n — oo. Then En, — En < oo as n — oo if and only if
the family {nn,n > 1} is uniformly integrable.

Now we present the following version of the CLT for independent random variables.

Theorem 3. Let {&, ;} be a double sequence of independent in each row random
variables such that €. ; < 00,1 < j < ky, n > 1. If random variables {&, ;/v/DSy,
1 <j <k, n > 1} satisfy condition and the squares of normed row sums
{S2/DS,,n > 1} are uniformly integrable, then for the sequence {&, ;}, the CLT
holds.

Proof. Let F,, be the distribution function of S,,/+/DS,,, n > 1. Then
52
(4) /deFn(x) =F ( = ) =1, n > 1.
R

DS,

Further, let {F, }, {n'} C {n} be some convergent subsequence of the sequence
{F,}. Due to the Khincin theorem, F,/(x) = ®¢ ,2(x) as n’ — oo for any z € R
17



and some ¢ > 0 if random variables {¢, ;/v/DS,} satisfy condition (2). Since
{S2/DS,,,n > 1} are uniformly integrable, due to Theorem [2| we can pass to the
limit under the expectation sign, and thus,

lim [ 2?dF,/ (z) = /:132 lim dF, (x)= /$2d¢0752 ().

n’—oo n’— oo
R R R

Tacking into account , we conclude

/J?Qd‘bo)o.‘z (.]3) = 1,

R

that is, the parameter o2 in the limiting Gaussian distribution is equal to one. Thus,
from the uniform integrability of {S2/DS,,n > 1}, it follows that F, (z) — ®¢ 1 ()
as n’ — oo for any z € R.

Thereby, any convergent subsequence {F,} of the distribution functions of the
normed row sums .S, / /DS, converge to the same limiting distribution ®g 1. Hence,
by Proposition the sequence { F},} converges to ®q ; as well. Therefore, for random
variables {¢, ;}, the CLT holds. O
2. Theorem [3]allows us to give the new probabilistic interpretation of the Lindeberg
condition. We will show that from the Lindeberg condition, the uniform integrability
of the squares of normed sums of random variables follows, which, in its turn, allows
passage to the limit under the expectation sign, and thus, guaranties 02 = 1 in the
limiting Gaussian distribution in the Khinchin theorem.

The double sequence {&, ;} of random variables satisfies the Lindeberg condition

if for any € > 0,

k,
|
(5) DS, Z / €.dP -0  asn— 0.
I=Y€n s 1>ev/DBn}

The classical interpretation of the Lindeberg condition is that if a sequence {§, ;}
of random variables satisfies , then its elements are asymptotically infinitesimal
uniformly in each row, that is, relation holds. Billingsley (see p. 90 in [I])
noted that from the Lindeberg condition, the uniform integrability of the squares

of normed sums follows as well.

Proposition 2. Let {{, ;} be a double sequence of (centered) independent random
variables with finite second moments. If {&, ;} satisfies the Lindeberg condition ,

then squares of normed row sums {S, /v/DSn,n > 1}, are uniformly integrable.
18
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Proof. The statement follows from inequality (12.20) in [I], according to which
for any n > 1 and C' > 0, one has

S? 1 1

" gP<K| =
/ DS, =" | ¢ T D5, &
{S2=CDS,} Jfl{\gn,j\z%cz)sn}

kn

2
0, AP

where K is some universal constant. By 7 for any C > 0, there exists ng =
no(C) > 1 such that

1k7l
<
= Hln ;12 10DSLY

for any n > nyg.

Ql+

Thus,
s2 2 &
su " JP<K|=+4 su / 2 dP |,
np / DS, C 1§m§£0(c) DS, Zl N
{$2>CDS,} T Iém |2 5CDSm}
and hence,
52
sup / Dgn dP =0 as C — oo. O

" {s2>CD5,}
The statement above reveals the true essence of the Lindeberg condition. Since
uniform integrability condition is the necessary and sufficient condition for taking
limit under the expectation sign, we conclude that the Lindeberg condition is one of
conditions under which the limiting Gaussian distribution in the Khinchin theorem
is the standard one. Tacking into account this fact, we provide the new proof of the

well-known Lévy-Lindeberg theorem.

Theorem 4 (Lévy-Lindeberg). Let {£,;} be a double sequence of independent in
each row random variables such that E&, ; =0, 0 < ngw» <00,1<j <k, n>1.
If random variables {&,, ;} satisfy Lindeberg condition , then the CLT holds.

Proof. First note that random variables {&,, ;/v/DSp,1 < j < ky,n > 1} satisfy
condition , since for any € > 0, we have

kn
P ( max [&, ;| > 5\/D5n) < ZP(|£n)j| >e\/DSp) <
j=1

1<j<kn

k
1 n
< - 2 dP =0
<zpmy | &
T . 1>V DS}
as n — oo. Further, by Proposition [2| random variables {S2/DS,,,n > 1}, are

uniformly integrable. Thus, by Theorem |3 for {¢, ;} the CLT holds. O
19



3. Let us illustrate the application of Theorem[3]in the case of independent identically
distributed (i.i.d.) random variables. Namely, we will use this theorem to prove the

following classical result.

Theorem 5 (Levy—Khinchin). Let {n,,n > 1} be a sequence of i.i.d. random
variables such that Emy = 0 and Dy = o3 < 0o. Then for {n,} the CLT holds.

Proof. Consider the double array {{, ;,1 < j < n,n > 1} of random variables
§nj = 5 \/» It is not difficult to check, that random variables {¢, ;} satisfy

condition . Further, put S, = Z €nj = then DS, = 1. With
j=1

O_\/>Z77J7

application of inequality (12.19) in [I], for any C > 0, we can write

P($2>(C? < max P (52 > cz) < max [S;| > C> <
1<j<n

1<j<n

IN

1 1< )
f(feds [ ew)
"=Ulensi>10)
where K is some positive constant. Further, applying equality (3) on p. 223 in [I],

we can write

o0

K K 9 K K )

< Clatag [ |+l [ ee)e-
{lm|>Coo/4} c {|m|>too/4}

1 fdat 1 (1 Tat
= Klm+t [ at=|& 5 P

O3+/t4+og ct)e / n

c c {In1[>to0/4}

From here it follows that random variables {S,,n > 1} are uniformly integrable.
Hence, by Theorem [3| for random variables {¢, ;} the CLT holds. It remains to

notethatP(S‘ngz)P< DS, <a:>,;1:€]Rd. O

We see, that checking the uniform integrability of the squares of normmed sums

directly requires some effort. At the same time, the Lindeberg condition for i.i.d.
random variables can be checked quite simply. That is why it is preferable in

applications.
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Abstract. In this paper, we prove that for a transcendental entire function f of finite order
such that A(f — a) < p(f), where a is an entire function and satisfies p(a) < p(f), n € N, if AT f
and f share the entire function b satisfying p(b) < p(f) CM, where ¢ € C satisfies A f # 0, then
f(2) = a(z) +de®*, where d, ¢ are two non-zero constants. In particular, if a = b, then a reduces to
a constant. This result improves and generalizes the recent results of Chen and Chen [3], Liao and
Zhang [10] and Lii et al. [I1] in a large scale. Also we exhibit some relevant examples to fortify

our results.
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1. INTRODUCTION AND RESULTS

In this paper, a meromorphic function f always means it is meromorphic in
the whole complex plane C. We assume that the reader is familiar with standard
notation and main results of Nevanlinna Theory (see, e.g., [1, 12]). By S(r, f) we
denote any quantity that satisfies the condition S(r, f) = o(T(r, f)) as r — o0
possibly outside of an exceptional set of finite logarithmic measure. A meromorphic
function a is said to be a small function of f if T(r,a) = S(r, f). Moreover,
we use notations p(f), w(f) and A(f) for the order, the lower order and the
exponent of convergence of zeros of a meromorphic function f respectively. As usual,
the abbreviation CM means “counting multiplicities”, while IM means “ignoring
multiplicities”.

We now introduce some notations. Let ¢ € C\ {0}. Then the forward difference

A? f for each integer n € N is defined in the standard way by
Acf(z) = Acf(2) = fz+¢) = f(2)
ALf(2) = Ac (AT f(2) = AL f(z+¢) = AL f(2), n>2.

Moreover
n

ALf(z) =D (1) IChf (2 + je),
3=0
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where CJ is a combinatorial number.
In 1996, Briick [2] discussed the possible relation between f and f’ when an entire
function f and it’s derivative f’ share only one finite value CM. In this direction

an interesting problem still open is the following conjecture proposed by Briick [2].

Conjecture A. Let f be a non-constant entire function such that
. loglog T'(r, f)
limsup —————=

r—00 1Og T

If f and [’ share one finite value a CM, then f' —a = c(f —a), where ¢ € C\{0}.

¢ NU {o0}.

The conjecture for the special cases (1) a = 0 and (2) N (T, %) = S(r, f)
had been confirmed by Briick [2]. Though the conjecture is not settled in its full
generality, it gives rise to a long course of research on the uniqueness of entire and
meromorphic functions sharing a single value with its derivatives.

Meromorphic solutions of complex difference equations, and the value distribution
and uniqueness of complex differences have become an area of current interest and
the study is based on the Nevanlinna value distribution of difference operators
established by Halburd and Korhonen [6] and by Chiang and Feng [5] respectively.
Recently, many authors (see [3, 4, [I0, 11]) have started to consider the sharing
values problems of meromorphic functions with their difference operators or shifts.
Also it is well known that A.f can be regarded as the difference counterpart of f’.

Now, we recall the following result due to Chen [4], which is difference analogue of

the Briick conjecture.

Theorem A. [] Let f be a transcendental entire function of finite order which
has a finite Borel exceptional value a and let c(€ C) such that A.f £ 0. If A.f(2)
and f(z) share b(b # a) CM then,
Acf(z) -b
AT
f(z)—b

where A = % 1S a mon-zero constant.

In 2014, Cheng and Cheng [3] further improved Theorem A with the idea of

sharing small function and obtained the following result.

Theorem B. [3] Let f be a transcendental entire function of finite order and a be
an entire function such that p(a) < 1 and M\(f —a) < p(f). Let n € N and ¢ € C
such that Af # 0 and b be an entire function such that b Z a and p(b) < 1. If
AT f and f share b CM, then

F(2) = a(z) + de*,

where d,c are two non-zero constants.
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In 2016, Liao and Zhang [I0] improved Theorem B from the case of p(b) < 1 to
the general case of small function such that p(b) < p(f) and obtained the following

result.

Theorem C. [I0] Let f be a transcendental entire function of finite order and a
be a small function of f such that p(a) < 1. Let n € N such that A™f £ 0 and b be
an entire function such that b Z a and p(b) < p(f). If A™f and [ share b CM, then
A"f—b b—A"a
f=0 b—a
Furthermore f is of the form f(z) = a(z) + ce*, where ¢ and B are two non-zero

constants such that "=2-¢ = (ef —1)".
b—a

In 2019, Lii et al. [TI] asked the following questions.
Question A: Can the condition p(b) < 1 be weakened in Theorem C.
Question B: Does there exist a joint theorem involve of both cases a = b and
aZzb?

In the same paper, Lii et al. [I1] gave affirmative answers of Questions A and B

by proving the following result.

Theorem D. [I1] Let f be a transcendental entire function of finite order and a be
an entire function such that A(f —a) < p(f), p(a) <1 and p(a) # p(f). Let n € N
such that A" f # 0 and b be an entire function such that p(b) < max{l,p(f)}. If
A" f and f share b CM, then

f(2) = a(z) + ce™,

where ¢ and B are two non-zero constants. In particular, if a = b, then a reduces to

a constant.

In the same paper, Lii et al. [II] exhibited the following example to show that
the condition p(a) # p(f) is necessary in Theorem D.

Example 1.1. Let f be a transcendental entire function with 0 < p(f) <1, a(z) =
f(z) =z and b(z) = 3f(2) — f(z+1). Clearly \(f —a) =0 < p(f), p(b) <1 and
Af—b
=2.
f=0o
Therefore f and Af share b CM, but f does not satisfies the conclusion of Theorem
D.

In the paper, we prove the following main theorem, which extends Theorem D
from the case of A(f —a) < p(f), p(a) < 1 and p(a) # p(f) to the general case of

entire function such that A(f —a) < p(f), p(a) < max{1, p(f)} and p(a) # p(f).
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Theorem 1.1. Let f be a transcendental entire function of finite order and a be an
entire function such that \(f — a) < p(f), p(a) < max{1,p(f)} and p(a) # p(f).
Let n € N and ¢ € C such that ATf # 0 and b be an entire function such that
p(b) < max{1,p(f)}. If AZf and f share b CM, then one of the following cases
holds

(1) a=beC and f(z) = a+ de®®, where ¢ and d are two non-zero constants,

(2) a £ b and f(2) = a(z) 4+ de®*, where ¢ and d are two non-zero constants.
Immediately we have the following corollaries.

Corollary 1.1. Let f be a transcendental entire function such p(f) > 1 and a be
an entire function such that \(f —a) < p(f) and p(a) < p(f). Letn € N and c € C
such that AT f # 0 and b be an entire function such that p(b) < p(f). If ATf and
f share b CM, then one of the following cases holds

(1) a=beC and f(z) = a+ de®, where ¢ and d are two non-zero constants,

(2) aZband f(z) = a(z) + de*, where ¢ and d are two non-zero constants.

Corollary 1.2. Let f be a transcendental entire function of finite order and a be
an entire function such that A\(f —a) < p(f), p(a) < max{1, p(f)} and p(a) # p(f).
Letn € N and ¢ € C such that AZf £ 0. If AT f and f share a CM, then a reduces

to a constant and f(z) = a + de®*, where ¢ and d are two non-zero constants.

The Corollary shows that if a nonzero polynomial a satisfies A(f —a) < p(f),
then a is not shared CM by A”? f and f. For example if we take f(z) = e* 4+ z and
a(z) = z, then for any ¢ # 2kmi, k € Z, we have A, f(z) = (e — 1)e® + ¢. Hence a
is not shared CM by A.f and f.

This example shows existence of functions which satisfy the conditions of Theorem

LT

Example 1.2. Let f(z) = ¢* and ¢ = log2. Let a = 0 and b € C\ {0}. Clearly
M f —a)=0< p(f). Note that

n n

ALf(2) = Y (1P CLF (2 + (n — f)c) = €5 Y (—1) Celn e

Jj=0 Jj=0

= (e”c —Clen=De 4 (—1)”) e =(ef—1)"e* = e
Therefore A f = f and so f and AL f share b € C CM.

Following examples show that the condition “A(f — a) < p(f)” in Theorem
is sharp.
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Example 1.3. Let f(z) = Ae*1o8(ctl) — 1=¢ "yhere c € R\ {0},¢ > —1 and A is
an arbitrary constant. Let a € C\ {0} such that a # —1=¢ and =5 +a = A. It is

easy to verify that A(f —a) = p(f) and (A1f(2) — 1) = c(f(2) — 1). Therefore Ay f
and f share 1 CM, but f does not satisfy any case of Theorem |1.1].

Example 1.4. Let f(z) =e*+3, a =4 and ¢ = mi. Clearly \(f —4) = p(f) = 1.
Note that A.f(z) = —2e* and A f(z) —2 = =2(f(z) — 2). Therefore A.f and f
share 2 CM, but f does not satisfy any case of Theorem[I.1]

It is easy to see that the conditions “p(a) < max{1, p(f)} and p(a) # p(f)” in
Theorem is sharp.

Example 1.5. Let f(z) = e*, a(z) = e* — 1 and ¢ = log2. Note that p(a) = p(f)
and Ao f(z) = e*. Clearly A\(f —a) =0 < p(f) and f and A.f share b(e C) CM,
but but f does not satisfy any case of Theorem[1.1]

It is easy to see that the condition “p(b) < max{1,p(f)}” in Theorem is
sharp.

Example 1.6. Let f(z) = ze?, a = 0, b(z) = (z + ¢)e* and ¢ = log2. Note that
p(b) = p(f) and A.f(z) = ze* + 2ce*. Clearly A\(f) = 0 < p(f) and f and A.f
share b CM, but f does not satisfy any case of Theorem [1.1].

Following example shows that the condition “A(f —a) < p(f)” in Corollary

is sharp.

Example 1.7. Let f(z) = (expz—1) exp (%z) , where log denotes the principal
branch of the logarithm and ¢ = 2mi such that log(1 4+ 7) # ¢. Let a = 0. Note that

Acf(z) = (expz—l)exl’(bg(lcﬂ) Wz)

(z+ c)) — (expz — 1) exp (
= (expz—1)exp (log(lﬁz) (exp(log(1+ 7)) — 1)

= 7(expz—1)exp (1%(1;”)2) =7f(2).

Clearly f and A.f share 0 CM. On the other hand, we see that p(f) < 1 and
M) = Mexpz —1) = 1. Since A(f) < p(f), it follows that A\(f) = p(f). Also it is
clear that f does not satisfy any case of Corollary[1.2.

Following examples show that the condition “p(f) < 4+00” in Theorem and
Corollary is necessary.
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Example 1.8. Let f(z) = e (e5*) — 1), where s(2) is a periodic function with
period ¢ = log2 and a(z) = —e®. Clearly p(f) = +o0. Note that A.f = f and so f
and A.f share b(€ C) CM. On the other hand, we see that A\(f —a) = 0 < p(f),
but f does not satisfy any case of Theorem |1.1].

Example 1.9. Let f(z) = e*e*(*), where s(z) is a periodic function with period
c =log?2. Clearly p(f) = +oo. Note that A.f = f and so f and A.f share 0 CM.
On the other hand, we see that \(f) =0 < p(f), but [ does not satisfy any case of

Corollary[1.3

Following example assert that Theorem|[I.I]does not valid when f is a transcendental

meromorphic function.

Example 1.10. Let g be a periodic entire function with period 1 such that A(g) <

p(g9) =1 and g(z) and sin 27z have no common zeros. Let a = 0 and

f(Z) — g(Z) ezlogQ.

sin 27wz

Clearly A1 f and f share 1 CM, but f does not satisfy any case of Theorem[1.1}

2. AUXILIARY LEMMAS

Lemma 2.1. [[12], Theorem 1.18] Let f and g be two non-constant meromorphic
functions in the complex plane such that p(f) < u(g). Then T(r, f) = o(T(r,g) (r —

00).

Lemma 2.2. [[12], Theorem 1.44] Let g be a non-constant polynomial and f = e9.
Then p(f) = p(f) = deg(g).

Lemma 2.3. (8], Lemma 1.5.1.) Let P(z) = Y., a;z" where a, # 0. Then ¥V
e > 0, there exists 7o > 0 such that ¥V r = |z| > rg the inequalities (1 — &)|a,|r™ <
|P(2)] < (14 ¢&)|an|r™ hold.

Lemma 2.4. [12] Suppose that f1, fa,..., fn (n > 2) are meromorphic functions

and g1, 9o, .- .,gn are entire functions satisfying the following conditions

(i) > fie¥ =0
j=1
(ii) g; — g; are non-constants for 1 <i < j<mn;
(iii) T'(r, f;) = o (T(r,e9"9%)) (r o0, r € E) for1<j<n,1<h<k<n.

Then f; =0 forj=1,2,...,n.
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Lemma 2.5. [5] Let f be a meromorphic function of finite order p and let ¢1, ¢y €
C such that ¢ # co. Then for any € > 0, we have
m (7“, fz+ 01)) _ O(rp—1+s)_
f(z+c2)
Lemma 2.6. [9] Let f be a transcendental meromorphic solution of finite order p

of a difference equation of the form

Uz f)P(z, f) = Q2 f),
where U(z, f), P(z, f),Q(z, f) are difference polynomials such that the total degree
deg (U(z, f)) =n in f(2) and its shifts and deg (Q(z, f)) < n. Moreover, we assume
that U(z, f) contains just one term of mazimal total degree in f(z) and its shifts.

Then for each € > 0,
m(r, P(z, f)) = O(r"~'*%) + S(r, f)
possible outside of an exceptional set of finite logarithmic measure.

Remark 2.1. From the proof of Lemma in [9], we can see that if the coefficients
of Uz, f), P(z, f),Q(z, f), namely ax(z) satisfy m(r,ay) = S(r, f), then the same

conclusion still holds.

Lemma 2.7. [5] Let f be a meromorphic function with a finite order p, n € C\ {0}.
Let € > 0 be given. Then there exists a sub set E C (1,00) with finite logarithmic
measure such that for all z satisfying |z| =r & EU[0,1], we have

flz+¢)
f(2)

Lemma 2.8. [I] Let g be a transcendental function of order less than 1 and h be

exp (—rP1°) <

< exp (r”*HE) .

a positive constant. Then there exists an € set E such that
(2 z
g'(z+n) o0, g9(z+n)
g9(z+n) 9(2)
uniformly in n for |n| < h Further, the set E may be chosen so that for large |z| € E,

—1 asz—o00imC\FE

the function g has no zeroes or poles in |z — (| < h.

Lemma 2.9. Let f be a transcendental entire function of finite order such that

p(f) > 1 and a be an entire function such that A(f — a) < p(f) and p(a) < p(f).

Let n € N and ¢ € C such that ATf # 0 and b be an entire function such that

p(b) < p(f). Suppose that f is a solution of the difference equation
ALf—b=(f—b)e?,

where Q is a polynomial. Then deg(Q) = p(f) — 1.

Proof. Proof of the lemma follows directly from the proof of Corollary 2.2. [11].
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3. PROOF OF THE THEOREM

Proof of Theorem [I.1l By the given conditions, we have A\(f —a) < p(f). Then
there exist an entire function H(# 0) and a polynomial P such that
(3.1) f=a+ HeP,

where \(H) = p(H) < p(f — a) and deg(P) = p(f — a).
First we suppose p(f) < 1. Since p(a) < max{1, p(f)} and p(a) # p(f), it follows
that p(a) < 1 and so p(f — a) = max{p(a), p(f)} < 1. Consequently

AMf —a) < p(f) <max{p(a), p(f)} = p(f — a).

Note that 0 and co are the Borel exceptional values of f —a. Then f—a is a function
of regular growth and so p(f — a) € N. Therefore we arrive at a contradiction.

Next we suppose p(f) > 1. In this case, the given conditions p(a) < max{1, p(f)},

pla) # p(f) and p(b) < max{L, p(f)} reduce to p(a) < p(f) and p(b) < p(f).-
Since p(a) < p(f), it follows that p(H) < p(f) and deg(P) = p(f). Let

(3.2) P(2) = as2° + as_12°"' + -+ + aq,

where ag(# 0),a5-1,as—2,...,a9 € C and s € N. Therefore p(f) = deg(P) = s.
Also from , we deduce that

(3.3) A'f = Ala+ Hye®,

where

(3.4) H,(z) = chH(z + je)elEHIO=PE) - where ¢; = (—1)"77CY.
=0

Since p(H) < p(f), we have p(H(z + ic)) < p(f) for i = 0,1,...,n. Note that
deg (P(z +ic) — P(2)) < s—1 = p(f)—1. Then from (3.4)), we deduce that p(H,) <
p(f). Also we see that p(Ala) < p(a).

Since f and Al f share b CM, then there exists a polynomial function () such
that

(3.5) AMf —b=(f —Db)eC.
Then from and we have
(3.6) (Aa —b) — (a — b)e? = (He? — H,)el.

Again from ({3.5)), we deduce that deg(Q) = p(e?) < p(f).

Now we divide the following two cases.

Case 1. Suppose p(f) < 2. Since deg(P) = p(f), it follows that deg(P) < 2 and
so deg(P) = 1. Consequently p(f) = 1. Therefore by the given conditions, we see
that A(f —a) <1, p(a) < 1, p(a) # 1 and p(b) < 1.
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Now we divide the following two sub-cases.
Sub-case 1.1. Suppose deg(Q) = 0. Let ¢? = d. Then from (3.6)), we have

(3.7) (A”a —b) —d(a —b) = (dH — H,)e".

Now from Lemmal[2.2] we deduce that p ((A%a — b) — d(a — b)) < p(f) = deg(P) =
p(e”) = p(e”) and p(dH — H,) < p(f) = p(e”) = p(e”). Then from Lemma
2.1} we conclude that T (r, (Aa — b) — d(a — b)) = S (r,e") and T (r,dH — H,) =
S (r, eP). Now from Lemma and , we deduce that

(3.8) Ala —b=d(a—b) and dH = H,.

If a = b, then from (3.8), we deduce that Aa = a.
Now if a is a transcendental entire function with order less than 1, then by
Lemma 2.8 we get

Aa(z) _ zn:(—l)"*jCj a(z+ je) N

1= n

a(z) & a()
S (1) = (-1 =0
=0

as z — oo possibly outside a € set E, which is impossible.

If a is a non-constant polynomial, then deg(A”a) < deg(a) and so
deg(a) = deg(Ala — a) =0,

which is also impossible. Hence a is a constant and then a = Ala = 0. Therefore
if a = b, then a = b = 0. Now following Sub-case 1 in the proof of Theorem 4.1 in

[11], one can easily conclude that
f(2) = a(z) + ce??,

where ¢ and  are two non-zero constants. In particular, if a = b, then a = b = 0.
Sub-case 1.2. Suppose deg(Q) = 1. In this case, from Sub-case 2 in the proof
of Theorem 4.1 in [I1]], one can easily conclude that a = b € C\ {0} and

f(2) = a+ e,

where ¢ and 8 are two non-zero constants.
Case 2. Suppose p(f) > 2.
Then from Lemma we deduce that deg(Q) = p(f) — 1. Since p(f) > 2, it
follows that deg(Q) > 1. Now from Lemma we have
(3.9) m <r, H(;(tj]c)) =0 (TP(H)71+E) ,
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where ¢ > 0 is arbitrary. Since p(H) < p(ef’), we choose ¢ > 0 such that p(H) —
1+ 2 < p(ef’) — 1. Let

H(z+jc) p.,
(310) bn,](z) = CjWGPJ( ),
for 7=0,1,2,...,n and
(3.11) Fu(h) = by

§=0

We claim that H, — He® = 0. If not, suppose H,, — He®? % 0. Then we see that
the order of the left side of (3.6) is less than p(f), but the order of the right side
of (3.6) is equal to p(f). This is a contradiction. Hence H,, — He® = 0. Then from

, and , we have

n

(3.12) Fo(h) =Y bu—yh? = 9.
3=0
Let
(3.13) Q) = dy 12 4 dy 022 44 dy,
Now from (3.4) and (3.12)) , we have
n H .
(3.14) ch(];é)jc)el%j(z) +(-1)" - Q) =,
j=1

where R;j(z) = P(z + jc) — P(z) (j = 1,...,n). Then from (3.2)), we may assume
that
(3.15) R;(2) = jsascz® ' + Ps_s j(2),

where deg(Ps_2 ;) < s — 2. Clearly deg(R;) =s—1for j=1,2,...,n.
Now we divide the following two sub-cases.
Sub-case 2.1. Suppose n = 1. Then from (3.14)), we have

H(z+¢c) g
3.16 VT Ri(2) L = Q)
( ) C1 H(z) € e
Clearly l| shows that HI({z(—:)c ) is entire. Then from |i we deduce that
H(z+c¢) H(z+c¢) Y
7 (n, D) o (1 HEEOY g (ponoae)
(T H(z) ) " ( H(z) '
and so ( )
H(z+c R
2T ) = p(H) -1 —1=5—1=p(e™).
p( ) ) p(H) =1 < p(f) s p(e™)
Therefore it is easy to conclude that 0 is a Borel exceptional value of the entire
function ¢; %em(z’). Consequently 1 is not a Borel exceptional of ¢; %em(z)
and so ¢; %em(z) — 1 must have infinitely many zeros. Therefore we arrive at

a contradiction from ([3.16]).
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Sub-case 2.2. Suppose n > 2. Then from (3.13)) and (3.15)), we see that
R](Z) - Q(Z) - (jSCLSC - ds—1)2571 +.o

where j =1,2,...,n.

Now we divide following two sub-cases:

Sub-case 2.2.1. Suppose there exists jo(1 < jo < n) such that josasc = ds_1.
Therefore deg(R;, — @) < s — 2. In this case from , we have

Z ¢ H(z+cj) eP(z+jc)7P(z+c) + BjOeP(erjoc)fP(erc) eRl(z) _

1<5%n 0
J#jo
(3.17) = (—1)"*,
where
H(z+ joc) =R (2
(3.18) Bj,(2) = cjoW _ oQ) =Ry (2)
Let Q1(z) = ef'(*), Note that
j
> P(z+ic)fP(z+(i71)c)> )
Qi(z+(G—1))...Q1(z+¢) = e(i=2 — PzHic)=P(z+c)

for j=2,3,...,n.
Then (3.17)) can be written as

(3.19) U @i (:)Qi(2) = (—1)"+,

where

UE@E) = 5 om0+ G- D+ G- 20 Qi+ 9
1<j<n
J#jo

+Bj,(2)Q1(z + (jo — 1)e)Q1(z + (jo — 2)e) - Q1 (z + ¢)

if jo > 2 and

V@) = 3 ot e 0@+ G- D0 et
+Bj, ()

if jo = 1.

From (3.19)), it is clear that U(z,@1) # 0 and deg(U(z,Q1)) =n —1 > 1. Now
we want to prove that if ay is a coefficient of U(z,Q1), then m(r,ay) = S(r,Q1).
Note that from Lemma [2.2] we have

p(ef™) = p(ef™) = deg(R1) = 5 — 1

and
p(e97 o) = deg(Q — Rj,) <s—2<s—1=p(e™).
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Then by Lemma 2.1 we deduce that

(3.20) T(r,eQ Rio) = S(r,efr) = S(r, Qy).

Also it is easy to prove from that

321) m (7‘, H(;(t)”)) = S(re™) = S(r, Q1) (G =1,2,...,n).

Now from (3.18), (3.20)) and (3.21]), we see that

m(r, Bj,(2)) <m (T, W) +m (r, eQ(z)*RJ’O(’Z)) < S(r, Q).

Then in view of Remark and using Lemma [2.6] we conclude that

m(r, Ql) = S(Ta Ql)

Therefore T(r,Q1) = m(r,Q1) = S(r,Q1), which is a contradiction.
Sub-case 2.2.2. Suppose jsasc # ds—1 for 1 < j < n. In this case (3.14) can be
rewrite as

n .
z 2571 P z H(Z +.]C) i(z
(3.22) Q) — pds—12"77 JPsa(2) _ ;70 CjWeR]( ),

where
(3.23) 15572(2) =Q(z) — d57125_1 = d87228—2 + dsf?)zs_?) + -+ dp.

Again from ([3.15)) and (3.22)), we have

ds—12°7' Py_s(z - H(Z+jc) jsascz® "t P, o ; n
B2CE =B O = ) 6 Ty e T e

Note that
nslasc| > (n — 1)s|cas| > -+ > s|asc|

and either |ds_1| € {jslasc| : j =1,2,...,n} or |ds—1| & {jslasc| : j =1,2,...,n}.
Therefore if we compare |ds_1| with ns|asc|, (n — 1)s|asc|, ---, s|asc|, then it is
enough to compare |ds_1| with ns|asc|. Without loss of generality, we suppose that
nslase| < |ds—1]-

Let argds_1 = 61 and arg(asc) = 2. Take 6y such that cos((s — 1)0y + 61) = 1.
Then using Lemma 2.7, we see that for any given ¢ (0 < & < s— p(H)), there exists
aset F C (1,00) of finite logarithmic measure such that for all z = re?® satisfying
|z| =7 ¢ [0,1] U E we have
(3.25¢xp (frp(H)flJrE) < ’W‘ < exp (TP(H)AJFE) (j=1,2,...,n).

)
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Note that

(3.26) lexp (ds—12°7")|
‘exp (|cls,1|7“3_1 (cos((s = 1)0g+ 61)) +isin((s — 1)0g + 91)))‘

exp (|ds_1 |rs_1) .

Similarly we can show that

(3.27Dexp (jsasczsfl)’ = exp (jslasc|r® ' cos((s —1)0p + 62)), 1 =1,2,...,n

Using Lemma 3| (taking e = %), we deduce from (3.23]) that

and so

(3.28) ‘exp (Iss,g(z)ﬂ > exp <w52_2|r3_2) .

Again using Lemma [2.3| (taking ¢ = 3), we deduce that |Ps_ j(z)| = O(r*~?) and

SO

~572(z)‘ > \dsQ—zl rs5—2

(3.29) lexp (Ps—2,;(2))] = exp (O (r*7?)) j=1,2,...,n.

Now from (3.25), (3.27) and (3.29)), we get

(3.30)

IN

exp (js|asc|1"571 cos((s —1)0p + 62)) + pPH)=14e L O (7’5*2)>

IN

exp (ns|asc\ Leos((s — 1)0g + 05)) + P =14+ L 0 (TS_Q))

forj=1,2,...,n
Then from (3.24)), (3.26), (3.28) and (3.30), we conclude that

€eX
exp (|ds—1|r*™") = |exp(ds_12°7")| = pQ())’
exp(Ps—2(2))
Z ]Hg(tj)c) jsascz® 1€PS_2‘_7»(Z)+(_1)H
j=1

(3.31) <

| exp(Ps—2(2)))]
(n+ 1)nlexp (ns|asclrs =  cos((s — 1)0p + 02)) + rPUH =1+ + O (rs=2))

- exp(‘ds 2|,rs 2)

Since p(H) —1+¢ < s—1 and (n+1)n! = exp(log(n+1)n!) = o(r*~1), from (3.31),

we deduce that

(3.32) exp (|ds—1|r* ") < exp (ns|asc|cos((s — 1)8g + 02)r* " + o(r*™1)) .

By assumption, we have ds;_1 # nsasc and ns|agsc| < |ds—1].
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First we suppose nslasc| = |ds—1]. In that case cos((s — 1)fp + 02) # 1 and so

cos((s — 1)y + 02) < 1. Therefore

nslasc| cos((s — 1)0y + 02) < nslasc| = |ds—1].

Next we suppose ns|asc| < |ds—1|. Then obviously

nslasc| cos((s — 1)8p + 02) < nslasc| < |ds—1].

Then in either case we have

ns|asc|cos((s — 1)0p + 62) < |ds—1].

Therefore there exists €1 > 0 such that

nslasc|cos((s — 1)8p + 02) + 21 < |ds—1]

and so from (3.32)), we have

exp (|ds—1|r571) < exp ((|ds_1| _ 51) 7,571) 7

which is a contradiction. This completes the proof. (I
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Abstract. This work contributes to the research devoted to the recognition of a convex body
by probabilistic characteristics of its lower-dimensional sections. In this paper, for any convex
quadrilateral, five orientation-dependent characteristics are introduced and explicitly evaluated
per direction. In terms of these characteristics, simple explicit representations of the orientation-
dependent chord length distribution function and the covariogram are obtained not only for an

arbitrary convex quadrilateral but also for any right prism based on it.
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1. INTRODUCTION

Inferring properties of an unknown convex body D C R™ with a non-empty interior
from its chord length measurements is one of the fundamental problems in geometric
tomography. Although it is known that the body cannot be characterized by its
chord length distribution (see [I]), there are positive results when the distribution
function is known for each separate direction. Such a function is known as an
orientation-dependent chord length distribution function (ODCLD).

On the other hand, the problem of finding the ODCLD function is equivalent to
the problem of finding the function

Cp(z) =L,(DN{D+z}), z €R",

where D+ 2 ={P + 2 : P € D} and L,(-) is the n-dimensional Lebesgue measure
in R™. This function is called the covariogram of D.

The hypothesis [2] that D can be determined from its covariogram was rejected
when n > 4 (see [4], [5]) and confirmed when D is a planar convex domain (see
[6]), or a three-dimensional convex polytope (see [7]). Since then, numerous papers
have been published with the objective of achieving an explicit form of the ODCLD
function or the covariogram for a specific body D C R™. In particular, when n = 2, 3,

IThe research of the author is supported by the Science Committee of the Ministry of Science,
Education, Culture and Sports RA: Grant 21AA-1A024.
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the research includes the articles [§] and [9], where D is a triangle or a parallelogram,
[10] and [11], where D is a regular polygon, an ellipse, or a prism with a triangular
or elliptical base. The most recent research in this direction is reflected in [12],
[13], and [14], where the ODCLD function and the covariogram are found for some
quadrilateral prisms and their rectangular or trapezoidal bases.

This paper focuses on finding an explicit representation of the ODCLD function
for an arbitrary convex quadrilateral. The quadrilateral is closed: it contains its
interior points and the boundary.

The necessary terminology and characteristics of the quadrilateral to build the
ODCLD function are provided in sections 2 and 3. Particularly, we extend there
the concept of a p-diameter for a polygon introduced by David Mount [3], and then
define supplementary measures for a standard image (defined in section 2) of a
convex quadrilateral. Readers, already familiar with the concept of X-ray (refer to
Chapter 1 of [4]), may benefit while contemplating the origins and significance of the
newly introduced orientation-dependent characteristics. To determine the ODCLD
function, acquiring orientation-dependent X-rays is sufficient (see, for example,
[15]). These X-rays, which exhibit convex functions with up to three graph pieces
for a convex quadrilateral, can be accurately determined using ¢-diameters and
supplementary ¢-measures as necessary parameters.

The main synthetic results are presented in section 4, where the ODCLD function
and the covariogram of a convex quadrilateral are found in terms of the lengths of
orientation-dependent diameters and supplementary measures. As an application, in
the last section, the analogs of those results are established for quadrilateral prisms.

All orientation-dependent computations are processed in section 5.

2. A STANDARD IMAGE OF A QUADRILATERAL

In a Cartesian plane, for any convex quadrilateral D there are points B(b,0), b > 0,
Aec{(z,y): >0,y >0},and C € {(z,y) : > 0,y > 0} such that D is congruent
to the quadrilateral OAC B, where O is the origin of coordinates. We will call such
a quadrilateral an image of D. The side OB will be called the base, the sides
OA and BC will be called legs, a and g will stand for the inclination angles
(measured anticlockwise from the positive direction of z-axis) of the legs OA and
BC, respectively. If o < 3 then the quadrilateral O ABC will be called a standard

image of D.

Proposition 2.1. Fvery convex quadrilateral D has a standard image.
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Proof. Let OACB be an image of D. Then let 04 and ¢ be the internal angles
at the vertices A and C, respectively. If § < « then 64 + 0o < 7.

If 0,4 < I,
clockwise about the origin by « and then reflects it on the z-axis. Then OA’'C’B’
becomes a standard image of D, where A’ = T(B), B’ = T(A), and C' = T(C).
Indeed, if o’ and 3’ are the corresponding inclination angles of the legs OA’ and

B'C’, then

consider the Euclidean transformation 7 that rotates the plane

T
a’:a§§<7r—9,4:6’.

If 0c < 5, let T be the translation by @ followed by the clockwise rotation by
a+ 04 about O. Denoting A’ = T(B), B’ = T(A), and C' = T(O) we again obtain

a standard image of D since
0/29(;<7T—9A=ﬁ/. O

In addition to the length of the base, b and inclination angles of legs, a and (3, we
introduce two more parameters for OACB, a standard image of D. Let ag and S

be the inclination angles of the diagonals OC and BA, respectively. Obviously,
ap < a< B < P,

and any standard image is determined by the five parameters b, o, «, 3, Bp. We will

utilise the notation
Ds = [bv g, O, Ba 50]

for a standard image. For example, a rectangle with sides of lengths 1 and v/3 has
two standard images, Dgl) =1,%,3,53, 2?“] and Dg2) = [V3, 555 %’T]
The values «y, a, 8, Bp determine another parameter -, the inclination angle of

AC'. Tt is easy to check that

cot a + cot 5 — cot g — cot By

tany =
K cot a.cot 8 — cot ag cot By

We classify the standard images into two categories based on the value of . Due to
convexity of D, either 0 < v < ag, or By < v < . If the first inequality occurs, we
will call the standard image to be of Type 1, otherwise - of Type 2. For example,
a right-angled trapezoid has five standard images, where three of them are of Type
1, and two are of Type 2. Any parallelogram has only standard images of Type 1,
whereas any kite with three congruent obtuse internal angles permits only standard

images of Type 2.
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3. ORIENTATION-DEPENDENT DIAMETERS AND SUPPLEMENTARY MEASURES

Let D, be a standard image of a convex quadrilateral D C R?. Consider the

vector
¢ = (cosp,sin ) € St,

and let [, be the subspace of R? spanned by ¢. By ¢ we denote the orthogonal
complement of [,. For any y € ot let l, + y be the line which is parallel to ¢ and

passes through y. Denote
X(lga + y) = Ll((ltp + y) N Ds)~

If the line [, + y intersects Dy, then we will say that it makes a chord in D, of
length x(l, + y). Denote

g(e) = {y € Ue(p) : x(l, +y) <z},

where TIg(yp) is the orthogonal projection of E € R? onto ¢*. Assuming that y
is uniformly distributed over IIp_(¢), the chord length distribution function in
direction ¢ for Dy is defined by

L1 (g, ()
(3.1) Fp, (z,¢) = W7
where bp_(¢) = L1 (Ilp, (¢))-
Hereinafter, since l,_, = [, we will assume ¢ € [0, 7).
To determine the distribution function Fip_ (2, ¢) we need the quantities (introduced
in [I3])
zo(¢) = min x(ly +y) and z1(p) = maxx(ly +),

where ¢;- is the set of vectors y € ¢ so that the line I, +y passes through a vertex
of D, and makes a chord of positive Lebesgue measure there. The quantity z1(p)

coincides with

Trax = max lo +Y),
(¢) yeHDsw)x(w y)

and any chord of length xax(¢) is known as a p-diameter of Dy (see [3]). In this
paper, where convenient, we will call it a first-order ¢-diameter of D,. Any chord
of length zo(p) will be called a second-order g-diameter of D;.

Below, in addition to z¢(¢) and 21 (), we aim to introduce three more orientation-
dependent characteristics £o(p), £(¢), and £1(p) of the standard image Dy =
[b, a, ¢, B, Bo]. These characteristics will be non-negative continuous functions and
will satisfy to bp, (¢) = lo(p) + £(¢) + £1(p) for all ¢ € [0,7). We will call them
supplementary ¢-measures of D;.
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Case 1: Dy has no parallel sides. We have v > 0 and o < . Then for any ¢
the first and the second-order ¢-diameters are unique. Let them be (I, +y1) N D,
and (I, + yo) N Dy, respectively. If ¢ # ap and ¢ # By then yo # y1. In the case
when yo, y1 € int(Ilp, (¢)), they partition IIp, (¢) into three segments: the middle
segment, the side-segment adjacent to gy, and the other side-segment adjacent to .
We denote the lengths of those segments by £(¢), £o(¢), and 1 (p), respectively. If
yo € OlIp_(p) or y; € Jllp, (v), we define correspondingly £o(p) = 0 or ¢1(¢) = 0.

When ¢ = agp or ¢ = Sy, the first and the second-order ¢-diameters coincide. We

extend the definitions of ¢, £y, and ¢; preserving their continuous dependence on (:
l(ao) = £(Bo) = [yo — y1| = 0,

lo(ag) = lim Lo(), Lo(Bo) = lim £o(p), l1(ao) = Wli_{goﬁl(sﬁ’% 61(Bo) = lim £1(¢p).

p—ap ©—Bo »—Bo

Case 2: Ds has exactly one pair of parallel sides.

Subcase 2.1: Let v =0 and a < . Uniqueness of the first and the second-order
-diameters takes place if and only if ¢ € [0, ag] U [Bo, 7). If ¢ # ap and ¢ # By, we
define yo, y1, and then £(p), £o(p), £1(p) the same way we did it in Case 1. The

values at ag and [y are defined below:
£(ao) = £(Bo) = 0,

lo(a) = Lo(an—), Lo(Bo) = Lo(Bo+), £1(ao) = Li(co—), €1(Bo) = £1(Bo+).

The case ag < ¢ < By yields zo(¢) = x1(p), so we face infinitely many -diameters.
Here by () we denote the distance between the two farthest ¢ -diameters, (I, +
yo) N Dy and (I, + y1) N Dy. Using these vectors yo and y1, we define £(p), £o(p),
£1(p) again by the algorithm provided in Case 1.

Subcase 2.2: Now let v > 0 and o = §. The first and the second-order ¢-diameters
are unique if and only if ¢ € [ag, Bo]. For ¢ € (o, o) we define yg, y1, and then
(), Lo(p), ¢1(p) by the algorithm of Case 1. For the boundary values we define

f(ao) = f(ﬁo) = 0,

lo(ag) = Lo(ao+), Lo(Bo) = Lo(Bo—), £1(aw) = C1(ao+), £1(Bo) = £1(Bo—)-

If ¢ ¢ [, Bo] then zo(¢) = x1(p), so Dy has infinitely many ¢-diameters. We
define (), £o(v), £1(p) the same way as we did it in Subcase 2.1 for ¢ € (g, 5p)-

Case 3: Ds has two pairs of parallel sides. In a parallelogram, (@) = 21(p)
holds for any value of ¢. We define

t(#) = lyo — nl,
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and

bp, (p) — £y
tol) = tr(p) = P10
where (I, + y0) N D, and (I, +y1) N D, are the two farthest ¢ - diameters of D.

4. REPRESENTATION OF THE ORIENTATION-DEPENDENT CHORD LENGTH

DISTRIBUTION FUNCTION AND THE COVARIOGRAM

The following theorem represents the function introduced in in terms of the

lengths of orientation-dependent diameters and supplementary measures.

Theorem 4.1. Let Dg be a standard image of a convexr quadrilateral D and
0 < <m. If z1, xo are the lengths of respectively the first and the second-order

p-diameters, and Ly, , {1 are the supplementary p-measures of D, then

0, if x<0
by 4 .
. o) if 0<x<zo(p)
(41) Fp,(z,0)=F—F—F - '
bo+ L+ 10, £O+ug+ﬁgl, if xo(@)§x<x1(¢)
Tr1 — Xo 1
bo+ 0+ 0y, if ©2>z1(p)

Proof. The statement is obvious when z < 0 or z > ;. Below we assume
0<z<ux.

Case A: ¢ is such that xo(¢) < z1(p). Let (I, +y1) "Dy and (I, + yo) N D, be
the first and second-order ¢ - diameters of Dy. If yg, y1 € int(HDs (cp)), then the
mentioned diameters partition Dy into two triangles Tq(¢), T1(p), and a trapezoid
T(¢), where Ty is based on the second-order diameter and has a height of length
£y, T is based on the first-order diameter and has a height of length ¢;, and the
trapezoid T is based on the mentioned diameters and has a height of length ¢. Then

1

(4.2) Li(Th, () = > L (T4, (9) + L1 (T ().
=0
If 0 < 2z < xg then II%(¢) = @ and
L1 (I, (¢)) = =L (L, () = 4

If g < 2 < 21 then

Ly (g, (¢)) = %Ll(HTl(tﬂ)) = l%gh
and
L (T () = T2 Ly (Tla()) = =t
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Now according to [3.1] and .2} we obtain

1 T T
4.3 F = —/ —/ for 0 <
( ) Ds(‘rﬂs&) bDé(@) (550 0+$1 1)7 or <z < o,
and
1 _
(4.4) o, (z,p) = by + T4 ifl , for g <2 < 2.
: bp, (¥) T1—To  T1

Formula works for such values of ¢ that imply y; & int (HDS) fori=0o0r¢=1.
In this case, T; turns into the segment (I, + y;) N Dy, and yields

Ly (%, () = L1 (T, () = ti(p) = 0.
Since [;(p) has been defined as a continuous function, the formulas and
remain valid.

Case B: ¢ is such that xo(p) = z1(p). Consider (I, +y1) "Dy and (I, +yo) N Dy,
the two farthest ¢ - diameters of Dy. If yg # y; and they both belong to int (HDS (<p))
then Dg will be partitioned into the two triangles To(¢), T1(p), and the trapezoid
T(yp) defined in Case A. If yo = y1 or y; & int(Ilp,) for i =0 or i = 1, then T, or
correspondingly, T;, turns into the segment (I, + ;) N Dj. In all these scenarios the

formula does operate, and since the functions ¢;(¢) are continuous, it implies
4.5l O

Corollary 4.1. The function Fp_(-, ) is continuous on the real axis if and only if
the p-diameter of Dy is unique. If for some @, the p-diameter of Dy is not unique

then Fpg (-, ) holds a jump discontinuity at Tmax(p). The jump is equal to
14
b+l+6

Proof. A p-diameter is unique if and only if zo(p) < z1(p), or zo(p) = z1(p)
but £(p) = 0. Due to this is equivalent to the continuity of Fp (-, ¢).

If a p-diameter is not unique then z¢(¢) = x1(¢) = Tmaz (@) and £(¢) > 0. Hence,
b, (Tmaz(@)+,©) = 1 whereas Fp_(Tmaz(@)—, @) = ij_;ﬁlel =1- m. O

From now on the notation Cg(t,¢) will be used for the covariogram Cg(td)),

where E C R? and ¢ > 0. Further in the text, ||E| will stand for the area of E.

Theorem 4.2. Let D, be a standard image of a convexr quadrilateral D and
0 < <m. If x1, x¢ are the lengths of respectively the first and the second-order
p-diameters, and by, £, {1 are the supplementary p-measures of Dy, then Cp_(t, ) =

2 2 Zo X1
=177 l
2 I Ir1 — Xo
07 thZ.’L'l
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Proof. The case t > x is obvious so below we assume 0 < ¢ < z7.
Due to the Matheron’s formula [2], p. 86, we have

KR L (fye ot L Dan s+ 9) 2 1)),

which can be rewritten in terms of the orientation-dependent chord length distribution

function as )
8CDS (f, 2
—a —bp, (¢) - [L = Fp, (L, ¥)]-

Corollary Integration of both parts of the last formula yields

(4.5)  Cp,(t,¢) =Cp,(0,0) = bp,(p) -t +bp,(») /0 Fp, (u,p)du, t > 0.

Since ( )
ZL'OgO + ZTo +1‘1 €+I1£1
Cp. (0.¢) = ID. | = 5 ,

bp, () = lo(p) + L(p) + L1 (),

t
/ (60 + gl)udu = 1<€O + el)tQ,
0 i) T 2 Zo X1

then the required form of Cp_(¢, ), where 0 < t < xg, immediately follows from

.5 and Theorem F.11
If 29 <t < 7 then we use the corresponding part of Theorem in

and

1/6y ¢ ¢ -
CDS(tsz)=0Ds(0,<ﬂ)—st(90)-t+<O+xl)x§+/ o+ ——20 4 L g du.
1 Zo

2\ xg Tl — Xo x1
Computation of the integral followed by the regrouping of similar terms produces
2l z10q x4 1/ ¢
Cp,(t,p) = L - O)-t+-( = =
D, (%) 2(m1—m0)+ 2 (xl—x0+ 1) +2(x1+x1—x0)

IRV )
_2<x1+x1—x0>(w1_t) .

5. COMPUTATION OF ORIENTATION-DEPENDENT DIAMETERS AND SUPPLEMENTARY
MEASURES

For a standard image D, = [b, ag, «, 3, Bo], we denote

A= {Oé, ﬁ}a A= {(X(), ﬁ0}7 Y= {07 «, 7, B}v

which are the sets of the inclination angles of the legs, diagonals, and the sides of Dy,
respectively. For any ¢ € [0, 7), we define the functions X, : A x A x ¥\ {¢} — R
and Ly : (A X A)U(AxA) — Rby

bsinz sin(y — 2)
sin(y — x) sin(z — ¢)’

bsin(x — ¢)siny
Ly(z,y) = bein(s = p)siny,

ti(mv yv Z) =

sin(z — y)
43



D. M. MARTIROSYAN

Theorem 5.1. Let D, = [b, g, «v, B, o] be a standard image of Type 1 of a convex
quadrilateral D. If x1, xo are the lengths of respectively the first and the second-order
p-diameters of Dy, then

i. zo(p) = Xy(a, Bo, B) and x1(p) = X (B, ao, B), for 0 < o <v;
i wo(p) = Xy (B, a0, @) and x1(p) = Xy, (B, o, B), for v < ¢ < ao;
iii. xo(p) = Xo(B, ao, ¥) and x1(p) = Xu(B, ao, 0), for ap < ¢ < «;

. zo(p) = —Xy(a, Bo, 0) and z1(p) = Xy,(B, ao, 0), for a < ¢ < B;

v. zo(p) = =Xy (a, Bo, 0) and z1(p) = =X, (o, Bo, 7), for < ¢ < Bo;

vi. zo(p) = —Xp(a, Bo, B) and x1(p) = —Xy(a, Po, ), for fo < ¢ < .

Proof. Let the quadrilateral D, = OACB not have any pair of parallel sides.
The lengths of the diagonals AB and OC are

(5.1) dap = -

We denote I 4y () = ya, I{ey (@) = yo, and Hipy(p) = yp. Then the first and

the second-order p-diameters of Dy are respectively equal to

l,NDy and (I, +ya) N Dy, if 0<p<y

l,NDy and (I, +yc) N Dy, if y<ep<ag
(5.2) (ly +yc) "Dy and I, N Dy, if ap<p<a.

lo +yc) NDy and (I, +ya) N if a<p<p

( D

(o +yg) "D, and (I, +ya)NDy, if B<p<7

To compute z(p) we initially assume that the chosen direction ¢ is not parallel to
any side or a diagonal of D, which means ¢ ¢ A U X. This allows us to determine
uniquely the triangle, where one of its sides is the second-order diameter of Dy and
another side is the diagonal that shares an endpoint with the mentioned diameter. In
that triangle, the internal angles that occurred in front of the second-order diameter

and in front of the corresponding diagonal, are respectively equal to

Bo—p0 and B—p, if0< <7y, a—ay and mT—a+ @, if v < ¢ < ap;
ag—7vand T—e+7, ifay<p<a; m—PF and ¢, if a <@ < f;

m— o and @, if << Po; Bo—pF and m— @+ G, if fy < < .
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Since z € C[0,7), by and the Law of sines we conclude

sin(Bo — B)
W sin(5 — ¢)
sin(a — ap)

© sin(a — @)

:Xgﬁ(aa ﬁ07 5)7 if OSSO<,Y

:ti(67 g, Oé), if 7§§0<O{0

sin(og — .
(53)  w0(0) = doc 20TV _ x (5 0. 7). it ap<p<a.

sin(p — )
Sin .

AB Siwo = —X,(o, o, 0), if a<yp<p
sin(Bo — ) .

d A ' f <
AB Sil’l(gD — 5) @(OL, ﬂ()v ﬂ)a 1 /80 Se<m

To prove the required identities for 1 (¢) we assume again that ¢ ¢ AUX. Consider
the triangle, where one of its sides is the first-order diameter of D, and another side
is the diagonal that shares an endpoint with the mentioned diameter. In this case,
the internal angles of the triangle that occurred in front of the first-order diameter

and in front of the corresponding diagonal, are respectively equal to

B—apand m— B+, f 0<p<yory<yp<ag;

oo and m— @, f g <p <aora<p<pf;

m—Fo+vand o —7,if <9 <Bo; Bo—a and m—p+a, if By < p <.

As z7 € C[0,7), we obtain

sin(f8 — a) .
7 = <
ocC sm(ﬁ—gp) X(p(ﬂu Qp, /8)7 if 0780<Ol(]
sin « .
doo—— = X, (8, ag, 0), if ag<ep<p
(5.4) z1(p) = Ssilnn(go — ) . .
aB—————~ = Xy, Bo,7), if B<e<fo
sln((g—v))
ABMZ_XW(av BOaa)v lf ﬁOS‘P<7T
sin(¢ — @)

It remains to notice that the formulas [5.3] and [5.4] also hold if y =0 or « = 8. O

Theorem 5.2. Let D, = [b, ap, v, B, o] be a standard image of Type 1 of a convex
quadrilateral D. If £y, € and {1 are the supplementary p-measures of D, then

L@(aa ﬂo)_LLP(O[Oa /8)5 Zf OS<)0<'7
Ly(ag, B) = Ly(a, Bo), if v<p<agorBo<e<m
5.5 lo(p) =3¢ " v :
(5 ol#) —Ly(a, Bo), if aqg<p<a
Lép(aa 60)7 Zf « S 2 < ﬁO
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_Lgo(a, 60)7 Zf 0 S p <

_LSO(aOa ﬁ)a Zf Y S "2 < g

L (0407 /8)7 Zf O‘OSSD<O[
5.6 Up)=14 % ;
( ) (gp) L(p(a()a ﬁ) - Lgp(a, ,30), Zf « S 2 < /8

ch(ﬂ07 a)7 Zf ﬁ§¢<50

_Lgo(ﬁ(% CY), Zf BO S p<T

bsin ¢, if 0<p<aporfp<Le<m

(57) 61(90) = Lw(67 Oé()), Zf apg < p < 6

—Ly(B, o), if B< ¢ < Bo
Proof. First of all we notice that
(5.8) Li(Ig(p)) = Li(E)sin e — ¢l

for any line segment E C R?, L;(E) < oo inclined by ¢ € [0, 7). When E is a
diagonal of Dy, then L;(E) can be read from If E is a leg, we use either of the

notations

bsin By bsin ag
and ScB =

(5.9) 504 = G o —a) sin(8 — ag)

for its length.
Let us first prove [5.6] For ¢, being in either of the six intervals

[0”}/)7 [7’0‘0)’ [060,04), [O[’/B)a [/87/80)7 [,80,71’),

the corresponding six-term sequence of the quantity ¢(¢) becomes

Li(Moa(e)), Li(Tloc(y)), Li(Moc(¢)), L1(oc(v)) — Li(Iloa(v)),

Li(Mlap(¢)), L1(TTap(p)).

Since the inclination angles of OA, OC, and AB are respectively a, aq, and Sy, the

formulas yield £(p) =

sOAsin|a—go|:Shf(sﬁionfoa)sin(a—go):—L@(a, Bo), if 0<p<y
docsin jag — | = sinlE;inﬁao) sin(og — ¢) = —Ly (o, ), if v<o<ag
doc sin [ag — ¢ stm(@—ao)sz(am B), if ap §90<04_
docsinfag — ¢ —soasin|a — ¢ = Ly(ao, B) = Lo(, fo), if a<p<p
dapsinlfy = ol = oo sin(B— o) = Lo(o. o). i B0 <y
dapsin|Bo — ¢| = Smlz;loinfa) sin(p — Bo) = —Ly(Bo, @), if Bo<p<m
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Similarly, ¢p(¢) =

doc sin|ag — ¢| — spasin|a — | = Ly (o, Bo) — Ly(ao, B), if 0<p <y
soasin|a— | —docsin|ag — | = Ly(ow, B) — Le(a, o), if v < ¢ <

soasin|a— | = —Ly(a, Bo), if ap<p<a
soasin|a — ¢| = Ly(a, bo), if a<ep<p
soasin|a —¢| = Ly(a, Bo), it B<p<Bo
doc sin|ag — | — spoasin|a — | = Ly(aw, B) — Le(a, o), if Bo<e<m
and
bsin |0 — ¢| = bsin ¢, if 0<p<y
bsin |0 — ¢| = bsin ¢, it v<p<a
t(p) = 4 5B S?H 1B = ¢l = Ly (B, ao), %f a <@ <o
sepsin|fB — | = L,(8, a), if a<p<p
sepsin|fB — | = —Ly(6, ap), if <@ < by
bsin |0 — ¢| = bsin ¢, if Bo<p<m
which are equivalent to [5.5] and respectively. O

Corollary 5.1. If a standard image Ds = [b, g, o, B, Bo] of a convexr quadrilateral
is of Type 1 then

L@(67 040), Zf OS(P<'7
Lo(Bos @), if v<p<a
bsin o, if a<p<p’
Lkp(a()a B)a Zf B S ® <7

Proof. Since bp_(p) = Lo(p) + £(¢) + £1(p), we substitute £o(p), £(p), and ¢1(p)
by their corresponding expressions from [5.5] [5.6] and [5.7] To reach [5.10] it remains
to check the identity L, (x,y) + Ly (y, ) = bsing over the domain of L. O

(5.10) bp, (p) =

The proofs of the following results for a standard image of Type 2 are omitted

since they are similar to the ones provided for Type 1.

Theorem 5.3. Let Dy = [b, ag, v, B, o] be a standard image of Type 2 of a convex
quadrilateral D. If x4, xo are the lengths of respectively the first and the second-order
p-diameters of Dy, then

i. xo(p) = Xu(B, a0, a) and x1(p) = X (B, ao, B), for 0 < ¢ < ap;
it. 20(p) = Xo(B, ao, 0) and z1(p) = X, (B, o, 7), for apg < ¢ < a;
iii. xo(p) = Xp(B, oo, 0) and x1(p) = =Xy (o, Bo, 0), for a < ¢ < f3;
. zo(p) = —Xp(a, Bo, v) and z1(p) = =X, (e, Bo, 0), for < ¢ < Bo;
v. 2o(p) = —Xp(a, fo, B) and x1(p) = =Xy (o, Bo, @), for fo < <;
vi. () = =X, (B, a0, @) and z1(p) = =X, (o, fo, @), for vy < ¢ <.
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Theorem 5.4. Let D, = [b, g, «v, B, o] be a standard image of Type 2 of a convex
quadrilateral D. If £y, € and {1 are the supplementary p-measures of Dy, then

L,(Bo, o) = Ly(B, ), if 0< @ <agor By<ep<vy

tolp) = Ly(8, o), if ap<e<p ,

—Ly (B, o), if B<¢<pBo

Ly(B, a0) = Lyp(Bo, @), if y<o<m
—L, (v, B), if 0<¢<a
Ly,(a, B), if ap<ep<a

() = Ly(Bo, @) — Ly (B, a), Z:f a<ep<p ’
Ly (Bo, a), if B<¢<pBo
—L, (o, o), if Bo<p<y
_Lw(ﬁa Oéo)a if y<ep<m
bsin o, if 0<p<aporfy<Le<m
bi(p) = —Lo(a, fo), if an<p<a

Ly(a, Bo), if a<p< B

Corollary 5.2. If a standard image Ds = [b, g, o, 8, Bo] of a convexr quadrilateral
is of Type 2 then

Ly(Bo, @), if 0<p<a

bsin ¢, if a<ep<p

L«p(ao’ ﬂ)a if B o<y .

L(p(oz, 50)a if y<ep<7

bp,(p) =

6. ORIENTATION-DEPENDENT CHORD LENGTH DISTRIBUTION FUNCTION AND THE

COVARIOGRAM OF A CONVEX QUADRILATERAL PRISM

Denote by D" the right prism {(z,y, 2) : (z,y) € Dy, 0 < z < h}, where D, is a

standard image of a convex quadrilateral. For a vector
w = (cospcosh, sinpcosh, sinf) € S?,

let w’ be the orthogonal complement of {tw : t € R} in R?, and Hpn(p,0) be the

orthogonal projection of DZ onto the plane w.

We define the chord length distribution function in direction w for DZ by

Lo{y € pn(p,0) : x(p0) +y) <t}
Fort:0) = b (7. |

where [(,, ) + ¥ is the line that passes through y € w' and has direction vector w,

X0y +y) = L1 (((p0) +y) N D),
and
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As {z € R3: z = 1} is a plane of symmetry of D", we notice that Fpn(t,p,0) =
Fpn(t,o —m,0), for p € [r,2m) and Fpn(t,¢,0) = Fpn(t, o, —0). Based on this
observation, from now on we will assume that ¢ € [0, 7) and 6 € [0, F].

Denote

Tmax(©,0) = max l +y).
(,0) yeHD?(M)X( (0.0) T Y)

It is easy to check that

cosf

h : —1 h
sin 0’ if tan Tmax (¥)

(6.1) Tmax(,0) =

{wm"”‘(“") if Og@gtan_lz

Theorem 6.1. For a ¢ € [0, 7), let x1 and zo be the lengths of the first and the
second-order p-diameters of Dg, respectively. Let £y, ¢, {1 be the supplementary
p-measures of Ds, and denote bp, = o + £ + ¢1. Then, for the direction w =
(cospcos, sinpcost, sinfd), 0 < 0 < T and the prism D?, the following statements
take place:

(@) If tan™" Jo < 0 < 5 and 0 <t < Zumax(p,6), 07 0 < 6 < tan* - and
0 <t<zgsech, then

a1t+a2t2
6.2 Fpu(t,p,0) = ,
(62) o (6 0) = T T by frcos 0
where
Y4 Y4 3// J4
a; = h(o + 1) cos® 6 + bp, sin20, as = —— (0 + 1) sin 6 cos? 0;
To X1 2\zg 11

(b) If 0 < 6 < tan~! Tho and xosec <t < Tmax(p,0), then zg < x1 and

co+cit + CQtQ
| Ds|| sin@ + bp_hcos @’

(6.3) Fpu(t, ¢, 0) =

where

Tr1 — o

co = (hcosf + ?sin&)(ﬂo — 61‘0),

12 l 3 12 l
c1 = (hCOS29+SC1 sin20)($ . + xl), Cy = _2Sin0C0820<x . + ;)
1 — 40 1 1 — Xo 1

Proof. Using the formula (see [II]) that establishes a relation between the
orientation-dependent chord length distribution functions of a cylinder and its base,
for 0 <t < zpmax(p,0) we obtain

B bp, cosd o
~ ||Ds||sin® + bp_hcos b

FDIS”‘ (t7 2 9)
(6.4) t
X |(h —tsin)Fp_(tcosb, )+ 2tsinf — sin@/ Fp_ (ucosb,p)du|.
0
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(a) By the inequality tan 6 > % implies Tmax(0,0) = -7, and then

sind?

t 0 < h <
cos — <=z
tan 6 o

for any t € [0, Tmax (¢, 0)).

Iftanf < m}—; but 0 <t < xgsech, the inequality ¢ cos ) < xq still holds. Therefore,
by Theorem we substitute Fp_(tcos®, ) and Fp_(ucosf, ) in[6.4] by

b;(i(; + ii)tcos@ and b]is(ii(()) + ﬁ)ucos&,

respectively. Computation of the integral in followed by combining the like terms
results in [6.2]

(b) Let now tan < % but zgsec <t < Tpmax(p,d). Then xg < x1, otherwise
it will contradict to (6.1} Theorem yields

1 3 _ 1
(6.5) Fp,_(tcosb,p) = (Eo + feosd 04 tc059€1>’
bDS T1 — Zo Z1
and
(6.6)

¢
/ Fp, (ucosb, p)du =
0

xq sec t 1
/ Fp_ (ucosf, p)du+ / Fp, (ucosb, p)du = — X
0 0 sec st

xq sec O ! ¢ t 0 — 0
[/ (0 + 1>ucos Odu + / (EO + ueos moﬁ + ueos €1>du} .
0 To I @ sec 0 T1 — To T1

To reach it remains to evaluate substitute its value along with [6.5] into
and simplify. O

Corollary 6.1. Let

.0) = Ln ({0 € o3 (0.0)  Xle) + ) = Emas(.0)} )

The function Fpu(-,¢,0) is continuous on the real axis if and only if u(p,0) =
0. Otherwise, if u(p,0) > 0 for some pair (¢,0), then FDQ(-,%H) has a jump
discontinuity at Tmax(p,0). The jump is equal to

1, 0)
| Ds||sin6 + bp_ hcosf’

Proof. For any (i, 0), the continuity of Fpu (-, ¢,0) at t = 0 immediately follows
from [6.2] The continuity at ¢t = zsec 6 also takes place. Careful calculations show
that the expressions in and coincide when t = xgsecf. Thus, the only
discontinuity may occur at t = Zyq. (0, 0).
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Since

L2{y € Illpn ((p,e) : X(l 0) T y) < xmax(‘ﬂve)}
FD? (xmaw(@7 9)_7 ®, 9) = . o) =

bD'; (¢, 0)
—1-— . 0)
bD’; (Soa 0) ,
the continuity at 4. (p,0) holds if and only if u(p,0) = 0. The jump is equal to
w(p,0) p(p,0) O

bpon (2,0) = D:[[sin6+bp_ hcosb "

Remark 6.1. One can verify that ju(,0) = h-{(p), so we rediscover Corollary[{.1]
For the other extreme, u(p, 5) = || Ds|| holds. The jump in this case is the highest

possible, 1. We do not aim to compute u(p,8) for other directions.

In order to visualize the possible breaks in continuity and smoothness of the
ODCLD function, we plot the function z (¢, h) = FD}Sz(t, ©,0) for a given pair (¢, 6)
and different values of the height h. As an example, in Figure [1} this is done for
the prism based on the kite D, = [10, %, 5, 7, %’T], where o = %, § = 7, and then

™

@2576:%

(A) The surface z(t, h) = FDQ(t, 5 3) (B) The surface z(t,h) = FDQ t 5, %)

Puc. 1. Examples of orientation-dependent chord length
distribution functions in right prisms D? with base Dy, =

[10,5.5.5. %]

Each of the highlighted curves on the surface represents the graph of the ODCLD

function for the prism of a given height. Figure [2]is created by the same logic for

-1 \/5]
4—+/31

T T 27
) 6040 3

the prisms with a trapezoidal base Dg = [10 T — tan

o1
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' 100 7)

(B) The surface z(t,h) = FDg(t 9m 2m

Puc. 2. Examples of orientation-dependent chord length
distribution functions in right prisms DZ with base D, =

2 — 3
[10,%,%, %, 7 — tan~! 3]

Theorem 6.2. For a ¢ € [0, 7), let x1 and x¢ be the lengths of the first and the
second-order p-diameters of Dy, respectively. Let ly, £, {1 be the supplementary
p-measures of Ds, and denote bp, = o + € + ¢1. Then, for the direction w =
(cospcosB, sinpcosf, sinf), 0 < 0 < 7, the covariogram Cpr (tw) = Cpr (t, 0, 0)
of the prism D’; has the following representation:

(a) If tan~! x—}; <0< Zand 0 <t < Tyax(p,0), or 0 < 0 < tan™? $—ho and
0 <t<zgsech, then

1
Cpn(t,p,0) = <||Ds|| —bp, cosf-t+ —(Z—O + £—1> cos? 6 - t2> (h —sinf - t);
s 2 Zo T

(b) If 0 < 0 < tan~! ;’—0 and xosec <t < Tmax(p,0), then o < x1 and

1
C’Dg(t,@ﬁ):—< d +E—l)(xl—cosO-t)Q(h—sine-t).

2 r1 — To X1
Proof. Let 0 <t < Zyaz(p,0). Since

D! (D! +tw) = (D, N {D, + (tcos0)@}) x [tsino, h),

we obtain
Cpr (tw) = La(Ds N {Ds + (tcos0)}) - (h —tsind),
and then
(6.7) Cpr(t,¢,0) = Cp,(tcost,p)(h —tsind).
The proof now follows from [6.7] and Theorem [£.2} O

Remark 6.2. Taking 0 = 0, it is easy to check that all the results obtained in

Section 4 are coherent with the results presented in the current section.
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CONVERGENCE OF GENERAL FOURIER SERIES OF
DIFFERENTIABLE FUNCTIONS

V. TSAGAREISHVILI

Ivane Javakhishvili Thilisi State University, Tbilisi, Georgia
E-mail: cagare@ymail.com

Abstract. Convergence of classical Fourier series (trigonometric, Haar, Walsh, ... systems)
of differentiable functions are trivial problems and they are well known. But general Fourier
series, as it is known, even for the function f(xz) = 1 does not converge. In such a case, if we
want differentiable functions with respect to the general orthonormal system (ONS) (¢n) to have
convergent Fourier series, we must find the special conditions on the functions ¢y, of system (¢n ).
This problem is studied in the present paper. It is established that the resulting conditions are

best possible. Subsystems of general orthonormal systems are considered.

MSC2020 numbers: 42C10.

Keywords: Orthonormal system; Fourier coefficients; bounded variation; linner
fuctional.

1. AUXILIARY NOTATIONS AND RESULTS

By V we denote the class of functions with bounded variation on [0, 1] and V'(f)
is the finite variation of function f. Cy is the set of functions with f' € V. A is the

class of absolute continuous functions. A is a Banach space with the norm

1
174 = I fllc + / ()] de,

where C is a class of continuous functions.
Let (¢n) be an ONS on [0, 1], where ¢,, are real-valued functions and f € /o,

then the numbers

Cn(f):/0 f(@)pn(x)de, n=1,2,...,

are the general Fourier coefficients of function f.

General Fourier series is
S Culf)pn(a)
k=1

and its partial sum is

Sn(x, f) = Crlf)er().
k=1
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Let (p=1,2,...)
n+p

npr ch

Lemma 1.1. Let (¢,) be an ONS on [0,1] and f € Cy, then

1 ntp
Byl )= £1) [ 5 auluonts) du
1 n+p Ly
(1.1) - ey | ety v ).

Proof. Integrating by parts, we get

W) = / " fupe(w) du = £(1) / o) du / ) / " on(v) dvdu,

From here we can easily obtain (1.1)).

Suppose that
n+p

np Z @k

and
u NP
Ay / 3 ou(e) dvpi),
then by (1.1]) we get
(1.2) Bz, f) = /anu;vdu—/f , ) du.

The lemma is proved.

Lemma 1.2. Let (¢,,) be an ONS on [0,1]. Then if N = n + p,
N
lim n~ 2N~ ngk ) =0 a.e. on [0,1].

n— oo
k=n

Proof. It is obvious that

N 0o
NN i) < Zk’%wi
k=n
Since

Zk"/ d:c—Zk 2 < oo,

k=n
according to Levy theorem the series

Zk 23 ()

converges a.e. on [0, 1].
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So a.e. on [0, 1],

lim n~ 2N~ Zapk =0.

n—00
k=n

‘We denote
iN

/N App(u, ) du
0

i

/N App(u, ) du
0

(1.3) Dn(z) = max =

1< N).
1<i<N ( SN < )

Lemma 1.3. Let () be an ONS on [0,1] andi=1,2,...,N, then ifn+p= N,

(1.49) / )] < M%zm)
N k=n

N

[N

Proof. By Bessel inequality

2

ni (/Ougok(v)dv) <1

k=n

Using Cauchy and Holder inequalities we get

YR By iy
s%(/;(/mm) du§¢z<x>) _N("fsok )

Definition 1.1. By (W,C,z), x € G, we denote the class of any ONS (v,) such

that for each of them there exists a sequence (e,(x)), where lim,, o €,(z) = 0, and

n+p

> )

<myen(z)

for any f' €V and p.
Lemma 1.4. If p,(u) = cos2mnu, then (vy) € (W,C,x) for any x € [0,1].

Proof. Let f’ € V, then we have
1 1
Cr(f) :/ f(uw)pr(u) du:/ f(u) cos 2mku du
0 0

1
:f(l)/ cos27rkudu——/ [/ (u) sin 27ku du
0

= 27rk/ 1/ (u) sin 27ku du.

zjf) (/01 f'(u) cos 27rkudu>2 < /Ol(f/(u))Q du,
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using the Cauchy inequality we get

n+p n+p

1 2
ZCk(f)gok =5 Z/ f'(u) sin 2ku du sin ]:-kx
k=n k=n
n+p 1, ntp . 9 L
2 sin“ 2mkx \ 2 1
< (/ ' (u cosQﬂ'kudu) ) <Z k2> Smfﬁ'

k=n

Lemma 1.5. If (X,,) is a Haar system, then (X,) € (W,C,x).

Proof. Let n = 2™ and p < 2™ is any natural number. If f’ € V, according to
the definition of Haar system (see [20]),

[Comyk ()| =0(1)272 (1<k<2™)

and (z € [0,1])
2" +p
> Xi(z)| < 2%,
k=2m
Then
2™ +p
Y CulH)X(@)| = O(1)27 F 2% = O(1)27™
k=2m

Ifn+p=2""% we get

gmts m+s—1 2711
> Cilf > D Glf
k=2m r=m k=27

m+s
W32 =ome
Analogously we can proof that

m+p

=0(1)m™*.

Theorem 1.1 (Banach [I]). Let f € Lo be an arbitrary function (f % 0). Then
there exists an ONS (o) such that

limsup |y (z, f)| = +00 a.e. on [0,1],

n—oo

where

Sul@, ) =D Ck(f)en(x).
k=1
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Theorem 1.2 (see [7]). Let F, f € Lo, then

/Olf(u)F(u)du:N]g[; (rw -1 (ut 5)) du/of* Flu) du
ey [

(1.5) +N/1111V F(u) du/o F(u) du.

[ ) - e ot du

2. THE MAIN PROPOSITION

Problems of convergence of orthogonal series are well studied. There should
be noted the results: E. Men’shov [I1I], H. Rademacher [12], W. Orlich [I4], S.
Kachmarcz [§], K. Tandori [I5], A. Olevsky [I3], etc. On the other hand, the
convergence problems of Fourier series of functions from some differentiable class
are less studied: J. R. McLaughlin [10], S. V. Bochkarev [2], B. S. Kashin [9],
L. Gogoladze, V. Tsagareishvili [7], G. Cagareishvili [3]. In the case when the
convergence of the Fourier series of differentiable functions is necessary, certain
conditions must be imposed on the functions of ONS. This is necessary because,
according to Banach Theorem, in the general case the Fourier series does not
converge even for the function f(z) =1, x € [0,1] (see Theorem [L.1]).

In the present paper, we give special conditions which are imposed on functions
of ONS (¢,,) under which the Fourier series of the functions of class Cy will be
convergent a.e. on [0, 1].

The similar Problems are studied in the papers [2, [9} [7, 8], 5] [6], 16}, [1I'7], [18].

3. THE MAIN RESULTS

We denote N =n + p.

Theorem 3.1. Suppose that (¢,) is an ONS on [0,1] and at the point x € G the

series
> Crl)en(@)
k=1
converges, where l(u) =1, u € [0, 1]. If at the point x € G (see (1.3)))
(3.1) lim Dy(z) =0,
n—oo

then the series
> Cr(Hen(x)
k=1

converges at the point x € G for any f € Cy .
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Proof. Substituting F(z) = A, ,(u,z) and f = f' (z € G) in (1.5) we get
(3.2)

1
—l—N/ )du/ App(u,z)du=a+b+c.
~ 0
Since f' € V (see (3.1)), we have
1
<N I (u) = f —
|al Z sup |f'(u)—f <u+N>

P UEA;
Applying (L.4) and f’ € V, we write (see Lemma [1.2] and Lemma [L.3)

(33)  <V()Dxla).
[b] < N — Zmax |f (u) — |/ App(u, )| du

U VEA i,

A )

i

~
/ App(u, ) du
0

NH

(3.4) = 0@

n(u, ) dz| =

+ ’ /:N App(u, ) du )
(3.5) = O(DN(:Z:) + %)
(3.6) 7

n+p 1
(v Satn) <o)
Taking into account f’ € V and ( -, we obtain (see Lemmas and

App(u, ) du

0
-5
1)(‘ / App(u, ) du

0

Thus from ({3.2)), taking into consideration ([3.3)), (3.4) and (3.5, we have
1

We consider the functlon I(u) =1, u € [0,1]. Using the formula (1.1)) and bear in
mind

/O o () du :/0 () () du = Ci(D),

we receive

n+p n-+p
(3.7) S Chlf el Za>% /f

k=n
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Finally, by condition of Theorem 1,

n+p
Jim ’;lck(l)%’k(x) =0.
So, from and there holds (see (3.1))
n+p
lim_ ;Ok(f)sok@c) =0
for any function f € Cy at the point z € G. |

Theorem 3.2. Let (¢,) be an ONS on [0,1] and z € G. If

(3.8) limsup Dy (x) > M > 0,

n—roo

then (p,) ¢ (W,C,x).

Proof. Suppose on the contrary that (¢,,) € (W, C,x). This means that for any
[ €Cy,

n+p
; Cr(f)er(x)| < mypep(x) (nlirr;osn(x) = O).
For this propose, if I(u) = 1,
n+p
S Clpn(@)| < miea(a).
k=n
Also, if in (1.2)) we put f(u) = g(u) = u, we obtain
1 n+p 1
By, p(2,9) :/ Zcpk(u) dupg(x) —/ Ay (u, x) du.
((— 0

Since

/1 () du = /1 1w () du = Ca (1),
from the last equality (\)Ne get ’
(3.9) Bp(t,q) = Bup(a,1) — /0 Ao 2) du
Because of ¢,1 € Cy we have that
[ Brp(2,q)| < mgen(z) and |Byp(,1)] < mien(x).

From here and from (3.9) it obviously follows that

1
/ App(u, ) du
0

We consider the increasing sequence (Z,,) such that

(3.10) < (mg + my)en ().

1
(3.11) lim Zn = +oo, lim Z,e,(z)=0 and lim Z, — =0.
n— oo

n— oo n—oo &

5
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Now we define the sequence of functions (hy) in such a way:

0, u € [0, 5,
(3.12) hv(w) = < 1, ue [#,1],
Nz —iy+1, uwe [t ix]

Substituting f’ = hy we can rewrite (3.2) as

/ h (u npua:dx—NZ/ (hN <u+‘]i/_>>du/0§14np(u,x)du
+N21/: /: (e () — Py (0)) dv Ay (1, )

1 1
(3.13) + N/ hy (w) du/ App(u, ) du=e+ f+g.
1-4 0

Applying (3.12) we write |hy(u)—hn(v)] < 1, u,v € [0,1]. Also, hy(u)—hyx(v) =0
when u,v € [T,%] i=1,...,iy —lyiy+1,...,N.
For this reason, using Lemma [I.2] and Lemma we receive

(3.14) lfI<N— / npux|du<1(nz+pgpk >;O<;ﬁ)

We estimate the following integrals:

in—1
N

1 * , 1

iIN in
2 — + — = Nu — i 1 =
) - (hN(u) hn (u N)) du ﬂ%l( u—iy+1)du N 5N

Taking into consideration these equalities we will show that

iN in—1

1 ~ e
e:N‘(/ A, (umc)du—l—/ A, (u,w)du)‘
2N 0 P o P
1 ¥ F
= 2‘2/0 App(u, x) du — ﬁN_l App(u, ) dul.

Moreover, according to Lemma [I.2] and Lemma [I.3] we conclude that
1
v

(3.15) le] > Dy (xz) — O(1)
Next, by and hy € Cy, we get

(3.16) gl = O(L)en ().
Finally using with (3.14)), (3.15) and (3.16) we can write

1
v

1
(3.17) ‘ /0 hn (u)Anp(u, z) du| > Dy (z) — O(1)e,(xz) — O(1)
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We consider the sequence of linear and bounded on A functionals

1
7Z"/0 fu)App(u, ) du

R,(hn) = Zn/ hn (u)Anp(u, z) du.

According to ., and - =n + p), we have

In our case,

(3.18) hm |R,(hn)| = limsup Z, Dy (x) — O(1) li_}rn Znen(x)
n—00 n—00
- 0(1) lim Z, ! = +o00.
n— oo &n

By BT,
1
llla = HhNuc+/ W ()] e < 2.
0

So, according to the Banach—Steinhaus Theorem (see (3.18))), there exists a function
s € A such that

1
(3.19) lim |R,(s)| = limsup Zn/ s(u)App(u, ) du| = +00.
n—00 n—00 0
Suppose
h(u) :/ s(v) dv.
0
As (see (1.2))

/o H,p(u,z) du = Z Cr(Dpr(x),

k=1
where I(u) =1, v € [0,1] and (see p. 7)

S Cell)pu(e)
k=1

< myen(2),

then (see (3.11))

lim =0.

1

Zn/ Hypp(u,x) du
0

Using (|1.2) when f = h, we get

1
Byp(z,h) = h(1 / (u,x du—/ s(uw)App(u, x) du.
0

From here

Zyn|Brp(x, h)| > - 'h(l)Zn/0 Hpp(u, x) dul.

1
Zn/ s(u)App(u, x) du
0
So, by (3.19), we obtain

(3.20) lim sup Zy|Bpp(@, h)| = +o0.

n—oo
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On the other hand, as it was assumed (¢,,) € (W, C, x), in view of h € Cy we have
|Bnp(z, h)| < mpen(z). From here we get Z,|Bp,(z,h)| < Z,mpe,(z). Thus we
have shown (see (3.11))) that

(3.21) lim Z,|Bnp(z, h)| =my lim Z,e,(xz) =0

n—00 n—oo
holds. Thus we obtain that (3.20]) contradicts to (3.21]), which means that (p,) ¢
(W, C,x). Theorem is completely proved. |

Theorem 3.3. Let (d,,) be a given increasing sequence. Any ONS (¢p) contains

the subsystem (pn, ) such that the series

k=1

converges a.e. on [0,1] for any f € Cy.

Proof. We suppose that () is the complete ONS. Then according to Parseval

S ([ o)

n=1

Hence there exists a sequence of natural numbers (ny) such that uniformly with

equality we have

respect to u € [0, 1],

u k—2
(3.22) ‘/ on,(V)dv| < —, k=1,2,....
0 dy,
Integrating by parts when f € Cy, we obtain
(3.23)

1 1 1 u
Con(f) = / F (W) pne () du = F(1) / o (1) ds — / £(u) / e (0) d du.
According to we conclude that

1 k_—Z
1) / On, (W) du| < —, k=1,2,...,
0 d
1 u k72
2 | [ £ [ en@dvdnl < s (£ k=2
0 0 uel0,1] dg
From here and (3.23)), for any f € Cy we get
k72
ColHl =0, k=12,

dy,
Thus

00 1 S’ k72 1 )
> (1) / wm(zndx—ou);d%( / wnk<x>dx) < too.

As it is known by Levy theorem, a.e. on [0, 1],

[N

de|an(f)g0nk(a?)| < +oo forany feCy. O
k=1
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4. PROBLEMS OF EFFICIENCY

Theorem 4.1. The system @y (u) = cos2mnu on [0,1] satisfies the condition (for
any x € [0,1]) lim Dy(z) = 0.
n—oo

Proof. We have (N =n+ p)

n+p 1 n+p 1
App(u, ) ; / cos 2mkv dv cos2mkx = 5 ; z sin 2rku cos 2mkz.
n =N

By the Holder inequality we get (i = 1,2,..., N)

’/ App(u, ) du

n+1)
/ Z — sin 2mkudu cos 2wkx

o

wtr 1 5 1

Theorem 4.2. Haar system (X,,) on [0, 1] satisfies the condition (see [20])

lim Dy(z) =0.

n—oo

Proof. Definition of the Haar system imply that

. k—1 k
‘/ Xosp(v)dv] <272, when ue[ s 75}
—1
and /X2+k()dv—0 when u%[ ,QES},
o E—1 k
‘// Xos i (v) dvdu| < , when t e [278’%}
kE—1
and // Xos 4 (v)dvdu =0, when tgé[ 2]1}

From here for any ¢ € [0, 1] we get

< 927893 =973,

‘/0 / X s (0) dv duXoe 15 (2)

Hence

‘ / X, (0) dv duX o (z)

m= 2T+1

(v) dvdu Xos i (x

)| < Zn: =0(1)272.

, putting n instead of 2" + 1 and n + p = N instead of

0

Consequently, when t = ﬁ

‘/ 7lz+p/X Ydvdu Xp,(z)| =

m=n
64
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DERIVATIVES OF MEROMORPHIC FUNCTIONS SHARING
POLYNOMIALS WITH THEIR DIFFERENCE OPERATORS
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Abstract. In this paper, we investigate the uniqueness of meromorphic functions of finite
order f(z) concerning their difference operators A.f(z) and derivatives f’(z) and prove that if
Acf(z) and f/(2) share a(z), b(z), oo CM, where a(z) and b(z) are two distinct polynomials, then
they assume one of following cases: (1) f/(z) = Acf(2); (2) f(2) reduces to a polynomial and
Fl(2) —AAf(2) = (1= A)(cnz™ 4+ cn—12" 14+ -4 c12+cp), where A(# 1) is a nonzero constant
and ¢p,cn—1,-*,c1,co are all constants. This generalizes the corresponding results due to Qi et

al. and Deng et al.

MSC2020 numbers: 39B32, 30D35.

Keywords: meromorphic function; polynomial; uniqueness; difference operator.

1. INTRODUCTION AND MAIN RESULTS

As we know, Nevanlinna theory plays a significant role in the study of the
uniqueness theory of meromorphic functions. Recent years, the research about
difference analogue of meromorphic functions has become a subject of some interests
and there are extensive results on them. For the related results, the readers can
refer to[I}, 2 [6] [7, 10, 12| 16, 17, 20]. Throughout this paper, ¢ always means a
nonzero complex constant. Given a meromorphic function f(z), we recall that a
difference operator A.f(z) is defined by A.f(2) = f(z 4+ ¢) — f(z). Suppose that
f(2) and g(z) are two meromorphic functions and a is a finite complex constant.
If f(2) — a and g(z) — a have the same zeros, then we say that they share a
IM(ignoring multiplicities). If f(z) — @ and g(z) — a have the same zeros with
the same multiplicities, then we say that they share a CM(counting multiplicities).
And the above definition also applies when a is a polynomial. Furthermore we use
p(f) to denote the order of f(z).

In 2013, Chen and Yi[3] studied the unicity of A.f(z) and f(z) sharing three

values CM and proved the following result.

1This work was supported by the Natural Science Foundation of Fujian Province, China (Grant
No. 2021J01651).
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Theorem 1.1. [3] Let f(z) be a transcendental meromorphic function such that

p(f) is not an integer or infinite, and let a and b be two distinct constants. If
A f(z) and f(2) share a, b, co CM, where A.f(z) # 0, then f(z) = A f(2).

Remark 1.1. In [3]|, Chen and Yi conjectured that in Theorem the condition

that “p(f) is not an integer” can be omitted.

In 2014, Zhang et al.[20], Liu et al.[I3] respectively confirmed this conjecture

and proved the following result.

Theorem 1.2. |20, 3] Let f(z) be a transcendental entire function of finite order,
and let a and b be two distinct constants. If A.f(z) and f(z) share a, b CM, where

Af(z) #0, then f(z) = Af(2).

Later, Li et al.[I], Cui et al.|5], Lii et al.[14] successively considered a meromorphic
function rather than a transcendental meromorphic function in Theorem and

obtained the following result.

Theorem 1.3. [I1], 5, T4] Let f(z) be a meromorphic function of finite order, and
let a and b be two distinct constants. If A.f(z) and f(z) share a, b, co CM, where

Af(2) 20, then f(2) = Af(2).

In 2019, Li[I2] continued the study of the unicity of A.f(z) and f(z) sharing
polynomials CM rather than values CM, which generalizes Theorem [I.3]

Theorem 1.4. [12] Let f(z) be a transcendental meromorphic function of finite
order. If A.f(z) and f(z) share Py, P, oo CM where Py and P are two distinct
polynomials, then f(z) = A f(z).

During the study of the uniqueness of A.f(z) and f(z), many researchers may

be inspired to think about the following question.

Question 1.1. Do the theorems above still hold if it is A.f(z) and f'(z) that share
values CM since there are certain similarities between derivatives and difference

operators of meromorphic functions?

In 2018, Qi et al.[I5] gave a positive answer to this question and proved the

following result.

Theorem 1.5. [15] Let f(z) be a transcendental meromorphic function such that
p(f) is not an integer or infinite, and let a and b be two distinct constants. If A.f(z)
and f'(z) share a, b, oo CM, then f'(z) = A.f(2).
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Remark 1.2. In [I5], Qi et al. conjectured that Theorem[1.5 is still valid without

the condition that “p(f) is not an integer.”

In 2019, Deng et al.[6] not only confirmed this conjecture, but also showed that
the condition “ f(z) is a transcendental meroporhic function"in Theorem [1.5|can be

extended to “f(z) is a meromorphic function."

Theorem 1.6.[6] Let f(z) be a meromorphic function of finite order, and let a and
b be two distinct constants. If A.f(z) and f'(z) share a, b, co CM, then f'(z) =
A f(z) or f(z) = Az + B, where A, B are all constants and A # a,b, Ac # a,b.

To further generalize and improve Theorem [1.6] a natural problem can be posed

as follows.

Question 1.2. Does Theorem [1.6 still hold if A.f(z) and f'(z) share polynomials
CM?

In this paper, we study this problem and obtain the following main result.

Theorem 1.7. Let f(z) be a meromorphic function of finite order, and let a(z)
and b(z) be two distinct polynomials. If A.f(z) and f'(z) share a(z), b(z), co CM,
then they assume one of following cases.

(1) /(2) = Auf(2);

(2) f(2) reduces to a polynomial and f'(z) — AA.f(z) = (1 — A)(cpnz™ +

Cno12" L+ o+ 1z + cg), where A(# 1) is a monzero constant and cy,,

Cpn_1, **+, C1,Co are all constants.

Remark 1.3. Theorem [1.6] is a special case of Theorem [I.7, which implies that
Theorem [1.7] generalizes the result of Theorem[1.6

Example 1.1. Let f(2) =22+ 1, ¢ = 2, a(z) = 1, b(z) = 0. Then f'(z) = 2,
A f(z) = 4. Obviously, A.f(z) and f'(z) share a(z), b(z), co CM and f'(z) —
1A f(z) = 0. This example illustrates that the case (2) in Theorem [1.7|may occur.

Example 1.2. Let f(z) = 22, ¢ =1, a(z) = 22 + 3, b(z) = 22 + 2. Then f'(z) =
2z, Acf(2) = 2z + 1. Obuiously, A.f(z) and f'(z) share a(z), b(z), co CM and
f'(z) =2A.f(2) = —(22+2). This example illustrates that the case (2) in Theorem
7 may occur.

Example 1.3. Let f(z) = 2%, c =1, a(z) = 322 + 32+ 1, b(2) = 322 4+ 62 + 2.
Then f'(z) = 322, A.f(2) = 322 + 32 + 1. Obviously, A.f(z) and f'(z) share a(z),
b(z), co CM and f'(z) — 2A.f(2) = —(322 + 62 + 2). This ezample illustrates that
the case (2) in Theorem may occur.
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2. SOME LEMMAS

We assume that the reader is familiar with the fundamental results and the
standard notations of Nevanlinna theory, as founded in[9, I8, [19]. Next, we give

some lemmas, which play a key role in proving Theorem

Lemma 2.1. [, 8] Suppose that f(z) is a meromorphic function of finite order,

and c is a nonzero complex constant. Then
T(r,f(z+¢) =T(r, f) + S(r, f).

Lemma 2.2. [4 8] Let f(z) be a meromorphic function of finite order, let ¢ be a

nonzero complex constant, and let k be a positive integer. Then

(5o

Lemma 2.3. [18, 19] Suppose that fi(z) (i = 1,---,n) (n > 2) are meromorphic
functions and g;(z) (i=1,---,n) (n > 2) are entire functions satisfying

(1) S0 fil2)es = 0;

(2) when 1 <k <1<mn, gr(z) —gi(2) are not constants;

(3) when1<i<n, 1<k<l<n,

T(r, f;) =ofT (r, eg’“_gl)}, (r—o0, r¢ E),

where E C (1,00) is of finite linear measure or logarithmic measure.
Then f; =0 foranyi=1,--- ,n.

Lemma 2.4. Suppose that a(z) is a polynomial satisfying a(z + ¢) — a(z) = a/}(;) ,

where R is a nonzero constant. Then
(1) when ¢ = %, a(z) is a polynomial of degree one or a constant;
(2) when ¢ # %, a(z) is a constant.
Proof. Suppose that a(z) = a,2" + an_12""1 + ap_22""2 + ap_32"" 3+ +
a1z + ag, where a,,a,_1,--- ,aq are all constants. Then
a'(2) =napz" '+ (n— Dap_12"" 2+ (n —2)an_22""> 4+ - 4 ay,
a(z+c)=an(z+0)"+an1(z+) " P Fan oz +c)"" 2+ +ar(z+c)+ag
=an (2" + Cl2" e+ C22n 2 4 O e o)
Fan (2" CE 2T 4 O R e O T )
+ai(z+c¢)+ ag
=0,2" + (anCret 4 an 1)2" 7 + (anC2® 4+ ap 1C)_jct +ap_o)2" 2 4+

+ (a,C" e 4 an,lCZ:fc"_z + -+ ayChct +ap)z
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+ (anc™ 4 an_1c" P+ -+ arct +ap).
Thus,
a(z +¢) — a(z) =a,Clc' 2" + (0, 0% + a, 1 C}_(ct)2" 2
+ (0, C3¢® + ap 10?1 + ay_2C oty 3
4o A (@, CP 7 T a1 CP TR TR apCact)z
+ (anc™ 4 ap_1c" P 4 anc® +arct).

When ¢ = %, by a(z +¢) —a(z) = all(;), we can get Gy, = Gp_1 = Qp_op = -+ =

as = 0. Hence, a(z) is a polynomial of degree one or a constant.

When c # %, by a(z +¢) —a(z) = all(;), we can get Gy, = Gp_1 = Qp_o = -+ =

ay = 0. Hence, a(z) is a constant.

3. PROOF OF THEOREM [I.7]

If A.f(z) = a(z), then by the condition that A.f(z) and f’(z) share a(z)
CM, we can get f/'(z) = a(z). Thus f'(z) = A.f(z). If A.f(2) = b(z), then we can
also get f'(z) = A.f(z) in the same way. Next, we consider the case of A.f(z) #
a(z), b(z).
Note that A.f(z) and f’(z) share a(z), b(z), oo CM and f(z) is a meromorphic
function of finite order. Then by Lemma we have

(3.1) S =al) _ e ) 26E) s

3 N . . — ¢ )
Acf(z) —alz) Acf(z) = b(2)
where a(z) and 3(z) are two polynomials such that max{deg a(z),deg 8(2)} < p(f).
It follows from (3.1)) that

(3.2) (e2®) — PENALF(2) = a(2)e*® — b(2)eP) — a(2) + b(z).
If e*(*) = ¢#(*) then from (3.2) we can obtain
[a(z) = b(2)](e*®) = 1) = 0.

Since a(z) # b(z), we have e*(*) = 1. Hence by (3.1)), we can get f'(2) = A.f(2).
Next we consider the case of e®(*) £ ¢f(2),

It follows from ({3.2)), (3.1]) that

a(2)e®) —b(2)eP?) — a(z) + b(2)
ex(z) — eB(2) ’

(3.3) Acf(z) =

e a(2)e*®) — b(2)ef*) —a(z z
(3.4) f'(z) = (=) ea(zb)(j oB) ORLCI a(2)e®®) + a(z).
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Differentiating yields

(3.5)

[Acf(2)] =

a’(2)e**®) + ¥/ (2)e*P ) + [(a(2) = b(2))(B'(2) — &/(2)) = d(2) = V' (2)]e* )
(o) — )2

[(a(2) = b(2))e (2) — a’(2) + V' (2)]e*™) —[(a(2) — b(2))B'(2) — @' (2) + V'(2)]e")
(ea(z) — eﬂ(z))2 ’

+

It follows from (3.4) that

e*GF[a(z + €)e®C+) — b(z + )P+ — a(z + ¢) + b(z + ¢))
ea(z+c) _ eB(z+c)

@ a(2)e*®) —b(2)eP*) — a(z) + b(2))
ea(z) — eﬁ(z)

(3.6) —a(z 4 ¢)e®FT) 4 a(2)e*®) 4+ a(z + ¢) — al(z).

By (3.5) and (3.6, we obtain

[a(z + C) _ b(z + C)]e2a(z)+a(z+c)+6(z+c) + [a(z + C) _ b(z + c)]ea(z+c)+2,6’(z)+ﬁ(z+c)

Af'(z) =

_ 2[a(z + C) _ b(Z + C)] a(z)+a(z+c)+8(z)+B(z+c) _ Ql(z) 2a(z)+a(z+c)
+ [a(z) — b(z)]e22FBEHBGERE) | (g(2) — b(z)]e () F(zHo)+258(2)
) T o) e
*QQ( ) a(z+c)+26(z) *Qg(Z) a(z)t+a(z+c)+6(z) +Q4(Z) z)+B(z+c)
+ Qs()eP Oy Qy2)en I _ g ()0 al+)

(3.7)
+ Q7(z)ea(z)+ﬂ(z+c) + QB(Z)ea(z+c)+B(z) _ QS(Z)eﬁ(z)+6(z+C) =0,

where
Q1(z) = a'(2) +b(2) — b(z + ¢),
Q2(2) =V'(2) + a(z) —b(z + ¢),
Qs(2) = [a(z) = b(2)][B'(2) — &/ (2)] — a'(2) — ¥ (2) — a(z) — b(z) + 2b(z + ¢),
Qa(2) =d'(2) +b(z) — a(z + ¢),
Qs(2) =V'(2) +a(z) —a(z +¢),
Qo(2) = [a(z) = b(2)][B'(2) — &/ (2)] — a'(2) = ¥/(2) — a(z) = b(2) + 2a(z + ¢),
Q7(2) = [a(z) = b(2)]0/ (2) — d'(z) + '(2)
(3.8)

Qs(2) = [a(2) = b(2)]8'(2) — a/(2) + V().

Next we consider three cases about deg a(z) and deg 5(z).
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Case 1. deg a(z) > deg B(z). Then (3.7) can be rewritten as

(3.9) A(2)e* ) 4 Ay(2)e* ) 4 Ay (2)e*) + Ao (2) =0,

where

A3(2) = [a(z + ¢) = bz + ¢)]e2*HTIETD _[q(z) — p(2)]eIHEE) — Qy(z)eR3),
As(z) = —2[a(z + ¢) — b(z + ¢)]eRerDFBETEETE) 4 [g(2) — p(2)]e D HAET)

+[a(z) = b(2)]et ) — Qy(2)eRe ) 4 Qy(2)eFH) — Qr(2)eR ),
A1(2) = [a(z + ¢) — bz + ¢)]ePe@R)T2B)TBG0) _[4(2) — p(2)]e2P () HF(=+e)

— Qa(2)ePe (@ F2B(2) L Qg (2)ePPHBGEHE) L Qs (2)ePFHe) 4 Qg(z)ePe(HHAG)

(3.10)
Ao(z) = QS(Z)eQﬂ(Z)"Fﬂ(Z-FC) QS( ) B(z) +/3(z+c)

Obviously, for any i = 0, 1,2, 3, we have
p(Ai(2)) < deg a(2).
Hence, it follows from Lemma [2.3] that
Ai(2)=0(:=0,1,2,3).

Next we discuss two subcases as follows.
Subcase 1.1. deg (z) = 0. Then S(z) is a constant.

It follows from (3.8)), (3.10) and As(z) = Ap(z) =0 that
(3.11) Aca(z)e? + (1 — e?)Ab(2) = d'(2),

(3.12) Aca(z)e’ = d'(2) + 1 (2)(eP —1).

Combining with yields
(e” = [’ (2) = Acb(2)] = 0.

If ¢# = 1, then by (3.1)), we can get f'(z) = A.f(z) and e**) = ¢#*) = 1, which
contradicts deg «a(z) > deg B(z).

If b/ (z) — Acb(z) = 0, then it follows from Lemma [2.4] that when ¢ = 1, b(z) is a
polynomial of degree one or a constant; when ¢ # 1, b(z) is a constant.

Subcase 1.1.1. b(z) is a constant. We let b(z) = b. Then by (3.12), we can
get a'(z) = e#A.a(z). It follows from Lemma that when ¢ = e™#, a(z) is a
polynomial of degree one or a constant; when ¢ # e™?, a(z) is a constant.

If a(z) is a constant, then we let a(z) = a. By (3.8), (3.10) and As(2) = A;(2)

0, we have

(€2 — P —a/(2)(e” — 1)] &2 1P (1 - ) =0,
(1 —eP)ererl®) L 2B _ef 4o/ (2)(ef — 1) = 0.
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Thus, we get ¢” = 1. Similarly, we can get a contradiction.
If a(z) is a polynomial of degree one, then we can get ¢ = e=# at once. Next
we let a(z) = Az + B, where A(# 0), B are all constants. By (3.8), (3.10) and

As(z) = A1(2) =0, we have

e [o/(2)(Az + B —b)(e® —1) — (A2 + B —b)e*’ — (A~ Az — B+b)e” + A]

+(Az4+ B -0 + (A— Az —B+b)ef —A=0,

o/ (2)(Az+ B —b)(e” = 1)+ (Az+ B—b)e*’ + (A— Az — B+b)e’ — A

— eheal®) [(Az + B —b)e* + (A— Az — B +b)e’ — A] =0.
Thus, we get e’ = 1. Similarly, we can get a contradiction.

Subcase 1.1.2. b(z) is a polynomial of degree one. Firstly, we can get ¢ = 1.
We let b(z) = Dz + E, where D(# 0), E are all constants. By (3.12), we can get
a(z) is a polynomial of degree one or a constant.

If a(z) is a constant, then by (3.12), we can get e’ = 1. Similarly, we can get a
contradiction.

If a(z) is a polynomial of degree one, then by , we can get e = 1 or
a(z) = Dz + F, where F(# E) is a constant. When a(z) = Dz + F, by (3.3),
and As(z) = A1(z) =0, we have

(€2 — e —a/(2)(e” — 1)] &2 1P (1 - ¢P) =0,
{6’8(1 —eP)etreal®) 12 _ef 1o/ (2)(e® —1) =0.
Thus, we get e’ = 1, which implies that we can only get e = 1 in this case.

Similarly, we can get a contradiction.
Subcase 1.2. deg 5(z) > 1. It follows from (3.10), Ap(z) = 0 that Qs(z)

By , we have
/ _ b/(z)
1 (g = LB =B
Since deg S(z) > 1, we can get '(z) #Z 0. Then it follows from (3.13) that a(z) —

b(z) = AeP(®) | where A is a nonzero constant. But this is a contradiction.
Case 2. deg 5(z) > deg a(z). Then (3.7) can be rewritten as

Il
e

(3.14) Bs(2)e* ) 4 By(2)e?P) + By (2)e?®) + By(z) = 0,

where

Bs(2) = [alz + ¢) — b(z + ¢)]e?CGHIFABE) _ [4(2) — b(2)]eX@TABE) 1 Qs (2)eleBE),
Ba(2) = —2[a(z + ¢) — b(z 4 ¢)]e@DFaEFATABE) 4 [g(2) — p(z)]e22(HHAB()

)
) =—
+ [a(z) — b(2)]e®E TG _ Qy(2)e™ZH9) 4 Qg(2)e* D) TABE) _ Qg(2)ePeP2),
Bi(2) = [a(z + ¢) — b(z + ¢)]e2R)FalztaTa:8G) _[g(2) — p(z)]e2e (@) Halz+e)
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_ Qs(z)ea(z)Jra(erc) +Q4( ) 2a(z)+AcB(2 +Q7( ) a(z)+A:B(z +Q8( ) oz(erc)7
(3.15)
Bo(z) _ *Ql( ) 2a(z)+a(z+c) Q7( ) a(z)+a(z+c).
Obviously, for any i = 0,1, 2,3, we have
p(Bi(2)) < deg B(2).
Hence, it follows from Lemma [2.3] that
Bi(2)=0(i=0,1,2,3).

Next we discuss two subcases as follows.

Subcase 2.1. deg a(z) = 0. Then «a(z) is a constant.
It follows from (3.8)), (3.15) and Bs(z) = By(z) = 0 that

(3.16) Acb(2)e* + (1 —e*)Aca(z) =V (2),

(3.17) Acb(z)e* =V (z) +d'(2)(e” — 1).

Combining (3.16)) with (3.17)) yields
(e* = Dla’(z) — Aca(2)] = 0.

If e* = 1, then by , we can get f/(z) = A.f(z) and e**) = ¢#(*) = 1, which
contradicts deg S(z) > deg a(z).
If a/(z) — Aca(z) = 0, then it follows from Lemma [2.4] that when ¢ = 1, a(2) is
a polynomial of degree one or a constant; when ¢ # 1, a(2) is a constant.
Subcase 2.1.1. a(z) is a constant. We let a(z) = a. Then by , we can
get V' (z) = e*Aca(z). Tt follows from Lemma that when ¢ = e™, b(z) is a
polynomial of degree one or a constant; when ¢ # e~ 2, b( ) is a constant.

If b(z) is a constant, then we let b(z) = b. By (3.8)), (3.15) and Bs(z) = Bi(z) =0,

we have

(€2 — e — B/ (2)(e* — 1)] e2<PE) fe*(1 —e¥) =0,
{ea(l —e®)efePE) L2 _ e 4 B(2)(e* —1) = 0.
Thus, we get e* = 1. Similarly, we can get a contradiction.

If b(z) is a polynomial of degree one, then we can get ¢ = e~® at once. Next
we let b(z) = Dz + E, where D(# 0), E are all constants. By (3.8), and
Bs(z) = B1(z) =0, we have

2P [B'(2)(a — Dz — E)(e* — 1) — (a — Dz — E)e** + (D + a— Dz — E)e® — D]

+(a—Dz—E)e** — (D+a—Dz—E)e*+ D=0,

B'(z)(a — Dz — E)(e® = 1)+ (a — Dz — E)e** — (D +a— Dz — E)e* + D

—e2<F) [(a — Dz — E)e** — (D +a— Dz — E)e® + D] = 0.
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Thus, we get e* = 1. Similarly, we can get a contradiction.

Subcase 2.1.2. a(z) is a polynomial of degree one. Firstly, we can get ¢ = 1.
We let a(z) = Az + B, where A(# 0), B are all constants. By , we can get
b(z) is a polynomial of degree one or a constant.

If b(2) is a constant, then by , we can get e® = 1. Similarly, we can get a
contradiction.

If b(z) is a polynomial of degree one, then by , we can get e = 1 or
b(z) = Az + F, where F(# B) is a constant. When b(z) = Az + F, by (3.8),
and Ba(z) = B1(z) =0, we have

[ — e — B'(2)(e™ — 1)] eAeBE) L (1 — ™) =0,
{ea(l —e¥)eRePl) g2 ey B(2) (e — 1) = 0.
Thus, we get e* = 1, which implies that we can only get e = 1 in this case.
Similarly, we can get a contradiction.
Subcase 2.2. deg a(z) > 1. It follows from (3.15), By(z) = 0 that Q7(z) = 0.
By , we have
a'(z)—b(z
(3.18) o (z) = agz;—b((z))'
Since deg a(z) > 1, we can get o’ (z) £ 0. Then it follows from that a(z) —
b(z) = Be®®), where B is a nonzero constant. But this is a contradiction.

Case 3. deg a(z) = deg 5(z).

Subcase 3.1. deg a(z) = deg §(z) = 0. Then, a(z) and 5(z) are constants, which
implies that e*(*) and ”(*) are constants, too. It follows from that f'(z) can be
represented as a linear representation of a(z) and b(z). Thus, f/(z) is a polynomial.
Then, f(z) is a polynomial, too. By we can deduce that f'(z) — AA.f(z) =
(1—A)(cpz"+cn_12" L+ +ec12+¢p), where A(#£ 0),¢pn,Cn1,- -+ ,c1,co are all
constants. And when A = 1, we have f/(z) = A.f(z). Then from (3.1I]), we have
e®(?) = ¢A(*) = 1. But this contradicts the hypothesis e®(*) % ¢8(*), Hence, A # 1.

Subcase 3.2. deg a(z) = deg (z) > 1. Then can be rewritten as

Cl(z)eBa(2)+6(Z) + 02(Z)ea(2)+3/3(2) + 03(3)62a(2)+26(Z) + 04(z)63a(Z)
+ C5(2)e®P)F28E) 4 O (2)e20 R 4 0 (2)eP ) 4 Cg(z)e?®
(3.19) + Co(2)e®AHBE) L 014(2)e?P®) = 0,
where
C1(2) = [alz + ) = bz + )]0 FAIE)  [a(z) = b(z)Jed(?),
Ca(2) = [a(z +¢) = b(z + )]SI+ 2AE) —[a(z) —b(2)

C3(2) = —2[a(z + ¢) — b(z + ¢)]ereeDTABE) L [g(2) — b(2)]ePE) 4
75



M.-H. WANG, J.-F. CHEN

[a

(2) = =Qu(2)e*), C5(2) = —Qa(2)e™*) + Qg(2)e ),
Co(2) = —Q3(2)e™ ) + Qu(2)e™®), - Cr(2) = Qs(2)e"),

(2) Q7(2)6Ac3(z) + Qg(Z)eAca(z),

Il
|
O
3
I
~—
9]
>
o
Q
O
&
—
N
~—
Il

(3.20)  Cho(z) = —Qs(2)e?F),

If deg(a(2)—B(2)) = deg(2a(z)—B(z)) = deg(a(z)+B(2)) = deg(3a(z)—B(z)) =
deg(38(z)—a(z)) = deg(a(z)—28(z)) = deg(3a(z)—28(z)) = deg(38(2) —2a(z)) =
deg a(z) = deg f(z), then for any 1 < i< 7 <10,1 <n <10, we can get

p(Cn(2)) < p(e?792)) = deg a(2).
It follows from Lemma [2.3| that C,,(z) =0(n =1,2,---,10). Then
Cio(z) = —Qs(2)e®P*) =0,
which implies that Qg(z) = 0. Thus by , we have

, a(z) =V (z
0= e
Therefore, using the same method as in the proof of Subcase 1.2, we can get a
contradiction.

Hence, we can only need to discuss the cases that some of deg(a(z)—/f(2)), deg(2a(z)—
B(2)), degla(z)+p(2)), deg(3a(z)—B(2)), deg(3(2) —a(2)), deg(a(z) —26(z)),
deg(3a(z) — 28(z)), deg(36(z) — 2a(z)) are less than deg a(z).

Subcase 3.2.1. deg(a(z) — 5(z)) < deg a(z). Let a(z) — f(z) = p1(z). Then
B(z) = a(z) — p1(z). And can be rewritten as

Dy(2)e**3) 4 Dg(2)e?*®) 4 Dy(2)e2*) =0,

where
Dy(2) = C1(2)e P 4 C3(2)e™2P1(2) 4 Cy(2)e3P1(2),
D3(2) = Cy(z) + Cs(2)e ") 4 C5(2)e 21 3) 4 Oy (2)e =371 (3),
DQ(Z) = Cg(z) + Cg(z)e_pl (=) + 010(2)6_2p1(z),

Combining this with (3.20)), we obtain that for any i = 2,3, 4,
p(Di(2)) < deg a(2).
It then follows from Lemma 2.3 that

76



DERIVATIVES OF MEROMORPHIC FUNCTIONS ...

It is easy to deduce that A.8(z) = Aca(z) — Acp1(2) since B(z) = a(z) — p1(2).
Hence, by (3.20) and Ds(z) = 0, we have

PRATET z)[ Q7 + (Q76—Acp1(z) +Qs)e” Pi(2) _ Qge” cp1(2)6—2p1(2)] =0.
Equally,
(3.21) —Q7 + (Q76—Ac171(2) + Qs)e—m(z) Qse” Acp1(2) o =2p1(2) = 0.

If deg p1(z) > 1, then by (3.8) and Lemma [2.3] we can get Q7(z) = 0, and thus
iy T =VC)

a(z) — b(z)

Therefore, using the same method as in the proof of Subcase 2.2, we can get a

contradiction.

Thus deg p1(z) = 0 and so p1(z) = a(z) — B(z) is a constant and

(3.22) Api(2) =0, d(2)=p5(2).
From (B.22) and (3.8), we can get Q7(z) = Qs(z). Combining this, (3.21)) and (3.22),
we have

e2P1(2) _9em1(3) 4 =,
Then eP'(?) = 1, which implies that e*(*) = ¢8(*), This contradicts the assumption
e(2) £ B2),

Subcase 3.2.2. deg(2a(z) — B(z)) < deg a(z). Let 2a(z) — B(2) = p2(z). Then
B(z) = 2a(z) — pa(2). And (3.19)) can be rewritten as
Er(2)e73) 4 Bg(2)e5%3) 4 By (2)e®3) 4 By (2)e*?) + By (2)e3* () 4 By (2)e2*) = 0,
where

Er(2) = Ca(2)e™%2() | Eg(2) = Ca(2)e™ 2 4 Oy (2)e P23,

Es(z) = C1(2)e7P2®) 4 C5(2)e™22(2) | Ey(2) = Co(2)e P23) 4 Oyp(2)e2P2(3),

E3(z) = Cy(z) + Co(2)e P2 Ey(z) = Cy(2).
Combining this with (3.20]), we obtain that for any i = 2,..7, p(E;(z)) < deg a(z). It
then follows from Lemma and ([3:20) that Ey(2) = Cg(z) = —Q7(2)e=*) = 0.
Thus Q7(%) = 0. Combining this with (3.8)) yields

w2 CE ¥

a(z) = b(2)
Therefore, using the same method as in the proof of Subcase 2.2, we can get a
contradiction.

Subcase 3.2.3. deg(a(z) + 5(z)) < deg a(z). Let a(z) + S(z) = p3(z). Then
B(z) = —a(z) + ps(z). And (3.19) can be rewritten as
Fy(2)e®* ) £ Fy(2)e? @) 1 Fy (2)e® ) 4 Fo+- F_1 (2)e P 4 F_y(2)e 22 4 F_g(2)e 3 = 0,
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where

Fy(2) = Cu(2), Faolz) = Ci(2)eP*® + Cs(2), Fi(z) = Co(z)ePs®,
Fo(z) = 03(Z)e2p3(z) + Og(z)epz(z)’ F_i(z) = 05(2,)62p3(z)’
F_o(z) = Cg(z)e?’p?’(z) + 010(2)62p3(z), F_3(z) = 07(2)63;)3(;;)'

Combining this with , we obtain that for any ¢ = —3,—2,--- 2,3,
p(Fi(2)) < deg a(2).
It then follows from Lemma 2.3 that
F5(z) = Fo(z) = Fi(2) = Fo(z) = F_1(2) = F_2(2) = F_3(2) = 0.
Thus from and Fy(z) = F_3(z) = 0 we have

(323)  {la(s+ ) = bz + AP —[a(z) — b(z)] } ) — @a(2) =0,

(321)  {los+ )~ bz + )ed — [a(2) — b(z)] } ) — Qs(2) = 0.

Obviously, by deg(a(z) + 8(2)) < deg a(z) = deg B(z) and p3(z) = a(z) + B(2),
we can get deg p3(z) < deg A 5(z) = deg B(z) — 1.
If deg p3(z) < deg A.B(z) = deg 5(z) — 1, then by we have

z a(z) — b(z)]ers(*)
Tl e P2 =T (7”’ o [:([Z . )c) bé(i ) ) < 80,27,

Thus e2<#(%) is a constant, which contradicts 0 < deg p3(z) < deg A.B(2).
Hence deg p3(z) = deg A B(z).
If deg p3(z) = deg A.B(z) > 1, then (3.23) can be rewritten as

(3.25) [a(z + ¢) — b(z + ¢)]eABPEHPs(2) = [g(2) — b(2)]eP**) + Q7 (2),

where Q7(z) # 0. By the second fundamental theroem and (3.25), we have

1 1
T(r, ep3(z)) < N(r, ep3(z)) +N(r,—= | +N | + S(r, epg(z))
epii(z)

en(®) + B

T a(zte)=blz4e) (A B(2)+ps(2)

1
<N (7’ ) + S(r, e’y < S(r, eP2(2)),
a(z)—b(2)

Thus e?3(*) is a constant, which contradicts deg ps(z) > 1.
If deg p3(z) = deg(a(z) + B(z)) = deg A.B(z) = 0, then a(z) and B(z) are

polynomials of degree one. We let

(3.26) a(z) =a1z+ag, PB(z) = —a1z+ bo,
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where a; # 0, ag and by are all constants. Then it follows from (3.8)), (3.23)), (3.24))

and that

(3.27)

{la(z+¢) =b(z +)]e™™ = a(2) + b(z) } €D —[a(z) = b(=)]ar +a'(2) = V'(2) = 0,
(3.28)

{la(z + ¢) = b(z + ¢)]e®® — a(z) + b(2)} "3 4 [a(z) — b(2)]ar + a'(z) = ¥ (2) = 0.
Combining with yields
(3.29)

{la(z + ¢) = b(z + ¢)](e™¢ + e="¢) — 2[a(z) — b(2)]} €*(*) + 2[a’ (2) — ¥/ (2)] = 0.

If a(z) — b(2) is a nonzero constant, then a(z+c) —b(z +¢) is a nonzero constant,
too. In addition, we can get a(z +¢) —b(z+¢) = a(z) —b(z) and a'(2) = b'(2) =0
From this and (3.29)), we have e*1¢ + e¢~*¢ — 2 = 0. Hence ¢ = 1. Substituting
e®¢ =1 into (3.27), we can deduce that a; = 0, a contradiction.

If a(z) — b(2) is a nonconstant, then deg(a’(z) — ¥'(2)) < deg(a(z) — b(2)). Next
we let h(z) = a(z) — b(2) = hpz"™ + -+ + h1z + ho, where h, (3 0), hp_1, hn_o,
-+, hy, hg are all constants and n > 1. Substituting this into (3.29)), we have
e?¢ 4 ¢7%¢ — 2 = (. Then e*¢ = 1. Substituting e**¢ = 1 into (3.27)), we can
deduce that a; = 0, a contradiction.

Subcase 3.2.4. deg(3a(z) — B(z)) < deg a(z). Let 3a(z) — B(2) = pa(z). Then
B(z) = 3a(z) — pa(z). And (3.19)) can be rewritten as

G10(2>610a(z) + G9(2)69a(z) + GS(Z)BSa(z) + G7(Z)e7a(z) + GG(Z)e(Sa(z)
+ G5(2)e”®) + Gy(2)e**®) 4 G3(2)e33) 4 Gy(2)e?*?) =0,
where
Gio(z) = Ca(2)e P13) | Gy(z) = Cr(2)e (),
Gs(2) = C3(2)e ) Gy(z) = Cs(z)e 24,
Go(2) = C1(2)e ) 4 Cyg(2)e 243 G5(2) = Co(z)e P43,
Gu(2) = Cy(2)e P Gs(z) = Cyu(z), Ga(z) = Cs(2).

Combining this with (3.20), we obtain that for any i = 2,3,---,10, p(G;(2)) <
deg a(z). It then follows from Lemma and that Ga(z) = Cs(z) =
—Q7(2)e”<*®) = 0. Thus Q7(z) = 0. Combining this with yields

a(z) = @(z) ~b(z) b’(z).
a(z) = b(z)
Therefore, using the same method as in the proof of Subcase 2.2, we can get a

contradiction.
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Subcase 3.2.5. deg(38(z) — a(z)) < deg a(z). Let 36(z) — a(z) = p5(z). Then
a(z) =38(z) — ps(z). And can be rewritten as
Ti0(2)e! %P 1 Jo(2)e%PE) 1 Jg(2)e¥E) 4 Jr(2)e™E) 4 Jg(2)e )
+ J5(2)e%P3) 4 J4(2)eP3) 4 J5(2)e3P3) 4 Jy(2)e2P3) = 0,
where
Jio(2) = C1(2)e 5B Jo(2) = Cy(z)e52),
Js(z) = C3(z)e_2p5(z) J7(z) = Cﬁ(z)e_2p5(z),
Cy(2)e P 4 Cg(2)e™ 2P J5(2) = Cs(2)e P53,
Ja(2) = Co(2)e 7B, Jy(2) = Cr(2),  Ja(z) = Cro(2).
Combining this with , we obtain that for any i = 2,3,---,10, p(J;(2)) <

deg ((z). It then follows from Lemma and (3.20) that Ja(z) = Cio(z) =
—Qsz(2)e?<P*) = 0. Thus Qg(z) = 0. Combining this with (3.8) yields
li /
oy a'(2) —0(z)
=m0 e

Therefore, using the same method as in the proof of Subcase 1.2, we can get a

&
o
N
)
I

contradiction.

Subcase 3.2.6. deg(a(z) —206(z)) < deg a(z). Let a(z) —28(z) = pg(z). Then
a(z) =28(2) + pe(z). And (3.19) can be rewritten as
K7(2)e™P®) 4 K6 (2)e% 3 4 K5 (2)e®P ) £ Ky (2)e?P ) 4+ K3(2)e3P3) 1 Ky (2)e?P2) = 0,

where
Kr(z) = C1(2)e®53) | Kg(z) = O3(2)e? ) 4 Cy(2)e3re®),
K5(2) = Ca(2)e* ™) + Co(2)e™), Ky(2) = C5(2)er* ™) + Cy(2)e™),
K3(2) = C7(2) + Co(2)e”®),  Ky(2) = Cro(2).

Combining this with (3.20), we obtain that for any i = 2,3,---,7, p(K;(z)) <
deg B(z ) It then follows from Lemma and that Ks(z) = Cio(z) =
—Qg(2)e”<P) = 0. Thus Qg(z) = 0. Combining this with yields
' /
YO= e

Therefore, using the same method as in the proof of Subcase 1.2, we can get a
contradiction.

Subcase 3.2.7. deg(3a(z) — 28(z)) < deg a(z). Let 3a(z) — 28(2) = p7(2).
Then $(z) = 3a(z) — 3p7(z). And can be rewritten as

L%(z)e%("('z) + Ls(2)e”®) + Ly (2)e2%3) 4 Ly(z)e)
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+L; (2)e3%) 4 Lg(2)e?*®) 4 Ls (2)e2%®) 4 Ly(2)e2**) = 0,
where
3 (2) = Ca(2)e 37O L(z) = Cy(2)e 77,
(2) = Cr(2)e” 373 4 Cr(2)e 277, La(2) = Cs(2)e 77,
(2) = Co(2)e 27" ), Ly(2) = Ca(2) + Cro(2)e 7,
(2) = Co(2)e™ 377, La(2) = Ci(2).
Combining this with ( -, we obtain that for any i = 2, 2,3 %, 4, %, 5, %,
p(Li(2)) < deg a(z).
It then follows from Lemma and that La(z) = Cg(z) = —Qr(2)et*) =
0. Thus Q7(z) = 0. Combining this with yields

L d(5) ¥
) = b

Therefore, using the same method as in the proof of Subcase 2.2, we can get a

9
2

[MA]

L
L
L
L

5
2

contradiction.
Subcase 3.2.8. deg(36(z) — 2a(z)) < deg a(z). Let 38(z) — 2a(z) = ps(z).
Then a(z) = 38(z) — 3ps(z). And (3.19) can be rewritten as

My (Z) FAE) 4 Ms(2)e™?®) + My (z)e%’e(z) + My (2)e*)
+ M% (Z)@EB(Z) + Mg(z)e?’ﬁ(z) + M% (Z)egﬁ(z) + Mz(z)€26(2) =0,
where
My (z) = Ci(z )2 () M;(2) = Cy(2)e ™),
M% (z) = Cy(2)e —2ps(z) + C'Q(Z)e*%]%(z)7 My(z) = CG(Z)efpg(z),
M% () =C5(z )67%178(2), M;s(2) = Cr(2) + 68(2)67p8(2)7
M% (Z) = C9( )eiépS(z)a MZ(Z) = 010(2).
Combining this with -, we obtain that for any i = 2, 2,3 %, 4, %, 5, 171’

p(Mi(2)) < deg B(2).
It then follows from Lemma[2.3/and ([3.20)) that My(z) = Cio(z) = —Qg(2)e2<P*) =
0. Thus Qs(z) = 0. Combining this with (3.8)) yields
a(z) =V (z

s = CD=VE)
a(z) — b(2)
Therefore, using the same method as in the proof of Subcase 1.2, we can get a
contradiction. This completes the proof of Theorem [T.7]
Acknowledgements. The authors would like to thank the referee for his/her

thorough comments.
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Abstract. In this paper, we will present the expression of meromorphic solutions on the
crossing differential or difference Malmquist systems of certain types using Nevanlinna theory. For
instance, we consider the admissible meromorphic solutions of the crossing differential Malmquist
system
a1(2)f2(2) + ao(2)

f2(2) + di(2)
() = a2(2) f1(2) + bo(2)

f1(2) + da(2)
where a1(2)d1(z) Z ao(z) and a2(z)d2(z) Z bo(z).

fiz) =

)

MSC2020 numbers: 30D35; 34MO05.

Keywords: Malmquist equations; crossing Malmquist systems; meromorphic functions;
entire functions.

1. INTRODUCTION

The Malmquist theorem, originally published in [6], states that the Malmquist

type differential equation

(1.1) f'(2) = R(z, f(2)),

where R(z, f(2)) is arational function in z and f, admits a transcendental meromorphic
solution, then (1.1)) reduces to a differential Riccati equation

(1.2) f'(2) = ao(2) + a1 (2) f(2) + az(2) f(2)?,

where a;(z)(¢ = 0, 1,2) are rational functions. The original proof in [6] was independent
of Nevanlinna theory, however, Nevanlinna theory is an efficient method to prove
and generalize the above result, some details can be found in [4, Chapter 10]. We
assume that the reader is familiar with the basic notations of Nevanlinna theory,
see [3] 4 [ [12].

To generalize the Riccati or Malmquist equations, as far as we know, Tu and
Xiao [7] firstly considered the meromorphic solutions of system of higher-order
algebraic differential equations, which will be called the crossing Malmquist systems
in the paper. Recently, there are some results for the meromorphic solutions of

IThis work was partially supported by the NSFC (No.12061042) and the Natural Science

Foundation of Jiangxi (No. 20202BAB201003).
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several systems, see [9] [10]. We give the following presentation for our proceeding
consideration, which is a corollary of [7, Theorem 2|, where the admissible meromorphic
solutions imply that the coefficients of the system are rational functions or small

functions with respect to f1(z) and fa(2).

Theorem A. If the following system
ap, (2) [1(2)"* + -+ + a1(2) f1(2) + ao(2)

s B = AT+ T h@AR T
. f/(Z) _ Cps (Z)fQ(Z)p2 +ot Cl(z)fQ(Z) + CO(Z
) = 4R+t h(DRG) ol

has a paired admissible meromorphic solution (f1, f2), then dids < 4, where d; :=
max{piv Qz}»l = 13 2.
Obviously, Theorem A can be viewed as the generalization of Malmquist theorem.

Moreover, the case g1 > 1, go > 1 can occur. See the example below given by Tu
and Xiao [7].

Example 1.1. (f1, f2) = (€%, e %) is a paired entire solution of the crossing Malmquist

system
1
fR) =+,
(1.4) 1 f2(21)
fa(2) = —T(Z)~

Actually, all meromorphic solutions of (1.4)) can be expressed by (fi, f2) =

(ex=td1 e=eatd2) where e®1 92 = ¢. From the two equations in (T.4)), then f1 fo = ¢

follows immediately, where ¢ is a non-zero constant. Thus, by % = %, we get

f1=ec*tdi then f, = e~ ¢7Td2 where ed1td2 = ¢,

We proceed to consider the admissible meromorphic solutions of the generalization
of the system ([1.4]) as follows
F(2) = a1(2)f2(2) + ao(2)

f2(2) + di(2)

b
£(2) = az(2) f1(z) + bo(z)
f1(2) + da2(2)

where a;(2)d1(2) # ao(z) and az(z)dz2(2) # bo(z). We obtain the following theorem.

(1.5)

Theorem 1.1. The admissible entire solutions (f1, f2) of (1.5)) satisfy one of the

following cases:
(i) If a1(2) = 0, da(z) = 0, then fi(z) = %, where dy(z) =
—as(z).
(i4) If a1(z) = 0, da(2) # 0, then f1(z) + do = ﬂao(z);jggi;ﬁgz)dz)dz, where
dy(z) = dg and d(2) = —az(z2).
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(#i1) If a1(z) £ 0, da(2) # 0, then

_ J(ao(2) +bo(2) — a1(2)da(2) — az(2)da(2))dz
fil#) +dx{z) = f2(2) + di(2) 7
where d)(z2) = —ag(z) and dy(2) = —a1(z).

The another example below, given by Gao [2], shows that the case didy = 4 can

occur in Theorem A.

Example 1.2. (f1, f2) =

crossing Malmquist system

(#, ﬁ) is a paired meromorphic solution of the
—f2(2)* = [>(2)
(2f2(2) +1)% 7
fi(2)? = fi(2)
2fi1(2) —1)*

The system (|1.6) has no any transcendental entire solutions. Otherwise, assume

fi(z) =
(1.6)

fa(z) =

that (f1, f2) are transcendental entire functions, using the Valiron-Mohon’ko theorem
[4, Theorem 2.2.5] and a basic formula T'(r, f') < T(r, f) + S(r, f) for an entire

function f, then

2T(r, fo) = T(r,f3)+0(1) =T(r fi) +O0(1) <T(r, fi) + O(1)
= ST £ +0() = 570 ) +0) < 5T f2) +0(1),
thus T'(r, f2) = O(1), which is impossible. We find that (f1, f2) = (ljez , —ezlﬂ)

is also a paired meromorphic solution of (1.6). However, we have not obtained all
meromorphic solutions satisfying the system (1.6). Remark that all the above two
solutions (f1, f2) of (1.6) are meromorphic functions with no zeros. We obtain the

following theorem to describe the partial meromorphic solutions of (|1.6).

Theorem 1.2. If fi(z) and fao(z) are two finite order meromorphic solutions of
(1.6) with no zeros and simple poles only, then fi(z) = #—i—l and fao(z) = ——,

where a 1s a non-zero constant.

Without loss of generalization, we rewrite as follows

i) = AP )+ (s
W T LG RET T R RE) ()
i) = AR+ aEAE) + ol

d(2) f1(2)? + d1(2) f1(2) + do(2)’
where a;(2),b;(2),ci(2),d;i(2)(i = 0,1,2) are small functions with respect to fi(z)

and fa(z). From Theorem A, we see that there are four cases for d; and ds as follows

(Z> (dl’d2>: (4’1)5 (174)§
(“) (dlde): (371)7 (173);
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(i12) (d1,dz): (2,2), (2,1), (1,2);
(Z’U) (dl,dg) (1,1)

Three new examples in the following remark with Example and Example

show that there exist meromorphic solutions for all cases (i) — (iv) indeed.
Remark 1.1. For the case (d1,ds) = (4,1), we see that

(1(2). fa(2)) = (sec 2, tan 3)

solves the following system

R CIES 00}
. / _ fl(z)
For the case (dy,ds) = (3,1), we see that (f1(2), f2(2)) = ((ef%l)% ez%l) solves

the following system

{f{(Z) = —fa(2) = 3f2(2)* — 2fa(2)?,
(1.9)

fa(2) = —fi(2).
For the case (di,d2) = (2,1), we see that (f1(2), f2(2)) = (

following system

62—171 ,€%) solves the

/ _ —f2(2>

"= me -
(1.10) 1+ f1(2)

&) = filz)

The examples on (dy,ds) = (1,4), (1,3), (1,2) can be constructed easily by the above.

Gao [T, Theorem 1.2] obtained a difference version of Theorem A as follows.

Theorem B. If the following system

Prg ot ag(2)f1(2) + ap(2)

(s e _ api( )
fa(z+c1) - faz 4+ cn) ( ) )

(1.11) bg, (2)f1(2)9 + -+ b1(2) f1(2) + bo(2)
' e (DREP o+ a() ) T al2)
filz+d) - fi(z +dn) = dqQ(z)fz(Z)qQ +-~-+d1(z)fz(z) +d(;(z)

has a paired admissible meromorphic solution (f1, f2), where f; and f are all
meromorphic functions with hyper-order less than one. Then di;ds < nm, where

d; := max{p;, ¢;}.
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Gao [1] also obtained that (e*,e%) is a paired transcendental meromorphic

solution of the crossing difference Malmquist system

1
HG+D)fi(z-1) = —,
(1.12) f2(lz)
fz+1D)fa(z—1)= 7}01(2)2.

Our proceeding theorem shows that all transcendental entire solutions with finite

order of (1.12).

Theorem 1.3. The transcendental entire solutions with finite order of (1.12)
should satisfy one of the following two cases:
(i) (fi1(2), fa(2)) = (e**T8,e=2*") where v+ B = kim and k is an integer;
(i1) (f1(2), f2(2)) = <e%22+#z+0,6—%z2_#zw>7 where B 4+ 2D + 2H =

2kim and k is an integer.

2. LEMMAS

To prove Theorem [1.1] we need the following modification of Hayman inequality
which relates to the zeros of f and f(™) — b, where b is a non-zero small function

with respect to f.

Lemma 2.1. [I1I] Let f(z) be a transcendental meromorphic function satisfying

N <7‘, }) =S(r, f).
For any small functions b(z)(# 0) of f, then

N (r, f(n)l_b> £ S(r, f).

In order to prove Theorem we need the following lemma, which can be found
in [8, Theorem 1.1].

Lemma 2.2. Let f and g be transcendental entire functions with finite order, such
that f and g’ share 0 CM, g and f' share 0 CM. Then f and g satisfy one of the

following three cases:

(1) f =~g, where « is a non-zero constant;
(2) f = Asin(az +b) and g = ycos(az + b), where a,b, A,y are constants with
aly # 0 and \ = iv?;
(3) fg=pBf'qg", where B is a non-zero constant.
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3. PROOFS OF THEOREMS

Proof of Theorem Firstly, rewrite (1.5)) into

bi(2)
fo(2) + du(2)’
/ _ ba (Z)
f27) —ax(z) = fi(2) + d2(2)’
where b1(2) = ag(z) — a1(2)d1(2) and ba(2) = bo(z) — az(2)da(2).
Using Valiron-Mohon’ko theorem [4, Theorem 2.2.5], we have

fi(z) —ai(2) =
(3.1)

T(r, f2(2)) + 5(r, f2(2)) = T(r fi(2)) < 2T(r, f1(2)) + S(r, f1(2))
< 2T(r,fé(z)) §4T(T‘,f2(2))+5(7",f2(2))
Hence, we assume that S(r) := S(r, f1(2)) = S(r, f2(2)). We will discuss four
cases for the entire functions fi(z) and fa(z) below.
Case 1. If a1(2) = 0, da(z) = 0, then

1 , _S(r
(3.2) N (Ta fg(z)+d1(z)> = N(r, fi(2)) + S(r) = S(r),

1
N<“ﬁ@»—@u>

which can be written as

)N@ﬁ@»+ﬂﬂﬂm

1
N |, =S5(r).
(- Geramy—ge—am) =50
By Lemma (3.2) and (3.3)), for avoiding a contradiction, then d}(z) = —as(z)
holds. In this case, from (3.1f), we have

(3.3)

/ o bl(z)
"= Lo ae
(3.4) ba(2)
F) + di() = 25
It follows from ,
{ﬂ@ﬁﬂ@+ﬁ@ﬂd@=h&%
(3.5)
f3(2) f1(2) + dy (2) f1(2) = ba(2).

Summing the two equations in (3.5, we get

(f1(2)(fa(2) + di(2))) = ba(2) + b2(2),

thus

fi(2) = J(01(2) + ba(2))dz _ [(ao(2) + bo(2))d=
' fa(2) + da(2) f() +di(z)
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Case 2. If a1(2) = 0, d2(z) # 0, then we affirm that d2(z) must be a constant.
From the second equation of (3.1)), we have

1
Nl|lr,— | =S5(r).
(" frram) =50
From the first equation of (3.1), we have

N <r7 f{tz)> =N (r’ (fi(z) + d2(12))/ _ d’z(Z)) =5(r),

for avoiding a contradiction, we have ds(z) must be a constant dy. Furthermore,
the second equation of (3.1) shows that

N(T’M)W

which implies that

f1(2) +da(2))
) -0

1
0 ¥ T aer g —am) =50
The first equation of shows also that

1
(3.7 N (r, M) = S(r).

By Lemma[2.1] (3.6) and (3.7), —d} (z)—a2(z) = 0 holds for avoiding a contradiction,

that is d (z) = —a2(z), so we have

/ _ bl(z)
"o = L v ame
(38) ba(2)
fa(z) +di(z) = T2) +da

It follows from (3.8)), we get

(<f1<z> o) (fale) + d1<z>>) = by(2) + ba(2),

thus
_ J(01(2) + b2(2))dz_ [(ao(2) + bo(2) — az(2)dz)dz
e A TC B 7GR 1C
Case 3. If a1(2) # 0, da(z) = 0, then changes into
/ —ai(z) = bl(z)
filz) — a(e) fa(2) + di(2)’
(39) ba(z)
3(6) - aa() = 23,
where b1(2) = ap(2) — a1(2)d1(z) and ba(z) = by(z). The first equation of

implies that
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the second equation of (3.9) implies that

N (n @) — S(r).

By Lemma [2.1] and the above two equations, we get a contradiction.

Case 4. If a1(2) # 0, da(z) # 0, then

" ( b()i()) - ( W) = S(r),

V(rparam) =Y (A =50

N < EEEAE e a2<z>>

by Lemma we obtain —d}(z) — az(z) = 0 for avoiding a contradiction, that is
d}(z) = —az(z). In addition,

N rram) =50
N (r raram) =50

we can have d5(z) = —ay(z). Thus, we have

fi(2) +dy(2) =

Since

=5(r),

bi(2)
fo(2) + di(2)’

ba(2)
fi(2) +da(z)’

(3.10)
f3(2) + dy(2) =

From , we get
((ﬁ(z) () (fal2) + d1<z>>) = b1(2) + ba2),

thus
f(b (2) + ba(2))dz
fa(2) + du(2)
J(ao(2) +bo(2) — a1(2)di(2) — az(2)da(2))dz
fa(2) + di(2)

f1(2) + da(2)

The proof of Theorem [I.1] is completed.

Proof of Theorem Since f1(z) and f2(z) are meromorphic solutions with
finite order of (1.6) with no zeros and simple poles only, then we assume that
fi(z) = g%(z) and fo(z) = g%(z), where g1(z) and g2(2) are entire functions with
finite order. Thus, the system (1.6) means that
1+ g2(2)

/ 2

= ——509](2
1( ) (2-1-92(2))2 1( )

d() = mgaz).
90
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From the above system and gi, g2 are entire functions with simple zeros only, then
we see that g; and 2+ go have the same zeros and same multiplicities, g3 and 2 —¢g;

have the same zeros and same multiplicities. Hence, we assume

(3.12) {91(2) = "2+ ga(2)),
92(2) = (2 = g1(2)),

and

5.15) {9’1(2) =PI (1+ ga(2)),
95(2) = 29 (g1(2) — 1),

where P(z) and Q(z) are polynomials. Then, we rewrite as
(1(z) =1)" _ 2P(2)

1+ g2(2) ’
(1+92(2)" _ £2Q(2)

g1(z) — 1
From (3.14)), we can get that (g1 — 1)’ and 1+ g» share 0 CM, (1+ g2)’ and g1 — 1
share 0 CM. By Lemma then we discuss three cases for g; and go below.

Case 1. gy — 1 = (1 + g2), where v is a non-zero constant, e?F(?) = 422Q(2),

Substitute g; — 1 = y(1 + ¢2) into (3.12)), we have

Y(1+g2) +1=e"P (24 go),
{92 =2 —y(1+g2) — 1,
we see that is represented by
P (1 +g2) +1

(3.14)

(3.15)

(3.16) 2+ 92

Q) — g2 .

1—~(1+g2)
(1) If eP(*) = 4e@() | then we have
2492 1—7(1+g2)

Then
(3.18) V95 + 2992 = =795 — 27792 —7° + 1.
So we obtain v = —1, then g; = —g- follows. However, in this case, the first equation
of (3.11)) reduces into

1—
() = g

which has no any transcendental entire solutions by Malmquist theorem.
(ii) If eP(*) = —4eQ() | then
Yd4+g9)+1 =g

2+ g0 C1—y(1+g9)°
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Then

(3.20) 795 = 2792 = =95 — 27°ga =77 + 1.
So we obtain v = 1, then g1 — g2 = 2 follows. From the first equation of (3.12), we
see eP’(*) = 1. Thus, the first equation of ([3.14) also implies that

(I+g2) _
1+ g2
so go = ae® — 1, where « is a non-zero constant. Then g = ae® + 1.

Case 2. If g — 1 = Asin(az + b) and 1 + g2 = ~ycos(az + b), where a,b, A,y
are constants with a\y # 0 and A = in?, then e?(?) = 42e2Q() follows by (3.13).
From (3.12)), we have

WP _ 1+ iv?sin(az + b)
~ 1+~cos(az +b)’
LQ) _ 'yco.s(az. +b)—1 .
1 —iy?sin(az + b)

(3.21)

(i) If eP®) = 4e@(®) | then
1+i4y?sin(az +b)  y(ycos(az +b) — 1)

1+~ycos(az+b)  1—iy2sin(az+b)

Thus
ytsin?(az + b) + 1 = —3sin?(az + b) ++° — 7,

which is impossible for the reason that there is no v satisfying

7=,
{73 —v=1
(i) If eP(*) = —7e@(®) | we have
1+iy?sin(az +b)  —~y(ycos(az +b) — 1)

1+ vycos(az + b) 1 —iv?sin(az + b)
Then
(3.22) ytsin?(az + b) + 1 = 43 sin?(az + b) — 4> + 7,
which is also impossible for the reason that there is no  satisfying
4 3

=7
(3.23) 5

-7 +y=1

Case 3. If (g1 — 1)(1 + g2) = B(g1 — 1) (1 + ¢2)" = Byg}gh, where 8 is a non-zero
constant, we have ¢2F(:)+2Q(2) — % := 72, From ({3.12)), we have

g1 = —ePEHRE) g | 9ePIFR() | 9cP(),
(3.24)

gy = —ePEIHQR) gy _ 9o PIFR() | 90R(),

92



CROSSING MALMQUIST SYSTEMS ...

If 7 # —1, we have

27 + 2eP(2)
G=——"
(3.25) 1+7
=27 4290
g2 = 1+7

Substitute (3.25]) into the first equation of (3.13), we have

2P'(2) _ _pex) (1 n w) _

1+7 1+7

The above equation implies that 1 + 1_%: =0, that is 7 = 1 and eP(H1Q(=) = 1
thus P(z) = z + b, where b is a constant. In the same way, substitute (3.25) into
the second equation of (3.13)), we have

20'(2) _ o (2t 2P )
1+7 1+7 '

The above equation implies that 12+—TT —1=0, that is 7 = 1 and eZG+Q(=) = 1,
thus Q(z) = z + a, where a is a constant. However, this is in contradiction with
eP()+Q(2) = 1 g0 this case is omitted.

If 7 = —1, from the two equations in , we have el’(?)1R(2) = 1 P(?) =1
and e?(®*) = —1. From the first equation of , we have g1 = 2 + go. Thus, the
first equation of also implies that

(L+g)
1+g92
S0 go = ae® — 1, where « is a non-zero constant. Then g; = ae® + 1. The proof of
Theorem is completed.

Proof of Theorem|[1.3] If (f1(2), f2(2)) is the paired transcendental entire solutions
of the complex difference system (1.12)), then we have f1(z) and f2(z) must have
no zeros, thus we assume that fi(z) = ") and fo(2) = ") where hi(z) and

ha(z) are non-constant polynomials. So

ehl(ZJrl)ehl(Z*l) — 672}7,2(2)’
(3.26) ph2(z41) gha(2—1) _ €—2hl(z)7
it follows
hl(Z —+ ].) —+ hl(Z — ].) =+ 2h2(Z) = 2ki71',
(3.27)
hao(z+ 1) 4+ ha(z — 1) + 2hq(2) = 2mim,

where k, m are integers. Shifting forward and backward on (3.27)), we have
{hl(z +2) + h1(2) + 2ha(z + 1) = 2kim,

ha(z 4 2) 4+ ha(z) + 2h1(z + 1) = 2mi,
93
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and

hl(z) + hl(Z — 2) + 2h2(2’ — 1) = Qkiﬂ',
(3.29) {

ha(z) + ho(z — 2) + 2h1(z — 1) = 2mim.
The first equation of (3.28) and the first equation of (3.29) can be rewritten as

follows

(3.30) ,
2ho(z — 1) = —h1(z — 2) — hi1(2) + 2kin.

Combining the above system (3.30)) and the second equation of (3.27)), we have

2(2mim — 2hy(2)) = 4dkim — 2hq(2) — hi(z + 2) — hy(z — 2),
thus, we have
(3.31) hi(z 4 2) 4+ hi(z — 2) — 2h1(2) = 4kinm — dmi.

From ({3.31)), we also have
hi(z 4 2) — hi(z) = h1(z) — h1(z — 2) + 4kinm — dmim,
which implies that
F(z+42) = F(z2) + 4kim — dminm
by letting F'(z) = h1(z) — h1(z — 2). We discuss two cases below.

Case 1. If m = k, then F(z) must be a periodic function with period 2, thus F(z)
is a non-zero constant 2« for the reason that hq(z) is a non-constant polynomial.
Thus h1(z) — h1(z — 2) = 2a, it follows hi(z) = az + 8.

Case 2. If m # k, then F'(z) must be a non-constant linear polynomial, that is
F(z) = Bz + A. Thus, hy(2) — hi(2 —2) = Bz + A, B # 0. In this case, we have
hi(z) is a linear polynomial when B = 0 and is a polynomial with degree two when
B # 0, we assume that hy(z) = 222 + A%Bz + D, where D is any constant.

1
Using the similar method as above, we also obtain

(3.32) ha(z 4 2) 4+ ha(z — 2) — 2ha(z) = dmin — 4ki,
which implies that
ha(z 4 2) — ha(z) = ha(z) — ha(z — 2) + dmim — 4kim,
it follows
G(z +2) = G(2) + 4min — 4kin

by letting G(z) = ha(z) — ha(z — 2). There are two cases to be discussed as follows.

Case 1. If m = k, then G(z) must be a periodic function with period 2, thus G(z)

is also a non-zero constant 2. Then ho(z) — hao(z —2) = 2u, that is ho(2) = pz+v.
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Case 2. If m # k, then G(z) must be a non-constant linear polynomial, that is
G(z) = Ez 4+ F. Thus, ha(z) — ha(z — 2) = Ez + F, E # 0. In this case, we have
hs(z) is a linear polynomial when F = 0 and is a polynomial with degree two when
E # 0, we assume that ha(z) = %22 + #z + H, where H is any constant.

We also remark that the degree of hy(z) and ha(z) are equal. Substitute hq(z) =
az + B and ho(z) = pz + v into the first equation of , we have y = —a and
v+ B = kim. Substitute hy(z) = 222+ 42B2 4 D and ho(z) = £22 + E£E 2+ H
into the system of , we have E = —B, ' = —A, g + 2D + 2H = 2kim,
g + 2D + 2H = 2min and B = 2kim — 2min. The proof of Theorem is thus

completed.
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