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Abstract. We define a new type of spectrum, called the (P, Q) — e-pseudo condition spectra

S8 o) (D) = o8 o (M {A €C: (A=) o llIN =TI > %} .
This (P, Q) — e-pseudo condition spectrum shares some properties of the usual spectrum such as
non emptiness. Our aim in this paper is to show some properties of (P, Q) — e-pseudo condition
spectra of a linear operator T in Banach spaces and reveal the relation between their (P, Q) — e-
pseudo condition spectra. Additionally, we investigate the (P, Q) — e-pseudo condition spectrum

of a block matrix in a Banach space.

MSC2020 numbers: 15A09; 47A05.

Keywords: Banach spaces; matrix; (P, @)-outer generalized inverse; (P, Q) — &-
pseudo condition spectrum.

1. INTRODUCTION

For the past ten years, there has been in the field of mathematics digital technology
has a keen interest in the study of the notion of pseudo-spectrum and pseudo
condition spectra. The development of this notion is explained by the fact that
in a certain number of mathematical engineering problems were natural non-self-
employed operators. This original observation suggests that in some cases, knowledge
of the spectrum of an operator alone does not sufficiently understand his action.
It is as well as to make up for this apparent lack of information contained in
the spectrum, new subsets of the complex plane called pseudo-spectra have been
introduced. There are several generalizations of the concept of the spectrum in
literature such as Ransford spectrum [§], pseudo spectrum [12], condition spectrum
[1} 2[5, [10], pseudo spectra of multivalued linear operator [3]. Unlike the spectrum,
which is a purely algebraic concept, both the pseudo spectrum and condition
spectrum depend on the norm. Also, both these sets contain the spectrum as a
subset.

Consider two idempotent elements P,Q € B(X) i.e. P2 = P and Q% = Q.
3
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Definition 1.1. Let T € B(X). An operator S € B(X) satisfying,
STS=S, ST=P and I -TS=Q
will be called a (P, Q)-outer generalized inverse of T and it is denoted by Tgég.

The detailed treatment of outer generalized inverses of operators on Banach and

Hilbert spaces can be found in [4 [7].

Definition 1.2. For an element T € B(X), the (P, Q)-resolvent set is defined as

(2 (T) := {)\ eC: (A= T)g)Q em'st}.

P(P.Q)
The complement of the set pgg)_Q)(T) is called (P, Q)-spectrum and it is denoted by
pue) (T)
(P,Q) ’

From now onwards, we consider the idempotent P # 0 and P # I and we fix the
operator Q =1 - P. If A € pEQP)’Q)(T), then we denote (A — T)g)Q by Rr()). For
given T € B(X), if Rr()) exists for some A € C, then from Definition

(1.1) Rr(N(A—T)=P and (A\—T)Rp(\) =P

By (Eq. , TP = PT. Consequently, if TP # PT then o5, (T) = C. Because

of this reason, in the rest of the paper we assume TP = PT.

In this note, we dedicate to research the (P,Q) — e-pseudo condition spectra
of a linear operator and its properties. The remainder of this paper is organized
as follows. In Section 2, we first suggest a characterize for the (P, Q) — e-pseudo
condition spectra of a linear operator. Then, in Section 3, we investigate the (P, Q)—

e-pseudo condition spectra, of a block matrix in a Banach space.

2. (P,Q) — e-PSEUDO CONDITION SPECTRA OF LINEAR OPERATOR

The (P, Q) —e-pseudo spectrum were studied in [6, 1I]. Let e > 0 and T € B(X).
The (P, Q) — e-pseudo spectrum is defined as

UEQQ)_E(T) = {>\ eC:(A— T)g)Q does not exist or

(A= T)3|| > =}-

By convention, we write ||Rr(\)|| = oo if Rr(\) is unbounded or nonexistent, i.e., if
A is in the spectrum UEQQ)(T) It is well known that pE?’Q)%(T) for any T' € B(X)

is a nonempty open subset, the following remark prove the same for (P,Q) — -
pseudo resolvent set. In this section, we define the pseudo spectra of linear relation

and study some properties.
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Definition 2.1. ((P,Q) — e-pseudo spectra of T')
Let T € B(X) where X is a normed space and € > 0 we define the (P, Q) —e-pseudo
spectra of T' by

1
o) = offg@U{rec: IrM> 1],
We denote the (P, Q) — e-pseudo resolvent set of T

Ko = Qo0 =i mn{rec: IR <1},

Definition 2.2. ((P,Q) — e-pseudo condition spectra of T')
Let T € B(X) where X is a normed space and € > 0 we define the (P, Q) —e-pseudo
condition spectra of T by

1
Sa- D) = alo@U{reC:I0-1Eglr-11> 2}

with the convention that ||(A — T)gj Q)HH/\ T = o0, if (A — T)EQP)Q) is not exists.
Notice that the uniqueness on ) E( ) allows us to consider the (P, Q)—e-pseudo

condition spectrum and (P, Q) — e- pseudo spectrum.

Theorem 2.1. LetTeB( ) and 0 < & < 1. Then,

(1) o)M= [ =g (D)

0<e<1
(2) If0 <e1 <eq <1, then

L@ @)
7 (T) CE(pg) e,

(3) If « € C, then

)

2
Py (T+al)=a+ 2@ ().

(P,Q)—¢

Proof. (1) It is clear that O'(P)Q)( ) C Egg)_ )75(T) for all 0 < € < 1. Then,

r o Ca Rl (i |
0<e<1

2
Conversely, if A € ﬂ E(PQ) .(T), thenforall0 < e < 1, we get A € EEP)Q)_E(T).
0<e<1

We will discuss these two cases:

15 case: If A € JE?Q)(T), then we get the desired result.

2" case : If )\ € {/\ eC:||(N— T)(Q) ||||)\ T| > %}, then taking limits as
e — 07, we get
1= 1) A =Tl =

We deduce that A € UEQQ)(T).
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(2) Let A€ N3 . (T), s0

1 1

Il(X — T) \)\—T||>—>—.
€1 €2

@ ol

We conclude that \ € »?)

Hoy_e,(T). Let A € B7

(P.Q)— (T + o), hence

I = a) = )P g A = )—T||>§

Therefore, A — exn®

(p.0)_e(T). This yields to

(2)
Aea+Xpo (7).

Lemma 2.1. LetT € B(X), 0 < e < 1 and P is invertible. Then, A € EE?Q)%(T)\
e

o Q)( ) if and only if there exists x such that

1P~ A = T)al| < e|A =Tl

Proof. Let A € 52 (T )\0(2) ( ), then

(P,Q)—¢
1
I =T) R A =T >
Thus
1
A —T)
Moreover
2)
aup A= T)ép@yn L
y#0 Iyl ellA =17
Then, there exists a nonzero y € X such that
IIyH
A —T) .

Putting z = (A — T)E?Q)y, then A=T)z=A-=T)(A— T)E?D)Q)y = Py. Hence,

elA=Tllz] > |P~H(A = T)z].
Conversely, we assume that there exists x € X such that

elA=Tllz] > |P~H(A = T)z].

(2)
P.QY

lzll < 1A = DR NIyl

Let A\ & o T)andz=(A-1T) then

Py

Moreover,
2 _
e A =TI = 1) o) lllwll > 1P~ = D)zl = |1yl

It follows that 1 < ||A — T'||||(A — T)E?’)Q)”' We conclude that,

/\eEPQ) (T )\a((i,{Q)(T).
6
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Suppose X is a Banach space with the following property: For all generalized
invertible operator T' € B(X) there exist B € B(X) such that B is not generalized

invertible and

1
”T_BH (2)
1T I
Theorem 2.2. Let A € EE?D)Q) _(T). Then, there exists D € B(X) such that
ID|| <el|A =T and X € Z(PQ)(T—FD).

Proof. Suppose A\ € EEQP)Q)%(T). We will discuss these two cases:

1%t case : If X € JE?Q)(T) then it is sufficient to take D = 0.

274 case : If \ € Do 2) (T )\O'(P Q)( ). Hence, by assumption, there exists an
element B € B(X) such that

1
IA=T =Bl = ————.
IA=T)2 gl
Let D =X —T — B. Then
ID|| = ————— < <[]A-T].
I =T)P )l

Also B = X — (T + D), is not generalized invertible. So, A € O'(P Q)(T + D).

Corollary 2.1. Let X be a Banach space satisfying the hypothesis of Theorem[2.3.
Then, A € %) (T) if, and only if, there exists D € B(X) such that | D| <

(P,Q)— 5
ellA—="T and)\EU(PQ)(T—l-D).

Theorem 2.3. Let T € B(X), A€ C, and 0 < € < 1. If there is D € B(X) such

2
that | D|| < e||]A =T and X € U(PQ)(T+ D). Then, X\ € EEP)Q) (T).

Proof. We assume that there exists D such that ||D] < ||\ — T|| and X €

§2) (T + D). Let A ¢ EEQP)’Q)%(T)7 then for all (A — T)E?,Q) a generalized inverse

of A — T we have

1
A =TI =T < 2
Now, we define the operator S : X — X by
N @) 2 \"
S = z;)()\ T)(PQ)( (A — T)(PQ)) .
Since,
1D =T) gl < 1,

we can write

—1
S=(- T)E?Q)(J—D(A—T)EQQ)) .
7
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Then, there exists y € X such that

5(1 D\ — T)(P)Q)> =(A=T)D o

Let y = P(A — T)z. Then,
S(A\—T —D)Px = Px

for every € X. Hence, A —T'— D is generalized invertible, so A € X P) Q)— _(T).

Theorem 2.4. Let T € B(X), k= ||T||||T(2)Q)H and 0 < e < 1. Then,

(P.Q)— _(T) if, and only if, X € Eg}Q) E(T/)

(ii) If An ¢ ZEQQ (T)(T) such that Ay — X for all A\ € B3 o (T)(T), then
I =1)(

(Pl =00

()/\62

Proof. (i) Using the identity

IN=TIO = D)@ ol = IX=T X =T)E )

it is easy to see that the (P, Q) — e-pseudo condition spectrum of T’ " is given by the

mirror image of ¥.(T) with respect to the real axis.

(i) Suppose [|(A — T) PQ)H < fOY some § € R and since A, — A for all A €
&23)@) _(T), then there exists ng € N such that
1

2
1A= 1))l

A=Al <d—-1<6< for all n > ng.

Hence, \ ¢ EE?Q)_E(T). This is a contradiction.

Theorem 2.5. Let T, E € B(X) such that ||E|| < E||)\ =T and 0 < e < 1. Then,

@)
Z(Pa)—(

2
where,0<75:%+s<1and0<§f|\E||<1.

2
s (T) €52

oy (T+E)Cuf

P.@)-r.(T)

(2)
Proof. Let)\EZ(PQ) (

operator D € B(X) with

=_|El) (T). Then, by Theorem there exists a bounded

g
1Dl < (5 - 1) 1A -7

such that
2
Ne oo (T +D) :agng)((T+E) + (D—E)).
The fact that
D —E|| < |ID||+||E] < (* - IIEII)II/\ =T+ [|B]l <el]x =T,
8
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allows us to deduce that A € ZE?Q) (T+E). Now, let us prove the second inclusion.
Suppose A € EEP_Q)%(T + E), then there exists D € B(X) verifying

DI <elA=T = E[l <ellA =T + <[ E]

and A € 0% (T+ E+ D). The fact that ||D+ E| < 7.||A —T|| allows us to deduce

(P.Q)
that A € B(P o (7).

(P,Q)—
Theorem 2.6. Let T € B(X) ande > 0. Then, E(P)Q) .(T) has no isolated points.

Proof. Suppose 283) Q)fe(T) has an isolated point u. Then there exists an § > 0

such that for all A € C with 0 < |\ —p| < d and there exists a generalized invertible

(A — T)EFEQ) such that

2
IN=TIIO=T) Pl < -

Let 1 € E(P Q)- (T )\0(2) ( ). Then, using the Hahn—BanaCh Theorem, there exist
a2’ € X' such that

2 2 .
(0 =-T)Pg) = IN=TIHO=T) D)l with '] = 1.

Now, we define

61 pipo)(T) — R,

A o) = (A =Dg)).

Since ¢ is is well-defined and continuous; in B(u,d) and for all A € C with 0 <

|A — p| < 6, we have

1
\—HA T =T)P gl < =

B = |2/(A-T)F o)

(P Q)
But, ¢(n) = || —T|||| (1 — T)(Q) || > —. This contradicts the maximum modulus
principle.

Definition 2.3. We define T € B(X) to be of d-class operator if

1
1A =T)3) | =

POT g0, o)

i YA € C\o(p o (T).

In fact, we have the following theorem

Theorem 2.7. Let T € B(X) ande > 0. If T € B(X) 1is of d—class operator, then

P € {NeCrdr o o) (1) <A -T1}.

Proof. Let )\ € 2(2)

(P.Q)— .(T), then

1
2
IA= T = D))l > <

9
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Now, if T € B(X) is a d-class, we already have

1 (2)
A =T)P gl = YA € C\o(p o) (T)-
( A 0(7g)(T)) :
Hence,
1 2) A =T
S <A =TI =T Pl = =5 ——  ¥AeC\o{n, (D).
. O AN o) (1)) i
Therefore,

Ae {/\ec d(X, o) o) (T ))§s||>\—T||}.

Theorem 2.8. Let T € B(X) and € > 0. Then
(0) If T = pl for some number p, then T is of d-class operator and UE?Q)(T) = {u}.
(i) If T is of d-class operator, then oT + [ is also of d-class operator for every

number a, 3.

Proof. (i) Let T = p. for some number u. Then clearly 0((123)@) (T") = {p}. Hence
foral A\ e C\ o we have A # p. Thus
- 1 _ 1
_ B 2 :
A =uld(x oo, (1))

B,

I =T)P ol =

This shows that a is of d-class operator.

(#i) Next suppose that T is of d-class operator and B = oT + 8 for some complex
numbers «, 8. We want to prove that B is of d-class operator. If & = 0, then it follows
from (7). So assume that o # 0. Let w ¢ 0(2) )( )={ar+p5: A€ UE?Q)(B)}.
Then, \ := “=£ ¢ 0(12))@( ) and since T is of d-class operator,

1
IA-D) gl = ——5—— YA€C\o(pg) (D).
( d(X. 07 0 (1)) )
Now
l(w = Bl = (e + 8 — (aT + )P ll = HH(A )P ol
Therefore,
1
lw = B){P gl =
Q) lald(\, o5 o) (1))
_ 1 _ 1
A, 03 o (@) d(w, o7 o (B))

This shows that B is of d-class operator.

Remark 2.1. Under what additional conditions can we conclude that, if T is of
d-class operator and UE?Q) (T) = {u}, then T = p.
10
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Theorem 2.9. Let T € B(X) and for every 0 < e < 1 such that ¢ < ||\ =T we

have

(1) e EE?DQ) (1) if, and only if, A EO'(PQ) A TH(T)

(15) X € U(P)Q) (T) if, and only if, X € ZEP)Q) - (T).
Proof. (i) If A € X2, _(T), then
1
2
A€ o(po)(T) and [A=TIIA=T)Pg)ll = .
Hence,
1

(2) (2)
A€ opo)(T) and [[(A=T)p ol = =T

S (2)
which implies that A € O (P,Q)—e|A=T1)

(i1) Let A € ng)Q) .(T), then

(T'). The converse is similar.

Aea(f}Q)(T) and ||(\ — T)(PQ)||>7

Hence it follows that

2 IA—=1]
M€ o{po)(T) and [|A—TI[|(A—T){P g > —
This proves that

(2)
AeXpg)- T (7).

The converse is similar.

3. APPLICATION FOR MATRIX 2 X 2

In this article we will apply the results of the previous section to determine the
(P, @) — e-pseudo condition spectrum of 2 x 2 matrix operators by mean of measure
of non-strict-singularity. Let X and Y be tow Banach spaces and consider the 2 x 2

block operator matrix defined on X x Y by

(T 0
(% %)
where, T, T» € B(X). Defining the norm of the linear operator matrix 7" as
17 = max {73, 1721 }-

Now, we state an auxiliary result.

Lemma 3.1. |9, Lemma 3.1] Let P = ( 131 P9 ) and Q = ( %1 0 > If
2

TI(J)Q exist, then,
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Theorem 3.1. Let P = ( PO > and Q = < %1 0 ) IfTI(D% exist, then,

0 P2 QQ
(2) @)
E(P1 Q1)— Tl LJE P2,Q2)— 5(T2) C E(P Q)— E(T)
Proof. Let A € 53 (1) US() 5., .(T2). These imply

1
AgE(HQﬂ( 1) or [[(A— Tl)(PlQl)””(/\ T1)||>*

or
1
2

NS0, g (1) o [A=T2)(E, o) I3 = T2)]| >

If either (A— Tl)(P Q) Or ()\—TQ)E?Q @, does not exists, by Lemma it follows:
2)
9 A—T1)! 0
(A =T)pg) = e )
0 (A - TQ)(P27Q2)

does not exists, then we have A € EEQ) (T).

Q-
On the other hand, if (A — Tl)EP) Q) and (A= Tg)( ) exists, it holds either

(P2,Q2)
1 @ 1
IO = T0)(7 (PraolllA =TIl > = or [(A = 12)(p, o) (X = T2)| > -

1
Without loss of generality, assume that [|(A — Tl)(Q) yIHICA = T3)[] > = holds.
5

(P1,Q1
Therefore,
I =)@l =T =
= max {[| (A = T), gL 1A~ T2>(P2,Q2>H}max{u< Tl I - T3)]1}
> 10 =T, g IO =T} > 2.

This proves that A\ € ZE?7Q)_6(T).

CIUCOK JIMTEPATYPHI

[1] A. Ammar, A. Jeribi and K. Mahfoudhi, “The condition pseudospectrum subset and related
results”, J. Pseudo-Differ. Oper. Appl.(2018)https : //doi.org/10.1007/s11868 —018 —0265—9

[2] A. Ammar, A. Jeribi and K. Mahfoudhi, “A characterization of the condition pseudospectrum
on Banach space”, Funct. Anal. Approx. Comput. 10, no. 2, 13 — 21 (2018).

[3] A. Ammar, A. Jeribi and B. Saadaoui, “A charactarization of essential pseudospectra of the
multivalued operator matrix”, Anal. Math. Phys. 8, no. 3, 325 — 350 (2018).

[4] A. Ben-Israel and T. N. E. Grevile, Generalized Inverses: Theory and applications, Wiley-
Interscience, New York, (1974).

[5] S. H. Kulkarni and D. Sukumar, “The condition spectrum, Acta Sci. Math, (Szeged) 74, no.
3 - 4, 625-641 (2008).

[6] M. Z. Kolundzija, “(P,Q)-outer generalized inverse of block matrices in Banach algebras”,
Banach J. Math. Anal. 8, no. 1, 98 — 108 (2014).

[7] M. Z. Nashed and X. Chen, "Convergence of Newton-like methods for singular operator
equations using outer inverse”, Numer. Math. 66, 235 — 257 (1993).

[8] T.J. Ransford, “Generalized spectra and analytic multivalued functions”, J. London Math.
Soc. (2) 29, 2, 306 — 322 (1984).

12



KNOTS OF PLANE CURVES. ...

[9] B. Saadaoui, “On (P, Q)—Outer Generalized Inverses and their Stability of Pseudo Spectrum”,
southeast asian bulletin of mathematics (2022).

[10] B. Saadaoui, “Characterization of the Condition S-Spectrum of a Compact Operator in a
Right Quaternionic Hilbert Space”, Rendiconti del Circolo Matematico di Palermo Series 2
(2021).

[11] D. Sukumar and S. Veeramani, “Level Sets of (p;e-p) Outer Generalized Pseudo Spectrum”,
The Journal of Analysis 28 (1), 57 — 70 (1984).

[12] L . N. Trefenthen and M. Embree, Spectra and Pseudospectra, Princeton Univ. Press,
Princeton, NJ (2005).

[MocTynuna 17 ampesns 2022
Ilocsie mopaborku 16 miosst 2022

IIpunsara ¥ mybmukarmm 27 mioss 2022

13



Uszsecrust HAH Apmennu, Maremaruka, Tom 58, u. 4, 2023, crp. 14 — 23.

K BOITPOCY CXOJAMMOCTMU N CYMMUPYEMOCTHA
OBIIINX PAJT0OB ®YPBE

JI. TOT'OJIATI3E, T. IIATAPENIIIBUJIN

I.Javakhishvili State Uniuversity, Thilisi, Georgia
E-mails: lgogoladzel@hotmail.com; giorgicagareishvili7@gmaikl.com

AnHOTALMA. B pabore paccMOTpPEHBI BOIPOCHI CXOAUMOCTH M CYyMMHUPYEMO-
cru panos Pypoe dynknmit k1acca Lip 1 oTHOCHTENHHO 0OMIUX OPTOHOPMUPO-
Banubix cucreM (OHC). Haiiziensl 1ocTaTouHble YCJIOBHsI, KOTOPBIM JOJIZKHbBI
yaosaersopars dyuknun OHC, arober pag Pypbe mo 3Toi cucreMe KaxKIoi
dbyukuun u3 kiaacca Lip 1 m.B. cxomusicsi, 6€3yCIOBHO CXOIUJICS UJIH CyMMUPO-
Basica MetonoM (C,a), a > 0. JlokazaHa Hey/IydIIaeMOCTb HEKOTOPBIX IOJLy-
YEHHBIX PE3YJIbTATOB.

MSC2020 number: 42C10.

KuarodeBble cjoBa: opTroHOpMHUpOBaHHas cucrema; pam Oypbe; cxommMocThb; 6e3-

YCJIOBHASI CXOIMMOCTD; Ko durimentsr Oypoe.

1. BCITOMOTATEJBHBIE OBO3HAYEHUSI U YTBEPXKJIEHUSI
ITycrs f € Lo(I) (I =10,1]) u (¢,) — opronopmuposamnuas na I cucrema (OHC)

dyukiwmit. Yucra

(L1) Culf) = / F(@)on()dz

— koapdurmenter Oypoe bynxmuu f. Kak msecrno, Lip 1 sBisierca mpoctpan-

crBoM Banaxa ¢ HopMmoit

(1.2) s = Iflle + sup L@ =IWI

z,y€[0,1] |33 -yl

Teopema 1.1 (Banax [I]). Hycmo f € Ly (f # 0) — wobaa dynryua. Tozda

cywecmeyem OHC maxas, wmo

limsup | Sy (z, f)| = 400 n.6. na [0,1],

n— oo
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Teopema 1.2 (Menbmosa-Pagemaxepa, cum. [2], ¢. 332]). Tyems (p,(x)), x € [0,1],

npoussoavnas OHC. Tozda das n.e. x € [0,1] cxodumesa ecaxud pad

Z an@n(x)a
n=1

KoaPPuLUEHMBL KOMOPO20 YOOBALMBOPAIOM, YCAOBUIO

o0
Zailog2n < 00.

n=1

Teopema 1.3 (Opumnd, cm. [2] ¢. 350]). Ecau das nexomopoezo € > 0

(1.3) Z a2 log?(k 4 1) (log log(k + 2))' ™ < +o0,
k=1

o0

mozda pad Y. arpr(x) n.e. besycarosno cxodumesa na [0, 1].
=1

Teopema 1.4 (|3 c. 132]). Hycmov () OHC na [0,1]. Ecau

Z a? (loglogn)? < +oo0,

n=1

[e.e]
moeda pad Y. anpn(x) cymmupyem memodom (C,a), a > 0, n.e. na [0,1].
n=1

Cupasemeo paseHctso (cum. [4])

(1.4) /01 F(2)F(x)de = n;l <f (;) _f (’ Z 1)) /0 Flo)da
5
i=1

/n1 (f(:c) - f <:l>) F(z)dz + f(1) /01 F(z)dz,

n

rae F, f € Lo u dynkuua f(r) npuHuMaer JMIb KOHEYHbIE 3HAUYCHUS B KAXKJION

roure orpeska [0, 1] (em. (1.1)).

HyCTI) Wn Hey6I>IBaIOHLaH IOC/IEI0OBATE/IBHOCTD IIOJIO2KUTE/IBHBIX YHCEJI, YIOBJIE-

TBOPSIIONIAsT YCIOBUIO
u
n
P, (a,V/w,z) = Zak\/wkgpk(az).
k=1
Jlerko Buzers, uro ecnu f € La(I) (em. (1.1),

(16) > Culhia = [ 1@)Py(a.vv.a)do.
k=1
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IIyctn

'(L —

JIemma 1.1. Iyemo (ay) € 3. Yepes H, obosnawum mmoocecmeo ecex i (i =
1,...,n — 1), daa xasicdozo us xomopwvir Hatidemca mouka r € [+, L) maxas,

n’> n

wmo

T i+1
sign/ P (a,v/w,u)du # sign/ P, (a,v/w,u)du,
0 0

moezoa

(1.8) - /O; P (a, Vv, w)du| = O(1).

Loxazameavcmeo. B cuiy menpepbiBHOCTH DyHKITHI fox P, (a, /W, u)du naiinercs
i it
TOUKA Ty € [, “1=)

o TaKas, 4To

Tin

0
Orcrona

i i

/Oi Po(a, vw,u)du = / P, (a, v/w,u)du.

Tin

CrenoBaTebHO, UCTIOIB3Ys HEPaBeHCTBO [esbiepa, 3aKkiodaemM

‘/ W w)du| < Z/ Ju)|du

i€H,

S/O IPn(a,f,U)ldu§</ LACRVERD) > (Zn:“w’f)

0

i€H,

=1
1
2

n
2
< ,/wn< E ak> =0(1)y/wy.
k=1
1
YMHOkKas 9TO HEPABEHCTBO Ha = M HCHONL3ys Hepasencrso ([1.5), momydaem

CIPABEJIMBOCTD JIEMMBI O

2. TIOCTAHOBKA 3AJIAY

Bomnpocsl OpTOrOHAIIBHBIX PSJIOB U3yUeHbl, HapuMep, B MoHorpaduu [2] u B pa-
Gorax [6]-[10]. Ormerum, uro u3 Teopem Menbmosa [5] u Banaxa [I] ciemyer, uro
CXOJIUMOCTD ODIIIX OPTONOHAJIBHBIX PSIJIOB U CXOJUMOCTD 001X psijioB Pypbe s
byHKIMH 13 HEKOTOPOTO T PEPEHITHATHLHOTO KJIaCCa ABSIOTCSI Pa3HbIMU 3a,/1a1a-
vu. B mepBoM ciydae pemraroniyio posib UrpaioT KoI(MMUINEHTH OPTOrOHATIBHOTO
psina. Bo Bropom ciydae npunasgexkaocts Gyakmun f (f 2 0) x sobomy mudde-

PEHINAILHOMY KJIACCY He rapaHTHPYeT CXOIUMOCTH ee psifga Pypbe OTHOCUTEIHHO
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obrmx OHC. Craso 6611k, Ha/m0 HATOKUTE yesaoBus Ha Gyrkun OHC, aTober psin
®Dypbe 110 ITOH cUcTEME UMEJI «XOPOIINe» CBOWCTBa. ToUHEe, pACCMOTPUM CJIEJLYIO-
ue KJIacchbl (PpyHKITHI:

A;, HempepbIBHBIE (DYHKITUU.

Ao, (byHKIIUN OIpaHUYEHHON BapUAIIAN.

A3z, abCOMOTHO HENPEPBIBHBIE (DYHKIUH.

Ay, xiaccwl Hy,.

Paccmorpum takxKke coiicrBa psaos Pypoe:

B, cXOIuMOCTb HOYTH BCHOLY.

Bs, cymmupyeMocTh MeTomaMu de3apo II.B.

Bs, 6e3yc/ioBHAsT CXOJIUMOCTb.

By, abcooTHAS CXOIUMOCTD U T.JI.

CraBsTcs 3a/a9m: KaKUM YCJIOBUSIM JTOJ2KHBI yaoBieTBopsaTh (yukiun OHC,
aT00b! pst Pypbe Kaxk 10l pyHkimn u3 kiacca A;, 1 = 1,2,3,4, ..., uMes CBOACTBO
Bj, j=1,2,3,4,... . Hexoropsle n3 BLINEOTMEIEHHBIX 33784 OBIIH PACCMOTDPEHBI

B paborax [1I]-[20].

3. OCHOBHBIE PE3VJIbTATHI

Teopema 3.1. Iycmo (p,) OHC wa [0,1], h(z) =1 u

(3.1) > CR(h)wy, < 0.

k=1
Ecau das 060t nocaedosamenvrocmu (ay) € Lo (cm. (1.7)))
(3.2) D, (a,v/w) = 0(1),

mo Y o, C2(f)w,, < +oo dar moboti pynkyuu f € Lip 1.

Joxasamenavcmeo. B pasencrse (1.4) monoxum F(z) = P,(a, /W, ), Toraa

(3.3) /01 F(@) P (a, /3, 2)da = nf (f (;) _y (“;1» /O Py (a, /W, 2)dz

L (-1 (9) e

1
+f(1)/ Pn(a, \/X;,I) d.CC = Il +IQ +[3
0
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Honaras f € Lip1 u yuurbisag (3.2]) numeem

()1 (N e

n—1
/ P,(a,v/w,z)dx
0

n—1

(34) |L|<>

=1

—o() . Y

i=1

Hycrs Ay, = [=2, L] u f € Lip 1. Torna mmeem

=Y max [ -1 (n) \ [ Bt s

_ Z/ 2)|dz

1)%/0 Py (a, W,x)dsz(l)i(/olpi(a, \/vT/,x)dx)

(3.5) =0(1) ;(éaiwk>é =0(1) \/2’7 (i ai) : =0(1).

k=1

1
2

Hasee, ucnosssys nepasercrso Komwm u (3.1) mosygumm:

= |10 [ Pata v ] = 0] [ S o) do
k=1
Zﬁ/ o) do| =

=0(1) <kzl ) <ch >1—0(1).

W3 mocsteimero HepaBencTBa u . 3.5) Gyzem umern

/0 F(2)Pa(a, v/, 2)da

Orcrona u u3 ([1.6) st roboro (ay,) € £y

D arywkCr(f) = O(1).
k=1

= 0(1)

)| S avmenn)
k=1

= 0(1).

Ecisin Tenieps B KavdecTBe aj BozbMeM |a|sign Ck(f), Oymem nmers
n
> lary/WikCi(f)] = O(1).
k=1

Taxum 06pazoM, st 6010 (ay,) € lo cxomurest psisy Y oo ; aiy/WiCi(f).
Orciona B cuiy nzsectnoit reopemsr (Cy(f)\/Wk) € L2, T.e., 11 m000it DyHKIIH
f€Llipl
o0
Z C;%(f)wk < +4o00.

k=1
18
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Teopema [3.1] noxasana. O

Teopema 3.2. ITycmov (p,) OHC na [0,1] u ewnosnsaemes ycaosue (3.1)). Eeau

daa mo60G nocaedosamenvrocmu (a,) € b ewnoansemes yeaosue (cm. (1.7)))
Dy (a,vw) =0(1) npu wy = log*k,

(oo}
mozda das mobot Pynruyuy f € Lipl pad > Cr(f)er(z) cxodumes n.e. na [0, 1].
k=1

Zloxasameavcmeo. JleficTBuTeNIbHO, TTOIaras B TeOpeMe wy, = log? k, mosryunm
o0
2 2
Ci(f)log” k < 0.
k=1
Teneps CIpaBeAIMBOCTD TEOPEMBI [3.2] BBITEKACT U3 TEOPEMBI O

Teopema 3.3. ITycmov (p,) OHC na [0,1] u ewnoansemes ycaosue (3.1)). FEeau

das mobotll nocaedosamenvrocmu (ay) € b U daa Hexkomopozo € > 0 6bNOAHAEMCA

yeaosue (em. (1.7))
Dy (a,\/w(e)) = O(1) npu wy(e) = log”(k + 1)(loglog(k + 2))'*,
mozda pad Pypve arobot dynxyuu f € Lip 1
S Cul(f)gn (o)
n=1
besycaosro cxodumes n.s. na [0,1].

Jokasamenvcmeo. eficrBurensno, nosaras B Teopeme [3.1]

wi(e) = log? (k + 1)(log log(k + 2))1+*

IIOJIY UM
o0
2
ch(f)wk(’f) < 0o0.
k=1
Tereph crpaBeIIMBOCTb TEOPEMBI |3.3| BBITEKAET U3 TEOPEMHbI (1.3 ([

Teopema 3.4. ITycmov (¢,) OHC na [0,1] u swnoansemes ycaosue (3.1)). Ecau

daa mo60G nocaedosamenvrocmu (a,) € b ewnoansemesn ycaosue (cm. (1.7)))
Dy (a,v/w) =0(1) npu w, = (loglogn)?,

mozda pad Pypve arbot gynkuyuu f € Lip 1

S CulF)en(@)

cymmupyemes, memodom (C, ), a > 0, n.a. na [0,1].
19
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Zlokazamenvcmeso. JlelicTBUTEIBHO, TIOJIarast B TeopeMe w,, = (loglogn)?, mo-

Sy 9UM
(o)
Z C%(f)(loglogn)? < oco.
n=1
Tenepb crpaseIBoCcTb TeopeMsl [3.4] Berekaer u3 reopemst [1.4] O

Teopema 3.5. ITycmo (p,,) sadannas na [0,1] OHC u svinoanaemes yeaosue (3.1)).

Ecau das nexomopot nocaedosamenvrocmu (by) € lo

(3.6) lim sup D,, (b, v/w) = +00,

n—oo

mozda cywecmeyem gynxyus g € Lip 1 maxas, wmo
o0
Z C%(g)w, = +o0.
n=1

Joxazameavcmeo. He orpannamBasi OOIIHOCTU JOIYCTUM, ITO

(3.7) ‘ /O P (b ) da

=0(1).
HeitcTBUTEILHO, €cn

= +o0,

1
lim sup ‘/ P,(b,v/w,z)dx
0

n—roo

TO B BUJY TOro, 9TO

‘/Olpn(b, VW, z) dz

= |/Olébk\/‘7k<ﬁk($) dx

< S bklVAEIC)]. hlx) =1,

;bkm/o or(z) dz

k=1
HOJTy IUM
Z |bx| /Wi |Cr (h)| = +o00.
k=1

Orcroma, MOCKOABKY by € o, BBITEKAET, 9TO
oo
E |Ck(h)|2wk = +o00.
k=1

Tax xak h € Lip1 (h(z) = 1), nosydaeM 10Ka3aTeIbCTBO TEOPEMBI Cienosa-
TeJIbHO, B JaJibHelineM OyieM cauTaTh, 9To cupaseanso (3.7)).

Terepb paccMOTPUM TTOCIETOBATEIBHOCTD (DYHKITAIT

(3.8) gn(z) = /096 sign /Ou P, (b, v/w,v) dv du.
20
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B pasencrse ([1.4) nomoxum f = g, u F(x) = P,(b, /W, x), momyaum

1
(3.9) / () Pa(b, /5, 2)dz

Z@Q)W(T))/ (5, 2)d
B e
+ gn(1 /P x)dx

s u (3.8) sierko cuemyer, 9To
1

gn(l)/ P, (b,v/w,z)dx| =
0

> [My| — |Ma| — | Ms].

(3.10) |M3| =

Cormacno (3.8), |gn(z) — gn(L)| < : mpn z € =4, L], i =1,2,...,n, 1 MOCKOIBKY
(bk) S EQ,

Nl=

|Ms| < 1/1 | P (b, /W, x)|dx < i(/ol P2 (b, ﬁ,x)dcc)

(3.11) <Zbkwk> m(;%f =0(1).

Iycrs E, = {1,2,...,n—1}\ Hy, re H,, — MHOXKeCTBO, KOTOPOE OBLIO OIIPEJIEJIEHO

B stemme [I.1] Torga, ecim @ € E,, To

(o (2) = (S [ v =3 [0

Orcrona

> (Qn (;) —gn (ZZID OiPn(b, S )da

Wcnonways mocsejinee paBeHCTBO, Oy/1eM UMETh
= i i+1 "
el n n 0
i i+1 B

> (o0 (5) oo ( ))/ Pa(b, V¥, 2)da
A n n 0
i€Ey

i i+1 B
2 () () [ o

21
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1
>=3

i€E,

/ " Py (b, VW, z)dx
0

= (1 (5) o (5) [ o

i€H,

Us (3.8) u (L.8), moaygaem

> (o (1) () [ e

gl

i€H,

x)|dx = O(1).

Orciona n u3 (3.12) nmeem

|M1\>— / Po(b, v/, x)da —Z’/"Pn(b,\/ﬁx)dx
zGE i€H, 0

2)dz| — = Z ‘/” Py (b, v/, z)da
ZEH 0

(3.13) > n(b7 \/‘;) - 0(1).
Haxkomnerr u3 7 (3.11) u (3.13) saksouaem

(3.14) ‘/ gn(x ,x)dx

PaccvoTpum mmocsie1oBaTeIbHOCTD JIMHEHHBIX, orpanndenubiX Ha Lip 1 dyHkimona-

= /O F(2)Po (b, /3%, ).

limsup |U,,(gn)| = +o0.

n—oo

C mpyroit croponst (em. ([1.2)),

> |My| = [Ms| = [Ms| = Dn (b, vw) — O(1).

JIOB

Corutacuo (3.6) u (3.14)

< 2.

gnllLip1 = llgnllc + sup
z,y€0,1]

gn() = gn(y)
r—y
CunemoBarenbho, B cuity Teopembl banaxa—IllTeitaraysa, cymecrByer dyHKIus g €

Lip 1 Takas, aro

lim sup |Uy,(g)| = +oo.

n— oo

Takum obpasoM, npu (by) € ¢3 pacxomurcst psigy

> bkCrl(g)v/ Wi
k=1

22
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Orcrona n 3aKJII0O9aeM, ITO

Z C¥(g)wp = +o0.
k=1

Teopewma [3.5| moHOCTRIO JTOKa3aHA. ([l

U3 reopemsi [3.5] BbITeKaeT HeylydIIaeMOCTh TEOPEMBI [3.1] B OIIPEIeJICHHOM CMBICIIE.

(1]
i
[4]
(5]
[6]
(7]
(8]
[l
(10]

(11]
(12]

(13]
(14]
[15]
[16]
(17]
(18]
(19]

[20]
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Abstract. In this study, integro-differential equations of arbitrary order are studied. The
fractional order is expressed in terms of the i-Hilfer type proportional fractional operator. This
research exposes the dynamical behaviour of integro-differential equations with fractional order,
such as existence, uniqueness, and stability solutions. To prove the results, the initial value problem

and nonlocal conditions are used.
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1. INTRODUCTION

Fractional differential equations (FDEs) is considered as a branch of mathematical
analysis that deals with the investigation and applications of integrals and derivatives
of arbitrary order. Therefore, FDE is an extension of the integer-order calculus that
considers integrals and derivatives of any real or complex order, see [9, [11] [I3].
The topic of FDEs includes the study of analytic and numerical methods, as well
as theoretical features such as existence, uniqueness, periodicity, and asymptotic
behaviour. One can refer to [4, [5l [T0] [T6], 20} 21] for recent works on FDEs.

Nowadays, there are noteworthy potentials that have been spent on getting new
classes of fractional operators by introducing more general or new kernels. Vanterler
Da C. Sousa recently presented a fractional derivative with kernel of function, and
the classical features of current fractional derivatives are explored in [I5]. The
theoretical analysis and current progress of the w-Hilfer fractional derivative can
be observed in [16, [I7]. In This work, we use the generalized fractional calculus
for a special example of the proportional derivatives discussed in [6]. The new
fractional derivative operator contains two parameters and has features, including
maintaining the semi-group property and convergence to the original function as it

tends to zero. Additionally, it is fully behaved and has fundamental features over the
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classical derivatives with the meaning that it generalizes already existing fractional
derivatives in the literature. Some recent contributions on fractional differential
equations in terms of the generalized proportional derivatives can be located in the
papers, see [I] - [3].

The existence and uniqueness of the solution play an essential role in the study of
FDEs, see [16, 20]. In this paper, we study the existence and uniqueness of solution
for a certain type of nonlinear integro-differential equation(IDE) with initial and
nonlocal conditions. Further the stability of solutions is also being discussed.

The paper is constructed as follows: In Section 2, we present the main definitions
and interesting results. In Section 3, existence and stability results are established
for proposed problems. In Section 4, existence and stability of solutions for nonlocal
IDE is discussed.

2. PRELIMINARIES

Some basic definitions and results introduced in this section. Let C be the Banach

space of all continuous functions b : J — R with the norm
bl = sup{b(®)| : t € J}.
We denote the weighted spaces of all continuous functions defined by
Cop(,R)={g:J = R: (¢(t) —4(0)"g(t) € C}, 0 <v <1,
with the norm

Isllc, . = supl(w(H) - ¥(0)" o(t)

Definition 2.1. [6]If ¥ € (0,1] and a € C with () > 0. Then the generalized
proportional fractional(GPF) integral

21) (o) (1) :/0 w/(s)eoﬁl(w(t)_w(s))(¢(t)ﬂ;1iﬂ((;)))a_ (o).

Definition 2.2. [6] If ¢ € (0,1] and o € C with R(«) > 0 and ¢ € Cla,b], where
’(/J/<S> > 0, the GPF derivative of order o of the function b with respect to another
function isdefined by with wl(t) # 0 is describe as

(22) @0) 0= (5 5)

(1) di
/0 & (5)e GO0 W(t)p_(f(f)i: " h)ds.

Definition 2.3. [6]If ¥ € (0,1] and o € C with R(a)) > 0 and ¢ € Cla,b], where
wl(s) > 0, the GPF derivative in Caputo sence of order o of the function b with
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respect to another function is defined by with 1 (t) # 0 is describe as
(2.3) (.@O"ﬂ”ph) (t) = gn-avv (.@”’ﬂ?wh) (t).

Definition 2.4. [6] The ¢-Hilfer GPF derivative of order a and type B over b with

respect to another function is defined by
(2.4) (gaﬁﬁ;wh) (t) = FPU-)T59 (glyﬁ;w) g A=A (1=a) 0sp
Lemma 2.1. Let o, 8 > 0, Then we have the following semigroup property
(S0 FBIg)(1) = (7 Vg)(0),
and
(270 720 %g)(t) = g(t).

Lemma 2.2. Let n — 1 < a < n wheren € N,9 € (0,1], 0 < 8 < 1, with
v=a+B(n—a), suchthatn —1<v<n. Ifge C, and 3" ""%gec O, then

OO (1) —(s)

a9 ga,B,9; w k—v,9;¢
(s ; 9Ty — k+ 1 7 (@),
Lemma 2.3. [15](Gronwall’s Lemma [18]) Let o > 0, a(t) > 0 is locally integrable
function on J and if g(t) be a increasing and nonnegative continuous function on
J, such that |g(t)| < K for some constant K. Moreover if h(t) be a nonnegative

locally integrable function on J with

h(t) < alt) + g(lf)/U W' (s) () = ()" b(s)ds, (1) € J,

with some o > 0. Then

mwsaw+/

0

n=1
Theorem 2.1. [§](Schauder fized point theorem) Let B be closed, conver and
nonempty subset of a Banach space E. Let N : B — B be a continuous mapping
such that N(B) is a relatively compact subset of E. Then N has atleast one fized
point in B.

Theorem 2.2. [8|(Krasnoselskii’s fixed point theorem) Let X be a Banach space,
let Q0 be a bounded closed convex subset of X and let Ty, T> be mapping from € into
X such that Thx + Toy, € Q for every pair x,y € Q. If T1 is contraction and Ty is

completely continuous, then the equation Tix + Tox = x has a solution on 2.

Theorem 2.3. [8] (Banach Fized Point Theorem) Suppose Q be a non-empty closed
subset of a Banach space E. Then any contraction mapping B from Q into itself

has a unique fized point.
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3. SOLUTION OF INITIAL VALUE PROBLEM

In this section, we consider the Initial value problem(IVP) for fractional IDE of

the form

t
2059w(0) =g (10(0) [ bt 0(6)ds ), v =0T,
0
I (1) e—o = o,
where DA% is ¢)-Hilfer GPF of orders a € (0, 1), type 8 € [0,1] and ¥ € [0,1], b is

the given continuous function, J'~*¥ is GPF fractional integral of orders 1 —v(v =

(3.1)

a+ B — af). Let R be a Banach space, g : J X R x R — R is a given continuous

function. For brevity let us take

t
H(0) = [ kit .0()ds
0
We make the following hypotheses to prove our main results, for every ¢t € J. We

declare

(H1) There exists a constant g > 0 such that

9(5,61(),02(-)) — a(s,91(-),92()| < Lg (1b1(-) = 921 ()] +[b2(-) —92()[) ,
Set g = g(s,0,0).

(H2) For all i,y € R, there exists a there exists a constant £y > 0, such that
t

; |k(t,s,b) = k(t,5,9)| < £y [b() = ()]
Set k = [ |ku(s,7,0)|dr.
(H3) There exists A, > 0, we have J%¥p(t) < A, p(t).

Lemma 3.1. A function § is the solution Eq. (3.1)), if and only if h satisfies the

random integral equation

B(E) = gmreye T OO ) — (w(0) !

1 ! -1 t)—Y(s ! a—
B2+ gy | T OO 00 0l gl (). TB(5)ds

Theorem 3.1. Assume that hypotheses (H1) and (H2) are satisfied. Then, Eq.
(3.1) has at least one solution.

Proof. Consider the operator P : Ci_, — Ci_, .y, where the equivalent
integral Eq. (3.2]) which can be written in the operator form

Bh(¢) :W%(]?‘(lj)e%(w(t)_w(m)(w(t) _ (w(o))u—l
1 t 9—1 t)—(s 4 a—1
(3.3) + W/O e 7 W=Dy (5) (9 (1) — 1(s))* " a(s, b(s), Hb(s))ds.
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For any h € J, we have

Iv— 1]_"( )
+ O / e (1) la(s, b(s), Hb(s))] ds
< ﬁy_?‘;(y) S / v'(s (5)*~ a5, b(s), Hb(s)) — (5,0,0)
+9(s,0, 0)|ds
< G )+ e f)) [ W OWO 1 0] + b ) + ) s
< o+ O (0)) /¢ () lalb06)
—1—8/ |k (s, T, b(T k(s,7,0)|dr + {4 / |ks¢0)|d7’+|g|)ds

bo B(v, ) o B _
< GTEy + ety W)~ YO) (fgum r%HkHQw+||g||cly,w> =

This proves that B transforms the ball B, = {f) €Ciyy: ||h||cl,w} < T} into
itself. We shall show that the operator B3 : B, — B, satisfies all the conditions of
Theorem The proof will be given in several steps.

Step 1: ‘B is continuous. Let b, be a sequence such that b, — b in Ci_, 4, we

derive

(w(t) ()"
9T ()

\(m(ﬂ = P(1) () — (0)) | <

<[ (50" (s, ba(5), Hba(5))) — o, b(s), Hb(s)))| ds
< (D)~ v(O) fj;’(ji (1(1) — ()" x
<ol b)) — a0 HOODle,

< iiS?(Z% ($(T) = $(0)* 18 b (), Hba()) = 8 () HOOD e, , -

Since g is continuous, then we have ||Bb, —Bbllo,  , —0 as n— .
Step 2: B(B,) is uniformly bounded. This is clear since B (B,) C B, is bounded.
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Step 3: We show that 3(B,.) is equicontinuous.
Let t1,t2 € J,t1 > t2 be a bounded set of C'i_,  as in Step 2, and h € B,.. Then,

(1) = 9(0)' ™ Bo(t1) — ((t2) = ¥ (0)' " Ph(t2)

- ‘(1/’(’50 —VOF ™ () wb(t1) — wb(5))° o, B(s), b (s))ds

vl (o) 0
(w(t2) =0 (0)"" ™ o
T 9eT(a) Y )W(t) — () Lg(s,b(s), Hh(s))ds

lalle, .. ) )
< Rre B ) [((h) —$(0)" — (k) ~ v(0)"]

As t; — tg, the right hand side of the above inequality tends to zero. As a
consequence of Steps 1-3 together with the Arzela-Ascoli theorem, we can conclude
that B is continuous and compact. From an application of Theorem we deduce
that 9 has a fixed point h which is a solution of the problem . O

Lemma 3.2. Assume that hypotheses (H1) and (H2) are satisfied. If

Ly(1 4 Ly) o
ST (W)~ w(0) Blra) <1.

Then, (3.1) has a unique solution.
Next, we shall give the definitions Generalized Ulam-Hyers-Rassias(g-UHR) stability

stable for the problem (3.1)). Let ¢ > 0 be a positive real number and ¢ : J — RT

be a continuous function. We consider the following inequalities
(34) D27y (1) — a(t,n(t), Hn(1)] < o(t).

Definition 3.1. Eq. (3.1)) is g-UHR stable with respect to @ if there exists a real
number Cf., > 0 such that for each solution v: R — Ci_, of the inequality (3.4)
there exists a solution by : R — Ci_, 4 of Fq. (3.1) with

In(t) — h(t)| < Crop(t), te

Theorem 3.2. The hypotheses (H1), (H2) and (H3) hold. Then Eq.(3.1) is g-UHR
stable.

Proof. Let y be solution of inequality (3.4) and by Lemma [3.2] there exists a
unique solution b for the Eq. (3.1). Thus we have

B(E) = gmreye T OO ) — (w(0)

L [f @)y (4 (N als b(s). E(s)ds
+ 5t | 0 (5)(@(H) — ()™ (5. H(s). Ho(s))ds.
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By differentiating inequality (3.4)) for each ¢ € J, we have

(0~ Gt OO (1) — (0))
1 ¢ 91 t)—(s ! a—1
g | ¢TI ) w0 = v(5)" (s, 9(0). Ho()ds| < A0
Hence, it follows
() = B0 < [o(t) = =iz T OO u0) = (w(0)
L st wm—neny () Lals. b(s). Hb(s))ds
5273 . ¥/ (5)(0(1) — ()" (s, D(s), HB(5))ds.
< [o(0) - G e T OO0 - (w0

1 b 1) —plal) -
“ el (a) / ¢TI (5)(5h(8) — b(s)* (s, 0(s), Hy(s))ds

1 b a—1
+ m/g ¥ (s)((t) —¥(s))* " la(s,n(s), Hy(s)) — a(s, b(s), Hb(s))| ds

< () + St [0 w00 — 0 o(s) — (o) ds
< plt) + S [ (6)0(0) — 006" Ap(s)ds 1= Cipi()
Thus, Eq. is g¢-UHR stable. [l

4. SOLUTION OF FRACTIONAL NONLOCAL IVP

In this section, we study the existence, uniqueness and stability of IDE involving

1-Hilfer derivative given by

(1) {@1‘*_’3’;9_”"13(75) = a(t. b(t). Ho(),

Jl=vdvh(t) = Y0 eb(ri), T € J,
where 7;,4 = 0,1,...,m are prefixed points satisfying 0 < m, < ... < 7, < b and
¢; is real numbers. Here, nonlocal condition h(0) = >~ ¢;h(7;) can be applied in
physical problems yields better effect than the initial conditions §(0) = bo. Further,
Eq. is equivalent to mixed integral type of the form
(4.2)

(0=t v m T 91 ) —w(s))
L0 O)! (25 (w(0)-9(0) ZizlciA 2T WOV ()

D=1 @) = 0(9)" " als.b(s). Hb(s))ds
ety Jo T OO (5) (6(1) ()" 0. b(s), Hb(s))ds,

where
1

T= - .
P10 (w) — SO e T (= 0) (4 (7;) — 4b(0))7 1
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Theorem 4.1. Assume that (H1) and (H2) are satisfied. Then, Eq.(4.1) has at

least one solution.

Consider the operator A" : Ci_, y = Ci—, 4, it is well defined and given by

(4.3)

T<w<?a—#((at>)>>”’ie%(wu)—wo)) Z;ilci/o T Oy (5)x

B = (@(r) - V()" ols,b(s), Ho(s)ds
tgeiiag Jo €7 OV (5) (1(t) — 1(5)* " 8(s, b(s), H(s))ds

Set g(s) = g(s,0,0). Consider the ball B, = {h €Civy:ble, ., < r}.

Now we subdivide the operator .4 into two operator .41 and .45 on B, as follows;

Hh(t) = T(?ﬁ(ga}zﬂof;)))”‘ D=1 (1) 0))2 / TRV (6)x

X ((7i) = ()" a(s. b(s), Hb(s))ds
and
(0 = Gy [ €T O ) (0l0) = ()" (5., ) s

The proof is divided into several steps.
Step.1 A1h + Aoy € B, for every b,y € B,.

= 9al(a) e Zcz/ v (s —(5))* " a(s, b(s), Hb(s))| ds

<L > e /OT () () = ()" (|la(s, b(s), HO(s)) — a(s,0,0)] + |a(s,0,0)]) ds

< g | " (5) () — ()™ (G (8] + () + [5(s)]) ds

<y |8 @ @) =)™ (t (1)1 + 6 Iy + )] + i) ds

(OL) i=1
This gives
B(V Oé)T U a+v—
143900 < GaTa) ;c ((7:) = (@)™ x
(1.4 (tot+ )0l + o[+ 1)
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For operator .45

)
_ W) o)t

(W(t) —(0)* ™ B(v,a)x

< (o0 6) 0l + o] Ml )

Thus, we obtain

(4.5)

B(v, ) o ~ ~
4500 < Fapray WO —¥(O) (eguwb) oMo, .., +4[f,, .+ ||g||c1_w)-

Linking (4.4)) and (4.5)), for every b,y € B,.,
| A0+ Aol < Al + [ Aavle, <7

Step.2 41 is a contration mapping.
For any h,y € B,

(B () = An(E) () = (0)" "

I\
!
)=
o

s
Il
_

ci /f W' (s) (P(1) — () als, b(s), Hb(s)) — a(s, n(s), Hy(s))| ds

m

LW . / () ) — ()" Tb(s) — ()| ds

i=1 @

_|_

,1)—‘
NS/N
Ko

IA
S
L=
—~

m

LUBTS™ () = 6(0) ™ Br,a) [h =)l -

i=1

IN
)

(=3
’ﬂH
§+

This gives

I(Aih = A, < W S e () — 9(0) 7 B, a) b - )le, -

i=1
The operator .47 is contraction.

Step.3 The operator .45 is compact and continuous.

According to Step 1, we know that

B(v,«) o ~
489l < iy (408) = 9(0)) (egum)nmclw,nge

+ g )
o HlEle, )

So operator .45 is uniformly bounded.

Now we prove the compactness of operator .A45.
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For 0 < t; <ty < T, we have
1 b, .
T ) W) = (e gl () () ds

1
0 garayF(@) Jo
a+trv—1 a+rv—1
<lslle, ., B a) [((t) = w(0)* " = ((t) — w(0))* ™|
tending to zero as t; — to. Thus 45 is equicontinuous. Hence, the operator .45 is

compact on B, by the Arzela-Ascoli Theorem. It follows from Theorem [2.2] that
the problem (4.1)) has at least one solution.

| A2h(t1) — A2h(t2)] <

" (5) ((t2) — 9(a))* (s, b(s), Hb(s))ds

Theorem 4.2. If hypothesis (H1) and the constant

g Bl (Tzcz ) ))“*”—1+<w<b>—¢<a>>“)<1

holds. Then, Eq. . ) has a unique solution.

Next, we shall give the definitions of g-UHR stability for Eq. (4.1)
(4.6) [ D>y (t) — g(t, b(t), Hh(t))| < ¢(t).

Definition 4.1. Eq. (4.1) is g-UHR stable with respect to ¢ € Ci_,, .y if there exists
a real number Cy , > 0 such that for each solution vy € Ci_,, . of the inequality (4.6))
there exists a solution ) € C1_, 4 of Eq. (4.1)) with

() = b(1)] < Cg (D).

Theorem 4.3. Let hypotheses (H1) - (H3) are fullfilled. Then Eq. (4.1)) is g-UHR
stable.

Let y be solution of inequality (4.6)) and by Theorem there b is unique solution

of equation
DBy (1) = g(t, b(t), HH(t)),
JLv O (4) ch Ti), Ti€J

is given by

h(t) = Ay

where

L [f ot wo—vtoy (o (s (s b(s). Hb(s)\ds
o | W (5) 00) — ()" a5, 06), HO()ds,

T 1/)t —1/) 0 vl 19 1 t)— t)—(s
4, = L (1;0‘1"(0[())) W o>>z / 251 (1)~ ()

’

¥ () (0(7) = 9 (s))* " as, h(s), Hh(s))ds
33




S. HARIKRISHNAN, D. VIVEK, E. M. ELSAYED

Thus Ah = A‘)'
By differentiating inequality (4.6)), we have

‘U(t) -4y = o ST OV (5) ((1) — ()™ (s, 0(s), Hy(s))ds

< Aplt).

Hence, it follows

() - b(#)]

< |n(t) — Ay — ﬂ%@ /O t e T OV ENY (5) ((t) — 1(s))* " a(s.b(s), Hb(s))ds
<o) = 4y~ s | eI OO (5) ((1) — () o5, n(s), Ho(s))ds

1 ! ! a—1
+19"1"(a)/0 b () (1) =¥ (s))* " la(s,0(s), Hy(s)) — (s, b(s), Hh(s))| ds

Lg(1+4y)

< pplt) + Beet [0 = 0" In(®) = () s

0

By Lemma there exists a constant M* > 0 independent of A,¢(t) such that

[9(t) = b(O)] < M Ap(t) := Cypp(t).

Thus, Eq.(4.1) is g-UHR stable.
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Abstract. Let t € (0,00), 7 € (1,00)" and § € [1,00)". We establish versions of the Rubio
de Francia extrapolation theorem, and further obtain the bounds for some classical operators and
the commutators in harmonic analysis on the mixed-norm amalgam space (L7, L7)¢(R™). As an

application, a characterization of the mixed-norm amalgam spaces is given.

MSC2020 numbers: 42B35; 42B25; 42B20; 46E30; 30H35.

Keywords: BMO(R"™); mixed-norm space; amalgam space; weak space; Littlewood—
Paley function; characterize.

1. INTRODUCTION

In 1926, the first appearance of amalgam spaces can be traced to Wiener [36]. But
the first systematic study of these spaces was undertaken by Holland [20] in 1975.
Feichtinger initially called these spaces Wiener-type spaces in the early 1980’s in a
series of papers [14, 15, 16], and then, following a suggestion of Benedetto, adopted

the name Wiener amalgam spaces. That is, for p, ¢ € (0,00), the amalgam space

(LP, L9)(R) is defined by
> (/:+1 F@)P dzﬂ i

neEZ

(LP,19)(R) := { f € " (R):

loc

Wiener amalgam spaces are a central object of the time-frequency analysis, another
area with links to several mathematical subjects as well as its applications. The
mixed amalgam spaces provide for a basic tool for harmonic analysis. And that
makes these spaces extremely prominent to us. Very recently, lots of vital work
has been done in the study of amalgam spaces. In 2011, Ruzhansky, Sugimoto,
Toft and Tomita [29] established various properties of global and local changes of
variables as well as properties of canonical transforms on Wiener amalgam spaces.
In 2016, Delgado, Ruzhansky and Wang proved the metric approximation property
for Wiener amalgam spaces in [8] and [9]. In 2022, Wang [35] obtained global

IThis project is supported by the National Natural Science Foundation of China (Grant

No. 12061069) and the Natural Science Foundation Project of Chongging, China (Grant No.
cstc2021jcyj-msxmX0705).
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regularity estimates for solutions of non-divergence elliptic equations on amalgam
spaces spaces if the coefficient matrix is symmetric. For some historical notes and for
an introduction about Wiener amalgam spaces on the real line can also be refered
to [18].

Recently, to study the weak solutions of boundary value problems for a t-independent
elliptic systems in the upper half plane, Auscher and Mourgoglou [2] introduced a
particular amalgam space, the slice space EF (R"). Moreover, Auscher and Prisuelos-
Arribas [3] introduced a more general slice space (E?);(R™) for r € (1,00), t €
(0,00) and ¢ € [1,00), and studied the boundedness of some classical operators
on these spaces. For further study and a deeper account of developments on the
slice spaces we may consult [19, 40] and the references therein. In 2022, Zhang and
Zhou [39] first introduced the mixed-norm amalgam space (LP, L9);(R™), as natural
generalizations of the amalgam space (LP, L7).(R").

For t € (0,00), 7 € (1,00)" and ¢ € [1,00)", the main purpose of this paper
is to establish a version of the Rubio de Francia extrapolation theorem on mixed-
norm amalgam spaces, and obtain the boundedness of some classical operators
and the linear commutators by this theorem over the mixed-norm amalgam space
(LP, L9);(R™). Moreover, we study characterizations of mixed-norm amalgam spaces
via the Littlewood—Paley functions. The bounds for the commutators and the
characterizations of the mixed-norm amalgam spaces are new results even for the
classical amalgam spaces.

This paper is organized as follows. Main definitions and necessary lemmas will
be given in Section 2. In Section 3, we establish versions of the Rubio de Francia
extrapolation theorem over the mixed-norm amalgam space (L7, L7),(R™). In Section
4, the boundedness of some operators and the commutators are given on mixed-
norm amalgam spaces by the results of Section 3. In the final section, characterizations
of mixed-norm amalgam spaces via the Littlewood—Paley functions is given.

Finally, we make some convention on notation. Let 7 = (p1, ..., p,) be n-tuples
and 1 < pp,...,pp < 00. P < ¢ means that p; < ¢; holds, %—i— % = 1 means that
i + p% =1 holds, and p/py means that p;/pg holds, where py € [1,00), i =1,...,n.
For « > 0 and a cube @ C R". A ~ B means that A is equivalent to B, that
is, A< B (A< CB)and B < A (B < CA), where C is a positive constant.
Throughout this paper, the letter C' will be used for positive constants independent

of relevant variables that may change from one occurrence to another.
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2. DEFINITIONS AND MAIN LEMMAS

To state our main definitions, we begin with the definition of the mixed Lebesgue
space LP(R™) which introduced by Benedek and Panzone [4] in 1961.
Let 7 € [1,00]". The mixed Lebesgue space LP(R") is defined by the set of all

measurable functions f on R™, such that

1

||f||Lﬁ(Rn) = (/R - </R |f(1:1, ...,xn)‘Pl dx1> 71 dzn> < 00,

with the usual modifications made when p; = oo for some i € {1,...,n}.

—

Definition 2.1. Let t € (0,00), p € (1,00)" and ¢ € [1,00]". The mized-norm
amalgam space (LP,L9),(R™) is defined as the space of all measurable functions f

on R™ satisfying

1fXxae 6 llr@ny
1 llzr, 2oy, mny = ‘ T ol o < o0,
”XQ(-,t)”LP(R") Li(R")
with the usual modification for q; = oo for each i =1,...,n.
Remark 2.1. Ifpy, =---=p, =pand ¢ = --- = g, = q, then (L7, L), (R") is

the slice space (E{);(R™) and the amalgam space (LP, L7);(R™) (see [3, 2]).

Definition 2.2. Lett € (0,00), p € (1,00)™ and ¢ € [1,00]". The weak mized-norm
amalgam space W (LP,L7);(R"™) is defined as the space of all measurable functions

f on R™ satisfying
11w s,y = sup A IXzermis@ s 15 Loy, @ny < 0

with the usual modification for ¢; =00, 1 =1,...,n.

Note that if py = -+ =p, =pand ¢ = --- = ¢, = p, then W(LP, L7),(R") is
the weak Lebesgue space LP:>°(R™), where

1Nl oo gy = ililgAl{w €R™: |f(x)] > A}P < oo

We still recall the definition of Muckenhoupt’s weights A,(1 < p < o0). These
weights introduced in [26] were used to characterize the boundedness of the Hardy—
Littlewood maximal operator on weighted Lebesgue spaces. For a locllay integrable

function f and for every x € R™, the centered Hardy—Littlewood maximal operator

is defined by,

1
M = sup ————— d
f(z) B ATaTEST oo |f(y)| dy,

and the uncentered Hardy—Littlewood maximal operator is defined by,

1
M, f(z) = Qupg @ /Q F()ldy.
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Definition 2.3. Let 1 < p < co. A weight w is said to be of class Ay if

i g () i i) <

A weight w is said to be of class A1 if
w]a, = su
[ ]Al a:e]RPil w(x)

Forp =00, Ao :=Up>14,.

< 00, for almost all x € R".

Some vital lemmas over the mixed-norm amalgam space (L7, L7);(R™) will be
given in the following.
(b) For any f € L}, .(R") and z € R,
Iel,, net,, LIl Jn

where, for any k € {1,...,n}, I, denotes the set of all intervals in R containing z.

My (- (Mi(f)--+))(x) = sup {|;n|/] “e- sup [1 If(yl,---,yn)ldyl]~--dyn}7

Then, it is easy to see that, for any = € R",
M(f)(x) < Mp(--- (My(f)---))(2).
Lemma 2.1. [39] Let t € (0,00). Given g€ (1,00)" and ¢ € [1,0]",
19l @y < Ifllpo,ay,@mllgll e o) (R™), e (LP, L) (R") and g € (L', LT),(R™).
where %—&—%:%—i—q%:l.
Lemma 2.2. [39] Let t € (0,00). Given p € (1,00)"™ and § € [1,00]",
(L7, LD (R = (L7, LT ),(R™),

where %—t— % = %—!— % =1, and as for dual space of mized-norm amalgam spaces,
then
(L7, L7),(R™)] = {fi 1L Loy, @nyy = sup f(ﬂc)g(x)dff}o
”.‘JH(L[?‘,LCT)t(Rn)Sl R™

Lemma 2.3. [39] Let t € (0,00), p € (1,00)" and ¢ € [1,00]™. For any constant
p € [1,00), we have

i HfH(Lﬁ,in)pt(Rn) < ||f||(Lﬁ,in)t(Rn) <Cy ||fH(Lﬁ,Lc7)pt(Rn) )

where the positive constants C1, Cy are independent of f and t.

Lemma 2.4. [5, 21]If § = (q1, .., qn) Satisfies one of the following conditions:
(a) 1< quy...,qn < 00;
(b) 1= =g = 0.
Then for any f € LI(R™), the Hardy-Littlewood mazimal operator M is bounded

on LI(R™).
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The boundedness of the Hardy—Littlewood maximal operator on mixed Lebesgue
spaces LI(R™) for the case of (a) is just [21, Lemma 3.5]. And the case of (c) holds
by a similar argument to the bounds for M on L>*(R) (see [5, p.14]).

Lemma 2.5. Lett € (0,00) and p € (1,00)™. Assume that ¢ satisfies the conditions
of Lemma, 2.4, then the Hardy-Littlewood mazimal operator is bounded on (L7, L7),(R™).

Proof. Fix x € R™ and ¢ > 0, and split the sumprem into 0 < r <t and ¢t < r,
and then

Mf(y) < s 2)|dz + sup ——— |f(2)|dz:=T+11.

0<r<t ‘Q Yy,r | / y,7) r>t |Q(ya )| Q(y,r)
For I, since y € Q(z,t), Q(y,r) C Q(z,2t). Then

IS sup |f (D) XQ(e,20)(2)dz < M(fxq(20) ()

~ oer<t [Q(y, )] Qy,r)
For II, for any z,£ € R", £ € Q(z,t) is equivalent to z € Q(§,t). If z € Q(y,r),
€ € Q(z,t), then & € Q(y,2r). Besides, owing to = € Q(y,t), then = € Q(y, 2r).
Applying the Fubini’s theorem and the Holder inequality, then we get

Il =sup IQy |/ (2)|Q(zpdédz
7 y'f‘

r>t

< sup

dzd
>t |Q( y,2r\/ Qy.2r) |Q 57 ?)] Q(Et)| (2)|dzd¢

Mo ) (2 Ifxacollery
<, (mw' JANLCL )( )<, (Hacsln) )

Therefore, by Lemmas 2.3 and 2.4, we write

”M IXxae20)xo(.0llLs@n)
xa( t)HLP(]R"

M fll L7 L7y, mny S

LA(R™)
HfXQ( t)”Lp)
H HXQ( s XQ(-t) LF(R")
||XQ ”LP(R")
LA(R™)

‘ £ xQ( 20l L7@ny
HXQ( ,t)||Lp R™)

LI(R")
’ ”fXQ(‘,t)”Lﬁ(R")
IXaQ( 6 ”Lﬁ(R”)

~ HfH(Lﬁ,ch)t(Rny
L3(R™)

This completes the proof of the Lemma 2.5. (]

3. EXTRAPOLATION

In this section, we establish a new version of extrapolation theorem on mixed-

norm amalgam spaces via the algorithm of Rubio de Francia for generating A;
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weights with certain properties (see [17]). To state our results, we begin with some
necessary definitions.
A weight w is a positive and locally integrable function on R™. For p € (0, c0), the

weighted Lebesgue space LP (R™) is defined as the set of all measurable functions

f on R™ such that
sz = |
R’n

The weak weighted Lebesgue space LE;*°(R") is defined as the set of all measurable

functions f on R™ such that

F(@)Pw(@) d:c]; < o0

/]

1

Lo @ny = sup dw({z € R™ 1 |f(z)] > A})P < oo.
A>0

For p = oo,

||f||L3}o(Rn) := esssup|f(z)| < oo.
reR™

Theorem 3.1. Given a family of extrapolation pairs F. Assume that for some

1 <py <qo < o0, and for all w € Ay,

<w>[Wﬂm%mw4*<awﬂéﬂuwmwwwmmvvmmef

Let t € (0,00), 7, § € (pg,0)™ and p, § € (qo,00)™ with 1/r;—1/p; =1/s;—1/q; =
1/po —1/qo > 0 for eachi=1,...,n. Then

(3.2) 1Nl (27, L2y, ey < Cligl L L7y, @ny-

The positive constant C' is independent of f and t.

Proof. Let m := ||M||(L(,;/q0)/’L(q/qoy)t(R”)_}(L(ﬁ/qoy7L(q—/qo)/)t(R,L). By Lemma 2.5,
we conclude that the Hardy—Littlewood maximal operator M is bounded on (L(ﬁ/ qo)/,
L(7/90)"),(R™). We begin the proof by using the Rubio de Francia iteration algorithm.
The algorithm R : L°(R") — [0, 0o] is defined by

Rh(z) = Lg:fé;f) ,
k=0
where for k > 1, M¥ = M o--.0 M is k iterations of M, and M°h := |h|. We show
the following properties for all h € (L#/%)" [(@/0)"),(R"):
(A) n] < Rh,
(B) IRAl (15700 pearaory,mny < 2l (1r00 Leara0ry, mnys

(C) Rh € Ay and [Rh]a, < 2m.
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Property (A) holds since Rh > M°(h) = |h|. Property (B) holds by the fact that
m < 00, since
o k
HM h”(L(ﬁ/qo)’,L(q‘/qo)’)t(Rn)

IRANl (r57a0)" 17307y, (mmy < ST < 2||hll (L wra0r7 pe@ra0ry, mny-
k=0

Let us then prove (C). We may assume that h # 0, since the claim is trivial
otherwise. It is equivalent to prove that M (Rh)(z) < 2mRh(z). By the definition

of R and the sublinearity of the maximal operator, we obtain
oo o0 [ee]
MPFh(z) M*+1h(x) MK+ h(x)
MWW@:M(ZW SZWZMZW—Q mRA(z).
k=0 k=0 k=0
Fix (f,g9) € F and define H := {h : ||hH(L(ﬁ/qo)/’L@/qo),)t(Rn) < 1}. Note that
||f||‘gzﬁ7Lq)t(Rn) = ||l (p#790 L4790y, (rny- By Lemma 2.2 and (A), we see
(33) 1A% oy = sup [ F@)®h(@)de < sup [ fa)®Rh(a)da
heH JR" heH JR

To apply our hypothesis, by our convention on families of extrapolation pairs we
need to show that the left-hand side in (3.1) is finite. This follows from Hélder’s
inequality and property (B): for all h € H,

A f(@)PRh(z)dx S| fl (L5790, L3700y, mm) IRAN 15700y 17307, (m)

SIAILs Loy, ey 1Ml @700y Leara0ry, meny < 00

Given this and (C), we can apply our hypothesis (3.1) in (3.3) to get that
(3.4)

1 1
a0 PO
||f||(Lﬁ’L§)t(Rn) < sup ( f(gg)quh(:E)d:C) < sup (/ g(x)pO(Rh(x))Po/%dx)
heH R™ R™

heH

Then for any h € ‘H, by Holder’s inequality,

2 Po/a D B - Po/a
/ng(x) D(Rh(x» Pds S Hg O”(Lr/povLs/pO)t(Rn) ‘(Rh) o (L(7/p0) | L(3/P0) ), (R™)
Po/a
< HQHI()EFLS )e (R™) HRhH zpo[()T/po)'/Q()’LPU(g/PU),/QO)t(]R").

Notice that
m(m) =) = G -()
== and —(— | == .
qdo \ Po qo0 do \Po q0
It follows from the property (B) that
(3.5)
/n g(@)” (Rh(z ))pO/qO dx < g7 (L7, LF) ¢ (R") ||Rh||€z{§?qo>/ L(@/a0) ), (Rn) ~ < gl (L7,L¥) (R

Combined with (3.4) and (3.5), the desired result is concluded. O
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Corollary 3.1. Given a family of extrapolation pairs F, assume that for some

1 <py < o0, and for all w € Ay,

[ Rn f(x)pow(x)dx} = o [/,,Lg(x)mw(x)dx] YL Vg eF

Let t € (0,00) and p, ¢ € (po,0)™. Then

1
PO

1 £l 7, Loy, @my < Cllgll s Lay,@n)-
The positive constant C' is independent of f and t.

For a linear operator 7 and a locally integrable function b, the commutators of

T is defined for smooth functions f by

b, T1f(z) = b(x)T f () = T(bf)(2)-
Now, we recall the definition of BMO(R™). BMO(R"™) is the Banach function space

modulo constants with the norm | - ||pao defined by

b —bg|dy < oo,
Q|/| oldy

where the supremum is taken over all cubes () in R™ and b¢ implies the mean value

of b over Q; that is, bg := |Q| fQ y)dy.

bl Baro = Sup
Ben

Theorem 3.2. Let t € (0,00), p € (1,00)" and w € Ay. Let T be a sublinear
operator.
(a) For ¢ = (1,...,1), suppose that the operator T is bounded from L} (R™) to
LL>°(R™). Then
HTfHW LP,LT),(R™) ||f||(LP LT)(R™)-
(b) For ¢ = (1,...,1), suppose that the commutators [b,T| with b € BMO(R™)

satisfies

(3.6)
Wy R T > N) S Bloao [ T2 (110g (L20)) wian

Then
|/ /1
HX{fe]Rn; Hbvﬂf(z)|>)‘}H(Lﬁ,LT)t(R") S H)\ 1 +10g+ 7

Proof. By Lemma 2.2, there exists g € (L7 , L7 ),(R") such that

(L7,LT) (R™)

IXtzern: 175153 | 15,y (o) = /Rn X{zeRn:|Tf(2)|>A} (T)g(@)dz.

Let w(x) := [M (|g|%)r (z) withy > 1. Then w € A;. Since g(x) < [M (|g|%)}’y (x),

by Lemma 2.1, the hypothesis that 7 is bounded L (R") to LL*(R") and Lemma
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2.5, then we can obtain that
1 Y
MIxgzern: 1Tr@1=3 | (s nay, @y < )\/Rn X{zeRn: |Tf(z)|>A)} (T) [M (|g\i)} (z)dx
1 vy
< M K d
< [ 1s@i [ (1)) @y

] N P

N ”fH(Lﬁ,L‘T)t(]R”)”g”(Lﬁ',L‘T’)t(R")'

S W llwr Ly, @my

By taking the supremum over all A > 0, then we get

IT fllw e, Lay,mny S Ifll (7, L), @ny-
For the part of (b). Argue similarly for the weight w(z) := [M (\gﬁ)r () with
~v > 1. There exists g € (Lﬁ',LT,)t(R") such that g(z) < w(z). Lemma 2.1, the
hypothesis of [b, 7] and Lemma 2.5 yield

1 vy
IXgzern: 10,718 @1> ] (15, L7y, @) < /Rn X{zeRn: [[b,T)f(2)>Al} (T) [M (lg\”)} (z)dx

Slvtmwo [ I (1rogt (L)) [ar (10%)] e
5 0o () I 0 o

/] + (Il
SHA 1+log™ | - lgll o Loy, ny -

(LF,LT)¢(R™)
Hence

(L7,LT) (R")

i b
Ictaears o una, ey < |5 (11087 (1

This completes the proof of Theorem 3.2. (|

(L7,LT)(R")

4. SOME ESTIMATES ON MIXED-NORM AMALGAM SPACES

In this section, we apply our extrapolation theorem to prove norm inequalities
over mixed-norm amalgam spaces.

We apply the results of Section 3 to the singular integral operators, and establish
the mapping properties of these operators and the commutators in this subsection.

Let § > 0. The Calderéon—Zygmund singular integral operator of non-convolution

type is a bounded linear operator T : L?(R") — L%(R"™) satisfying that, for all

feCE(R") and x ¢ supp (f),
T(f)(x) = | K(z,y)f(y)dy,
R’Vl
where the distributional kernel coincides with a locally integrable function K defined

away from the diagonal on R x R™. When K also satisfies that, for z, y € R™ with
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Co
41 K(z,y)| < —°
(4.1) |K(,y)] m—

C4y|h)?
(42)  |K(o,y) — K(o,y+ 0|+ K(5,y) - Kz +hy)| < |_'y+5

whenever |z — y| > 2|h|, and we call K the standard kernel.

In [13], it is proved that for the Calderén—Zygmund singular integral operator
T with the kernel satisfying (4.1) and (4.2), f 1 < p < oo and w € A, then T
is bounded on LE(R"). If p = 1 and w € Aj, then T is bounded from L} (R")
to LL°°(R™). In [31], the commutator [b, T] are bounded in the weighted Lebesgue
space L (R™) whenever 1 < ¢ < oo and w € A, and in [28], if p=1 and w € A;,
then

wiwers i) >0 5 [ (1erogt (L20) )

Thus, by Theorems 3.1 and 3.2, we can easily get the boundedness of the Calderén—
Zygmund singular integral operator T' with the kernel satisfying (4.1) and (4.2) and
the linear commutators [b, T'] over the mixed-norm amalgam space (L7, L7);(R™) in

the following.

Corollary 4.1. Let 0 <t < oo, p € (1,00)".

(a) If § € (1,00)", then the Calderén—Zygmund singular integral operator T with
the kernel satisfying (4.1) and (4.2) is bounded on (L, L7),(R™).

(b) If§=(1,...,1), then the Calderon—Zygmund singular integral operator T with
the kernel satisfying (4.1) and (4.2) is bounded from (L, LYY, (R") to W (LP, LV),(R™).

Corollary 4.2. Let 0 < t < 0o, p € (1,00)" and b € BMO(R"™). Let T be the
Calderon—Zygmund singular integral operator with the kernel satisfying (4.1) and

(4-2),
(a) If 7 € (1,00)", then the operator [b,T] is bounded on (LP, L7),(R™).
(b) If 7= (1,...,1), then

/1 + (L
X tzere: 1pa1r @M ] 25 1, ) S HA T+log™ (7

(L7,LT),(R™)

Let S*~1(n > 2) be the unit sphere in R" equipped with the normalized Lebesgue
measure do, Q(z) is homogeneous of degree zero on R” and Q € L(S"~!) with

1 < 6 < o0 and such that

(4.3) [ Qadota’) =0,
45



Y. LU, J. ZHOU, S. WANG

where 2/ = I%I for any = # 0, the homogeneous singular integral operator T can
be defined by
Qy’
Tof(e) = po. [ S0 1t~ a

and the Marcinkiewicz integral of higher dimension pg can be defined by

pof(z) = /OOO /| mf(y)dy

z—y|<t |1' - y‘nil
The commutators of Marcinkiewicz operator ug and a locally integrable function b
can be defined by

N
dt
3

ool = | | Oo/l UE =) 10y b)) f(y)dy

z—y|<t |(E - y‘nil

Lemma 4.1. [12] For Q € LO(S"™!) and 1 < 0 < o0. If§' <p < 0o andw € A, g,
then Tq is bounded on LE(R™). If p = 1 and w € Ay, then Tq is bounded from
LL(R™) to LL>°(R™).

From Theorems 3.1, 3.2 and Lemma 4.1, we can easily get the results as follows.

Corollary 4.3. Let 0 <t < oo, p € (1,00)".
(a) If G € (1,00)", then Tq is bounded on (LP,L7),(R").
(b) If §= (1,...,1), then Tq is bounded from (LP,LY),(R"™) to W(LP, LT),(R™).

Lemma 4.2. [10] For Q € L(S"!) and 1 < 0 < o0, if 1 <p < 00, and w € A,.
Then pg is bounded on LE,(R™). If p=1, w € Ay, then pq is bounded from L. (R™)
to LL>°(R™).

Applying Theorems 3.1, 3.2 and Lemma 4.3, we have the following results.

Corollary 4.4. Let 0 <t < 0o, Q € LY(S"™1) with 1 < 6 < o0, and p € (0',00)".
(a) If § € (0',00)", then ugq is bounded on (L7, L7),(R™).
(b) If = (1,...,1), then ugq is bounded from (L7, Lf)t(R”) to W(Lﬁ,LT)t(R”).

Lemma 4.3. [10,11] Let Q € LY(S*™1),1 < 0 < 0o, b € BMO(R™). If ' < p < oo,
and w € Apser, then [b, uo] is bounded on L (R™). If w € Ay, then there exists a
constant C' > 0 such that

witye R ol i1 > 0 < 0 [ T (1ot (H2) ) wgypay

Therefore we have
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Corollary 4.5. Let b € BMO(R"), 0 <t < oo, 2 € LY(S"™1) with 1 < 6 < oo,
and g e (6, 00)™.

(a) If § € (0',00)", then the operator [b, uq] is bounded on (L7, L9),(R™).

(b) If = (1,...,1), then

|| + (£
IXoern: 1buals@> 1o oy, @y S HA I+log™ | =7

The Bochner—Riesz operators of order § > 0 in terms of the Fourier transforms
is defined by

(L7,LT), (R") .

2\9%
mn ©=(1-5) Je©

where f denote the Fourier transform of f. These operators can be defined by
Thf(z) = (f * d1/r) (2),
where ¢(z) = [(1 — |- [*)%]V (), and f" is the inverse Fourier transform of f.

The associated maximal operators is defined by

T! f(x) = sup [T f(w)].
R>0

Lemma 4.4. [32,33,34] Let n > 2. If 1 <p < o0 and w € Ap, then T V72 s

bounded on LE (R™). For a firxed R >0, if p=1, w € Ay, then T "D/2 s bounded
from LL(R™) to LL*°(R™).
Corollary 4.6. Let 0 <t < oo, and p € (1,00)™.

(a) If 7 € (1,00)™, then T2 s bounded on (L7, L7),(R™).

(b)) If§=(1,...,1), then Tz(z D/2 is bounded from (LP, LT) (R™) to W (LP, Ll) (R™).

Lemma 4.5. [1, 24] Let n > 2, and b € BMOR"). If 1 < p < o0, w € A,, and
§ > 251 then then [b,T}] is bounded on LE,(R™). If p=1, w € Ay, and § > 251,
then

w(yers 1) sl >ap s [ IO (et (K900 uiay

Corollary 4.7. Let b€ BMO(R™), 0 <t < 0o, and p € (1,00)™.

(a) If ¢ € (1,00)", and § > 5L, then the operator [b,T§] is bounded on
(L7, L), (R™).

(b) If = (1,...,1), and 6 > 2L, then

£ + (/]
X (aekr: |16, T61f<z>|>A}H(Lp L @) S H L+log" (=
Let 0 < a < n, the fractional integral operator I, is defined by

Io f(x) ::/R L)_d&

n |z —gnme

(L7,LT).(R") .



Y. LU, J. ZHOU, S. WANG

And the associated fractional maximal operator M, is defined by

1
« = —_— dy.
) 1= swp e | )y

We note that the fractional maximal functions enjoys the same boundedness as that

of the fractional integrals since the pointwise inequality M, f(z) < I, f(x).

x
We also recall the definition of A, , weights which are closely related to the
weighted boundedness of the fractional integrals in [27].

1 1
1 a1 / »
[w]a, , = sup </ w(w)qu) (/ w(z)™? dx)
' Qcrr \ Q| Jo Ql Jo
where p’ is the conjugate exponent of p, that is, * +

1 _1
p o7 ’
And a weight w is said to be of class Ay 4 with 1 < g < oo, if

[w]a, , = sup

22 (i@ fyrere)

Definition 4.1. A weight w is said to be of class A, 4, for 1 <p,q < 0o, if

< 00,

Q=

1
<GSS Sup> < 0
o w(z)

Lemma 4.6. [27] Let0 < a <n, 1 <p<n/a, 1/p—1/¢g=a/n, and w € A, 4,
then there exists a positive constant C' such that

</R |Iaf(z)w(m)|qda:> "¢ ( [ |f(x)w(z)|pdx);

Ifp=1, and w € Ay 4 with q = =, then for all X > 0, then there exists a positive
constant C' such that

w({z € R" : [Io(f)(2)] > A}) <C (1/

q
1
F@lut)tas)
The universal positive constant C' is independent of f and .

Corollary 4.8. Let 0 < t < 00, 0 < o < n. Suppose that p, ¥ € (1,n/a)™ such
that 1/r; — 1/p; = 1/s; — 1/q; = a/n.

)
'

(a) If 5 € (1,00)", then I, is bounded from (L™, L%);(R"™) to (L”, L9),(R").
(b) If §=(1,...,1), then I, is bounded from (L

L LY (R™) to W(LP, L9),(R™).
Proof. By Theorem 3.1 and Lemma 4.6, the case of (a) holds, we only prove the
case of (b).
Forr;>1lands;=1,i=1,...,n,let
l:lfg, l:17g, foreachi=1,...,n
bi i on q; n
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Take 0 = q; = -*~. Then, for g € (L7 [%),(R"), by Lemma 2.2, we write
1
7

(Lﬁ/9’Lff/9)t(R")

0
MXgwern: 1@ 20,00y, ey = M| Xtoesns iras@is]

1
7
([ Xtwes g @)
And letting w = [M, (|g]) (gc)]é with 0 < 1 < 1, we have w’ € A; and hence
w? e Ayn-a. Then w € Ay 9. By Lemma 2.1 and Lemma 4.6, we can obtain that

1
[

A HX{zeRn: |Iaf(z)|>>\}H(Lan‘)t(Rn) =A {/Rn X{zern: Iaf(x)>>\}($)Mn9(x)dm]

¢ [f(@)w(z)dz < Cl|fll L7 L1y, @m)

My (9]

(L7, L®), (R")

From Lemma 2.5 we see

1 1 1
01y = IO = IO
e R 71700 e | N FY((v7 01
S c H|g‘n||(nfr-’/n97Lo'c)t(Rn) = CHgH(gL’"/@,L&’)t(R")'

sinced%: (1*%)9: (1*é*%)9: (%71;%)0:17177:71/9:(1711me

1=1,...,n, we see

HIocf”W(Lﬁ,L‘T)t(R") < C”fH(L?,LT)t(Rn)-
Thus, the result holds. O

For the boundedness of the commutator for the Riesz potential, we

Lemma 4.7. [7] Let 0 < o < n, 1 < p < n/a and 1/p—1/q = a/n. Let b €
BMOR") and w € A, 4, then [b,1,] is bounded from L? (R™) to L1 (R™).

The estimate of the operator [b,I,] over the mixed-norm amalgam space is

immediate in view of Lemma 4.7 and Theorem 3.1 as follows.

Corollary 4.9. Let 0 <t < 00 and 0 < o < n. Let b € BMO(R™). Suppose that
P, 7 € (1,n/a)™ such that 1/r; — 1/p; = 1/s; — 1/q; = a/n. If 7 € (1,00)™, then
[b, 1] is bounded from (L7, L%);(R™) to (LP, L9),(R™).

5. THE LITTLEWOOD—PALEY FUNCTIONS

The Littlewood—Paley theory, originated in the 1930s and developed in the
late 1950s, is a very effective replacement. It has played a very prominent role
in harmonic analysis, Complex analysis and PDE (see [6, 22, 30]). Therefore, it
is a very interesting problem to discuss the boundedness of the Littlewood—Paley

operators. The main purpose of this section is to study the characterization of the
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mixed-norm amalgam space (LP, L9);(R") via the Littlewood-Paley functions. We
first state the associated definitions.

Suppose that ¢(z) € L*(R") satisfies the following conditions:

(5.1) / o(x)dx = 0.

There exist constants C, & > 0, such that

(52) (@) < s, Ve € R
' U A el |

and when 2|y| < |z|, there exist constants v, § > 0, such that

Cly®
1+ |.’E _ y|)n+5+’*f ’

(5.3) lp(x +y) — p(x)ldz < (

For t > 0, p(x) = tigo(f) For all x € R™, the Littlewood-Paley g function g, the

square function S, and the Littlewood-Paley g3 -function are defined by

51w = ([ lteen )@ ‘ff)

S (f)(a) = (//() (eor NP ffff) ,

Ire()z) = (//R+ (M>HA|(% « ()2 ffff)

For a locally integrable function b, the commutators of the Littlewood—Paley function
1
2 dt 2
? )
2 3
dydt
tn+l ’

/ (pe(y = 2)f(2)((0(y) — b(=))d=

9p, Sy and g3 ., are defined by

Gonl 1)) = ( s
Sn(f)(x) = ( /I »
5.l 1)) = ( /... () e )é ,

where Iy (z) = {(y,t) € R ¢ |z —y| <at} and RTT = {(y,t) e RTT ¢ y €
R™, ¢t > 0}.

| e = 1) () b))y

/Rn(@t@ —2) f(2)((b(y) — b(2))dz

Lemma 5.1. [25] Suppose that ¢ € LY(R"™) satisfies (5.1), (5.2) and (5.3). If
1 <p<oo,we Ap, then g, is bounded on LP (R™). If p=1 and w € Ay, then g,
is bounded from L. (R™) to LL>(R"™).
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Lemma 5.2. [23] Let b € BMO(R"™). Suppose that ¢ € L'(R™) satisfies (5.1),
(5.2) and (5.3). If 1 < p < 00, w € Ay, then gy is bounded on LY (R™). If p =1
and w € Ay, then

wlte € B g @) > W) S lsro | L (1410t (L)) i

Lemma 5.3. [37] Let 0 < o < 1, if p € (1,00) and w € A,, then S, is bounded on
LP(R™). If p=1, w € Ay, then S, is bounded from L. (R™) to LL>°(R™).

Lemma 5.4. [23] Let o« € (0,1] and b € BMO(R™) . If p € (1,00) and w € A,,
then S, is bounded on LY (R™). If p =1, w € Ay, then there exists a constant
C > 0 such that

w(fe € B 15,05 > A < Plawo [ L (110g" (L) ) woyae

Lemma 5.5. [38] Let A > 2 and 0 < vy < min{n(y — 2)/2,6}. Let b € BMO(R"™).
Ifpe (1,00) and w € A, then 93, and g3, are bounded on Lr(R™). If p=1,
w € Ay, then g3 , is bounded from Ly, (R") to Ly;>°(R"), and

w({e € g puN@] > A) S blawo [ P (141087 (HE)) woya,

Theorem 5.1. Let 0 < t < oo, A > 2 and 0 < v < min{n(y — 2)/2,0}. Let
peE (Lo00)". If 7€ (1,00)", then

(a) C1 ||f||(L17,L‘T)t(]R”) < ||9¢(f)||(Lﬁ,La)t(Rn) <Gy Hf”(Lﬁ,L‘i)t(]R”) :

(0) Cu 1l oy < 156 lgm gy < Co I Lo gy, o

(C) HgA#P(f)H(Lﬁ,Lq‘)t(Rn B

(d) If §= (1,...,1), then the operators g,, Sy, 9., is bounded from (LP, L) (R™)
to W(LP, LT),(R™).

The positive constants Cy and Cs are independent of f and t.

: S I llezr Loy, ey -

Proof. We only need to prove the left case of (a) and (b), since Lemmas

5.1,5.3,5.5 and Theorems 3.1, 3.2.
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By Lemma 2.1, the boundedness of g,, over (L?, L7),(R") for p, § € (1,00)" and
Hoélder’s inequality, we see

“f||(L5,L(7)t(R"L) = sup f(x) (z)dx

H(LT—' Ld'y, (R")<1

dt
// loe * f(2)] - |or * g(x |7d33
= ol 1o

(P LTy, (rn) =

< s @i

l9ll 7 g,y <

< sup 90 () (15, L2y, oy 19Dl (157 pa7y, Rn)

"g‘l(Lﬁ/,Lq,)t(R"L)S
S Hgs@f”(Lﬁ,Lti)t(R") )
For the operator Sy, using these facts, Lemma 2.1 and [|Sy fll 12 gy = All fllz2r)
H
with A > 0 and H is a Hilbert space, we conclude that

||f||(Lﬁ,Lq‘)t(Rn) = sup f(z)g(z)dz

l9ll L5 Ly, @nySLY/R™

1 /
=— sup S dx
AZ ) <1 Jrn 2T (F1509(2)

(P L3y, (rn) =

1
S5 sup 1Sefll 17 Ly, &) 1969 (o Loy, &)

ol zp vy, ny <t

1
S yEl 1Se fll (17 La), (&) -

This completes the proof of Theorem 5.1. O
Using Lemmas 5.1, 5.3, 5.5 and Theorems 3.1, 3.2, we obtain the following estimate

for the operator g, 1, Spp, g’;\,%b on mixed-norm amalgam spaces.

Theorem 5.2. Let 0 < ¢t < 0o, A > 2 and 0 < v < min{n(y — 2)/2,6}. Let
p € (1,00)" and b € BMO(R™), If ¢ € (1,00)", then gyp, Spp and g3 ,, are
bounded on (LP, L) (R™). If §= (1,...,1), then

4w (4)

£ e
HX{xGR": \Sw,bf(m)b)‘}H(Lﬁ,Lf)t(]R") 5 H)\ 1 +10g 7

and
£ + (/]
. <= (1+1 —
g/\,w,bf(m)|>)‘}H(Lﬁ,LT)t(R") ~ H » Ures Ly

Remark 5.1. For the Littlewood—Paley functions with the non-convolution type

3

HX{wER”: |9<p,bf(m)|>)‘}||(LP-’LT)t(R”) ~ ‘ L
(LP,LY) ¢ (R™)

(L7,LT):(R")

HX{zGR":

(L7,LT):(R") .

kernels and their commutators, a similar result also holds.
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5.0.1. Nononwvolution type. A function K (x,y) defined away from the diagonal x =
y in R™ x R™, is said to be a non-convolution type kernel, if for all y € R"™, there
exists a positive constant C, such that K satisfies the following conditions:
(5.4) K(z,y)dy =0

R"L

c

(5.5) K (z,y)| < A=yt

Clz|”
(14 f —y[)r+otn

(56) |K(x+z,y)—K(Jc,y)| <

for some 4, v > 0, and 2|z| < |z — y|.
For any f € ., t > 0, and z 5 supp f, we denote

R’ﬂ
where K;(z,y) = +~K(%,%). Let b be a locally integrable function. Then the
Littlewood-Paley g-function, Lusin’s area integral and Littlewood-Paley g}-function

with non-convolution type kernels and their commutators are defined by

s = ([Ceswrt)’

@ =([ th<:c>|2‘ff)é ,
S = < [[ 16 )é
Gi(f)(a) = ( /.. (m;_) G () )é ,

where A > 1, T'(z) = {(2,t) e R} : [z — 2| <t} and R} = {(2,t) e R} 2 z €
R™ t > 0}.

and

Theorem 5.3. Let 0 <t < oo. For 1l <p<oo. If 1 < §< oo. Then
(4) Hg(f)||(L177L<7)t(R") ~ ||f||(Lﬁ,Lq‘)t(R")~
(B) ||S(f)||(Lﬁ7Lq*)t(Rn) ~ ||f||(Lﬁ,Lq*)t(Rn) .
(C) for A>2 and 0 < v < min{n(v=2)/2,0}, |93 (Nl 15 L), &) ~ Il (L7 L), &) -
If ¢ € [1,00) and min{qi,...,qn} = 1. Then the operators g,, Sy, g5, are
bounded from (LP,L7)(R™) to W(LP, L9);(R").

Using Lemmas 5.1,5.3,5.5 and Theorems 3.1,3.2, we obtain the following estimate

for the operators g, S0, 9, pp O1 mixed-norm amalgam spaces.
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Theorem 5.4. Let 0 <t < 00, b € BMOR"™). For 1 < p < oo. If 1 < § < o0.
Then

(4) Hgb(f)”(Lﬁ,LLi)t(]Rn) S Hf”(Lﬁ,Lq‘)t(]R")'
(B) ||Sb(f)||(L5,Lti)t(Rn) S Hf”(Lﬁ,Lti)t(Rn)'
C) for A > 2 and 0 i —2)/2.6}, g% H
(C) for and 0 < < min{n(y-2)/2,6}, |93 ,(f) (L7 LT), (R"
If ¢ € [1,00) and min{qy, ..., g} = 1. Then the operators gy, Sy, g3 , satisfy

I I
Ictaenmionsiostlzr o e 5 |5 (14105 (1))

f fl
It susion s oo < | 2 (14106 (1))

S
)

b

(LP,LT)¢ (R™)

(LP,LT)¢(R™) .
and

|/l + (1]l
- < _
HX{’”ER "-"Mf‘”}H(Lﬁ,m)t(u@n) ~ ‘ A L+1log A
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ON THE UNIQUENESS OF L-FUNCTIONS AND
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Abstract. The paper presents general criterions for the uniqueness of a non-constant meromorphic
function having finitely many poles and a non-constant L-function in the Selberg class when they
share a set. Our results significantly improve all the existing results in this direction [22] 17 [16], [4]
with extent to the most general setting. As a consequence, we have incorporated a large number

of examples in the application section showing the far reaching applications of our results.

MSC2020 numbers: 11M36; 30D35.

Keywords: L-function; meromorphic function; shared set.

1. INTRODUCTION AND MAIN RESULTS

At the outset, we assume that by an L-function we always mean an L-function £

in the Selberg class which includes the Riemann zeta function ((s) = >, n™° and
n=1

essentially those Dirichlet series where one might expect a Riemann hypothesis.
Such an L-function is defined [I8] [I9] to be a Dirichelet series

-~ a(n)
(1.1) L(s)=> ——

n—s
n=1

satisfying the following axioms:
e (i) Ramanujan hypothesis : a(n) < n® for every € > 0;
e (ii) Analytic continuation : There is a non-negative integer m such that

(
(s —1)™L(s) is an entire function of finite order;
e (iii) Functional equation: L satisfies a functional equation of type

(1.2) Az(s) =whz(1—3),
where
k
(1.3) Ar(s) = L()Q° [T (s +vy),
j=1

ISanjay Mallick is thankful to “Science and Engineering Research Board, Department of Science
and Technology, Government of India” for financial support to pursue this research work under
the Project File No. EEQ/2021/000316.
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with positive real numbers @, A; and complex numbers v;, w with Re(v;) >

0 and |w| = 1;
b(n)

ns

18

e (iv) Euler product hypothesis : log L(s) = where b(n) = 0 unless n

n=1
is a positive power of a prime and b(n) < n? for some § < 1.

Also, throughout the paper by any meromorphic function we always mean a
meromorphic function defined in C. We denote C = C U {oo}. By N we mean the
set of all natural numbers. Though for standard definitions used in this paper we

refer our readers to follow [9], yet for the sake of our convenience we denote the

order of f by p(f), where
_lo(T( 1)

(14) o) =

By S(r, f) we mean any quantity satisfying S(r, f) = O(log(rT'(r, f))) for all r
possibly outside a set of finite linear measure. If f is a function of finite order, then
S(r, f) = O(logr) for all r.

The importance of L-functions in number theory is needless to say and an L-
function can be analytically continued to a meromorphic function in C. Hence
like the value distribution of meromorphic functions, the value distribution of L-
functions is a natural consequence. In this respect, during the last few years an
extensive study for the distribution of zeros of L-functions have been done by various
researchers [11, [14], 22] 10, I8 19]. In due course of time, the study have been
confined to the direction of uniquely determining an L-function via the shared

values or sets. Hence let us recall these basic definitions of value and set sharing.

Definition 1.1. [6] For a non-constant meromorphic function f and a € C, let

E¢(a) = {(2,p) € C x N: f(2) = a with multiplicity p}

(Ef(a) ={(2,1) eCxN: f(z) =a}),
then we say f, g share the value a CM(IM) if Ef(a) = Eq4(a)(Ef(a) = E4(a)) . For
a = oo, we define Ey(c0) := E1,4(0) (Ef(00) := Ey,4(0)).

Definition 1.2. [6] For a non-constant meromorphic function f and S C C, let
E¢(S) = Uaesl(z,p) € Cx N: f(2) = a with multiplicity p}

<Ef(5) = U{(z,l) €CxN: f(z)= a}) .

a€S
then we say f, g share the set S CM(IM) if E¢(S) = E¢(S) (Ef(S) = Ey(S9)).

Definition 1.3. [12, [13] Let k be a non-negative integer or infinity. For a € C we

denote by Ex(a; f) the set of all a-points of f, where an a-point of multiplicity m is
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counted m times if m < k and k+ 1 times if m > k. If Ex(a; f) = Ex(a;g), we say
that f, g share the value a with weight k.

We write f, g share (a,k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a,k) then f, g share (a,p) for any integer p, 0 < p < k. Also
we note that f, g share a value a IM or CM if and only if f, g share (a,0) or (a, c0)

respectively.

Definition 1.4. [12] For S C C we define E;(S,k) = UsesEx(a; f), where k is
a non-negative integer a € S or infinity. Clearly E;(S) = Ef(S,00) and E;(S) =
Ef(S,0). If E¢(S,k) = E,(S,k), then we say that f and g share the set S with
weight k.

Obviously Definition 1.3 and Definition 1.4 are the refined notions of Definition
1.1 and Definition 1.2 respectively. However, now we recall the first result in this

direction due to Steuding.

Theorem A. [19] If two L-functions £y and Lo with a(l) = 1 share a complex
value ¢ # oo CM, then L1 = Ls.

Since every L-function have meromorphic continuation in C, so natural quest
for the uniqueness of a meromorphic function and an L-function enters into the
course of uniqueness theory vis-a-vis value distribution theory. Since an L-function
can have at most one pole in C, so it is reasonable to study the uniqueness of
L-functions with meromorphic functions having finitely many poles. Pertinent to

that, in 2010 Li proved the following uniqueness theorem.

Theorem B. [14] Let a and b be two distinct finite values, and let f be a meromorphic
function in the complex plane such that f has finitely many poles in the complex
plane. If f and a non-constant L-function L share a CM and b IM, then L = f.

After that in 2018, taking the famous Gross Problem [§] into account, Yuan, Li

and Yi [22] proposed an analogous version of the same for L-functions as follows.

Question 1.1. [22] What can be said about the relationship between a meromorphic

function f and an L-function L if f and L share one or two sets?

Apropos of Question in the same paper Yuan, Li and Yi provided the

following result.

Theorem D. [22] Let Q(z) = 2" +az™ +b, where a, b are non-zero constants with

ged(m,n) =1 and n > 2m + 5. Further suppose f is a non-constant meromorphic
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function having finitely many poles and L is a non-constant L-function such that
E¢(S,00) = Eg(S,00), where S = {z: Q(z) =0}. Then f = L.

Later on with the aid of weighted sharing Sahoo-Sarkar [I7] improved Theorem

D as follows.

Theorem E. [I7] Let S be defined same as in Theorem D and n > 2m+5. Suppose
f is a non-constant meromorphic function having finitely many poles in C and L
is a non-constant L-function. If f and L share (S,2), then f = L.

Considering the ignoring multiplicities of the shared set Sahoo-Halder proved

the following theorem.

Theorem F. [I6] Let S be defined same as in Theorem D and n > max{2m +
5,4q + 9}, where ¢ = n —m > 1. Let f be a non-constant meromorphic function
having finitely many poles in C and L be a nmon-constant L-function. If f and L
share (S,0), then f = L.

Pertinent to Theorem E and Theorem F, Banerjee-Kundu [4] found out some

gaps in these theorems and they provided the following theorem rectifying these

gaps.

Theorem G. [4] Let S be defined as in Theorem D, f be a non-constant meromorphic
function having finitely many poles in C and L be a non-constant L-function such
that E¢(S,t) = Eg(S,t). If
(i) t>2 andn >2m+5, or
(ii)) t=1 and n > 2m +6, or
(iii) t =0 and n > 2m + 11,
then f = L.

In the same paper Banerjee-Kundu proved another result analogous to Theorem

G which is as follows.

Theorem H. [4] Let S = {z : 2" + az"™ + b = 0}, where a,b are non-zero
constants and ged(n,m) = 1. Let f be a non-constant meromorphic function having
finitely many poles in C and L be a non-constant L-function such that E;(S,t) =
Eq(S,t). If

(i) t>2 andn >2m+5, or

(ii) t=1and n > 2m +6, or

(i) t =0 and n > 2m + 11,

then f = L.
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Note that the set S used in Theorem D-H are generated from the zeros of the

polynomial
(1.5) P(z)=2"+az"+b or P(z)=2"+az"""+b,

where a, b are non-zero constants and ged(n, m) = 1. In [4 see Lemma 4], authors
proved that these polynomials are critically injective and they may have multiple
zero but that must be one in number. On this occasion let us invoke the definition

of critically injective polynomial.

Definition 1.5. Let P(z) be a polynomial such that P'(z) has mutually r distinct
zeros given by dy,da, . . ., d, with multiplicities q1,qo, . . ., g, respectively. Then P(z)
is said to be a critically injective polynomial if P(d;) # P(d;) for i # j, where
i,j€{1,2,---,r}.

Any polynomial which is not critically injective is called a non-critically injective

polynomial.

Observe that the following points come out of the above discussions.

(i) All the authors always used one of the polynomials given by .
(ii) The authors always used the set of zeros of critically injective polynomials
to show the uniqueness of f and L.
(iii) In the above theorems authors have improved the previous results by relaxing
the nature of sharing of the sets.
(iv) The authors also considered the set of zeros of the polynomials having

multiple zeros.

Apropos of observation (i) and (ii), One would naturally raise the following questions.

Question 1.2. Does there exist any other polynomial except the polynomials given
by whose set of zeros provide uniqueness of f and L?

Question 1.3. Does there exist any non-critically injective polynomial whose set

of zeros provide the uniqueness of f and L?
Pertinent to observation (iii) the following questions become inevitable.

Question 1.4. Can we have the answer of Question [L.1| under more relaxed sharing

hypothesis than that obtained in the latest results Theorem G-H?

Question 1.5. Can we have a set with lesser cardinality than that obtained in the

latest results Theorem G-H for the uniqueness of f and L?

Finally with respect to observation (iv), we have the following note.
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Note 1.1. Recently in |5, see paragraph between Theorem H and Theorem I]
Banerjee-Kundu have clarified the fact that all the results obtained till date in this
direction of shared set problems for the uniqueness of f and L; i.e., Theorem D-H
(except Theorem F) have an analytical gap while considering multiple zero of the
polynomials and the sharing of the sets with some non-zero weight. Thus conclusion
of Theorem D-H (except Theorem F) become false when the multiple zero of the
generating polynomials are taken into account and the sharing of the sets with some
non-zero weight. But in the same scenario, the results obtained with IM sharing of
the sets are correct; i.e., conclusion (i1i) of Theorem G-H and Theorem F. Though
Theorem F has a different flaw contradicting their own conclusion of cardinality
n > max{2m + 5,4q + 9} which is analysed in [, Remark 3]. Another point is that

all these results are true when the polynomial has only simple zeros.

Hence in this paper, we shall solely concentrate on the polynomials having only
simple zeros and answer all the above questions from Question affirmatively
which improve all the existing results from Theorem D-H. Moreover, we present
general criterions for any general polynomial so that the set of zeros of the same
would provide the uniqueness of f and £ when shared by these functions. In a
nutshell, our results bring all the existing results under a single umbrella in a more

improved version with extent to the most general setting.

In the 4th section of this paper, that is in the “Application” section we have
proved all our claims to be true by exhibiting a number of examples showing the

wide-ranging applications of our results.

Before going to our main results, we make a short discussion on the structure of
a general polynomial as this will play an important role throughout the rest of this

paper.

Let us consider the following general polynomial P(z) of degree n having only

simple zeros.
(1.6) P(z) = a,z" +ap 12"V 4+ a1z + ao,

where ag,aq,...,a, are complex numbers with a,,ay # 0, a; being the first non-

vanishing coefficient from a,,_1,a,_2,...,a1. Let
(1.7) S ={z:P(z) =0}.
Observe that (1.6) can be written in the form

(1.8) P(z) =an, H(z — ;)™ + ap,

i=1
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where p denotes the number of distinct zeros of P(z) — ag. Let us also denote by s

the number of distinct zeros of P'(z). Hence we would have
(1.9) P'(2) = nay [ [(z = n)",
i=1

where r; denotes the multiplicities of distinct zeros of P'(z).

Set

anz" anpz" anz
(1.10) R(z)=-— T n = — n ="
Ap_12" Y+ ... +a1z+ag k , é(2)
@i .Hl(z— Bj)m
j=

where ag, a1, ...,a, are as defined in (L.6) and 31, 5,..., Bk are the roots of the

equation

n

o(z) = 12" V4 an 22" 2+ .. . 4arz+ay =0,
with multiplicities mq, ma, ..., my. Clearly
P(z)
o(2)
where P(z) is defined by and obviously P(z) and ¢(z) do not share any
common zero. Hence S as defined in can be treated as

(1.11) R(z)—1=—

(1.12) S={z:P(z)=0} ={z: R(») —1=0}.

Let R’ (2) has [ distinct zeros say 01,92, ...,...,d with multiplicities ¢1,¢2,...,q
respectively. Then From (|1.10) we would have

g -Ii(z — 8;)%
(1.13) R(z) = ————

)

1 (=~ B,

j=1
where v € C — {0} and p; € N for all j € {1,2,...,k}.

Remark 1.1. Observe that in the definition @ of the general polynomial P(z),
the condition a; # 0 for i = {1,2,...,n — 1} is necessary. Because otherwise we
would find a non-constant L-function £ and a non-constant meromorphic function
f which share the set S ={z: P(z) =0} CM but f # L.

For example, let a; =0 fori=1{1,2,...,n—1}. Then S = {2z : apz™ + ag = 0}.
Consider a non-constant L-function L and a non-constant meromorphic function
f such that f = (L, where ¢ is the nth root of unity. Then clearly,

anf™ + ap = an L™ + ag;

n n

i.e., H(f —0;) = H(E — i),

i=1 =1
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where o; € S fori=1{1,2,...,n}. That is f and L share S CM but f # L.
Now we provide the following two theorems as the main results of this paper.

Theorem 1.1. Let P(z) be given by with p > 2 and S,s be defined by
, respectively. Suppose f is a non-constant meromorphic function having
finitely many poles and L is a non-constant L-function sharing (S,t). Then for
n > max{2p+1,2s+ 3}, when t > 1; and for n > max{2p+1,2s + 6}, when

t = 0; the following are equivalent :

(i) P(f)=P(L) = f=L;
(i) Ef(S,t) = Ec(S,t) = f=L.

Theorem 1.2. Let R(z) be defined by with k > 2 or k =1 withn > 2my and
S, 1 be defined by , respectively. Let f be a non-constant meromorphic
function having finitely many poles and L be a non-constant L-function sharing
(S,t). Then forn > max {2k + 3,2l + 3}, whent > 1; and for n > max {2k + 3,20 + 6},

when t = 0; the following are equivalent :

(i) R(f)=R(L) = [=L;
(i) Ef(S,t) = Ec(S,t) = f=L.

Remark 1.2. Obviously Theorem G-H are the latest results in this direction for
simple zeros of the polynomials given by . In the application section (Example
and Example , we shall show that the conclusions of Theorem G-H are true
forn > 7 when E¢(S,1) = E£(S, 1), whereas the same is true in Theorem G-H for
n > 8. Thus our result directly improves Theorem G-H by reducing the cardinality
of the set S when shared by the functions with weight 1. We also find that weight
2 in Theorem G-H can be relazed to weight 1 keeping the carinality of the set fized
as an application of our result. Hence the answer of Question [I.4] is also obtained
with improvement. Moreover, in Theorem G-H the least cardinality of the sets when
shared IM is 13 whereas the same result can be obtained when the cardinalities of the
sets are 10, which is a significant improvement of Theorem G-H. Thus we obtain a
threefold improvement of Theorem G-H by the application of our main results and
obtain the answer of Question 11.5]

We shall also obtain similar results in the application section for other polynomials
including critically injective polynomials, mon-critically injective polynomials and
even those polynomials which are still uncertain to be critically injective or non-
critically injective (see Example Example and Example , These results
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provide us the answers of Question with tmprovements in the nature of

sharing of the sets as well as the least cardinalities of the sets.

Remark 1.3. The reason behind proving two similar but different theorems are
clarified in the first two paragraphs of section 5 named “Conclusion and an Open

Question”.

For standard definitions and notations we have already suggested our readers
to follow [9]. Furthermore, we explain the following notations which will be used
throughout the paper for the proof of the Theorem and Theorem

Definition 1.6. [21] Let f and g be two non-constant meromorphic functions such
that f and g share (1,0). Let zo be a 1-point of f with multiplicity p, a 1-point
of g with multiplicity q. We denote by N (r,1; f) the reduced counting function of
those 1-points of f and g where p > q, by NB(T, 1; f) the counting function of those
1-points of f and g where p = q = 1. In the same way we can define N(r,1;g),
NB(T, 1;9). In a similar manner we can define N(r,a; f) and Np(r,a;g) for a €

C.

Definition 1.7. [12, [13] Let f, g share (a,0). We denote by N.(r,a; f,g) the
reduced counting function of those a-points of f whose multiplicities differ from

the multiplicities of the corresponding a-points of g.
Clearly N.(r,a; f,g) = N.(r,a; g, f) and N.(r,a; f,9) = Np(r,a; f)+Nr(r,a;9).

Definition 1.8. [I3] For a € CU {oo}we denote by N(r,a; f |= 1) the counting
function of simple a-points of f. For a positive integer m we denote by N(r,a; f |<
m)(N(r,a; f |> m)) the counting function of those a-points of f whose multiplicities
are not greater(less) than m where each a-point is counted according to its multiplicity.

N(r,a; f |< m) (N(r,a; f |> m)) are defined similarly, where in counting the
a-points of [ we ignore the multiplicities.

Also N(r,a; f |<m), N(r,a; f |>m), N(r,a; f |[< m) and N(r,a; f |> m) are
defined analogously.

Definition 1.9. [2] Let a,bi1,bs,...,by € C U{oco}. We denote by N(r,a;f | g #
bi,b2,...,by) the counting function of those a-points of f, counted according to

multiplicity, which are not the b;-points of g fori=1,2,...,q.
64



ON THE UNIQUENESS OF L-FUNCTIONS ...

2. LEMMAS

For two non-constant meromorphic functions F' and G, set

F'  oF G 2G
(2.1) H_<F’_F—1>_<G’_G—1>'

Lemma 2.1. [2I] Let F, G share (1,0) and H # 0. Then
NP (r,1;F) = N§ (r,1;G) < N(r, H) + S(r, F) + S(r, G).
Lemma 2.2. [2] Let F, G share (1,t), where t € NU{0}. Then

N(r,1; F)+N(r, 1; G)—N]? (r,1; F)Jr(t — ;) N.(r,1;F,G) < =[N(r,1; F)+N(r, 1; Q).

N | =

Lemma 2.3. Let f be a non-constant meromorphic function having finite number
of poles and L be an non-constant L-function sharing a set S IM, where |S| > 3.

Then p(f) = p(L) = 1. Furthermore, N(r,o0; f) = O(logr) = N(r,00; L) and
S(r, f) = O(logr) = S(r, L).

Proof. Proceeding in a similar method as done in the proof of Theorem 5, [16,
p. 6] we can obtain p(f) = p(£) = 1. So we omit it.

Since f has finitely many poles and £ has at most one pole in C, so obviously
(2.2) N(r,o00; f) = O(logr) = N(r,00; L).

Since p(f) = p(£) = 1, so from the definition of S(r, f) we get S(r, f) = O(logr) =

S(r, L). O
an 1 (F —wi) an (L~ wi)
Lemma 2.4. Let F*—1= Zz;T and G*—1 = ﬁl/)T) where f be

a non-constant meromorphic function having finite number of poles, L be an non-
constant L-function, a,,w; € C—{0}; Vi € {1,2,...,n} and ¥(z) be a polynomial
of degree less than n with (w;) # 0; Vi € {1,2,...,n}. Further suppose that F*
and G* share (1,t), where t € NU{0}. Then

(23) N F) < g N30 ) = Ni(r0: )] + Oflog ),

where N1(r,0; f') = N(r,0; f'|f # 0,w1, ws, ..., wy). Similar expression also holds
for Np(r,1;G*).
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Proof. Since F* and G* share (1,t), so in view of Lemma using the first

fundamental theorem we find that
_ 1 _
Np(r,1;F7) éﬁmhlﬂw|2t+2)§ZI*[NO#MFU-ﬂNUJAFﬂ]

Z (N(r,ws; f) = N(r,w;; f))

i=1

—_

IN

[N(’I",O;f/|f # 0) —N1<7‘,0;f/)]
_N(’/‘,O; J}/) - Nl(’rvo;f/):|

-N(r, 00; =) — Ny (r,0; f’)} + O(logr)

IN

IN

IN

’

N(raOO;Y) _Nl(rao;f/)

< —— [N(r,00: f) + N(r,0; ) = N1(r, 0; f')] + O(log )

e

IN

+ O(logr)

S N(T,O;f)—Nl(r,O;f/)] +O(10gT)

t+1
This proves the lemma. (I

Lemma 2.5. Let P(z), S and s as defined by (1.6), (1.7) and (1.9) respectively.
Suppose that f, L share (S,t), where t € NU {0} and f, L be a non-constant

meromorphic function and an L-function respectively. Further suppose that

(2.4)
P(f) - o T P(L) — " T
Fo PO =0 - o T aym and g = PE =90 L0 o - gy
—% a0 35 —% a0 ;5
Then forn > 2543, whent > 1 and for n > 2546, when t = 0 we get the following.
1 A
- 2 1B
Foi1 g-1 "™

where A(# 0),B € C.

Proof. According to the assumptions of the lemma we clearly have F, G share
(1,t) and

/ nay, - o , na, - .
F=——10-m)"f: 6 =——|](L-—m)"L

a
0 =1

’
)

S
where > r; =n — 1. Now consider H as given by 1D for F and G.

i=1
Case-1: Suppose H # 0. Then, it can be easily verified that H has only simple
poles and these poles come from the following points.
(i) a;-points of f and L.
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(ii) Poles of f and L.
(iii) 1-points of F and G having different multiplicities.

(iv) Those zeros of f and £ which are not zeros of [[(f — n:)(F — 1) and
i=1

f[ (L —n;)(G — 1) respectively.
i=1

Therefore we obtain
(2.5) N(r,H) Z [N(r,mi5 ) + N(r,mi; £)] + N(r, 005 f) + N(r, 00; L)
+N (1, 1;F,G) + No(r,0; ') + No(r,0; L),

where No(r,0; f') and No(r,0; L) denotes the reduced counting functlons of those
zeros of f and £ which are not zeros of H (f—m)(F—1) and H (L—m)(G-1)

i=1 =
respectively. Using the second fundamental theorem we get

(2.6)
(n+s—1)T(r, f) < N(r,1; F) +ZN(T, 13 f) + N (r,00; f) = No(r,05 ')+ S(r, f),
(2.7)

(n+s—1)T(r,L£) < N(r,1;G) +ZN T, nl,E)—&—W(noo;ﬁ)—NO(T,O;E/)—FS(nE).
i=1

For the sake of our convenience let us denote by T'(r) = T'(r, f) + T(r,L). Now
combining (2.6)) and (2.7) with the help of Lemma Lemma and then (2.5

we get
28)(n+s—1)T(r) < 7(1", 1;F)+ N(r,1;G)
+ Z [N(r,mi; f) + N(r,n;; L)]

+ [N(r,oo;f) + N(r,oo;ﬁ)] — No(n();f,) — No(r,O;ﬁ/)
—I—S(r ) +S(r L)

+22 (r,ni; f) + N(r,ni; £)]

IN

+2 [N(r,00; f) + N(r,00; £)] + (3 — t) «(r 1, F,G)

2
+S(r, f)+ S(r, L).

Hence in view of Lemma for ¢ > 2; ([2.8]) reduces to
n

(5 —s—1)T(r) < O(logr),

which is a contradiction for n > 2s+ 3 as p(f) =1 = p(L).
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We know that N,(r,1;F,G) = Np(r,1; F) + Np(r,1;G). Hence for 0 < t < 1;
using Lemma and Lemma 2.5 we get from (2.8) that

3 _
(2.9) (g —s—1)T(r) < (t2—|— f) [N(r,0; f) + N(r,0; £)] + O(logr).

Now for ¢t = 1; from ([2.9) we get

which is a contradiction for n > 2s + 3.
For ¢t = 0; from (2.9) we get

which is a contradiction for n > 2s + 6.

1
Case-II: Suppose H = 0. Hence on integration, we obtain F-1-c-1 + B,
where A(# 0), B € C. O

Lemma 2.6. Let R(2), S andl as defined by (1.10]), (1.12) and (1.13)) respectively.

Suppose that f, L share (S,t), where t € N U {0} and f, L be a non-constant

meromorphic function and an L-function respectively. Further suppose that
(2.10) F=R(f) and G = R(L).

Then forn > 2143, whent > 1 and for n > 2146, when t = 0 we get the following.
1 A
- __ 2 .pB
F-1 G_1

where A(#0),B € C.

Proof. Clearly F,G share (1,t) and in view of (1.13)) we have

l l
ol _Hl(f —6;)¥ v _Hl(ﬁ —6;)%
/ j: / ’ ]: /
(2.11) F=—2"__ y ¢="r
[1(f —Bj)rs [T (£~ B;)Ps
Jj=1 Jj=1

Now consider H as given by (2.1]) for F and G.

Case-1: Suppose H # 0. Since H has only simple poles and in this case these
poles come from the following points.
(i) ¢; -points of f and L.
(ii) Poles of f and L.

(iii) 1-points of F and G having different multiplicities.
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’ ’ l
(iv) Those zeros of f and £ which are not zeros of [[(f — ¢;)(F — 1) and
j=1

1

[T (£ —9;)(G — 1) respectively.

j=1
Therefore we obtain

1

(2.12) N(r,H) < N(r,o0; f) Z (1,655 f) + No(r,0; f') + N(r,00; L)

Z (r,0;; L) + No(r,0; L) + N.(r, 1;F,G) + S(r, f) + S(r, £),

where we write N(r, 0; f ) for the reduced counting function of the zeros of f’ that

are not zeros of (F —1) H (f —6;)% and No(r,0;L') is similarly defined. By using
=1
Lemmam Lemma and - we observe that
7 — 1
(2.13) N(r,1;F)+ N(r,1;G) < N(r,H) + 5 [N(r,1;F) + N(r, 1, G)]

l l
1
_(t_i)N(r,l,IF(G) N(r,00; f) Z (r, 053 f) + N(r,00; L) + Z (r,8;; L)

l\D\OO

—|— {T(r,f)+T(r,L)}+ (
Set T'(r, f)+T(r,£) = T(r). Hence in view of (2.13), using the second fundamental

theorem we have

t) N.(r,1;F,G)+No(r,0; f)+No(r,0; L)+S(r, f)+S(r, L).

!
(2.14) (n41—1)T(r) < N(r,o0; f) + N(r, 1;F) Z
l
+N(r,00; L) + N(r,1;G) + Y N(r,d;;£) — No(r, 05 f') — No(r, 0; L")
j=1

l
+S(r, f) + S(r, L) < Z (r, 853 ) +2> N(r,6;; L)

+2 [N(r,00; f) + N(r,00; £)] + gT(r) + < —t| N.(r, 5F,G)
+S(r, f) +S(r, L) < (21 + g) (r) + 2 [N(r,00; f) + N(r,00; L)]
2

Hence in view of Lemma for ¢ > 2; (2.14) reduces to

(g - 1) T(r) < O(log ),

which is a contradiction for n > 21 + 3.
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For 0 <t < 1; using N,(r, ;F,G) = Np(r, ;F) + N.(r, 1;G), Lemma and
Lemma[2.3 we get from (2.14) that

(2.15) (g —1- 1) T(r) < (i—ljlt) [N(r,0; f) + N(r,0; £)] + O(logr).

Now for ¢ = 1; from (2.15)) we get

(;L - Z) T(r) < O(logr),

which is a contradiction for n > 2[ + 3.

For ¢t = 0; from (2.15)) we get

(’2‘ . ;) T(r) < O(logr),

which is a contradiction for n > 2{ + 6.

Case-II: Suppose H = 0. Now integrating (2.1]), we find that

1 A

Lemma 2.7. [20] Let F and G be two non-constant meromorphic functions such

that

where A(# 0), B € C. If
N(r,0; F) + N(r,00; F) + N(r,0; G) + N(r,00; G) < T(r),

where T(r) = max{T(r, F),T(r,G)}. Then either FG=1 or F =G.

Lemma 2.8. Let F, G be defined by (2.4) with p > 2 and they share (1,t) for
t e NU{0}. Then FG # a, where a is non-zero complex constant.

Proof. On the contrary, suppose that FG = a. Then

(2.17) 110 e [T - =a () =)

i=1 i=1 On
It is clear from ) that each «a;-point of f is a pole of £ and vice-versa. Now
let us consider the following cases.
Case-1: Let p > 4. Since an L- function has at most one pole, then in view of
we can say that f has at least three «;-points which are picard exeptional
values. That is, the meromorphic function f omits at least 3 values, so f must be

constant. This contradicts our assumption.
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Case-2: Let p = 3. Again like the arguments made above we can say that f
omits two values say a1, as. Hence using the second fundamental theorem in view
of Lemma we obtain

2
T(r,f) <> N(r,ai; f) + N(r,00; f) + O(log )
i=1

< O(log ),

which is a contradiction.

Case-3: Let p = 2. Note that applying similar argument as made in Case-1 we
get f omits at-least one of the a;’s say a;. On the other hand, f cannot omit both
the «;’s. For if, f omits both the «;’s, then we again arrive at a contradiction like
Case-2. Hence let us assume as points of f are the poles of £. Again as z = 1 is
the only pole of L, so let z =1 be as point of f of multiplicity r and the pole of £
of multiplicity s. Then mor = ns, which implies mor > n; i.e., % < 22, Now using

the second fundamental theorem in view of Lemma[2.3 we get

T(r,f) < N(r,o1;f)+ N(r,az; f) + N(r,00; f) + O(log )
< TET(r.f) + Ollogr),
which is a contradiction as n > ms. ([l

Lemma 2.9. Let F,G as defined by (2.10). Then for

(i) k> 2; or
(ii) k=1 with n > 2my;

FG # a, where a is non-zero complex constant.

Proof. On the contrary suppose that FG = a. Then

(2.18) k = Tk = Ea<ai> = a/(say)
I1(7 =By T1(E =B

Jj=1

It is clear from (2.18) that 3; point of f is a zero of £ and vice-versa and
(2.19) T(r,f)=T(r, L)+ O(1).

Now we deal with the following cases.
Case I: Let £ > 2. If 25 be a zero of f — ; with multiplicity p, then zj is a zero
of g with multiplicity ¢ such that m;p = ng ie., p > " Therefore N(r,B;; f) <
m;
M
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So, in view of Lemma[2.3 using the the second fundamental theorem, we get

k
(k=1)T(r,f) < ZN(r,ﬂj;ﬂ+N<r,oo;f>+0(logr>

M)~

%T(T, f)+O0(logr)

Jj=1

(1= =)T(r, f) + O(logr),

IA
—

(2.20)

3

which contradicts & > 2.
Case-II: For k£ = 1, from we have
o dg—pm
(L —pr)m fr .
From we see that N(r,0;f) = N(r,51;L) + N(r,00; L) = N(r,51;L) +
O(log ). Also by similar calculation as in Case-I1 we have N (r, 81; f) = %N(r, B1; f)

(2.21)

and N(r,31;L) = %N(r7 B1; L£). Again using the second fundamental theorem in

view of Lemma[2. and (2.19) we have

T(r,f) < N(r,Bu; f)+N(r,0; f) + N(r,o00; f) + O(log 7).
2
(2.22) < %T(r, f) + O(logr),
which is a contadiction as n > 2m;. O

3. PROOF OF THE THEOREMS

Proof Of the theorem 1.1. We prove the theorem step by step as follows.
(i) = (ii) : Suppose f is a non-constant meromorphic function and £ is a non-
constant L-function such that Ef(S,t) = E.(S,t), where t € NU {0}. Consider F
and G as defined by . Then for
(i) t>1and n >2s+3, or
(ii) t =0 and n > 25+ 6,

1 A
in view of the Lemmawe get F1-0-1 + B, where A(# 0), B € C. Hence

we have g1

(3.1) T(r,F)=T(r,G) + O(1).

Since

(3.2) T(r,F)=nT(r, )+ O(1) and T(r,G) =nT(r,L)+ O(1).
So implies that

(3.3) T(r,f) =T(r,L) + O(1).
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Now in view of Lemma [2.5 using and we get

N(r,0; F) + N(r,00; F) + N(r,0;G) + N(r,00; G)
pT(r, f) +pT(r, £) + N(r,00; f) + N(r, 00; L)

= 2pT(r, f)+ O(logr) < 2}7; 1T(r, F)

< T(r,F) [-n>2p+1].

IN

So in view of Lemma[2.7, we have either FG = 1 or F = G. Since p > 2, so in view
of Lemma 2.6 we have FG # 1. Hence F = G. That is, we get
(3.4) P(f) = P(L),

which by condition (i) implies f = L.

(ii) = (i) : Let P(f) = P(L). That is,

p p

[ =™ =TJ(£ - ai)™,

i=1 i=1
which implies f and £ share (S, 00). Therefore, obviously f and £ share (S,t) for
t € NU{0}. Hence by condition (ii), we have f = L.

Proof of the theorem 1.2. Let us consider F and G as defined by (2.10). Let f
be a non-constant meromorphic function and £ be a non-constant L-function such
that E¢(S,t) = E£(S,t), where t € NU{0}. Then F, G share (1,t). Now for

(i) t>1land n>20+3, or
(ii) t =0 and n > 2 + 6,

in view of Lemma we have
(3.5) 1 __4 .5

where A(#£0), B € C.
From (3.5 we easily obtain

(3.6) T(r, f)=T(r,L)+S(r, f).
Now in view of Lemma (3.6) and from the construction of F and G we get

N(r,0;F) + N(r,00;F) + N(r,0;G) + N(r,00; G)

M;r

k
< N(r0;f)+ > N(rB;f)+ N(r,o0; f)+ N(r,0; L) + Z (r,B4; L) + N(r,00; L)
< A+KT0,f ;+ (1+K)T(r, L)+ O(logr) =2(1 + k)T (jf)—kO(logr)
< K300 F) < T F) [ on>2k+3).

n
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So in view of Lemma[2.7, we have either FG = 1 or F = G. Again in view of Lemma
[2.9 we have FG # 1. Thus F = G; i.e., R(f) = R(L).

Therefore we find that E¢(S,t) = E.(S,t) = f = L, whenever R(f) =
R(L) = f=L. Thatis (i) = (i).

To show (it) == (i), suppose that E¢(S,t) = E.(5,t) = f = L. Let

R(f) = R(L), then we have R(f) — 1= R(L) — 1; i.e., 2 = P(£) Therefore f

o(f)  o(L)
and £ share (S, 00) and which implies E;(S,t) = E£(S,t), hence f = L.

4. APPLICATIONS

In this section, we prove that all the existing results can be improved as an
application of our results. Moreover, there exist other polynomials providing better
results than the existing ones including those polynomials which are still uncertain
to be critically injective or non-critically injective. Furthermore, in this section we
have also exhibited a similar result for non-critically injective polynomials which is
yet not considered in this literature. In a word, by executing the following examples

we prove the far reaching applications of Theorem 1.1 and Theorem 1.2.

First of all we exhibit examples of critically injective polynomials as the applications
of Theorem [ 1l

Example 4.1. Let us consider the following polynomial.

(4.1) P(2) = 2" +az""™ + 02" " + ¢,
where a,b,c € C* be such that P(z) has no multiple root, ged(m,n) =1 and Z—Z =
Tzsl":ni;r;) ,c# Bﬁféj . Here B; = —(c' +acl ™™ 4 bc? ™), where ¢; are the roots of

the equation nz*™ + (n — m)az™ + b(n — 2m) =0, fori =1,2,...,2m. Suppose S
denotes the set of zeros of (4.1)).

Obviously, P(z) has only simple zeroes and it is critically injective [6l, see Lemma

2.7]. From (4.1) we have

(4.2) P’(Z) — Zn—2m—1[nz2m +a(n —m)z™ + b(n — 2m)]
(4.3) _ ppn2m1 (Zm N W )

From (4.1) and (4.2) we find that
p=2m+1 and s=m+1.
In [6], see proof of Theorem 1.1] it is also proved that P(f) = P(g) implies f = g for

n > 2m+4, where fand g are non-constant meromorphic functions. Hence for a non-

constant meromorphic function f having finitely many poles and an L-function £ we
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have P(f) = P(L) = f = L when n > 2m+4. Thus P(z) satisfies the condition
() of Theorem [1.1] of the present paper and hence E¢(S,t) = E.(S,t) = f=L
for

(1) n > max{4m +3,2m + 5} > 7 when t > 1, and

(2) n > max{4m + 3,2m + 8} > 10 when ¢ = 0.

Remark 4.1. Note that the polynomial
(4.4)

Plz) = (n—1)(n—-2) n(n —1)

2 2
introduced by Frank-Reinders [1] comes as the special case of (4.1) form =1, a =

9 _
_ n b= n G/ﬂdCEC—{O,m}H@nceEf<S7t):E£(S,t) —
f=Lasn>T7whent>1 andn > 10 when t = 0, where S denotes the set of zeros

2" —n(n—2)2""1+ 2" 2—¢, where n>6, c¢#0,1.

n—-1"~"n—-2

of (4.4) and f, L are non-constant meromorphic function having finitely many poles

and a non-constant L-function respectively.

Example 4.2. Consider the polynomial
(4.5) Pz)=2"4+az"""+b=2"""(2"+4a)+b,

where n,m are relatively prime inegers and a, b are non-zero constants such that

the polynomial has no multiple zero. Suppose S = {z: P(z) = 0}. Here
p=m+12>2
and
(4.6) P'(2) = 2" (n2™ 4 a(n — m));
i.e., s=m+1.
Suppose that P(f) = P(L£), for any non-constant meromorphic function { having
finitely many poles and a non-constant L-function £, then we have
(4.7) =LY =—a(f" " =L"").

If f* #£ L™, then we can rewrite (4.7)) as

(h—v)(h —v?)...(h —v~™m71)

(48) B = e T h = w?) (b= T)

where h = %, u = exp(2wi/n) and v = exp(27wi/(n—m)). Noting that n and (n—m)
are relatively prime positive integers, then the numerator and denominator of
have no common factors. Since £ has atmost one pole at z = 1 in the complex
plane, and whenever n > 5 we can see that there exists at least three distinct roots

75



S. MALLICK; D. SARKAR

of h™ = 1 such that they are Picard exceptional values of h, and so it follows by
that h and thus £ are constants, which is impossible.

Therefore, we must have f™ = L™. Then by we also have f»~" = L"™™.
Since n and (n — m) are relatively prime positive integers, we deduce that f = L.
Thus we see that P(f) = P(L) = f =L, whenn > 5.

Now we apply Theorem 1.1 to find the minimum value of n for which we can say
that E¢(S,t) = E£(S,t) = f=L.

Therefore, E;(S,t) = E(S,t) = f =L for

(1) n > maz{2m +3,2m + 5} =2m + 5 when ¢t > 1, and
(2) n > mazx{2m + 3,2m + 8} = 2m + 8 when ¢ = 0.

In the next example we explore a non-critically injective polynomial in the

direction of Theorem 1.1.

Example 4.3. Let

(4.9) P(2)=2"+22""1 + 2" 2 4 ¢

where n(> 5) is odd, ¢ € C such that P(z) does not have any multiple zero. Also

we have

(4.10) Pl(z) =2""?(nz*+2(n— 1)z + (n—2)).

Here P(z) is a non-critically injective polynomial and we see that
p=2, s=3.

Suppose S = {z : P(z) = 0}. Let f and L be two non-constant meromorphic and

L-function respectively such that

Since L has at most one pole in C, hence proceeding in the same line of proof of as
done in Example 4.4 of [15] for uniqueness polynomial of entire function we also
get here f = L.

Therefore P(z) satisfies condition (i) of Theorem 1.1. Hence we conclude that
E¢(S,t) = E(S,t) = f =L when

(1) n>maz{2.2+1,23+3} =9 fort > 1, and

(2) n>mazx{2.2+1,23+6} =13 fort=0.

Now we apply Theorem 1.2 for rest of the examples where in the first example

we have considered a polynomial which is still uncertain to be critically injective
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or non-critically injective [3, see section 5] and the polynomial used in the second

example is critically injective.

Example 4.4. Consider the polynomial
P(2) = az" —n(n —1)2% + 2n(n — 2)bz — (n — 1)(n — 2)b?,

where n(> 6) is an integer and a, b are two non-zero complex numbers satisfying
ab"=2 # 1,2. Suppose S = {z : P(z) = 0}. It is obvious that n(n — 1)2% — 2n(n —
2)bz + (n — 1)(n — 2)b% = 0; has two distinct roots, say oy and . Here

az"

(4.11) R(z) =

n(n—1)(z—a1)(z —ag)’
Hence S ={z: R(z) — 1 =0}. From we have

(n —2)az""(z — b)?

(4.12) R'(2) = nln —1)(z — a1 )2(z — a)®

Let f a non-constnat meromorphic function having finitely many poles and L be
a non-constant L-function. Since every L-function is meromorphic in C, so R(f) =
R(L) = f =L for n > 6 directly follows from [Il, see page 67].

We also find that in this case [ = 2, k = 2. Since P(z) satisfies condition (i) of
Theorem [L.2] Hence we obtain E¢(S,t) = E.(S,t) = f = L for

(1) n > mazx{2k +3,2l+3} =7 when ¢t > 1, and
(2) for n > max{2k + 3,2l + 6} = 10 when t = 0.

Example 4.5. Consider the polynomial
(4.13) P(z)=2"+az™ +0b,

where m and n are positive integers such that n > m+4, a and b are finite non-zero

prn—m —1)"m™ _ n—m
complex numbers with =+ (=D)"m™(n = m)
am

. Then P(z) has only simple
nn

zeros. Let S denotes the set of zeros of P(z). Suppose

Zn

Cazm+ b

Then we find that S = {z: R(z) — 1 = 0}. From we have
2" Ha(n —m)z™ + bn]

(az™ + b)?

(4.14) R(z) =

(4.15) R(z)=—

Now for a non-constant meromorphic function f and a non-constant L-function
L consider R(f) = R(L). Then we have
fn ﬁn

4.1 =
( 6) afm + b aL‘m + b

— a(f" L™ — LTy — b(L" — f7) = 0.
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Let h = % Suppose that A is a non-constant meromorphic function. Then from

(4.16) we have

(4.17) ah™ LT (™ — 1) + bL" (R" — 1) = 0
b(h" — 1) b

B h—u)(h —u?)...(h —u™"1)
ah™(hn—m — 1) ah™(h —v)(h —v2)...(h —on—m—1)’

where u = exp(2mi/n), and v = exp(27wi/(n —m)). Since n and m are co-prime, so

:}Em:

is n and (n —m). Hence the numerator and denominator of have no common
factors. Further, the function £ has atmost one pole in the complex plane, it follows
that h has atleast (n—m—1) picard exceptional values among {0, v, v?, ...,v" "™ 1}

Clearly this is a contradiction as n > m + 4. Hence h is constant. Thus from
we must have b = 1 = A"~ which in turn implies h = 1; ie., f = L.
Therefore we obtain that R(z) satisfies condition (i) of Theorem

Now we count the cardinality of the set S for which E;(S,t) = E.(S,t) =
f = L. In this case, for R(z) we have

l=m+1, k=m.
Therefore the condition (ii) of the Theorem is satisfied if

(1) n > mazx{2m+3,2m+5} =2m+5 for t > 1 and
(2) n > maz{2m + 3,2m + 8} = 2m + 8 for t = 0.

Remark 4.2. Observe that Example [1.5] and Example[.2] answer Question[I.4] and
Question [1.5| with threefold improvement to Theorem G-H as discussed in Remark
[1:2) which inturn improve Theorem D-H by relazing the nature of sharing of the sets

or reducing the least cardinalities of the sets or both.

Remark 4.3. Further note that Example[4.1, Example[4.3] and Example[d.4] answer
Question and Question affirmatively. Moreover, Example and Example
improves Theorem D-H either by relaxing the nature of sharing of the sets or

reducing the least cardinalities of the sets or both.

5. CONCLUSION AND AN OPEN QUESTION

Observe that if we consider Ezample [{.9 in the direction of Theorem then
we would obtain the same conclusion for n > max{2(n—m)+3,2(n—m+1)+3} =
max{2n — 2m + 3,2n — 2m + 5}; i.e., m > HT—%’ which is absurd. So, Theorem
is not applicable for Example whereas Theorem[1.1]is applicable for the same.

Similarly we would have problems in counting the cardinality of the set if we apply

Theorem in case of Example and Ezample [{.3
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Conversely the conclusion of Ezample[{.f]and Ezample[]-5can not be obtained as
the application of Theorem[I.1but Theorem[I.2 That is why, we have have proved
two theorems in this paper in the most general setting to justify all the existing

results as well as to include all the variants of polynomials for the uniqueness of f
and L.

Last but not the least, observing Theorem|I.1 and Ezample [[.1)[].5 carefully,
it is obvious that for any polynomial if one can find P(f) = P(L) or R(f) = R(L)
implies f = L, then at instant we would be able to find out the set with least
possible cardinality and sharing condition. Hence under this circumstances, the

following question become indispensable for the uniqueness of f and L.

Question 5.1. Can one find general criterion(s) for any general polynomial given

by (1.6) so that P(f) = P(L) or R(f) = R(L) implies f =L ¢

Acknowledgement. The authors express their heartiest gratitude to the anonymous

referee for his/her valuable suggestion towards the betterment of the paper.

CIHUCOK JINTEPATYPHI

[1] T. C. Alzahary, “Meromorphic functions with weighted sharing of one set”, Kyungpook Math.
J., 47, 57 — 68 (2007).

[2] A. Banerjee, “Uniqueness of meromorphic functions sharing two sets with finite weight II”,
Tamkang J. Math., 41 no. 4, 379 — 392 (2010).

[3] A. Banerjee, “Fujimoto’s theorem - a further study”, J. Contemp. Mathemat. Anal., 51, 199
— 207 (2016).

[4] A. Banerjee and A. Kundu, “Weighted value sharing and uniqueness problems
concerning L-functions and certain meromorphic functions”, Lith. Math. J., (2021).
https://doi.org/10.1007/s10986-021-09512-1.

[5] A. Banerjee and A. Kundu, “Uniqueness of L-function with special class of meromorphic
function under restricted sharing of sets”, arXiv:2103.00731v1l [math.CV] 1 Mar 2021.

[6] A. Banerjee and S. Mallick, “On the characterisations of a new class of strong uniqueness
polynomials generating unique range sets”, Comput. Methods Funct. Theory, 17, 19 — 45
(2017). DOI 10.1007/s40315-016-0174-y.

[7] G. Frank and M. Reinders, “A unique range set for meromorphic functions with 11 elements”,
Complex Var. Theory Appl., 37, no. 1, 185 — 193 (1998).

[8] F. Gross, “Factorization of meromorphic functions and some open problems”, J. D. Buckholtz
and T. J. Suffridge (Eds.), Complex Analysis, Proceedings of the Conference Held at the
University of Kentucky, May 18-22, (1976), Lect. Notes Math., Vol. 599, Springer, Berlin,
Heidelberg, 51 — 69 (1977).

[9] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon
Press, Oxford (1964).

[10] P. C. Hu and B. Q. Li, “A simple proof and strengthening of a uniqueness theorem for L-
functions”, Can. Math. Bull.,, 59, 119 — 122 (2016).

[11] J. Kaczorowski and A. Perelli, “On the structure of the Selberg class, I: 0 < d < 17, Acta
Math., 182, 207 — 241 (1999).

[12] I. Lahiri, “Weighted sharing and uniqueness of meromorphic functions”, Nagoya Math. J.,
161, 193 — 206 (2001).

[13] I. Lahiri, “Weighted value sharing and uniqueness of meromorphic functions”, Complex Var.
Theory Appl., 46, 241 — 253 (2001).

79



(14]

[15]
[16]

(17]

(18]

(19]
[20]
21]

[22]

S. MALLICK; D. SARKAR

B. Q. Li, “A result on value distribution of L-functions”, Proc. Amer. Math. Soc. 138, no. 6,
2071 — 2077 (2010).

S. Mallick, “Unique Range Sets - A Further Study”, Filomat, 34, no. 5, 1499 — 1516 (2020).
P. Sahoo and S. Haldar, “Results on L functions and certain uniqueness question of gross”,
Lithuanian Math. J., 60, no. 1, 80 — 91 (2020).

P. Sahoo and A. Sarkar, “On the uniqueness of L-function and meromorphic function sharing
one or two sets”, An. Stiint. Univ. Al. I. Cuza lasi. Mat., 66, no. 1, 81 — 92 (2020).

A. Selberg, “Old and new conjectures and results about a class of Dirichlet series”, Proccedings
of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Univ. Salerno, Salerno,
367 — 385 (1992).

J. Steuding, Value distribution of L-functions, Lect. Notes Math., 1877, Springer-Verlag,
Berlin (2007).

H. X. Yi, “Meromorphic functions that share one or two values”, Complex Var. Theory Appl.,
28, 1 - 11 (1995).

H. X. Yi, “Meromorphic functions that share one or two values II”, Kodai Math. J., 22, 264
— 272 (1999).

X. M. Li, Q. Q. Yuan and H. X. Yi, “Value distribution of L-functions and uniqueness questions
of F. Gross”, Lithuanian Math. J., 58, no. 2, 249 — 262 (2018).

ITocTynuna 03 ampess 2022
[Tocse mopaborku 03 HOsOPs 2022
[Ipunsra xk nmybsmkanuu 06 HOsIOpst 2022

80



Uszsecrust HAH Apmennu, Maremaruka, Tom 58, u. 4, 2023, crp. 81 — 88.

GENERALIZATIONS OF SOME DIFFERENTIAL INEQUALITIES
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n—s
Abstract. We consider polynomials of the form P(z) = z* (a0+ > avz”),t >1,0<s<n-—-1
v=t

and prove some results for the estimate of the polar derivative Do P(z) := nP(2) + (a — 2)P'(2)
and generalize the results due to Aziz and Shah [Indian J. Pure Appl. Math., 29(1998), 163-173],
Govil [J. Approz. Theory, 66(1991), 29-35] and others.

MSC2020 numbers: 30A10; 30C10; 30C15.

Keywords: polynomial; inequalities; zeros; Polar derivative.

1. INTRODUCTION

For each positive integer n, let P, denote the linear space of all polynomials
n

P(z) := Z a;2’ of degree atmost n over the field C of complex numbers.
Jj=0
If P € P, and P’ be its derivative, then concerning the estimate |P’(z)[, in terms

of |[P(z)| on |z| = 1, we have the following famous sharp result due to Bernstein [7].
(1.1) lrglgflP’(Z)l < ngl‘fglP(Z)\-
Since equality holds in (1.1) if and only if P has all its zeros at the origin, it stands
natural to ask what happens to inequality (1.1), if we impose restrictions on the
location of zeros of P. In this connection the following inequalities are the earliest
belonging to this domain of ideas which have a clear impact on the subsequent work
carried forward since then.

If P € P, has all zeros in |z| > 1, then
(1.2) max | P'(2)] < gg@ P(2)],
and if it has all zeros in |z| < 1, then

(1.3) max | P'(2)| 2 gﬂg |P(2)].

IThe first and third authors are highly thankful to the funding agency DST- INSPIRE and
DST-Matrices programme for their financial support.
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Inequality (1.2) was conjectured by Erdos and latter verified by Lax [14], whereas
inequality (1.3) is due to Turdn [I6]. Inequality (1.2) was generalized by Malik [I5]
to read as:

Theorem A. If P(z) is a polynomial of degree m, which does not vanish in
|z| < k, where k > 1, then

masx |P/(2)] < = max | P(e)]

Govil [I3] also generalized inequality (1.2) in a different way. More precisely he
proved the following.

Theorem B. If P(z) is a polynomial of degree n, such that P(z) # 0 in |z| < k,
k<1, then

n
max |P'(2)| < max | P(z)|,
max |P'(2)] < 17 max |P(2)

provided |P'(z)| and |Q'(2)| attain their maxima at the same point on the unit

circle, where Q(z) = z”P(%)

It is worth mentioning that the Bernstein inequality has been generalized in
different forms by replacing the underlying polynomial with more general class of
functions. These inequalities have their own importance in the theory of approximation.
The results we prove provide extensions, generalizations and refinements of various
differential inequalities for polynomials. Before proceeding for the main results, we
first define the polar derivative of a polynomial.

For a polynomial P(z) of degree n, the polar derivative of P(z) denoted by
D, P(z), is defined as

Do P(2) =nP(2) + (o — 2)P'(2).

It is to be observed that

D,P(z)

" = P'(z).

lim
|| =00

Aziz |2] extended Theorem A to the polar derivative of a polynomial and proved
the following.
Theorem C. If P(z) is a polynomial of degree n, such that P(z) does not vanish

in |z| <k, k>1, then for every real or complex number o with |a| > 1,

k+ o
1.4 < P(2)|.
(1.4) gl‘i)ﬂDaP(z)' < n( 5k )Iglfgl (2)]

In this paper we prove.

Theorem 1.1. If P(z) is a polynomial of degree n, such that all zeros of P(z) lie

in |z| > k,k > 1 with s-fold zero at the origin, 0 < s < n, then for every real or
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complex number a with |a| > 1,

(1.5) mi)i ‘DQP(ZH < (n(|04| + k) + Sk(‘al - 1)) max |P(Z)|

|z| 1+k 1+k |z|=1

The result is sharp for s = 0 and equality holds for the polynomial P(z) =
(z+ k)™ For s = 0, inequality (1.5) reduces to a result due to Aziz [2, Theorem 3]

whereas for s = n — 1, we have the following.

Corollary 1.1. If P(z) is a polynomial of degree n having all n — 1 zeros at the

origin and one zero in |z| > k,k > 1, then for every a with |a| > 1, we have

max | Do P(2)] < 1_1k{(n(1 + k) — k)|a| + k} max |P(2)].

|2| |z|=

On dividing both sides of above inequality by |a| and letting |a| — oo, we get

max|P'(2)] < <n - j,ﬂ) max |P()].

Remark 1.1. Divide the two sides of inequality (1.5) by |a| and letting |o| — oo,
we get a result due to Aziz and Shah [5].

Theorem 1.2. Let P(2) be a polynomial of degree m, such that all zeros of P(2)
lie in |z| > k,k < 1 with s-fold zeros at the origin, then for every real or complex

number o with |a) > 1

max |P(z)],

14 kn—s 14 kn—s |z|=1

(1.6) fﬂi’i'DaP(zﬂ < <”(|a| ) sk (o] 1))

provided |P'(z)| and |Q'(z

iy

The result is sharp for s = 0 and equality holds for the polynomial P(z) = 2"+k".

~

attain their maxima at the same point on the unit

circle, where Q(z) = 2" P(

V|| =

On dividing both sides of inequality (1.6) by || and letting |a| — oo, it reduces

to a following result.

Corollary 1.2. Let P(z) be a polynomial of degree n, such that all zeros of P(z)
lie in |z| > k,k < 1 with s-fold zeros at the origin, then for every real or complex
number o with |« > 1, then

kn*s
max |P'(2)] < Wi‘max
|z|=1 1+ k75 |z|=1

1P (2)],
provided |P'(z)| and |nP(z) — zP'(z)| attain their mazimum at the same points on
|z| = 1.
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Remark 1.2. For s = 0, Theorem 1.2 reduces to a result due to Chanam [6]
Theorem 1].

Remark 1.3. By taking s = 0 and letting |a| — oo in (1.6), we get a result due
to Gowil [13].

Theorem 1.3. If P(z) is a polynomial of degree n, such that all zeros of P(z) lie
in |z| < k,k <1, with s-fold zeros at the origin. Then for every real or complex

number o with || <1 and |z] =1

(1.7)
n(k +lal)  sk(lal—1) 1 —|of .
max |DaP(2)] < ( Ttk 14k ) max [P)=(n=s) ey min P @1

The result is sharp for s = 0 and equality holds for the polynomial P(z) =
(z+ k)™

Remark 1.4. A result of Aziz and Shah [4, Theorem 3] follows from Theorem 1.3,
if we take s = 0.

Corollary 1.3. For a =0, we get from (1.7),

nk — sk 1
P(z) — 2P’ < P —(n—8)—————= min |P(2)|.
nP(e) 2P ()] £ M [P = (0 - 8) sy i PO
If ‘m‘el)i |P(2)| = | P(€!?)|, then from above inequality, we get the following improvement
of a result due to Aziz and Shah [5]
n + sk (n—s) .
1.8 P > P —_ P(z)|.
(1.8) max [P(2)| 2 T max 1P|+ o min 1P

We also prove the following results concerning the growth of polynomials.

Theorem 1.4. If P(z) = anz™+ > an—pz™ ¥, 1 <n < n isapolynomial of degree

v=n

n, having all zeros on |z| = k,k < 1, then for every positive integer s

s kn—?n—i—l + kn—77+1 + pns -1 s
{M(P,p)}" < [T Sy EES {M(P1)}°, p>1.

Remark 1.5. Forn =1, we get a result due to Dewan et .al [9, Theorem 1].

Also if we take n = s = k = 1, then Theorem 4 reduces to a result due to Ankeny
and Rivlin [T].
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n
Theorem 1.5. If P(2) = anz2"+ > an—y2™ Y, 1 <1 < nis a polynomial of degree
v=n
n, having all zeros on |z| = k, k < 1, then for every positive integer s

s 1
M(P, )} <
M(P.p)} < k=4 (] agn—y (1 + k771) 4 nla, |[k1—1(1 4 k7t1))

{k”_"“(nan_nm £ R+ nlan (L4 £7)

+ (p™* = 1) (n|an [K*" + nann|k’7_1> }{M(R 1},
where p > 1.
Remark 1.6. Forn =1, we get a result due to Dewan et al [9, Theorem 2].
2. LEMMAS

n
Lemma 2.1. If P(z) = apz" + Y an—p2" ¥, 1 < < nis a polynomial of degree
v=1

n, having all zeros on |z| = k, k < 1, then

, n
B 1P < e 1 1P

The above Lemma is due to Dewan et al. [11].

n
Lemma 2.2. If P(z) = anz" + Y an—p2" ¥, 1 <n < nis a polynomial of degree

v=n
n, having all zeros on |z| = k, k < 1, then
n n|an |k 4+ n|an, k771
p < n U P .
max [P < S (nannu R T a1 R | e IPG)

Lemma 2.2 is due to Dewan and Hans [10].
We also need the following lemma which is a simple consequence of maximum

modulus principle.

Lemma 2.3. If P(z) is a polynomial of degree n, then for some p > 1, we have
M(P,p) < p"M(P,1),
where M (P, p) = max |P(z)].
=p

|2l

Lemma 2.4. (see [6]). If P(z) is a polynomial of degree n, such that P(z) # 0 in
|z| < k,k <1, then for every real or complex number o with |a| > 1
k" + ol
D,P < P(z)],
lrglgl (2)] n( T )rgzgl (2)]
provided |P'(z)| and |Q'(z

circle, where Q(z) = z"P(=).

~

attain their maxima at the same point on the unit

N
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Lemma 2.5. If P(z) is a polynomial of degree n, such that all zeros of P(z) lie in
|z| < k,k <1, then for every real or complex number o with |a| <1

k+|a 1—|a .
|a aX|P(2)|_lﬂl—1(1—|—|lc)|rzr|u—nk|P(z)|}

1+ k II?I:1

2| N

max |D,P(z2)| < n{
The above lemma is due to Aziz and Shah [4].

3. PROOFS OF THEOREMS

Proof of Theorem 1.1. Since P(z) = 2°¢(z), where ¢(z) is a polynomial of
degree n — s, which does not vanish in |z| < k. Applying inequality (1.4) to the
polynomial ¢(z), we get

k+ |af
(3.1) gllngm(Z)l <(n-— S)< Tk ) glgldz)l-

Since

DaP(2) = nP(2) + (a = 2)P'(2) = n2"¢(2) + (a — 2)(s2° 7 d(2) + 2°¢/(2))
= 2"Da(2) + asz* " ¢(2),
where D,o(2) = (n— 8)o(2) + (a — 2)¢/(2).
Therefore,
2DoP(2) = 2T Dy (2) + asz®¢(2).

Hence for |z| = 1, we have

max |DaP(2)] < max |Dag(2)| + Ia\s‘m‘@i l¢(2)]-

Using ‘m‘ax lp(2)| = ‘m‘ax |P(2)|, we get
z|=1 z|=1

(3.2) max |D,P(z)| < max |Dad(2)] + |afs max |P(2)].

|z]=1 |2l

Considering (3.1) in (3.2), we obtain

max |IDoP(2)| < (n—s) <

|z|=

k+|af
max |P(z)| + |a|s max |P(z)|.
1+k>|z|_1' ()] +lals max | P(2)

Equivalently

max | Do P(2)] < (”(|O‘| + k), skllal = D) max |P(2)|.

|z|=1 1+ k 1+ k |z|=1
This completely proves Theorem 1.1. ([
Proof of Theorem 1.2. Since P(z) = 2°¢(z). On applying Lemma 2.4 to ¢(z),
the proof follows similarly as that of Theorem 1.1. O
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Proof of Theorem 1.3. Since P(z) is a polynomial with a zero of multiplicity
s at origin, therefore, we write it as P(z) = 2°¢(z), where ¢(z) is a polynomial of

degree n — s. Applying Lemma 2.5 to ¢(z), we get

k+|af 1—|af .
(3.3) glngm(Z)l <(n-— 3){ Tk glli}%\ﬁﬁ(zﬂ T4 Ifglll_fllc|¢(z)|}~

Using (3.3) in (3.2), we get

(3.4)
max |DaP(2)| < (n—s) k+ ol max|¢(z)|—1_—‘o‘| min |p(2)| p4|ls max [P(z)].
|z|=1 - 1+k |z]=1 kn=s=1(1 + k) |2|=k |z|=1
1
Since Imlax |P(2)| = Im‘ax |p(2)] and ‘n‘nn lp(2)] = T lnlnn |P(%)]. we have from (3.4)
n(k+laf) | sk(laf = 1) o
DaP < P (n—q) — " P

max| (Z)|_< Ty el B e L Gl Gt e 1(1+k)‘n‘nn| (2)I-
This completely proves Theorem 1.3. (|

Proof of Theorem 1.4. If we write ‘m‘zi)i:|P( z)] = M(P,1), where P(z) =

n
anz™ + Y ap—y2" Y, 1 < 1n < nis a polynomial of degree n having all zeros on

v=n

|z| = k,k < 1, then by Lemma 2.1

, n
(3.5) |P'(2)] < R g

M(P,1), for |z|=1.

Since P’(z) is a polynomial of degree n — 1, it follows from (3.5) by an application
of maximum modulus principle that for » > 1 and 0 < ¢ < 27,

nrn—1

/ i}
(3.6) |P'(re'?)] < Ty

M(P,1).
Hence for some p > 1 and for each ¢,0 < ¢ < 2
[P(pe®)}* — {P(e)}° / L P(ue®)} du
_ /1 " S{P(ue®)} P (uet®)e du
This implies
[{P(pei®)}* — {P( z¢}y<s/ | P(ue’®)| " | P (ue®) | du.

Using (3.5) and Lemma 2.3, we get

ns

; S Z S S P ns—
(P )} ~{PE)Y| < g s (P} [,
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Equivalently,

{Pe)}] < [{PE)) | + i (MR, D)

s pns -1 s
S {M(P7 1)} + kn—2n+l + kn—n—i—l {M(P7 1)} :

This in particular gives,

{M(P,p)}° <

where M (P, p) = lmlax |P(2)]. This completely proves Theorem 1.4. O
z|=p
Proof of Theorem 1.5. The proof of Theorem 1.5 follows on the same lines as

k.n727]+1 + knfnJrl + pns _
kn—2n+1 + kn—n+1

Liare)y,

that of Theorem 1.4 by using Lemma 2.2 instead of Lemma 2.1. ]
Acknowledgment. Authors are highly thankful to the anonymous referee for

his valuable suggestions.
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Abstract. We describe transcendental entire solutions of certain nonlinear difference-differential
equations of the forms:
F)? + f(2)[af'(2) + bf (2 + 0)] + q(2)e?F) f(z + ¢) = u(2)e"),
and
FE™ + £ af! (2) + b (2 + O] + q(2)e? P f(z + ) = pre™? + pae’2?,

where ¢(2), Q(z),u(z), v(z) are non-zero polynomials, a, b, ¢, p;, A\i(i = 1, 2) are non-zero constants
such that A1 # A2. Our results are improvements and complements of Li et al. ([§]). Some examples

are given to illustrate our results are accurate.

MSC2020 numbers: 30D35; 39B32; 34MO05.

Keywords: differential-difference equation; entire solution; order; Nevanlinna theory.

1. INTRODUCTION AND MAIN RESULTS

Considering a meromorphic function f in the complex plane C, we assume
that the reader is familiar with the fundamental results and standard notation
of Nevanlinna theory, such as the proximity function m(r, f), the counting function
N(r, f), and the characteristic function T'(r, f), see, e.g., [3 [6, [I8]. We denote
by S(r, f) any real function of growth o(T'(r, f)) as  — oo outside of a possible
exceptional set of finite logarithmic measure. A meromorphic function « is said to
be a small function of f, if T'(r,a) = S(r, f).

In 1964, Hayman [3] considered the following non-linear differential equation

(1.1) f(2)"+Qu(f(2) = 9(2),

where Qq(f) is a differential polynomial in f with degree d and obtained the

following result.

IThe work of authors were partially supported by Topics on Basic and Applied Basics research
of Guangzhou in 2023 (No. 2023A04J0648) , NSFC of Shandong (No. ZR2018MA014), PCSIRT
(No. IRT1264) and The Fundamental Research Funds of Shandong University (No.2017JC019).
The work of authors were partially supported by and The Fundamental Research Funds of
Shandong University (No.2017JC019), PCSIRT (No. IRT1264).
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Theorem 1.1. ([3]) Suppose that f(z) is a non-constant meromorphic function,
d <n-—1, and f,g satisfy N(r, f) + N(r,é) = S(r,f) in (LI)). Then we have
9(z) = (f(2) + v(2)", where y(z) is meromorphic and a small function of f(z).

Nowadays, there has been recent interest in connections between the Nevanlinna
theory and the difference operator, as well as meromorphic solutions of difference
and functional equations. Yang and Laine[16] then investigated finite order entire

solutions f of non-linear differential-difference equations of the form

f(2)" + L(z, f) = h(z),

where L(z, f) is a linear differential-difference polynomial in f with meromorphic
coefficients of growth S(r, f), h(z) is meromorphic, and n > 2 is an integer. Many
authors have investigated this question by utilizing the Nevanlinna value distribution
theory and its difference counterparts, see, e.g., |5l 9} 10} [TT], 13} [15].

In 2016, Liu [I2] investigated and classified the finite order entire solutions of

the equation
(1.2) F(2)" +4(2)e?F f P (z 4 ¢) = P(2),

where ¢(z2), Q(z), P(z) are polynomials, n > 2,k > 1 are integers and ¢ € C\{0}.
Later, Chen [2] replaced P(z) in by p1e* + pae??, where pi, pa, A1, Ao are
non-zero constants, and studied its finite order entire solutions when n > 3.

By observing all the above equations, it is easy to see that the left side of these
equations have only one dominant term f". It is nature to ask what can we get if
the left side of these equations have two dominant terms. In 2021, Li [8] investigated
non-linear differential-difference equations which may have two dominated terms on

the left-hand side with the same degree:

(1.3) FE" +wf()" 7 (2) + a(2)e?P [z + ) = P(2),

they replaced P(z) in (T.3)) by u(z)e"®) or pye* + poe?? respectively, and obtained

the following results.

Theorem 1.2. (|8]) Let ¢, # 0 be constants, q,Q,u,v be polynomials such that
Q,v are not constants and q,u % 0. Suppose that f is a transcendental entire

solution with finite order of

(1.4) F2)? +Bf()f(2) + a(2)e?D f(z + ¢) = u(z)e",

satisfying A(f) < p(f), then deg Q@ = degv, and one of the following relations holds:
(1) p(f) < deg@Q = degw, and f = Ce™

(2) p(f) = deg @ = degv.
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Theorem 1.3. ([8]) Suppose that n is a positive integer, w is a constant and
¢, A1, A2, p1,p2 are non-zero constants, q,Q are polynomials such that Q is not a

constant and q £ 0. If f is a transcendental entire solution with finite order of
(1.5) FE™ +wf ()" (2) + q(2)e? D f(z + ¢) = pre™ + pae?,
where Ao # +A1, then the following conclusions hold:

(1) If n > 4 for w # 0 and n > 3 for w = 0, then every solution [ satisfies
p(f) =degQ =1.

(2) If n > 1 and f is a solution of (1.5)) with A\(f) < p(f), then

f(z) = <ni23)\2)nekﬁza Q(z) = (Al - )\nQ) z+ by,

or

3=

n+ wA;

10 = (20 R Q= (-2 rn,

A

1
n Agc c
where by,by € C satisfy p1 = q (nf;;z) et and py = g <nﬁdn)\1> e w o2

3=

respectively.

In the following, inspired by the ideas of [§], we will investigate non-linear
differential-difference equations which may have three dominated terms on the left-
hand side of (1.4) and (1.5) and obtain the following results.

Theorem 1.4. Let a,b, c be non-zero constants, q,Q,u,v be polynomials such that

q,u Z 0. Suppose that f is a transcendental entire solution with finite order of
(1.6) F2)? 4 f(2)af'(2) +bf (2 + ) + a(2)e?P) f(z + ¢) = u(z)e"®),

satisfying A(f) < p(f), then one of the following relations holds:

(1) If p(f) > degQ, then p(f) = degv = 1, Q reduces to a constant, and
f(z) = d(z)e™*, where d(z) = gﬁg:g, here Cy = e9FT4e Cy = €%, ay,vy are
constants satisfying 1 + aay + be®¢ = 0.

(2) If p(f) = deg @ > degwv, then p(f) = deg@ = 1, v reduces to a constant,
and f(z) = d(2)e**, where d(z) = %, here C3 = ePot®ic Cy = e?, ay, by are
constants satisfying 1 + aay + be®¢ = 0.

(3) If p(f) < degQ, then p(f) = 1,degv = deg Q, f(2) = d(2)e™*, where d(>)
is an entire function with p(d) < 1, a1 is a non-zero constant satisfying 1 + aa; +
be®1¢ = 0.

We exhibit some examples to show the existence of solutions in Theorem
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Example 1.1. f(z) = ze* is a transcendental entire solution of the following

differential-difference equation

orssalfa st (o Yo () - (et
Here a = 1,0 = —26_%,1}(2) =z+ %, and 0 = A(f) < p(f) = 1. Then we have

degv =p(f) =1>deg@Q =0, and a1 =1 satisfy 1 + aaj + be®¢ = 0.

Example 1.2. f(z) = ze* is a transcendental entire solution of the following

differential-difference equation

f(Z)Q +f(z) |:f/(z> — 26_%f (Z+ ;>:| +6_zf (Z+ ;) _ (z+ ;) 6%.
Here a = 1,b = —26_%,62(2) = —z, and 0 = A(f) < p(f) = 1. Then we have
deg Q@ = p(f) =1>degv =0, and a1 =1 satisfy 1 + aaj + be® ¢ = 0.

Example 1.3. f(z) = ze* is a transcendental entire solution of the following

differential-difference equation

F22 + 1(2) [f’<z> —oc by ( ; ;)} ey ( i ;) _ ( i ;) (et

Here a = 1,b = —2e72,Q(2) = 22, v(2) = 22 + 2z + 1.and 0 = X\(f) < p(f) = L.
Then we have 2 = deg @ = degv > p(f) =1, and a1 = 1 satisfy 1+aa; +be*c = 0.

Theorem 1.5. Let n is a positive integer, a,b,c,\;,p;(i = 1,2) are non-zero
constants, q,Q are polynomials such that @ is not a constant and q % 0. If f

is a transcendental entire solution with finite order of
(1.7) f(2)" + f(2)" " [af'(2) + bf (2 + 0)] + q(2)e® P f(z + ¢) = pre™® 4 pae?,

satisfying A(f) < p(f), then

n A A
fz) = P2 ) % Q)= (M — 22)z+ By,
n -+ aly +nbex © n

or

3=

f(z) = ( L > 6%2’ Q2) = (A2 — A )z + Bo,

n—+ai + nbe e n
where Bg € C satisfy

1
A1

pan T pin !
p=q s | et or py= ol B
n+ aly + nbew © n+ al; +nbew ¢

respectively.
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2. SOME LEMMAS

In order to prove results above, we need the following lemmas.

Lemma 2.1 ([I8], Theorem 1.51). Let f;(z)(j = 1,---,n)(n > 2) be meromorphic
functions, and let g;(2)(j =1,--- ,n) be entire functions satisfying

YT, £i(2)en ) = 0;

(i1) when 1 < j < k < n, then g;(z) — gr(2) is not a constant;

(#ii) when 1 < j <n,1 < h<k<mn, then

T(r, f;) = O{T (r, egh*gk)} (r = oo,r ¢ E),

where E C (1,00) is of finite linear measure or logarithmic measure.
Then, fi(z)=0(j=1,---,n).

Lemma 2.2 ([I8|, Theorem 1.62). Let f1, fa, -+ , fn be non-constant meromorphic
functions, and let fny1 Z 0 be a meromorphic function such that Z;Lill =1
Suppose that there exists a subset I € RT with linear measure mesl = oo, such

that:

n+1 1 n+1
ZN (7‘, f) +n Z N(r, fi) < (c+o(O)T(r, f;), j=1,2,--+,n,
i=1 v i=1,i#j

as r € I and r — oo, where o is a real number satisfying 0 < o < 1. Then,
fn+1 =1

Lemma 2.3 (7], Theorem 3.1). Let f(z) be a meromorphic function with the
hyper-order less than one, and ¢ € C\{0}. Then we have

T(r, f(z+c)) = T(r, f(2)) + S(r, f).

Lemma 2.4 ([I8], Theorem 1.21). Suppose that f(z) is meromorphic in the complex

plane and n is a positive integer. Then f(2) and " (z) have the same order.

Lemma 2.5 ([I], Lemma 3.3). Let g be a transcendental meromorphic function of
order less than 1, and let h be a positive constant. Then there exists an e-set E such
that as C\E 3 z — o0, one has
gltn) | 0. g(z+mn)
9(z+n) 9(2)
uniformly in n for | n |< h. Further, the e-set E may be chosen so that for large z

—1

not in E, the function g has no zeros or poles in | ( — z |< h.

Lemma 2.6 ([I7], Lemma 1). Let fi and f2 be two meromorphic functions, and let
a, by, ba be small functions of f1 and fo satisfying abibs Z£ 0 and by f1 + bafo = a.
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Then one has

T(r f) < N(r fi) + N (n 1) iy (r, 1) + S0 ).

1 2

Lemma 2.7 ([I8], Theorem 1.57). Let f;(2),j = 1,2,3 be meromorphic functions
and f1(z) is not a constant. If Zj?:l fi(z) =1, and

3

ZN (7“, f:é) + ZZW(r, i) <A+o(1)T(r), rel,

where A < 1, T(r) = maxi<,;<3{T(r, f;)} and I represents a set of r € (0, 00) with

infinite linear measure. Then fo =1 or f3=1.

Lemma 2.8 ([18], Theorem 1.42, Theorem 1.44). Let f(z) be a non-constant
meromorphic function in the complex plane. If 0,00 are Picard exceptional values
of f(2), then f(z) = e"*) where h(z) is a non-constant entire function. Moreover,
f(2) is of normal growth, and

(i) if h is a polynomial of degree p, then p(f) = p;

(i) if h is a transcendental entire function, then p(f) = oo.
Lemma 2.9 ([I8], Theorem 1.22). Suppose f(z) is a non-constant meromorphic
function in the complex plane and k is a positive integer, and let U(z) = Zk: a;i(2)f(2),

i=0
where a1(z),az2(z),- - ,ar(z) are small functions of f(z). Then

T(r,®) <T(r,f) +kN(r, f)+ S(r, f).

3. PrROOF oF THEOREM [L.4]

Let f be a transcendental entire solution with finite order of equation (|1.6))
satisfying A(f) < p(f). Then, by the Hadamard factorization theorem, we can

factorize f(z) as
(3.1) f(z) = d(z)e"?,

where h is a polynomial with degh = p(f), d is the canonical product formed by
zeros of f with p(d) = A(f) < p(f). Obviously, h is a non-constant polynomial.
In fact, if h is a constant, then from (3.1)), we will have p(f) = p(d) = A(f), a
contradiction. Thus we have that degh > 1. Let degh = m(> 1), and h(z) =

A 2™ + @p_12™ " + - -+, where a,, # 0.
We rewrite (1.6)) as
(3.2) P+ flaf +bf) +qef = ue’,

where f = f(z + c), for simplicity.
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Obviously, we have p(f) = p(f) = p(f’) by Lemma [2.3|and Lemma So from
, by the order property, we get
degv = p(ue”) < max{p(f") = p(f) = p(f), p(e?), p(q)}
= max{degh, deg Q}.
By substituting into , we get
(3.4) [ + ad(d' + dB)] € + bdde" " + qde@*" = ue.

(3.3)

Case 1. p(f) > deg @, then we have degh > deg @, and degv < degh from (3.3).
Subcase 1.1. degh > degv. From (3.4) we have
(3.5) {[d* + ad(d’ + dn’)] eh 4 bdﬁe’”} e2am=" 4 qdeetm*” = ye?,
where hy = 20, 12"+ -+, ho = (2am_1 + amme)z™ 4 - and hy = Q +
(@mme + apm—1)2™"1 + -+ are all polynomials with degree at most m — 1. So,
combining with p(d') = p(d) = p(d) < m, by using Lemma to (3.5)), we have
qd = 0, which yields a contradiction. Thus deg h > degv can not hold.
Subcase 1.2. degh = degv. Let v(2) = v, 2™ + Uy _12™ 1+ - -, where v, # 0.
From (3.4) we have
(3.6)  {[d® +ad(d + dh')] " + bdde} €@ 4 qdehz et = yetietmi
where hy = v, 12™ 1+ .-+ is a polynomial with degree at most m — 1, hy, ho and

hs are defined as in Subcase 1.1.

If vy # 20y, and vy, # am,, combining with p(d') = p(d) = p(d) < m, by using
Lemma 2.1] to (3.6), we get u = 0, a contradiction.
If v, = 2a4,, then (3.6) can be reduced to

{[d® + ad(d' + dW')] e" + bdde" — ue"} e**m=" + qdezetm*" =0,
by using Lemma we have ¢d = 0, a contradiction. Thus, we have
(3.7) U, = Q-
Rewriting (3.6) as
{[d® + ad(d' + dW')] e" + bdde"} ***" + (qde" — ue)e " = 0.
Similarly as above, by Lemma [2.1] we get
[d? + ad(d’ + dh')]e™ + bdde™ = 0,
qaem —ueM =0.
By observing the expressions of hy and ho, we have ho = hy + hs, where hs =
ammez™ ! + ... Noting that d # 0, then above equations can be rewrote as
d+ a(d' + dh') + bde™ =0,
qaehS —ueM =0.
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By the second equation of (3.8)), we get

(3.9) d= geh4_h3.

Subcase 1.2.1. degh > 2. Firstly, we claim that hy — hs is a non-constant
polynomial. In fact, if hy — hs is a constant, then d reduces to a rational function,
by the first equation of (3.8]) and Lemma we have d = 0, a contradiction.

Secondly, we claim that hy — hs 4 hs is a non-constant polynomial. Substituting

(3.9) into the first equation of (3.8)), we get

/ _
(u) + E(hil _ hé)‘| } eha—hs o bgeﬂ—his-&-his =0.
q q

(3.10) {(1+ah’)q+a p

If hy — hs + hs is a constant, say ¢;. Then ([3.10) becomes

! —
(£) + 20t~ h@] } Folen =0

{(1 +al)L +a
q q

that gives uw = 0, a contradiction.

Thus, we get hy — hg and hy — hz + hs are non-constant polynomials. If hy —
hs3 + hs — (hg — h3) is not a constant, by and Lemma we have u =0, a
contradiction. If hy — hs + hs — (hy — h3) is a constant, say co, then reduces

to
I —
—u U U u
l+ah)=+a () + —(hy — h3)| +b=e* =0,
( )q . q( 4 —hs) 7
that is,
(3.11) (1+ ah\uqq + ag[u'q — ¢'v + uq(hly — hj)] + bug*e® = 0,

then it can be verified that the term ah’uqg would have a higher degree of z than
all the other terms in , we obtain a = 0, which is impossible.

Subcase 1.2.2. degh = 1.

Noting that degv = deg h, so we have degv = 1. Suppose that h(z) = a1z + ao,
v(z) = v1z + vg, from and (3.7)), we have
(3.12)

{[d® + ad(d’ + day)]e® + bdde®*t*1¢} 2912 + {qde@T@1eta0 — et} e = (.

Since 1 = degh > deg @, we have @ is a non-zero constant, by Lemma we get

d+ a(d + day) + bde™“ = 0,
(3.13) _
qdcs —ucy =0,

where ¢z = e@tactao ¢, — ¢ by the second equation of (3.13)), we get d = 4 % is

c3 q
a rational function, then by the first equation of (3.13)), we have 1+ aaj +be® ¢ =0
as z — 00.
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Thus, we get f(z) = d(z)e®#, where d(2) = & Z((z:g , ag, a1 (# 0) are constants
satisfying 1 + aa; + be® ¢ = 0.

Case 2. p(f) = degQ > degv. Suppose that Q(2) = by, 2™ + by_12™ L+ -0+ |
where by, # 0. From (3.4)) we have

(3.14) {[d® + ad(d + dW)]e" + bdde" } e2am=" 4 gdels elamTom)z™ — yev

where hg = (a;mc+ am—1 +bp_1)2™ 1+ is a polynomial with degree at most
m — 1, and hq, ho are defined as in Subcase 1.1.

If b,, # +a,,, combining with p(d') = p(d) = p(d) < m, by using Lemmato
, we get u = 0, which yields a contradiction.

If b,, = a,,, then can be reduced to

{[d* + ad(d' + dh')]e™ + bdde"* + qde" } 24" = ye?,

by using Lemma we have v = 0, a contradiction.

Thus, we have

(3.15) b, = —ap,.
Rewriting (3.14) as
(3.16) {[d* + ad(d’ + dh')]e™ + bdde">} e***" = ue® — qde™.

Similarly as above, by Lemma [2.1] we get
d® 4 ad(d’ + dh') + bdde™ = 0,
qde"s — ue’ = 0.

By the second equation of (3.17)), we get

(3.17)

(3.18) d= gehﬁ—”.

Subcase 2.1. degh > 2.

Firstly, we claim that hg — v is a non-constant polynomial. Otherwise, if hg — v
is a constant, then d reduces to a rational function, by the first equation of
and Lemma we have d = 0, a contradiction.

Secondly, we claim that hg — U + hs is a non-constant polynomial. Substituting

(3.18) into the first equation of (3.17), we get

! ] 27 — —
(3.19) {(1 + aﬁ)B +a (u> + g(hg —') } eho—v 4 pLhe—ths _ .
q q q q

If hg — U + hs is a constant, say c5. Then ([3.19) becomes

/ —
<u> + E(h% —u)| petTv 4 b et = 0,
\a) "4 ] q

{(1—|—ah’)z +a

that gives uw = 0, a contradiction.
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Thus, we get hg —v and hg — T+ hs are non-constant polynomials. If hg — T+ hs —
(he — v) is not a constant, by (3.19) and Lemmal[2.1} we have 7 = 0, a contradiction.
If h¢ — ¥+ hs — (hg — v) is a constant, say cg, by (3.19), we get

(5) v

(3.20) (1+ ah’)uqq + ag [u'q — q'u+ uq (hg — v')] + bug®e® =0,

(1+aﬁ)g+a +b%666 =0,

that is,

then it can be verified that the term ah’/uqg would have a higher degree of z than
all the other terms in , we obtain a = 0, which is impossible.

Subcase 2.2. degh = 1.

Noting that deg @ = p(f) = degh, so we have deg@ = degh = 1. Suppose that

h(z) = a1z + ag, Q(z) = b1z + by, from (3.4) and (3.15)), we have
(3.21) {[d® + ad(d’ + day)]e*® + bdde®*+*1¢} 2912 4+ gde e To0Tbo = yev.

Since 1 = degh > degwv, we have v is a non-zero constant, by Lemma [2.1] we get

d+ a(d + day) + bde® ¢ =0,
(3.22) _
qdcr — ucg =0,

where c; = e®1¢t@0+bo co — ¢V by the second equation of (3.22), we get d = <% is

c7 q
a rational function, then by the first equation of (3.22)), we have 1+ aa; +be® ¢ =0
as z — 0.

Thus f(z) = d(z)e™*T%  where d(z) = %28:3, ap,a1(# 0) are constants

satisfying 1 + aa; + be* ¢ = 0.
Case 3. p(f) < degQ, then we have T(r, f) = S(r,e?). Thus we get T(r, f') =
S(r,e?) from Lemma and T(r, f) = S(r,e?) from Lemma Therefore, by

, we have
T(r,e?) + S(r,e?) = T(r, f> + flaf +bf) + qfe?)
=T(r,ue’) =T(r,e") + S(r,e").
Therefore, deg @@ = degv. Differentiating yields
(3.23) 2ff + f'(af' +bf) + flaf” +bF) + Ae? = (u' + uv')e”,
with A =¢'f +qf +qfQ".
Eliminating e from and to get
(3.24) B1e® + By =0,
where

By = uA — qf (u' + w'),
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By =2uff +uf'(af +bf) +uflaf’+bf") — (u' +ud)[f* + f(af +bf)].

Noticing that p(f) = p(f) < deg@, and p(f") = p(f') = p(f) < deg@Q from
Lemma[2.4] thus by Lemma we get By = By = 0. It follows from B; = 0 that

q/ f /_ul ’
q+?+Q_u+v’

by integrating, we have qfe? = cque?, where c¢g is a non-zero constant.
Subcase 3.1. ¢y = 1. By substituting ¢fe? = ue’ into (3.2)), we see that

(3.25) f+af +bf=0.

Subcase 3.1.1. degh > 2. Then degv = deg@ > p(f) = degh > 2. By
substituting f = %e”_Q into (3.25]), we can get

(u)/ + y(v' - Q’)] } e’ 4 b%eﬂ_a =0.

q q

(3.26) {u ta

q

If v — Q — (v — Q) is a constant, say c10. Then (3.26]) becomes

!/ —
“ha (u) + 20 = Q)| +bzeto =0,
q q q q
that is,
(3.27) uqq + aglu'q — q'u+uq(v' — Q)] + biig”e = 0,

we claim that v/ — Q' is not a constant, otherwise v — () is linear, then degh =
o(f) = p(f) = p(e’=%) = 1, which contradicts with degh > 2. It can be verified
that the term augq(v’' — Q') would have a higher degree of z than all the other terms
in 7 we obtain a = 0, which is impossible.

If v — Q — (v — Q) is not a constant, by and Lemma we have u = 0,

a contradiction.
Subcase 3.1.2. degh = 1.
By substituting f = de” into (3.25)), we can get

(3.28) [d+ a(d + di')]e" + bde" =0,

substituting h(z) = a1z + ao into (3.28)), we have

d d
Noting that p(d) < p(f) = degh = 1, by Lemma 2.5, we have 1 + aa; + be™¢ = 0
as z — 00.
Thus f(z) = d(z)e** T where d(z) is an entire function with p(d) < 1, ag, a1 (#
O) are constants satisfying 1 + aa; + be*¢ = 0.
Subcase 3.2. ¢g # 1.

d’ d
1+a < +a1> + bh—e®¢ =0.
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In this case, we have f = co%e’~ . By substituting it into (3.2), we get

2 /
{63112 + acgy [(u) _1_2(1)/ _ Q/):| } 62(1J—Q)

we can easily get v — @ is not a constant because f is transcendental, and so
7 — @+ v — Q is not a constant.
If v — Q — (v— Q) is a constant, say c1;. Then (3.29) becomes

2 /!
QU QU (u> uw,, ,
G— tacg— (=] + =" -Q
9q2 9(][ q (]( )

Since deg Q = degv > p(f) = deg(v — @), we can easily deduce a contradiction by
the fact that cg # 1 and w # 0.

If 1—Q — (v—Q) is not a constant, note that deg Q@ = degv > p(f) = deg(v—Q),
50 T—2(v—Q) and v — Q — Q are not constants, by Lemma we can also deduce
a contradiction by the fact that cg # 1 and @ # 0.

The proof of Theorem is now completed.

+ begert 32 = (1 — co)ue’2v=Q),
q4q

4. PROOF OF THEOREM

Suppose that f is a transcendental entire solution with finite order of equation
(1.7) with A(f) < p(f). Then, by the Hadamard factorization theorem, we can

factorize f(z) as
(4.1) f(2) = d(2)e"®),

where h is a polynomial with degh = p(f), d is the canonical products formed by
zeros of f with p(d) = A(f) < p(f). Similarly as in the proof of Theorem [1.4] we
have p(f) = degh > 1.

We rewrite ([1.7) as
(4.2) F A PN af + bF) 4 qef = pret 4 pae??,

where f = f(z + c), for simplicity.
By substituting (4.1]) into (4.2)), we get
(4.3)  d"d + a(d + dh)]e™ + bdd" eI 4 gqdeQth — p Mz 4 pyetez,

Case 1. degh > 2.
Subcase 1.1. deg(Q + h) < 1. Rewriting (4.3) as:

(4.4)  d"d + a(d + dW)]e™ + bdd"Le(m DAt — g eME y poerez g deQth
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Denote that o = pie*? + pge*?® — quQ+E, since p(f) = degh > 2, we have
T(r,a) = S(r,e"). Next, we claim that a # 0. Otherwise, (4.4)) reduces to

d+ a(d + dh') + bde" " = 0,
it implies d = 0 because deg h > 2, a contradiction.
From (4.4)), we have
. “ld+a(d + e +bdd" el O
(4.5) d"d + a(d + dh')]e"" + bdd" el DR

Obviously, d"~1[d+a(d' +dh')] # 0. Otherwise, if d*~*[d+ a(d’' +dh’)] = 0, we will
have d = Cie” =", so p(d) = degh = p(f), which contradicts with the fact that
p(d) < p(f). Then from (4.5) and Lemma we get

— 1 — 1
nh nh nhy __ nh
T(r,e"™) < N(r.e )+N(T, e”h) +N(T, e(nl)h+h> +8(r, ™) = S(r,e™),

a contradiction.

Subcase 1.2. deg(Q + h) > 2. Dividing both sides of (4.3 by p2e*2?, we obtain

4
(4.6) S fi=
j=1
where
fl — dn_l[d+ a(d/ + dh‘/)]enh—)\gz7 f2 — badn_le(n—l)h—i—ﬁ—)\gz7
P2 P2
f3 — ﬂeQ-ﬁ-E—)\zz’ f4 _ _]ﬂe/hz—)\zz.
b2 p2
Since deg(nh — Agz) > 2, deg((n — 1)h + h — X22) > 2, deg(Q + h — Ag2) > 2
A1 # Ag, it is obvious to see f;(j = 1,2,3,4) are not constants. Thus, we deduce:

-

()20l () () o

)+ O(lOg’I“) = 0( (7", fj))7 (] = 13273)7

J

and
4
Y N(r,f;) < Ologr) = o(T(r, f;)),(j = 1,2,3),
j=1
asr € I and r — oc.
Thus by and Lemma we deduce f; = g; eM#=A22 = 1 which is
impossible.
Case 2. degh = 1. In this case, we claim that deg @ = 1. Otherwise, suppose

that deg @ > 2, by (1.7)), we obtain ¢fe® = H, where

H = p1eM* + pae*?® — f* — " Haf' +bf).
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Note that p(f) = p(f") = p(f) = degh = 1 < deg@, then by combining with

Lemma we get ¢f = H =0, a contradiction. So we have deg Q = degh = 1.
Set h(z) = A1z + B1, Q(z) = Agz + By, where A;(# 0), A3(# 0) and By, By are

constants. By substituting these into and dividing both sides by p.e*2?, we

have

(4.7) hi+f+fz=1,
where
fi= —Pleu-rz
P2
by o e"Brd"d + a(d + dh') + bde?1°] e(nAI=A2)z.
D2
S, Aic+B1+B
fs= gdeAretBit 26(A1+A2_/\2)z.
P2

Obviously, fi is not a constant since A\; # Ay. We set
T(’F) = maX{T(r7 fl)a T(’f’, f2)7 T('F, f&)} = T(T, ez).

Since p(d) < 1, then we have
N ( J}) N ( 1) N ( 1) < O(T(r.d)) + O(logr) = o(T(r),
1 2 3

and
N(T, fl) +N(T7 f2) + N(T’ f3) < O(logr) = O(T(T))a

as r — 0o. Therefore, by using Lemma [2.7] we can deduce that fo =1 or f3 = 1. If
fo =1, that is

(4.8) e"Bra" =t [d + a(d + dh') + bder€] e TA)E = .

We assert that 4; = % Otherwise, suppose that A; # %, then from p(d’') =
p(d) < 1 = deg[(nA; — A2)z], by using Lemma to (4.8), we get po = 0, a

contradiction. Thus h = ’)72,2 + B;. By substituting it into (4.8)), we have
n—1 / >\2 — A2, —nB
(4.9) d d+al|d +d— | +bden | =pre "7t
n

Next, we assert that d is a constant. Otherwise, if d is a non-constant entire
function, then from (4.9) we get that 0 is a Picard exceptional value of d. Thus

«

by Lemma [2.8] we have d = e, where a is a non-constant polynomial, which

contradicts with the assumption that p(d) < 1. So we have that d is a non-zero
constant, and (4.9)) reduces to
by A
dmen P (1 +a22 4+ ben26> = pa.
n
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Therefore,

f(z) = de"®) = dePres = P2 e,

Ao
n 4+ aly + nbew ©

Moreover, from f, = 1 and (4.7)), we also have f; + f3 = 0. That is

53 Aic+B1+B A1+A2)z A1z
qde 1 1 26( 1 2) = pie 17

which implies that

where By satisfies p; = ¢ (

AQZ)\lfAl:/\l*%, ie. Q(Z): <>\1>7;2>Z+B2,

1
n n Az B
D2 e ctB2,

c

A2
n+ais+nbe n

If f3 =1, by using the similar methods as in the case fo =1, we get

npi A
f(z) = - e,
n+ aly + nben €

then from (4.7) we have f; + fo = 0. This gives that

Qz) = (M - );Ll) z + Bo,

1

. oAy
where By satisfies ps = ¢ (m) en ¢tB2,
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