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HANJIYVUYIIINE PABHOMEPHBIE IIPUBJIN2KEHUWA B YIJIAX
OEJIBIMNA ®YHKIINAMN

C. A. AJIEKCAHAH

Hucruryr Maremarukn PAH Pecrybinku Apvenun
E-mail: asargis@instmath.sci.am

AunHoTtAnusi. B gamnnoit pabore uccienyercs 3amada o6 namtyuaneM paBHOMEp-
HOM IPUOJIMKEHAN B yIVIE LeJbIMU DYHKIUAME. [lorydeHHbIe HOBBIE pe3ysIbTa-
TBHI [0 PABHOMEPHOMY INPUOJIUKEHUIO SIBJISIOTCS YTOYHEHUEM DAHEE M3BECTHBIX
Pe3yJsIbTaToB. 311eCh MBI TaKXKe JaeM IOJIOKUTEIbHBIH OTBET Ha IPObJIeMy Ipe-
noxennyo Kobepowm: Ilycrs dyuknusa f romomopdna BayTpu Ay, HEIPEPHIBHA
u orpanndeHa Ha Ay 115 o € (0,27) u p = 7/ (27 — o). Ecoin dyskuns f (zl/f’)
PaBHOMEPHO HENIPEPBIBHA Ha JIydaX +l,, /2, To bynknusa f romyckaer paBHOMep-
Hoe npubmkenne Ha Ay 1eJbiMu QYHKIUAME [IOPSAIKa P U KOHEYHOIO THIIA.

MSC2020 number: 35J25.

KuatoueBbie cioBa: PasrHoMmepHoe mpubimkenne; yrour; mneas (pyHKITus.

1. BBEJEHUE U BOCIIOMOT'ATEJIbHBIE JIEMMBI

Oyuximy f, moijeKainnre NpuoInXKeHnio Ha F 1eabiMu PYHKIUAME, ITPeIIoia-
raforcs u3 kaacca A(E): uenpepoisabie Ha E u rojgomopduble Ha BHyTpeHHOoCcTH E°
muoxkecTBa F. Takast dyHKIIMS MOXKET UMETh TPOU3BOJILHBII pocT Ha F BO/MM3HU OGec-
KOHEYHOCTH, IIPUYEM TO K€ CaMOe BEPHO JJIsi BO3MOXKHOIO POCTA MPUOJIMAKAIOIIEH
1eJioit pyHKITUN.

B s7o0it curyarun, anamoroM moJTMHOMAAILHOTO TPUOIMKEHAS HauAywwux u Jlowcek-
COHOBCKUX 389 SIBJISIIOTCS CJIEIYIONINE 3aIa9n: JIJI KAHOHUIECKOIO MHOXKeCTBa, F
u dyukuun f € A(E) nocrpouts npubikaroliye Iesble (bYHKIMA ¢ TaKuM obpa-
30M, YTOOBI UX POCM B KOMILIEKCHOI mitockocTu C OBLT 0nMUMaAbHbM B HEKOTOPOM
CMBICJIE, STOT POCT JIOJI?)KEH OBITh BBIPAYKEH depe3 pocT (DYHKIUHU f U BEJINYIUH, Xa-
pakTepusyomux cTpykTypy f Ha E, B 9acTHOCTH - POCT HEKOTOPBIX NPOU3BOOHBLL
dbyuknuu f Ha rpanure OF obmactu F. C TOYKM 3peHUsi KJIACCUYECKON TEOPHH Iie-
JIBIX (DYHKIWHA, 3a/a7a IPEICTaBIsIeT 0COOBIM MHTEPEC /TS ONMMCAHNS KJIaCCOB (PyHK-
Uil Ha KAHOHMYECKUX MHOXKECTBAX, JOIYCKAIOIUX PABHOMEPHOE /I KaCaATe b

Hoe HpI/I6JII/I)KeHI/Ie eJiebIMN (byHKHI/IEIMI/I 3a/[aHHOI'O KOHEYHO020 NTOPAAKa, C TOYHBIMHA
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C. A. AJIEKCAHAH

orieHkamu ux Tuna. st kparkocTu, OyaeM Ha3bIBATH TAKON THUI PABHOMEPHOTO TTPH-
OJIMXKEHUST 0ONMUMAADHBIM.

Sagaua ONTUMATIBHOTO PABHOMEPHOT'O TPUOIMZKEHUS TEIBIMU (DYHKIUSIMI B yIJIax
uccsenoBasock B pagorax [1]-[8]. B maHHO# craThe MBI OrpAaHHIMBAEMCS PACCMOTPE-
HEEM 9TOi IPOBJIeMbI JJIsl CJLydasi IPUOIIMKeHUs Ha 3aMKHY ThIX yruax A, = {z € C:
larg z| < a/2} (em. paborsr X. Kobepa [3], M.B. Kenupima [4] u H. Apakessna [5]).
Kaxk sT0 nokasano B patore [4] (moapobaocTH MoKaszarenbeTsa eM. B [1], rir. 2), dyHk-
o f € A(Aqts) (0 > 0) MoKHO paBHOMEPHO HPUBIU3UTH HA A, HeJIbIMEA (DYHK-
USIMUA ¢, JJI POCTa KOTOPBIX IOJIYYEHbI OIEHKHU, 3aBUCAIINME JIUIIL OT o, d U POCTa
dbyukmum f Ha Agys; 9TU ONEHKH TOYHO YKA3bIBAJIM HA BO3MOXKHBIM ONTHUMAJILHBII
nopadox. dyukimu g B C, Ho Huuero He roBopuiiu 06 ux mune. [lozxke Gosiee TouHBIE
Pe3yJIbTATHI OBLIN MOJIyYeHbl B padore (6], B mpeamonokennn, aro f € A(A,) ¢ HEKO-
TOPBIMHU JIOTTOJIHUTEIbHBIME cBOficTBaMu dyuKIn f Ha rpanure A,. Ocobo ormeTnm
cremytonmit pesyabrar: ecan f € A(A,) n dynkius z — f (zl/p) cp=mn/(27 —a)
DPAEHOMEPHO HENPEPBIENA HA, Ay, TOTIA MOKHO (DYHKIHIO f DABHOMEPHO HPUOJIU3UTD
Ha A, neabIMu GYHKIUAMEA ¢ TOPAaKa < p. DTO JA@eT YaCTUYHBIA OTBET Ha IUIIOTE3Y
X. Kobepa [3|; mommbsiit oTBET cMOTpHUTE HEUXKE B pasfene 2. B wactmoctm, B pabo-
Te [12] TakKe OLEHMBAETCS THI HPUOINKAIONINX IeJbIX (DYHKIUA /Il HEKOTOPBIX
CHENUABHBIX KJIACCOB (OYHKITHIA.

[enbio JaHHOW CTATHY SABJISETCA OKOHUYATEJHHOE YTOYHEHUE OCHOBHBIX PE3YJIbTa-
TOB 00 ONTUMAJHLHOM PABHOMEPHOM IPUOIMYKEHUN Ha yriaax A, HeabiMu OyHKIUs-
MU, BKJIIOYast IpsiMbIe TeopeMbl Tuma JI2kekcona 1 oOpaTHble pe3yIbTaThl Tuiia beph-
mreitaa. OTMETHM, YTO TAKOE YTOYHEHUE JJIs CIydas NPUOIUKEHUs HA BEIECTBEH-
HO#t ocu R 6bw10 locTurHYTO B padore [6], a s caydast mpubInyKeHns Ha 3aMKHY THIX
nosiocax - B pabore [7]. B mamuoii pabore Mbl OyieM HCIOJb30BATH HEKOTOPBIE all-
NPOKCUMAIMOHHBIE KOHCTPYKIUH, pa3suTsie B [5] - [7] u [12].

Pabora cocrout u3 nByx pasmesnos. IlepBoiit conepKuT BBe/IEHNE U BCIIOMOTATE b
HbIE JIEMMBI; 8 BTOPOIi - J0Ka3aTeIbCTBA PE3YAbTATOB 00 ONTUMAIBLHOM PABHOMEPHOM

IPpUOIMKEHNN HA YTJIAX HEJIbIMU (DYHKITSIMIE.

1.1. Hekoropsle obo3Hauenus. 1°. Buympenmnocms, 3aMmoikanue U 2paHuyy MHO-
sxectBa E C C obosuaumM coorsercTBenno depes E°, E u OF. Jonoanenue E B C
- uepe3 E¢. Iua E C C uycrs C (E) Gyzer KiaccoM HelpepblBHbIX dyukimit f : E

— C ¢ paBromepHoit HOpMOii|| f|| z = sup,c g | f(2)], 1 momozxkum

Co(E) ={f € C(f) Al < ool
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tak uro C(E) = Cy(E) mng xkommakTHOro Muoxkectsa E. Modyav nenpepuerocmu

wg(9) mst f € Cy(E) onpenensiercst Jyist 6 > 0 coreLyrorum o6pasoM:

wr(0) = sup {[f(z) = f(O)]: |z —¢| <0}

z,(eE

Hnst orkperroro muoxkectsa ) B C, mycts C’ () - xmace venpepwisHO muddepenty-
pyembix (B cMbicie R?) kommrekcabrx dyHKimit Ha €.

20, TIpemomoxkum Tenepnb, uto G - KOpAaHoBasd 00JACTD C MOJOKATETHLHO OPHEH-

o o o 1Y

THPOBaHHOH KycouHo ryagkoil rpamuneii I'. Kmace C'(G) ompemennm cTanaapTHBIM
nyreM, Kak kiacc Gynkimin ¢ € C(G) N C'(G), nomycKamomux HenpepbIBHOE PO~
JIOJKEHHe TPOU3BOMHDIX ), 1 ¢y, 13 Gk (5 3T0 omnpejiesiger ux ojHo3Ha4HO Ha .
Cnenytomasi popMy/ia sIBJIseTCs KOMILIEKCHBIM BapUAHTOM HM3BECTHOMN meopembvl 0

dusepeenyuu g ¢ € C'(G):
(1.1) ro (2)dz = ig20pdo,

rjie o - geberosa miockas Mepa Ha G u omepaTop 0 OnpesiessieTcsl Caey oM 0b6pa-

30M:

(1.2) 20p = ¢, + i,

B noaspnuir xoopaumarax z = re'? wacrmple mpomssombie dbyHKIHE @ 1O T U 0

0603HAMIM COOTBETCTBEHHO Uepes ). u ). B sTux TepMmunax

(1.3) 20 = (g, + (i/r)¢p].

OTMeTnM TaK¥Ke cliejyromee cBoiicTBo oneparopa 0 st o, 1) € C'(D)

(1.4) (o) = 1p0p + .

H () oboznauaer kiaacc rosoMopdubix B ) dyHkumii, rakux aro yciaosue f € H ()
osnauaer, uto f € C1(Q) u df = 0 B Q. Jna samruyToro muoxecrsa F C ()
oboznaunm A (E) = C(E)NH (E°) u Ay (E) = Cp (E) N H (E°). O6o3naunM depes
A’ (F) xnacc dyukuuit E — C, onun pa3 menpepsiBao auddepenimpyembix Ha E B
cmpicite C.

pemosnoxum Tereps, ato ¢ € A'(G) u ¢ € C'(G). Torma 1o (1.4) mmeem

(1.5) A(p1h) = oY ma G.
5
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Cuenyrormast hopmysia ABJISETCs BasKHBbIM Tpusiozkenuem (opmyist (1.1), uzsecrnoit
st = 1 xak obobmennast (opmysia Komm wim nHorma kak gopmyaa Bopeas-

Hommnetito mitst 1, yKa3bIBAIOIIAs, ITO

e L 0@,

2mir (— =z ™D (—=%

1 <P(C)3¢(C)daz{ (pY)(2), mma z€QG,

0, gz € G-

BameTnM, uto mipu ¢ = 1 (moapasymesas 01 = 0) dopmyna (1.6) ssiserca Knaccu-
geckoit opmystoit Ko myist ¢ € H () ¢ G C 2. Bamerum Takxke, aro dopmyna
(1.6) ciuiemyeT U3 OTMEUEHHOIO BBIIIE YACTHOIO cjiydas ¢ = 1, ¢ 3aMeHOi ¢ Ha pY u

¢ yaeroM (1.5). O6oznaunm wepes C¢(z) aapo Komm:
Ce(2)=(C—2)"" mmazeA,, (€Al

Huke MbI Oyem o603Ha1aTh depe3 A2 0b1acTs rosomMopdHocTa GyHKINN 2 — log 2,
¢ Toukamu BeTsiaenusa 0 u 6ecKoHedHOCThI0. Ha pIMaHOBOi IOBEPXHOCTH A o, MOXKHO
HCIIOIb30BATE TI06AIBHYIO TIOJAPHYIO HapaMerpusanmio z = e’ ¢ r > 0u ) € R. B
91X TepMuHax QyHKOus z — log z := log r +i6 ymosuersopsier B cuity (1.3) ycsioBuio
ronomopduoctu d(log z) = 0. [puseennoe soume nonarne A(E) Moxer GbITH JTerKo
pacmmupeno s E C Ay U {0}.
3. TlooKuM TaxKe:
dg(z) :==inf{|z — #/| : 2’ € E} - paccrosune z € C or E C C;
E4:={¢ e C:dgr(¢) <d} - d- oxkpectrocTs MHOMecTBa E C C;
D, (a):={2z€C:|z—a| <r}mmacC,r>0- orkpoirsiit kpyr; D, = D, (0);
lo:={z=te" :t€0,4+00)} muza 0 € R - sryw;
Ay p:={lp:6¢€a,p] CR} - cexrop Ha Ay U {0} (ma C, ecnu f — a < 27);
An(B) = Dp_a/2,8+as2 W a >0, B € R - yron ¢ Guccexrpucoii lg u orsepcTn-
eM «;
Ay = Aa(0); Yo = laj2 Ul_q)2 - TPanmma Ag;
= max{z, 0} mza z € R; logt 2 = (logz)* s 2 > 0 u logt 0= 0;
| z/|z| mna z#0,
2 0 mmz=0
49 Tlycrs teneps f € C (E), rae E C C 3aMKHyTOE 1 HEOTPAaHHHUEHHOE MHOYKECTBO,

Tak 910 ENOD, # & musi v > rg > 0. s r > rg

My (r) = My (r, E) := || fll g, -

Ocranbuble 0003HAYEHNST W HOHSTHS MbI BBeIEM HUZKE.

- QyHKIUS 3HAK.

1.2. IIpeaBapuresnbHbie pe3ynbrarbl Tuna Pparmen-Jlunaenseda. 1°. Cua-

JaJjia HaM MTOHAI00UTCS CJIeTYIOIas TeopeMa.
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Teopema A. ITycmo h € A(A,) das a € (0,27), p=7/a u

a/2 )
(1.7) liminf / r~Plog™ [h(re™)| cos(pf)df = 0.
oo J /2
Tozda us ycaosua ||h||, < +oo crepyer, uro [|h|5, = ||B[l, < +oo.

Teopema A mjist p = 1 aBisiercs Bepcueit 6parbes Hepanmunua reopembr Oparvena-

cJIeyeT U3 3TOT'O Ciiydad.

Caencreue 1.1. Ilyemo g € A'(A,) daa a € (0,27) ¢ |lgllp, < +oo. Tozda us

YCAOBUA
(1.8) d'(z) = O(|2]"") npu z — o0, z € OA,
¢ nocmoannotl p € RT caedyem, wmo

(1.9) g (2) = O(|z|") npu z — o0, z € A,.

[oxasameavemeo. Onpenennm dbyukuuio h € A(A,) no dopmyse
(1.10) h(z) =(z2+1)""¢'(2), z € A,

yaAosJeropsiionyo nepaseHcTsy Al < +oo mo (1.8). Ilycrs d(z) = d, (2) Gyzer

DACCMOAHUEM 2 = re € A, or Yo Hockombky mgist 7 > 1
d(z) > rsin(a/2 — |0]) > ca(a/2 —10))

¢ ¢y = (2/a) sin(a/2), u3 nepasencrea Komm ciemyer, 9o

9" ()] < ela/2=10D7" e=ci lglla, -
Orcioma u u3 (1.10) myis mekoToporo ro > 1 u r > 1o ciaemyer, 94To

|h(rei9)| < 2cr M(a/2—10])71, 10| < /2.
Orcroza mosyvaem, 4To

log™ |h(re)| < (—p) T logr +log™ (a/2 — 0]) " +log™ (2c),

nokaspiBas, 4ro ycsosue (1.7) Teopembl A yuosierBopsiercs TakzKe il h, Tak 91O

[Alla, = IRl < +o0, koropas saseputaer nokasaresascrso (1.9). O

2. Crienytonast reopeMa apyrast Bepcusi npuanuna Pparmen-JIungeneda (em. [11],
I I, Teopema 22).
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Teopema B. ITycmv g € A(Aq) daa o € (0,2m), na ||g||, < 400 u dymryus g

umeem KoHewnvil nopadox p =m/a - u mun o Ay, Mo ecms

log™ M,
o= limsupw < +o00.
r—00 TP
Tozda das z = re'? € A, umeem
(1.11) l9(2)] < llglloa,, exp{or? cos(pb)}.

CaeacrBue 1.2. ITycmo g yeaas Pgynryua, Yyoosiemeopaowan Ycioeuam:
i) |9l o, = m < 400 daa nexomopozo o € (0, 27);
i) g umeem Koneunwvii nopadok p = /(2T — ) - u mun (= o) na yere Ar; (7).

Toz0a
(1.12) d'(2) = O0(z]""") npu z = 00, z € A,.

Jokasameavemeo. Tonoxkum g_(z) = g(—z) u f = 27 — a. lycers d = d(¢) pac-
cmoanue Touxu ¢ = re? € Ag or 0Ap. Ecym, B wactroctn, |0 > (7 — a)t/2, To
d =rsin(8/2 — |6]), Tax 4aro

cos(pf) = sin [parcsin(dr~")] < parcsin(dr—") < 2pdr—".
ITycrs Teneps z € 0Ag, 6 = |2|" 7" u ¢ = 24 8¢ pua 0] < w, Tak uro d(¢) < 6 m

z| /r — 1 upu |z| — oco. Ilpumensis Teopemy B k dpyukuuu g_ € A(Ag), u3 ycioBust
y y g B y

i) u (1.11) musa gocrarodHo GOABIIUX |z|, MOy IrM:
l9(=C)| < mexp(20pdr*™') < ¢, rae ¢ = mexp(4op).
Hnst dynknum g(—¢) u xkpyra 0Ds(z) npumensist HepasercTso Korm, mosyanm
lg'(=2)| < clz|”" mus z € dAg u |z| > 1o > 0.

Orcrona n Coenersust 1.1 caenyer, uro ¢'(—z) = O(|z|p_1) pu z — 00, z € Ag,4T0

sKBuBaJjenTHo (1.12). O

JIemma 1.1. ITycmo dynxuyua f € Ap(Aqg) u f pashomepro nenpepuisna na 0Aq 3.

Tozda pynxyus f pasromepro nenpepvisna makoice 1o Aq g.

Hoxazamesvcmeo. Ormernm, uTo GYHKIW f PABHOMEDHO HENPEPBHIBHA HA KAXKJIOM
ayde lg aia 0 € (o, B) : mockoibKy byukius f € Ap(As(8)) aia mekoroporo 6 > 0,
Tor/a 1o Hepaserctsy Ko, dynkims f/ 6yer orpannaeHHbiM Ha lg N D, 1st JTio-
6oro dbukcupoBanuoro ro > 0. Pazaenss uarepsad [, 5] Ha HeGObINTE IPOMEXKYTKI
JUINHBL < T, JOCTATOYHO JI0KA3aTh JIEMMY JIJIsi COOTBETCTBYIOIIUX YIJIOB, T.€. JIJIsl CJIy-

4asl BBIIYKJIOI'O CEKTOpa /3 — @ < 7T, KOTOPBIN CBOJUTCA K cekTopy A, ¢ a € (0,7).
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ITycrs AY - mapaJuienbHbI neperoc A, ¢ BepmmHoil v € A,. Torna (o HepaseH-
crBy Kommn) dbysknus f' orpanmdena Ha yrie Ale C A, ¢ 1, = 2cos(a/2), Tak
yro (yuknus f paBHoMepHO HempepbiBHa Ha ALe. O6o3nauum depes wi(d) (we(d))

Mojty/Th HeripepbiBHocTH ynkimn f Ha OA, (Ha A, N D, ), # TOTOKIM
w(9) = max{w; (), w2(6)} mst 6 > 0.

Takum obpasom, GyHKIHs f PABHOMEPHO HENPEPBLIBHA HA 2PAHUYAL 3AMKHYTHIX BbI-
MyKJIBIX obJ1acTeit
AF = AN(AYF) ¢ vy = exp(Fia/2).

9T0 3HAYUT, 9TO (PYHKIUS )\gt € Ap(Ay), oupenenennast no dopmyse
(1.13) AE(2) = f(z 4 0ve) — f(2) s z € A%, § € (0,1],
OyJeT yAOBJETBOPATH (IO HPUHIUAIY MAKCUMYMa, MOJLYJIs) YCJIOBUIO
(1.14) sup |)\6i(z)‘ = sup ]A§(§)| < w(d6) = 0 upu § — 0.

ZEAT CEOAT
Teneps, o (1.13), (1.14), dopmyaa

z+ov4
‘P&i(z) = (5Vi)_1/ )\f;t(t)dt st z € AT

onpenessieT PYHKIINIO gpgt € A'(AY), nna z € AT ynosieTBopAIONIyIO YCIOBHAM

|5 (2) = f(2)] <w(d), |(g5) ()] < w(0)/0.
OrpaHn4eHHOCTh (DYHKIINU (<p§[)’ Ha BBIITYKJIOM MHOKecTBe AT jj0KaswIBaeT paBHO-
MEpPHYIO HEIIPEPBIBHOCTD (PYHKITAN gogt ma A*. Taxum o6pasom, dbyHkmus f ABsgeT-
s paBHOMEPHO HeIpephIBHOI (yHKImel Ha obaacTsax AT Kak paBHOMEpHEBI peies
PABHOMEDPHO HEITPEPBIBHBIX (DYHKITUH goéi, mpu § — 0. D10 MoKa3bIBaET, YTO DYHKITHUS
f paBHOMepHO HenpepbiBHa Ha A, = A~ U AT U AT, asisomeiica Taxkoit dbyHkimeit

Ha Ka2KJIOM BBIITYKJIOM MHOXKECTBe. O

1.3. I'magkoe mpomosKeHue riiaakux pyHkruit. Ham myken HeKOTODSIiT ciie-
muduveckuii pesyasrar o C' - npomoskenun mig dyukuuu f € A'(v5), 7o = 0A,,
o € (0,27). Hameit nesbio siBastercst mocrpoenne dyukiun f, € C'(A,), ynosiaerso-
patomeit yeaosusm f, = f u Of, = 0 Ha y,. Takske MBI OKHJaeM XOPOITHIX OTICHOK

st dyukimst Of, Ha A, B TepMuHax pocta GyHKIAN f.

JIemma 1.2. ITyemo f € A'(A,) uo =21 —a u A, () = 4. To2da cywecmseyem
dynryua f. € C'(Ay (7)), maraa wmo
(i) fu = f wBf. = 0 nava;
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(ii) pocm dynwuuti fo u Of. ona z € Ay (T) oeparuven nepasencmeamu

(1.15) [fe(2)] < 3Mp(|z] + 2, 7o)

(1.16) 0f:(2)| < kaMyp(|2] + 2d,7a),

2de d = d(2) paccmosnus z om Yo U ko > 0 3a6ucum auws om «.

Hokasamesvemeso. Has 0] < o/2 monoxxkum

(1.17) Y(0) = sin?(76), e() = exp(isgo/2)

¢ T = m/0, n pacemorpuM ase by u, v € C'(A, ), onpenenennsle 1 z = ret? €
A, 110 dpopmyite

(1.18) u=ry(0), v=(r/7)cos(rh).

Onpeneum HUHKIUE, ACCONIUPOBAHHBIE C U B U

(1.19) C(z) =u(z)e(f) u w(z) =v(z)e(d) nua z € A,.

Ouesnno, uro ¢ € C'(A,) (Hecmorpst Ha pas3pbis e(f) upu 6 = 0), HOCKOIBKY U, Ul.,
U Uy PaBHBI HyJI0 Ha Guccekrpuce lg yriaa A,. dpyras dbyHKIus w Jazxke paspbiBHA
Ha lg; HO OTMETHM, YTO OHa uMeeT odeBuHbIe C'-paCIIMpeHust OTAEILHO HA YIJIAX
Af = ANgapm A7 :=A_q/20-

OTmeruM, 9TO HOCKOIBKY u, v > 0, T0 creayer, 910 (,w € lyjo ansg z € AY u
Cw € l_gjo misa z € A7, Orcrona cisryet, 9to (+w € liq/ A1 2 € AZ. Ormernm
Takke, 9ro corsacHo (1.7) - (1.9), ((z) = z m w(z) = 0 ma z € A,, TOTAA U TOIBKO
TOTHa, €CIIN 2 € Vo

Ucnonbays (1.17) - (1.19), Jierko mpoBepsIfOTCst CAEYIONHE COOTHOIIEHMST:
(1.20) r¢l = ¢, rwl =w, ¢, =2r%wsin(10), (0)wy = —(sin(76).
[ycrs d = d, (2) 6yner paccmosnuem z = re'® € A, ot 7,. Onennm |w| ceepxy 4epes
d. TTonoxkum Jyist aroro v = 0/2 — |0] € [0,0/2] u oTMeTHM, YTO B TEpMHUHAX V,
(1.21) |lw| =v = (r/7)sin(Tv).
Tenepp ecit 0 > 7 u 0 < v < (0 —w)/2, 0o d = r, u no (1.21) caexyer, uro
|lw| <7r/7<2d. Ecmmo <7u0<v<o0/2 10d=rsinv. Ormedas, 4ro
(1.22) rLsin(rv) < v < (n/2)sinv,
no (1.21) cuosa noaygaem, aro |w| < 2d. CymMupys, moaydaem, 4To

(1.23) |lw| < 2dy(2) gzt z € A,.
10
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Tenepn onpenesum uckomyio gyukuuio f, € C'(A,), nonoxkus f,.(z) = f(0) musa

z=r€lymn

(1.24) fe (2) = f(Q) —isov(0)[f(C + w) — f(C)]
s z = re? € Ay\lp, ¢ () onpenenennoii B (1.17).

a) Yoemumea cuadana, uyro Gyukuus f, € C(A,), HecMOTps HA Pa3pbiB QyHKIUI
w u Sg on ly.

YmomsiHem fgist atoro, uto f o € C'(A,), nockomsky f € A'(v,) m ¢ € C'(A,).
Kpowme toro, f.(z) — f(0), upu z — 2o = ¢ € lg, Tak kax rorga § — 0 u ¢ — 0, aro
noapasymesaer f(¢) — f(0) u ¥(0) — ¥(0) =0

Ormerum takxke, uro fi(z) = f(z) for z € 7,, B aTOM cayvae z = ( u w = 0, 4ro
noapasymesaer ¢(z) = 0. C yuerom (1.23), u 1o, uro |(| < r = |z ¢ [¢(0)] < 1, B

cuity (1.24) nosydaem OlEeHKY
(1.25) |f«(2)] <3M¢(|2| +2d,v,) mas z € A,

riae d = d,(z). Coruacuo (1.25), pocr dyskuuu f, Ha A, 3aBUCUT JIUIIb OT POCTA
dbyarumu f Ha Y, ; B 9aCTHOCTH, ecjiu (pyHKIUs [ OrpaHUYeHa Ha 7Yy, TO pyHKIUS f,
orpanndena Ha A .

6) Yrober ybeaurbes, uro f, € C'(A,), JocraTouno npoBepuTsh, 4ro (@), — 0 u
(p)y — 0 mpu z = re’ — ry € ly, me. 1 — ro m @ — 0; 5TO OUEBHJHO CIEIYET U3
Toro dgakra, uro ¢ € C'(AZ)UC'(AF) u (0) = 4’ (0) = 0.

Jlnst pacuera Of, mo (1.2), (1.3) ormermm, [To,

0f(Q) = f'(Q)A¢, Bf(¢C+w) = f(¢ + w)d(¢ + w).

Teneps yuurssas (1.4) u (1.17)-(1.19), nna 2z = re'? € A,, nomxyunm

220f.(z) = [f'(C) = J'(¢+w)sin(r|0])]C +
soP(0)[f' (¢ +w) — /(O] (¢h — iC)
+ilf/(€)¢o — sev(0) f (¢ + w)w]
(1.26) +s00' (0)[£ (¢ +w) — £(Q)].
Ipasag dacts (1.24) paBHa HYJIO IPU 2z € 7,, IIOCKOJLKY TOrua |0] = 0/2 u w =

¢y =0 (cm. (1.18) — (1.20)); sT0 O3HaUaeT, 4TO BhlpaxkeHus B (1.26) B KBagpaTHBIX
cKOOKax paBHBI Hymio. TakmM 06pazoM, MBI IosrydaeM, 910 Of.(z) = 0 mig z € 7,.

st onerku npapoit yacru (1.26), cHavgaia oTMeTHM, 9TO

CHw
(1.27) f(C+w) = f(O] < /< [f' @) 1dt] < My (|2] + [w], 70) Jw],
11
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tak Kak |[¢| < r. Kpome toro [(0)] < 1, |¢'(0)] < 7 mus |0] < 0/2. YaursiBas TakKe
(1.23), mbr1 u3 (1.26) u (1.27) moayvaem, aro

(1.28) |0f(2)| < koM (|2 +2d,75) nnst 2 € A,

rue d = dy(z) u k, > 0 3aBucsT JuuIb OT 0.

Yrob6er onpegennts GyHKuo fi Ha Ay (7), OTMETHM, 9TO U3 2 € 7, CIEIyer,
910 —2 € v,. Takum ob6pasom, nocrpoerne yukimu f, Ha A, 10 dopmyne (1.24)
mis byuxkiuu f- € A'(v,) Bmecro f, rue f_(z) = f(—z), MBI IOJIyYaeM HCKOMYIO
dyukumo, npocro 3amenss f,(z) Ha fi(—2z) ¢ z € Ay (7). Torna Hepasencrsa (1.15)

u (1.16) caexyior coorsercrBenno u3 (1.25) u (1.28). O

Bameuanue 1.1. Yeaosue (i) eapanmupyem, wmo dynrkyus f. xonnaexcro duggpe-
PDEHUUPYEME HA Yo, TAK YMO YACTIHBIE NPOU3GoIHBEe Pyrnryuw f u fo 6ydym coena-

damov Ha Vg -

1.4. Tlpubnuxkenus Ha A, dbyuknuamu u3 kiaacca A(Al). Crexyomas memma

OJIHa M3 OCHOBHBIX PE3YJIBTATOB ITOH PaOOTHI.

JIemma 1.3. Ilyemo f € A'(A,) dan a € (0,27) uw e > 0. Toeda cywecmeyem
pynxyua F € A(AL) maxas, wmo

(1.29) |f(2) = F(2)] <€ dan z € Ay
U
(1.30) Mp(r) < 6M; (2r) + ceexp(2 + ce ' My (2r +5)),

2de ¢ = c(a)) > 0.

Hoxazamensvemeo. JJokazaresbcTBo JeMMbl peanusyeM B 2 mara. CHadasia mpubin-
suM dyuknuio f na A, dyuknuavu h npunagexamumu kiaaccy A’'(A), rae obnactnb
A MBI BBIGEpaeM BHU3Y, IOTOM Ha BrOopoM mmare dbyakuus h € A’'(A) npubmmkaercs
dbynxmmavm F € A(AL) na A,. Bamenus f na e~ 'f u F na e ' F, Mmoxkno cectn
JIOKa3aTeJILCTBO JIEMMbI K CIydaio € = 1.

Iaz 1: Ipomomxum dbyskmmo f #a C B3as B KauecTse Cl-pacmmpenme GyHKIINT
f«, ynoBnersopsioiee ycioBusiM Jlemmbr 1.2.

IIyers ¢ - n =n(|¢]) € N gus ( € 4, Oyer KycOUHO-TIOCTOSTHHOM (hyHKIHE;
durcupyem n (|¢|) 01HOZHATHO 1O YCIOBUIO

(1.31) 0 < n(cl) — {Mp (¢l 7e) + 1} < 1.
12
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Ounpenennm noByio dbyuxiuo @ (¢, z) rakyio, aro Q (¢,{) =1 aua ¢ € A:

(1.32) aca - (2]

rjie
dist(¢,va) = (In* My ([¢],7a) + 1) s € € 9A;
Tak obJacTb Oyzer onpeneser; u (p oupeaeieHo tak, 9ro dist (Co, Vo) = 2dist (¢, Ya)
st ¢ € OA. Ouesunno, uro @ (¢,-) € H (A) ans dukcuposannoro ¢ € A\A, =U.
Onpenenum dyuknun h, #a A o dopmyeit

(1.33) he (2) =fu () + 1. (2) gmar >0m z € Ay,

rie

(1.34) I.(2) = 77_1/ Ge (z)doe pnar > 0wu z € Ay,
Ay

¢ moxpiaTerpanbaoil dynxmueit Ge (2) = (0f.) (() Q (¢,2) Ce (2) m A = AN D,
Tenepsb Jokaxem, 4to I, (z) JOKaJILHO PABHOMEPHO CXOJUTCA Ha A, Ipu 7 — 00,
K COOTBETCTBYIOIEMY HECOOCTBEHHOMY MHTETDAITY
1
(1.35) Io(2) = f/ Ge¢ (2)doc mna z € A.
T Ju
IIycts K xommnaktaoe muoxkectBo u K C A. Torma cymecrByer rg > 1, Tak, 4ro
K C Dy, ur" > 1" > 3rg. Orcrona cneayer, uro |¢ — (| < 2|z — (| u mo (1.31),
(1.32) ga z € Ay u ¢ € U umeem
n 2 \" 1 1
(1.36) |G¢ (2)] < 5 < >

—_— < C
Inn/ |z - ¢f? |z = Gof*

371ech 1 BHM3Y oOo3Ha4IMM depe3 ¢; > 0, 7 = 1,2, - - mOCTOAHHbBIE 3aBUCATINE JINITH

oT «, TakuM 06paszoM 1o (1.36) nosyanm

/,,_//_T,O 1 1 1
L (2) = I (2)] < 2 —du <oy (= - =0,

1
r—rg r —To r —To

pasrOMepHO i 2z € K, ipu v 1’ — 00. 9710 n0Ka3bIBaeT abJIOTIOTHYIO U JIOKAJIHLHO
PABHOMEPHYIO cXOAUMOCTh (byHKuuu I, (2) aist z € A u, uro I, € C (A). Sarem 1o

(1.33), (1.35) u (1.36) uckomyio dbyukumio h € A (A) moxkeMm oupegenur 1o hopmysie
(1.37) h(z) = fo(2) + 1o (2) ansa z € A.

ITo dbopmyine (1.6) Bopeas-Ilomnetiio Mbl MOXKEM HPEICTABUTH (DYHKIWMIO A B BUJE:

L RO, 1 Q)
O e / /A DO o
13
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(1.38) +%//A (8f)(C)Q(C<’i)Z_lda<.

o
3aech Bce Tpu nnTerpasta rosomopduee Gyuknun Ha A2 n He 3aBucar ot r. Takum
obpasom, noay4daeM, uro h € A (A).

W13 onpenenenns (1.37) cremyer

(1.39) 1£(2) = h(2)] = |Ioo(2)| a1t 2 € Ag
(1.40) W (2)] < If. (2)] + | (2)] 217 2 € A,

Tak 9T0 npubsmkenusi dbyHkuun f na A, dbynknueit h € A(A) u onenka pocra
byarmun h Ha A cBOAATCS B 3TOM cXeMe K OleHKe [ .
st onerku pocra | f(z) — h(2)| auis A, HaM HY?KHO OLEHUTSD | [ (2)] uist 2 € A,

IIpeacrasum I, (2) B BUje CyMMBI TPEX HHTEIPAJIOB:

1 1 1
(1.41) I (2) = 7/ G¢ (2) do¢ + */ G¢ (2) do¢ + */ G¢ (2) doe,
T JU, (2) T JU,(2) T JUs(z2)

e U1 (2) ={CeC:(ecUnl|(—2>1},Uz(2) :={CeC:¢(eUmnl/lnn <
-2 <1}nUs(z)={CeC:¢eUmnl|(—2 <1/lnn}. B cuny (1.32) u (1.36)

1oJIy4yaemM

1 n 2 \" 1
1.42 — G doc < — | — —s <
e = e i
ITo (1.32) u (1.35) numeem
1 1 1 l/lnn 1 n
7/ |G<(z)|da<<nnn/ du/ (1-“") dv <
T JU,(2) m -1 0 2
4dn
1.43 < —F—=<
(143) m(n+1) “

Hpencrapus ( — z = re' quar <1/Innu 0 € (—7/2,7/2), nonyaaewm:

1 1/Inn pm/2 n 1/Inn
(1.44) 7/ G (2)|do </ / n (1 - r@) dodr </ .
T JUs(2) 0 —7/2 Inn 2 0

Takum o6pasom cymmupyst (1.42)-(1.44) mo (1.41) mer mosmydaem, uro |I(2)] < cr

aas z € Ag.
ITycte Teneps z € A. IIpencrasum maTerpan Iy, (2) KaK CyMMy IBYX WHTETDAJIOB:
(1.45) ()= [ Ge(z)doc+ / Ge (2)doe = Iy (=) + 15 (=),
D(z) U\D(z)

e D(z) ={¢ € C:( € Eul(—=z| < 3|z|}. llepsblii nuaTerpas yxe ONEHUIN B

(1.42).
14
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VunroBag, aro n2" < €2" u

1
/ ———do¢ < cqan/mesD (z),
D

() 1€ = 2|
no (1.25) u (] > |z|, nomyuaaem

(1.46) |I5 (2)| < exp{2n (3l|z])}.

Cymmupys (1.45) u (1.46), moaygaem

(1.47) I (2)| < exp{2n(3l|z|) + ¢5} nma z € A.
TaknM 06pa3oM, HOJTydaeM

(1.48) |h(2)] < My (|2]) + exp{2n (3l|z]) + ¢5} mna z € A.

IIlaz 2: Tenepn npubausum byaxmuio h € A'(A) va A, dbyuximuamu F u3 kiacca
A(AL). Dro 6ymer peasmzoBano anajoruIHO MpuUbMAKenuio byHKun f Ha A,,. s
5TOTO MBI BO-TIEPBLIX JOKHBI oneHnTh poct dbynxmun Oh(C) mia ¢ € AL\A = W.
N3 (1.31) u (1.35) crenyer, 4T0

(1.49) 010 (Q)] < My (I¢] +1) +2Mp (|¢] + 1),
zareM u3 oupejienenus dbyuxiuu h u npeiacrasienus (1.38) umeem
(1.50) |OR(Q)| < My (I¢] +1) +3Myp (I¢] +1).

Omnpenerm dbyrxman F,. ma Al mo dopmyite

(1.51) Fo(z)=he(2)+Jp(2) puar>0muz € Ai’w
rae
(1.52) Jr (2) = 77_1/ P (2)do¢ gnssr >0wu z € Wy,

r

¢ nogsaTerpanbHoil dynknueit P (z) = (0hy) (¢) Q1 (¢, 2)Ce (2) u W, = W N D,,

rie .
Ql (C,Z): <i:g,) )

e dist (¢',7a) = 2dist ((,7a) ana ¢ € OAL uwm = m (|¢]) = max{n,In™ M; (|¢])}.

Ouesnnpo, uro F, (z) € A(AL). Kax u Bbume, Ml nmeen, uro ynkmus J, (z) ab-

COJTIOTHO W JIOKAJIbHO PABHOMEPHO CXO/UTCs K MyHKIHU Jo (2) mia z € AL, npn
r — 00.

ITo (1.51), uckomyto npubimxkaromue Gyskmpn F € A (A}l) MOKEM OIIPEJIEJIUTD
1o opmyite

(1.53) h(z):= fu(2) + 1o (z) muaz €Al
15
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W3 onpenenenns (1.51) caemyer, aro

(1.54) 1£(2) = h(2)] = |Ioo(2)| st 2 € Ag
(1.55) IF (2)] < [fs ()] + oo (2)] st 2 € A,

03TOMY, KaK U BBIIIE, Mbl JIOJZKHbI OIEHUTH POCT Joo (2) Ha A, u HA AL,

Torya TOBTOPsIs TATH JIOKA3aTEIbCTBA MepBoro mara u yanteiast (1.49), (1.50),

HOJLY TaeM
(1.56) |h(z) — F(2)| < e mna z € A,

u

(1.57) Mp(r) < 3My (2r) + ceexp(2 + cg ' M/ (2r +5)).

ITo (1.39) u (1.54) mbr moiywaem onesky (1.29). ITo (1.47) u (1.57) MBI moaydaem
onenky (1.30). O

Crenyromast teMma nokaszana B [13].

Jlemma 1.4. ITycmo f € A'(A,), a < B < min{a+ 7/2,7+ a/2} ue > 0. Tozda
cywecmeyem gynryus F € A(Ag) maxaa, wmo

(1.58) |f(2) = F(2)] <€ danzel,

u pocm Ppynyuu F ydosaemeopaem amomy nepasencmey na Ag
(1.59) Mp (r) <3M;y (Ir) + ccexp {1+ ez "A(3Ir, f)},
dasr >0, 2de

(1.60) A(r, f) = max {(I¢| + 1) [f5 (O},

IcI<r
Il=1+tan((8— ) /2) > 1 uc=c(a,B) >0 nocmoannas, 3a6UCAULAL MONLKO O

au f.

2. ITPUBJ/INKEHUE LEJBIMU OYHKIUAMU

[Iporiecc onTuMaIbHOrO PABHOMEPHOTO MPUOINKeHUS Ha yrite A, neabiMu hyHK-
musiMu OyJier peasms3oBaH B nBa mara. CHadasa npubiausuMm byukuuio f € A’ (A,)
Ha A, dyuknusaymu F| romomopdubivu B Goublieit obiactu €2, F € A (), ¢ ouen-
koit pocta F ua () - Jlemma 1.3 u Jlemma 1.4, Torga dyuknus F 6yger paBHOMEPHO

npubmKaTbest Ha A, neabiMu QyHKImaMu. Halia ocHOBHas 3a7ja4a COCTOUT B TOM,
16
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ITOOBI COIIPOBOXKATH peaJIn3allnio JIBYX IITaroB: Ka)K,HbeI mar BO3MOXKHBIM OIITH-

MaJIbHBIM POCTOM IPUOJIMKAIOIMNX (DyHKITHIA.

2.1. Ilpubankenune anpa Komm. Peasuzarusa BToporo mmara 0CHOBaHO Ha IIOCTPO-
€HUU COOTBETCTBYIONIMX IPUO/IMKAIOIUX Teablx dyHkimit sdpa Kowu (cm. Jlemma
18 [5]).

Iyemov o € (0,27) u d = dy (() paccmosnue mouky ¢ € AL om v,. Torna mis
b > 0 cywecmeyem Pynruyus Qp (€, z), nenpepwenas no b u (¢,z) € A%, x C u
YI0BAEMBOPAIOUWAA YCAOBUAM:

(1) Qs (¢, 2) yeaan Pynryua no z das mobozo ¢ € AS,.

(i) Jan ¢ € AS u z € Dicjjo U Ay umeem

(2.1) Qa (¢ 2) = Ce (2)| < (44/d)e™".
(iii) Pocm ¢ynruuu Qpra AS, x C  ozparnuvusaemcs nepasencmeom
(2.2) 1Qu (¢ 2)] < dexp {ub/d) €I (121 +1)° },

2de p=m/ (21 — ) u p = pu(a) > 03asucam suws om .

Joist cydast o > 7 TOHATOOUTCSI CIIe Iy oIas JeMMa, JTOKa3aHHas B [5]:

JIemma 2.1. IIyemo o € (0,27), moeda cywecmeyem dynrxyus Q (¢, 2) yeaan no z

u no ¢, YyoosAEMBOPANOULAL HEPABEHCTNEAM.:

(2.3) Q,2)=10dan =z,

N\ 1
(2.4) 262 < efa) (1+1¢ - 27)
ecru ¢ € ANAZY uze AL,
B caywae a > m
(25) Q¢ < el0) (1410 2) " exp{e() (12 + 1))

ecru ¢ € AL, u |¢] <212
DTH 2 JeMMBI HAM IIOHA00ATHCA HUKE.

2.2. OnTuMajibHOE paBHOMEPHOE Iejioe nmpubiam>kenue Ha A,. Crexyomue
TeopeMbl OXBATHIBAIOT HanbOO0Iee IPOCTYIO CUTYAIINIO, KOrIa Ipub/nKkaeMast (DyHKIHS

MIpeIBAPUTEIHLHO TOTOMOPdHA B OOIbINEH YIJIOBOM 00JaCTH, I€M YTOJI TPUOTUKEHUSI.

17
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Teopema 2.1. IIyemov F € A(Ag) daa a € (0,7), o < B < 27 u e > 0. Toeda
cywecmsyem ueaas ynkyus G makas, wmo

(2.6) |F(2) —G(2)] <€ dan z € Ay

u pocm pynryuu G y0o8aemeopAem HepaseRCmey

G Mp(2
(2.7) log G )l <c(1+|2") {2 + log™ F(r)} das z € C,
€ €
2de ¢ = c(a, ) >0
Loxazameavcmeo. Kak B Jlemme 1.3, Mo2xkeM mpuBecTH I0KA3aTEIbCTBO K CJIYYaIO

e = 1. JTokaxkeM TeopeMy, HCIOJIb3ysi MEeTOJ, pa3BUTHIA B [7].

Hna dyukmun Q, B3saroit u3 Jlemmsr 2.1 ¢ d = 1, nojoxum

(¢, 2) = Qu (¢, 2) na (¢, 2) € 9Ap x C,
rae
by =14 log™ Mp (t) +2log (|t| +1).

s r > 0 BBemeM Tenepb HECOOCTBEHHDBIE HHTETIPAJIBI

(2.8) I (2) = (2mi) " A R(¢,2)d¢, mna z € C\OAg,
e
(2.9) R((2) = F(Q) [@(¢2) - (-2

Uckomyro dyarnuo G ompegesnm mo hopMmyie
(2.10) G(2) = Ip(2) + F(2) na 2z € Agly(z) u 2 € C\Ag.

Tak kax B [7] oueBuzno, uro G € H(C).
Toria, nCIOIL3ys KOHCTPYKIMIO ToKazaTesbeTsa Teopembl 1 paboTst [7], norydaem

JIOKA3aTeJIbCTBO 3TOW TEOPEMBI. g

Caencreue 2.1. Ilo meopeme 2.1 u (2.6), (2.7), pynxyuwo F € A(Ag) dan o €
(0,7), @ < B < 21 < 00 nopadka pp < +00 MOHCHO PABHOMEPHO NPUOAUSUMD HA
A, yesvimu pyrkyusmu G nopadka pa < pr + p; ecau 8 wacmrocmu o < 400, mo
aubo pg < pr + p, 4ubo pag = pr +p u og < ko, ede nocmoannas k > 0 sasucum

AUWD oM .

Teopema 2.2. Ilycmv F € A(AL) dna a € [r,27) u e > 0. Tozda cywecmeyem

uenas pynkyua G maxas, 4mo

(2.11) |F(z) — G(2)] <& dan z € A,
18
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u pocm pynryuu G yo0o8aemeopAEM HEPAGERCMEY

(2.12) logmgﬂ <c(1+ 2" {2—|—log+]wF€(2r)} dan z € C,

2de ¢ = c(a)) > 0.

Joxaszamesvcmeo. Kak u B memme 1.3, 10Ka3aTEICTBO MOXKHO MPUBECTH K CJIyTAT0

e = 1. JTokaxkeM TeopeMy Kak U BBIIIe, UCIOJb3Ysl METOJ, Pa3BUTHIi B [7].

Hna dyukmum @, B3groit u3 Jlemmer 2.1 npu d = 1, momoxuM
(2.13) D(¢,2) = Quy, (¢, 2) mma (¢, 2) € DA, x C,

rie by = 14 log™ Mg (t). Ouesumno, uro & € C(IAL x C) u nemas dbynxmus 1o z
Jist Jiioboro dukenposantoro ¢ € JAL.

st » > 0 BBezieM Teriepb HECOOCTBEHHBIE MHTEIPAJIBI

(2.14) I (2) = (2mi) " » R (¢, 2)d¢, nna z € C\OAL,
riae )
(2.15) R(G,2)=F(Q) [0(¢.2) - (¢ 2] 2, 2),

dyuxius Q (¢, z) B3ara u3 Jlemmsr 2.2.

Uckomyto dyukimio G onpenesnM 110 hopmyIie
(2.16) G(2) = Io(2) + F(2) mst 2 € ALTy(2) u 2 € C\AL..

Tak kax u B [7], ogeBunHo, uro G € H(C).
ITocsie wero, UCONB3Ysl KOHCTPYKIMIO JloKa3areabcTBa Teopemsr 1 paborst [7], mo-

JIydaeM JI0Ka3aTeJIbCTBO 3TOI TeopeMBbl. g

Cnencrue 2.2. Ilo Teopeme 1.2 u (2.18), (2.14), dynwyuwo F € A(AL) dan
a € [m,27) nopadka pp < 400 MONHCHO PABHOMEPHO NPUBAUSUMD HE Ny UEAbLMU
Pyrnryusmu G nopadka pa < pr + p; ecau, 6 wacmuocmu, op < +00, MO AUOO
pa < pr+p, aubo pg = pr+p uog < kop, 2de nocmosannas k > 0 3a6ucum auwo

om .
Crietytorast Teopema sIBJISIETCST OCHOBHBIM PE3YJILTATOM PAOOTHI.

Teopema 2.3. IIycmo f € A'(A,) das a € (0,27) u e > 0. Toeda cywecmeyem

ueaas PynKyua g, makas 4mo

(2.17) [f(z) —g(2)| <€
19



C. A. AJIEKCAHAH

U pocm PYHKUUY g YOOBAEMBOPAEM, IMOMY HEPLEBEHCMEY OAA O > T

M
(2.18) log @ <c(24 ‘Z|p>{2 + log+ % —i—g_le,('r, Ya)} O z € C,

uoan o < T

M,
(2.19) log@ <24 |2]°){2 + log™ & + e up(r,va)} daa z €C
2de

(2.20) pp(rve) = max |27 f(2)]
|z|<r, zEva

ur=2zl+3 uc=cla)>0.

Loxazameavcmeo. Henocpencrsenno cienyer u3 Jlemmsr 1.3 u Teopemsr 1.1 st cory-
yag « < T € UCHOJIb30BAHUEM MeToja, paszsuroro B Teopeme 2 B padore [13]; u u3

Jlemmbr 1.4 u Teopemsr 1.2 mjs ciydast o > 7. O

Crenyromast TeopemMa ciefyer u3 TeopeMbl 2.4 U JaeT MOJOXKUTEIbHBI OTBET HA

npobaemy, npemoxerayo Kobepom B [3].

Teopema 2.4. [Tycmo f € Ay (Ay) dana € (0,271) up =/ (21 — o). Ecau f (21/7)

PAGHOMEPHO HENPEPBIBHA HA AYHGT T mozda Ppynxyua f donyckaem pasromep-

ap/2s
Hoe npU6JLU9fC€HU€ Ha Aa UCABIMU &yHKMUﬂMU TLOpﬂa’Kfa P U KOHEYHO20 MUnNa.

Jokasamesvemeo. st ciaydast a = 7 TeopeMa yxke jokaszana B [3] T. Kobepom.

IMycrs w (§) - Moaysnb HenpepbiBHOCTH (DYHKIUYU f (21/ ”) U BO3bMEM

o (Zp+5)1/p .
e =5 1o
Ouesnano, uro ¢ € A’ (A,) n

(@) - @I <w®) 1 I @< e,

Torma, mpumensisa K ¢ Teopemy 2.1, 3aBepinaeM joka3aTenbcTBO Teopemsbr 2.4. O

2.3. BBenenmne kiaaccoB B,. M0XHO BBIBECTH HEKOTODPBIE DPE3YJIBTATHI O IIEJIOM
npubsmkennn Takxke st dyrknuit A(A,). Ham moHanobstes ciemyronme onpe-
JeIeHUSI.

1) Jast « > 0 1uepe3 B, 00603HAYNM KJacc IeJbIX yHKIU ¢ mopsijika p, TaKuX,
ato [lg|l 5, < +oo.

2) Ona uwmciaa o > 0 depes By, obosmaduMm monkiaacc dynkuuit ¢ € B,, rie

9(2) < exp{o|z|"}.
20
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Teopema 2.5. Qynxuyus f € Ap(A,) donyckaem pasromepnoe npubaudicenue Ha

Ay ueavimu pynrxyusmu ud kaacca B, moada u moavko moeda, xozda f (zl/”) pas-

HOMEPHO HENPEPHIGHA HA AYHAT Flop /o

Zloxaszameavcmeo. JlocTaTouHoil YacThIO 9TOM TeopeMbl sBjseTcs Teopema 2.2. [

(1]
2]
3l
(4]
(5]
[6]

(7]

(8]
(9]
(10]
(11]

(12]

[13]
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Abstract. A two-dimensional n-correct set is a set of nodes admitting unique bivariate
interpolation with polynomials of total degree at most n. We are interested in correct sets with
the property that all fundamental polynomials are products of linear factors. In 1982, M. Gasca
and J. I. Maeztu conjectured that any such set necessarily contains n 4+ 1 collinear nodes. So far,

this had only been confirmed for n < 5. In this paper, we take a step for proving the case n = 6.

MSC2020 numbers: 41A05; 41A63; 14H50.

Keywords: Gasca-Maeztu conjecture; fundamental polynomial; algebraic curve;
maximal line; maximal curve; n-correct set; n-independent set.

1. INTRODUCTION

Denote by II,, the space of bivariate polynomials of total degree < n, for which
N := N, :=dimII,, = (1/2)(n + 1)(n + 2).
Let X := Xs = {(x1,91),--., (zs,ys)} be a set of s distinct nodes in the plane.
The problem of finding a polynomial p € II,, satisfying the conditions

(1.1) p(xi,y:) = ¢, 1=1,2,...s,
for a data ¢:= {c1,...,cs} is called interpolation problem.

Definition 1.1. A set of nodes X is called n-correct if for any data ¢ there exists

a unique polynomial p € II,,, satisfying the conditions (|1.1).

A necessary condition of n-correctness is: #X; = s = N.

Denote by p|x the restriction of p on X.
Proposition 1.1. A set of nodes X with #X = N is n-correct if and only if
pell,, plr =0 = p=0.
A polynomial p € 11, is called an n-fundamental polynomial for A € X if
p|X\{A} =0and p(A) = 1.
We denote an n-fundamental polynomial of A € X' by p} = p} -

IThe work on the part of the first named author was carried out under grant 21T-A055 from
the Scientific Committee of the Ministry of ESCS RA.
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ON THE GASCA-MAEZTU CONJECTURE ...

Definition 1.2. A set of nodes X is called n-independent if each node has n-
fundamental polynomial. Otherwise, it is n-dependent. A set X is called essentially

n-dependent if none of its nodes has n-fundamental polynomial.

Fundamental polynomials are linearly independent. Therefore a necessary condition
of n-independence is #X; = s < N.

One can readily verify that a node set X is n-independent if and only if the
interpolation problem is solvable, i.e., for any data {cj,...,cs} there is a
(possibly not unique) polynomial p € II,, satisfying .

A plane algebraic curve is the zero set of some bivariate polynomial of degree >
1. To simplify notation, we shall use the same letter, say p, to denote the polynomial
p and the curve given by the equation p(z,y) = 0. In particular, by ¢ (or «) we
denote a linear polynomial from II; and the line defined by the equation £(z,y) = 0.

Definition 1.3. Let X be a set of nodes. We say, that a line ¢ is a k-node line if
it passes through exactly k nodes of X.

The following proposition is well-known (see e.g. [8] Prop. 1.3):

Proposition 1.2. Suppose that a polynomial p € 11,, vanishes at n + 1 points of a
line £. Then we have that p = £q, where q € I1,,_1.

This implies that at most n + 1 nodes of an n-independent set can be collinear.
An (n + 1)-node line ¢ is called a mazimal line (C. de Boor, [1]).
Set
d(n,k) := Ny — Np— = (1/2)k(2n 4+ 3 — k).

The following is a generalization of Proposition [1.2

Proposition 1.3 ([I4], Prop. 3.1). Let q be an algebraic curve of degree k < n with
no multiple components. Then the following hold:
(1) any subset of q containing more than d(n, k) nodes is n-dependent;
(i4) any subset X of q containing exactly d(n,k) nodes is n-independent if and
only if
p€ll, and plx =0 = p=qr, wherer € Il,,_y.

Thus at most d(n, k) n-independent nodes lie in a curve ¢ of degree k < n.

Definition 1.4. Let X be an n-independent set of nodes with #X > d(n, k). A

curve of degree k < n passing through d(n, k) points of X is called maximal.

The following is a characterization of the maximal curves:
23
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Proposition 1.4 ([I4], Prop. 3.3). Let X be an n-independent set of nodes with
with #X > d(n, k). Then a curve u of degree k, k < n, is a mazimal curve if and
only if

p €Il plxry =0 = p=us, sell,_.

One readily gets from here that for a GC,, set X and p € Iy, :
(1.2) @ is a maximal curve <= X\ uis a GC,_j set.

In the sequel we will need the following results:

Theorem 1.1 (case i=1: [I3], Thm. 4.2; case i=2: [10], Thm. 3). Leti =1 or 2.

Assume that X is an n-independent set of d(n,k—1i)+i nodes with 1+i < k <n—1.

Then at most 2i different curves of degree < k pass through all the nodes of X.
Moreover, there are such 2i curves for the set X if and only if all the nodes of

X but i lie in a mazimal curve of degree k — 1.

Theorem 1.2 ([11], Thm. 2.5, [7], Thm. 3.2). Assume that X is an n-independent
set of d(n,k —2) + 3 nodes, 3 < k < n — 1. Then at most 3 linearly independent
curves of degree < k pass through all the nodes of X.

Moreover, there are such three curves for the set X if and only if all the nodes of
X lie in a curve of degree k — 1, or all the nodes of X but three lie in a (mazimal)

curve of degree k — 2.
Below we bring a characterization of n-dependent sets A with #X < 3n.

Theorem 1.3 ([12], Thm. 5.1). A set X consisting of at most 3n nodes is n-

dependent if and only if one of the following conditions holds.
(i) n+ 2 nodes are collinear,

(ii) 2n+ 2 nodes belong to a (possibly reducible) conic,
(iil) #X = 3n, and there exist v € I3 and o € 11, such that X =~vNo.

Corollary 1.1. A set X consisting of at most 3n — 1 nodes is n-dependent if and
only if either n+2 nodes are collinear, or 2n+2 nodes belong to a (possibly reducible)

conic.
Consider special n-correct sets: GC), sets, defined by Chung and Yao:

Definition 1.5 ([5]). An n-correct set X is called GC,, set, if the n-fundamental

polynomial of each node A € X is a product of n linear factors.

Now we are in a position to present the Gasca-Maeztu, or briefly GM [[6], 1982]

Any GC,, set contains n + 1 collinear nodes.
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So far, the GM conjecture has been confirmed to be true only for n < 5. The
case n = 2 is trivial. The case n = 3 was established by M. Gasca and J. I. Maeztu
in [6]. The case n = 4 was proved by J. R. Busch [2]. Other proofs of this case
have been published since then (see e.g. [3], [§]). The case n = 5 was proved by H.
Hakopian, K. Jetter and G. Zimmermann [9]. Recently G. Vardanyan provided a
simpler and shorter proof for this case [16].

In this paper we make a step in proving the Gasca-Maeztu conjecture for n = 6
(see Proposition . The analogue of this step was crucial in the proof of the case
n =75 (see [9], Prop. 3.12; [16], Prop. 2.8).

Definition 1.6. Let X be an n-correct set. We say, that a node A € X uses a line
Cifpy =Lq, qell, 1.

Since the fundamental polynomial in an n-correct set is unique we get

Lemma 1.1. Suppose X is an n-correct set and a node A € X uses a line {. Then
£ passes through at least two nodes from X, at which q from the above definition

does not vanish.

Definition 1.7. For a given set of lines /1, ..., ¢, we define Nghm’ek to be the set
of those nodes in X which do not lie in any of the lines ¢;, and for which at least

one of the lines is not used.

In the case of one line ¢ we have

Ne={AeX:A¢&{ and A is not using ¢} .

Proposition 1.5 ([8], Thm. 3.2). Assume that X is a GC,, set, and 1, ..., 0 are

lines. Then the following hold for N'= Ny, ., -
(i) If N is nonempty, then it is essentially (n — k)-dependent.

(ii) N =0 if and only if the product £y - - - €y is a maximal curve.

For k = 1 this result has been proved by Carnicer and Gasca [3].

Assume that X; is a set of k; collinear points:
X, Cly, #X=k;, i=1,2,3, ¥;is a line.
Assume also that non of the points is an intersection point of the lines.
Consider the set L, x,,x, of lines containing one point from each of X; i = 1,2, 3,

and denote by My, k, .k, the maximal possible number of such lines.

We shall need the following estimate (see [8], [9])

(1.3) Ms 30 =5.
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1.1. The m-distribution sequence of a node. In this section we bring a number
of concepts from [9], Section 2.

Suppose that X is a GC,, set. Consider a node A € X together with the set of n
used lines denoted by £4. The N — 1 nodes of X' \ {A} belong to the lines of L£4.
Let us order the lines of £4 in the following way:

The line ¢; is a line in £ 4 that passes through maximal number of nodes of X,
denoted by k1 : XN¥; = ky. The line /5 is a line in £ 4 that passes through maximal
number of nodes of X \ ¢1, denoted by ko : (X \ 1) N by = ko.

In the general case the line 5, s =1,...,n, is a line in £ 4 that passes through
maximal number of nodes of the set X\Uf;ll&-, denoted by k; : (X\Uf;ll&-)ﬂﬁs = k.

A correspondingly ordered line sequence
S=(l1,...,0)

is called a mazimal line sequence or briefly an m-line sequence if the respective
sequence (k1, ..., ky) is the maximal in the lexicographic order [9]. Then the latter
sequence is called a maximal distribution sequence or briefly an m-d sequence.

Evidently, for the m-d sequence we have that
(1.4) kv >ke>-->kpand ki +---+k,=N-—1.

Though the m-distribution sequence for a node A is unique, it may correspond
to several m-line sequences.

An intersection point of several lines of L4 is counted for the line containing it
which appears in S first. A node in X" is called primary for the line it is counted
for, and secondary for the other lines containing it.

According to Lemma [I.1]} a used line contains at least two primary nodes:

(1.5) ki>2 fori=1,...,n.

Let (¢1,...,¢) be a line sequence.

Definition 1.8. We say that a polynomial has (s1,..., sx) primary zeroes in the
lines (¢4, ..., %) if the counted zeroes are primary nodes in the respective lines.

From Proposition we get

Corollary 1.2. Ifp € Il,,,_1 has (m,m —1,...,m — k + 1) primary zeroes in the

lines (€1,...,L) then we have that p = £y --- L, where r € I, _f_1.

In some cases a particular line ? used by a node is fixed and then the properties

of the other factors of the fundamental polynomial are studied.
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In this case in the corresponding m-line sequence, called (-m-line sequence, one
takes as the first line ¢; the line Z, no matter through how many nodes it passes.
Then the second and subsequent lines are chosen, as in the case of the m-line
sequence. Thus the line /5 is a line in £4 \ {/1} that passes through maximal
number of nodes of X'\ {1, and so on.

Correspondingly the (-m-distribution sequence is defined.

2. THE GASCA-MAEZTU CONJECTURE FOR n = 6

Now let us formulate the Gasca-Maeztu conjecture for n = 6 as:
Theorem 2.1. Any GCgs set contains seven collinear nodes.

To make a step for the proof assume by way of contradiction:
Assumption. The set X is a GCg set without a mazximal line.

In view of and the only possible m-distribution sequences for any
node A € & in the case n = 6 with N = 28 are

(i) (6,6,6,4,3,2) (i) (6,6,5,5,3,2) (iii) (6,6,5,4,4,2)
(iv) (6,6,5,4,3,3) (v) (6,6,4,4,4,3) (vi) (6,5,5,5,4,2)
(vii) (6,5,5,5,3,3) (viii) (6,5,5,4,4,3) (ix) (6,5,4,4,4,4)
(x) (5,5,5,5,5,2) (xi) (5,5,5,5,4,3) (xii) (5,5,5,4,4,4).

Here we omitted the distribution sequences (6,6, 6,5,2,2) and (6,6, 6,3,3,3). The
reason is that £1£5¢3 is a maximal cubic with 18 (= 6 + 6 4+ 6) nodes and, in view
of (1.2)), three 6 must be followed by 4,3,2, as in above (i).

3. LINES USED SEVERAL TIMES

A 2-node line shared. Consider a 2-node line £. For the (-m-distribution sequence
of anode A ¢ ¢ there are only the following five possibilities:

i) (2,6,6,6,4,3) (i) (2,6,6,5,5,3) (iii) (2,6,6,5,4,4)

(3.1) (vi) (2,6,5,5,5,4) (x) (2,5,5,5,5,5).

Note that in /-m-d sequences, we use the tilde to indicate the place of ‘.
It was proved in [4], Prop. 4.2, that any 2-node line in a GC,, set X’ can be used
at most by one node from X’. This yields the following

Proposition 3.1. Assume that X is a GCg-set, and suppose that { is a 2-node
line. Then € can be used by at most one node A € X. The m-d sequence of A has

to be one of (i), (ii), (i), (vi), and (x), presented in (3.1)).
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A 3-node line shared. Then, consider a 3-node line ¢. For the (-m-d sequence of a

node A ¢ { there are only the following possibilities:

(i) (3,6,6,6,4,2) (i) (3,6,6,5,5,2) (iv) (3,6,6,5,4,3)
(v) (3,6,6,4,4,4) (vii) (3,6,5,5,5,3) (Viii) (3,6,5,5,4,4)

(xi) (3,5,5,5,5,4).
Here, and in all subsequent cases, denote a respective {-m-line sequence by (Z, Lo, ..., 0g).
Denote also by £4p5 the line through the nodes A and B.
Suppose that the line 7 is used by two nodes A, B € X:

pa=~Lq and pp=1~_Lgq, ¢ €1l;.

Then we have that the curves: q1, g2 € II5, pass through 6-independent nodes of
the set Y := X\ (CU{A, B}), #Y =28 — (3+2) = 23.

Note that 23 =d(6,5—-1)+1=4d(6,4)+1=74+6+5+4+ 1.

Therefore, in view of Theorem case i=1, we get that all the nodes of ) but
one, denoted by C, belong to a maximal curve u of degree 4. Note that pf = Zu4€ AB,
meaning that the node C uses ? too.

Since X' is a GC set we conclude that p has 4 line-components coinciding with
lo, ..., 05. Tt is easily seen that these four lines have 6, 6, 6, 4 or 6, 6, 5, 5, nodes,

respectively. For D = A, B, C, we have that

(3-2) pp =Lz L,

where /g is a line depending on D with two primary nodes.

Thus the f-m-d sequence indicated in may correspond only to the m-d
sequences (i) (6,6,6,4,3,2) and (ii) (6,6,5,5,3,2).

Note that all the 6 nodes in X' \ p, included C, share the 4 line-components of
p. As it is proved in [I3], Corollary 6.1, no node in p uses the line ‘.

Thus we have shown the following:

Proposition 3.2. Assume that X is a GCg-set without a mazximal line, and suppose
that a 3-node line € is used by two nodes A, B € X. Then there exists a third node
C using ¢ and 0 is used by exactly three nodes of X.

Moreover, A, B, and C, share four other lines with either 6,6,6,4, or 6,6,5,5,
primary nodes, respectively. Furthermore, the m-d sequence of these three nodes is
either (6, 6,6,4, 3, 2), or (6,6, 5, 5,3, 2), respectively.
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A 4-node line shared. Now, consider a 4-node line . X. The f-m-d sequence of
A ¢ 0 has to be one of the following:

(i) (4,6,6,6,3,2) (i) (4,6,6,5,4,2) (iv) (46,6,5,3,3)

(v) (%, 6,6,4,4,3) (vi) (%, 6,5,5,5,2) (viii) (il, 6,5,5,4,3)

(ix) (4,6,5,4,4,4) (xi) (4,5,5,5,5,3) (xii) (4,5,5,5,4,4).
Suppose that the line 7 is used by the nodes A, B,C € X: Then, as in the previous
case, we get three curves of degree 5 passing through 21 = 28— (4+3) 6-independent
nodes of the set Y := X\ ({U{A, B,C}).

Note that 21 = d(6,5—2)+3=4d(6,3)+3=7+6+5+ 3.

This, in view of Theorem implies that either
(a) all the nodes of Y but three, i.e., 18 nodes, belong to a maximal curve p of
degree 3, or
(b) all the nodes of Y, i.e., 21 nodes, belong to a curve ¢ of degree 4.

Since any node outside of u uses it we get that p has 3 line-components, passing
through 6 4 6 + 6 nodes, respectively.

Concerning (b) note that g is a maximal curve of degree 4 and any node D =
A,B,C, uses q :

pp = Lals,
where ¢4 is a line depending on D with two primary nodes.

Hence ¢ has 4 line-components. It is easily seen that these four lines have either
64+6+6+3, 6+6+5+4, or 6+ 5+ 5+ 5 nodes, correspondingly. We readily
get also that these lines coincide with the lines /s, . .., #5, of the corresponding f-m-
distribution . Hence, these three cases may correspond only to the above cases
() and (24¢) and (vi).

Now suppose that except of A, B, C, another node D € X’ uses ¢. Then we have
four curves of degree 5 passing through 20 = 28 — (4 + 4) 6-independent nodes. We
have that 20 = d(6,5 —2)+2=4d(6,3) +2=7+6+5+ 2.

Therefore, in view of Theorem [1.1] case i=2, we obtain that all the nodes of
X\ {A, B,C, D} but two, i.e., 18 nodes belong to a maximal curve u of degree
3. As was stated above this maximal curve has 3 line-components with 6 + 6 + 6
nodes, correspondingly. We readily get also that these lines coincide with the lines
Uy, U3, £y. Consequently, this case may correspond only to the above case (i). As it
is proved in [10], Corollary, no node in p uses the line ¢

By summarizing we obtain the following

Proposition 3.3. Assume that X is a GCg-set without a mazximal line, and suppose
that a 4-node line € is used by three nodes A, B, C € X. Then, A, B, and C,
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besides 27, share four lines with either 6,6,6,3; 6,6,5,4; or 6,5,5,5, primary nodes,
respectively.

Moreover the m-d sequence for A, B, C, is (6,6,6,4,3,2), (6,6,5,5,3,2),
(6,6,5,4,4,2), or (6,5,5,5,4,2).

Proposition 3.4. Assume that X is a GCg-set without a mazximal line, and suppose
that some 4-node line £ is used by four nodes A, B, C, D € X. Then, ? is used by
ezactly 6 nodes.

Moreover, besides Z, these six modes share also three other lines each passing

through 6 primary nodes. Furthermore the m-d sequence for all siz nodes is (6, 6, 6,4,3, 2).

A 5-node line shared. Now suppose that / is a 5-node line. The f-m-d sequence of
Ad 7 has to be one of the following:

(i) (5,6,6,5,3,2)  (iii) (5,6,6,4,4,2) (iv) (5,6,6,4,3,3)
(vi) (5,6,5,5,4,2) (vii) (5,6,5,5,3,3) (viii) (5,6,5,4,4,3)
(ix) (5,6,4,4,4,4) (%) (5,5,5,5,5,2) (xi) (5,5,5,5,4,3)
(xii) (5,5,5,4,4,4).

Let us start with a well-known

Lemma 3.1. Given m linearly independent polynomials. Then for any point A
there are m — 1 linearly independent polynomials, in their linear span, vanishing at

A.

Proposition 3.5. Assume that X is a GCg-set without a mazximal line, and (isa
5-node line used by five nodes of X. Then it is used by exactly six nodes.

Moreover, besides Z, these six nodes share also three other lines passing through
6,6,5 primary nodes, respectively. Furthermore the m-d sequence for each of the six
nodes is (6,6,6,4,3,2), or (6,6,5,5,3,2).

Proof. Assume that the nodes of the set As := {A1,..., A5} C X use the line
(. Assume that
P, = Uy L.
Evidently, the nodes As, ..., A5 belong to the lines £, . .., {s.
In view of Lemma [3.1] for any points T}, i = 1,2, 3, there is a polynomial
Do € Py = linearspan{p22v s apj(45}7 Po 7& 07
such that po(7;) =0, i =1,...,3. On the other hand we have that

po = Llqo, qo € 1.
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Assume that the three points are not intersection points of the six lines. They also
are taken outside of £, whence q(T;) =0, i=1,2,3.

Consider the set of nodes

C::X\(ZuAs), Cl=28—5—5=18.

The following cases of distribution of these 18 nodes in the lines /5, ..., ¢s in some

order are possible:

(1) (6,6,6,0,0); (2) (6,6,5,1,0); (3) (6,6,4,2,0); (4) (6,6,4,1,1);
(5) (6,6,3,3,0): (6) (6,6,3,2,1); (7) (6,6,2,2,2); (8) (6,5,5,2,0);
(9) (6,5,5,1,1); (10) (6,5,4,3,0); (11) (6,5,4,2,1); (12) (6,5,3,3,1);
(13) (67 57 37 2’ 2)’ (14) (6’ 4547 47 0); (15) (67 47 4’ 3’ 1)’ (16) (6’ 4’47 27 2);
(17) (6,4,3,3,2); (18) (6,3,3,3,3); (19) (5,5,5,3,0); (20) (5,5,5,2,1);
(21) (5,5,4,4,0); (22) (5,5,4,3,1); (23) (5,5,4,2,2); (24) (5,5,3,3,2);
(25) (5,4,4,4,1); (26) (5,4,4,3,2); (27) (5,4,3,3,3); (28) (4,4,4,4,2);
(29) (4,4,4,3,3)

We assume for the convenience that the lines are in the increasing order.

We may assume also that in each above distribution the listed zeros are primary
in the respective lines. Indeed, by reordering the lines and making the zeros primary
we will get another distribution listed above.

Now one can verify readily that the cases (3)-(29) are not possible, since by
adding three arbitrary points T;, ¢ = 1,2, 3, we make the polynomial ¢y to have at
least (6, 5,4, 3,2) primary zeroes in the lines o, ... fg.

For example, for several particular cases below, we add the three points to the
lines /s, ..., {g, according to the following distributions:

(3) (0,0,0,1,2);  (14) (0,1,0,0,2); (25) (1,1,0,0,1); (29) (2,1,0,0,0).

This implies that gg = f5---{g hence pyg = ZEQ ++lg = pl,. Therefore we get
P, € P4, which is a contradiction.

Then note that also the case (1) is not possible since the curve 17626364 € Iy
contains 23 = 5+6+6+6 nodes, while a maximal quartic contains 22 = 74+6+5+4
nodes. Thus the only possible case is the distribution (2).

Evidently, the curve puy4 := ZEQ --- ¢4 here is a maximal curve. Hence the node
in the line £5 together with the five nodes of As, use the lines s, ..., £s. Thus the
six nodes besides Z, share also the three lines /5, /3, {4, passing through 6,6, and 5
primary nodes.

Thus the distribution (2) may correspond only to the following m-d sequences:
(6,6,6,4,3,2) and (6,6,5,5,3,2). O
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A 6-node line shared. Finally suppose that {is a 6-node line. For the -m-d sequence
of anode A ¢ { there are only the following possibilities:
(i) (6,6,6,4,3,2) (i) (6,6,5,5,3,2) (iii) (6,6,5,4,4,2)

(iv) (6,6,5,4,3,3) (v) (6,6,4,4,4,3) (vi) (6,5,5,5,4,2)
(vii) (6,5,5,5,3,3) (viii) (6,5,5,4,4,3) (ix) (6,5,4,4,4,4).

Proposition 3.6. Assume that X is a GCg set without a mazimal line, and (s
a 6-node line. Assume also that € is used by eight nodes of X. Then it is used by
exactly ten nodes of X.

Moreover, these ten nodes form a GCj3 set and share two more lines with six
primary nodes each. Furthermore, each of these ten nodes has the m-d sequence
(6,6,6,4,3,2).

Proof. Since ¢ is used by at least eight nodes, we have that #N; < 28— (6+8) =
14. By Proposition the set NZ is 5b-dependent. Since 14 = 3 X 5 — 1, one may
apply Corollary to conclude that either 'MZ contains 5 + 2 = 7 collinear nodes,
which contradicts the hypothesis, or 12 (= 25 + 2) nodes there are in a conic .
Thus the latter case takes place and #N; > 12.

Now note that A/Z C (. Indeed, we may have one or two nodes in /\/‘Z outside of
(. But in this case those nodes evidently have fundamental polynomial of degree 3,
for the set A[Z’ contradicting Proposition [1.5] (i).

Then let us show that #J\/Z = 12. Assume by way of contradiction that there are
> 13 nodes in -MZ Then there are at most 9 nodes outside of 8 U ¢ and therefore
they are contained in a cubic 7. Then we readily get that X C ZﬂV € Ilg, which
contradicts Proposition [T.1]

Finally note that ZB contains 18 nodes, i.e., is a maximal cubic. Therefore, by
Proposition it is used by all the 10 nodes in X"\ (EU B), and hence § has to be
the product of two 6-node lines. O

Proposition 3.7. Assume that X is a GCg set without a maximal line, and l7i7 i =
1,2, are two disjoint 6-node lines. Assume also that sixz nodes of X are using Zl and
Zg. Then, the siz nodes besides 571 and Zg share either one more line with 6 primary
nodes or two more lines each with 5 primary nodes. In the first case the lines l71
and € are used by exactly ten nodes of X and in the second case they are used by
exactly siz nodes of X.

Moreover, in the first and second cases the ten and six nodes form a GC5 and
Gy sets, respectively. Furthermore, each of the ten nodes and each of the sixz nodes
has the m-d sequence (6,6,6,4,3,2), and (6,6,5,5,3,2), respectively.
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Proof. We have that #/\7, 7 < 28—(6+6+6) = 10. By Proposition the set
NE,ZZ is 4-dependent. Since 10 =3 x4 —2 = 2 x 4+ 2, we can apply Corollary
and conclude that either ./\/'21722 contains 4 + 2 = 6 nodes lying in a line /3, or all
the ten nodes are lying in a conic S.

In the first case we readily conclude that 171272273 is a maximal cubic with 18 nodes
and hence the remaining ten nodes of X are using it.

In the second case we readily conclude that ﬂm; is a maximal quartic with
22 nodes and hence the remaining six nodes of X' are using it. Hence the conic g
reduces to two lines with 5 primary nodes.

It remains to mention that if a seventh node uses the lines El and 272 then we get
#NG, 7, S28—(6+6+7)=9=2x4+1 which readily reduces to the first case. [

The following table is an analog of one in [9]. It is obtained from Propositions
- and shows how many times at most a line 57, under certain restrictions, can

be used, provided that the GCg-set has no maximal line.

maximal # of nodes using ‘
— — —total # | in general no node uses | no node uses
of nodes (6,6,6,4,3,2) | (6,6,6,4,3,2),
on ( constellation | (6,6,5,5,3,2)
(3.3) 6 10 7 7
5 6 6 4
4 6 3 3
3 3 3 1
2 1 1 1

3.1. The main result. In this paper we will prove the following
Proposition 3.8. Assume that X is a GCg set with no mazximal line. Then for no

node in X the m-d sequence is (6,6,6,4,3,2).

Assume by way of contradiction that for a node in X the m-d sequence is
(6,6,6,4,3,2). Let (aq,...,as) be a respective m-line sequence.
Set X = AU B (see Fig. with
A=XNn{ayUasUaz}, #A=18, and B=X\A, #B=10.

Denote L3 := {aq, a2, a3}. Note that no intersection point of the three lines of L3
belongs to X'. The following is the analogue of [9], Lemma 3.2.
Lemma 3.2.
(i) The set B is a GCs set, and each node B € B uses the three lines of L3
and the three lines it uses within B, i.e.,

(3.4) P%,X = 0410620317*3,5-
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Puc. 3.1. The case (6,6,6,4,3,2) with X = AU B.

(ii) No node in A uses any of the lines of L3.

Proof. (i) Suppose by way of contradiction that the set B is not 3-correct, i.e.,
it is a subset of a cubic 9. Then X is a subset of the zero set of the polynomial
ayasasy € Ilg, which contradicts Proposition [1.1

Now, we readily obtain the formula .

(if) Without loss of generality assume that A € ay uses the line ap. Then p% =
ag q, where ¢ € II5. It is easily seen that ¢ has (6,5) primary zeros in the lines
(a3, aq). Therefore, in view of Corollary we obtain that p* = ajasasr, r € Ils,

which is a contradiction. (I
Lemma 3.3. No node from A can have the m-d sequence (6,6,6,4,3,2).

Proof. Assume conversely that A € A has the m-d sequence (6,6,6,4,3,2).
Denote a respective m-line sequence by (o, ..., ag). The lines here, according to
Lemma [3.2] (i), are different from a1, oo, as.

Denote A = X N{a}j Uab Uaj}. The three lines of, o), a5 contain at least
9 = 3 4+ 3 + 3 nodes outside of v := a3 U s U az. The fourth line ¢ contains at
least 1 = 4 — 3 node outside of «v denoted by C. Since #B = 10 we conclude that
these four lines have exactly 10 nodes in B and 12 = 4 x 3 nodes in A. Therefore
we obtain that BC oj U-- U}, and C € X'\ (AU A).

This, in view of Lemma (i), implies that pf, = a1asaza)abhas.

From here we readily conclude that the node C' uses six lines none of which
is a maximal line within B. Indeed, we have that o, "B = 0, ¢ = 1,2,3, and
la;NB| =3, i =1,2,3. This contradicts Lemma [3.2} (i). O

Definition 3.1. We say, that a line ¢ is a k4-node line if it passes through exactly
k nodes of A, k=0,1,2,3.
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Lemma 3.4. (i) Assume that a line { ¢ Ly does not intersect a line a € L3 at a
node in X. Then the line { can be used by atmost 1 node from A. Moreover, this
latter node can belong only to a.

(i) If € is 04 or 1 4-node line then no node from A uses it.

(iii) If ¢ is 2 4-node line then it can be used by atmost one node from A.

Proof. (i) Without loss of generality assume that & = a3 and A € g uses
7 Py = Zq, q € T4. Tt is easily seen that ¢ has (6,5,4) primary zeros in
the lines (a1, a3, aq). Therefore, in view of Corollary we conclude that p% =
Zoq as azr, r € Iy, which is a contradiction.

Now assume conversely that A, B € a3 N X use the line {. Choose a point
C € a3\ ({UX). Then, in view of Lemma choose numbers a and b, with
la| + |b] # 0, such that p(C) = 0, where p := ap?% + bpy. It is easily seen that
p = Zq, q € II; and the polynomial ¢ has (6,5,4) primary zeros in the lines
(a2, a3, ). Therefore p = lon a3 q, where ¢ € TI. Thus p(A) = p(B) = 0,
implying that @ = b = 0, which is a contradiction.

The items (ii) and (iii) readily follow from (i). O

A node is called an i,,-node, i < 2, if it lies in exactly ¢ maximal lines.

Lemma 3.5. Let { be a 34 type line passing through a 2,,-node B € B. Assume
also that the node set B\{Z} contains 4 collinear nodes. Then the line { can be used

by at most three nodes from A.

Proof. Assume by way of contradiction that the line { is used by four nodes
from a set Ay := {A4,..., A4} C A. For any chosen points T;, i = 1,2,3, (see the
proof of Proposition for the details) there is a polynomial

(3.5) po € Xy := linearspan{pk ,...,p4,}, po#0,
such that po(T;) =0, i = 1,2,3. On the other hand we have that
Po :Zqo, qo €H5, and C]o(Tz) :O, = 1,273.

Now consider the set of nodes

Ci=A\ (ZUA4), Cl=18 -3 —4=11.
Denote by £* the line passing through the four collinear nodes of B\ {E}
The following cases of distribution of above 11 nodes in the three lines of £ are
possible:
1) 651 ) 6,42 (3)(65,3,3); (@) (44,3).
One can verify that the cases (1)-(4) are not possible in the following way. By

locating conveniently the three points 7;, ¢ = 1,2,3, we make the polynomial g
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to have at least (6,5,4,3) primary zeroes in the lines ay, oo, a3, £*, in some order.
Thus we get o = ajasasB, B € Iy, implying pg = ajasaszy, v € II3. Hence, in
view of Lemma (i), we readily get that po € linearspan{p} » : B € B}, which
contradicts .

To implement the above described verification in details suppose that
" NC|=k, k<2.

Case 1: k = 0. In the case of distribution (1), (5,5,1), we add the three points
in the form (1,0, 2), meaning that we add a point to the line a; and the remaining
two points to the line a3. In the case of distributions (2)-(4) we add the three points
in the form (1,1,1), (1,2,0), (2,1,0), respectively.

Then note that the polynomial gg has at least (6,5,4,3) primary zeroes in the
lines a, ag, £*, a3, in the indicated order.

Case 2: k = 1. In this case a node denoted by A* in C belongs to the line £*.
The following are the cases of distribution of remaining 10 nodes of C in the lines
of L:

(1) (5,5,00 (2) (5,41 (3) (5:3,2); (@) (4,4,2); (5) (4,3,3).

Consider the distribution sequence (1'), (5,5,0). In this case we have that A4 U
{A*} C a3. Note that this is the only case when instead of ¢* we use the two
maximal lines passing through B € B, denoted by ¢7* and ¢3*. Each of these lines
passes through 3 nodes in B\ ¢. Note that these lines do not pass through A* since
they intersect ¢* at B € B.

Thus in case (1') we add a point to the line £;*. Then we add the remaining two
points to the lines of £ in the form (1,0, 1). Now note that the polynomial g has at
least (6,5,4,3,2) zeroes in the following ordered lines: a1, a9, (1%, 5%, as, counting
also A* € as.

In the remaining cases (2') — (5') we add a point to the line £* to have there 6
zeroes and use it as the first line in the ordered line sequence. Then we add the
remaining two points to the lines of £ in the form (0,0, 2),(0,1,1), (1,0,1)
(1,1,0), respectively.

Finally notice that the polynomial g has at least (6, 5,4, 3) zeroes in the ordered
lines: £*, oy, o, (3.

Case 3: k = 2. In this case two nodes of A belong to the line £*. The following
are the cases of distribution of the remaining 9 nodes of C in the three lines of L:
(17)(5,4,0); (2")(5,3,1); (3")(5,2,2); (4”)(4,4,1); (57)(4,3,2); (67)(3,3,3).
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In these cases the line £* has 6 zeroes and is the first line in the ordered sequence
of lines. For the distributions (1) — (6”) we add the three points in the form
(0,0,3),(0,1,2), (0,2,1) (1,0,2), (2,1,0), respectively.

Then note that as above the polynomial g has at least (6,5,4,3) zeroes in the

following ordered lines: £*, a1, as, as. O

3.2. The proof of the main result. Consider all the lines passing through a node
B € B and at least one more node of X'. Denote the set of these lines by £(B). Let
my = mp(B), k = 1,2,3, be the number of k4-node lines from £(B). Then the
following holds:

(3.6) 1my (B) + 2ma(B) + 3ms(B) = #A = 18,
Lemma 3.6. We have that mz(B) < 5.

Proof. The relation implies that mg(B) < 6. Assume by way of contradiction

that six lines pass through B and three nodes in .A. Therefore these six lines intersect
the three lines aq, ag, a3, at all the 18 nodes of A.
Note that ajasas is a maximal cubic. Hence, by Proposition the six lines
contain as components the lines oy, ao, as, which is a contradiction. [ The proof
of Proposition [3.8 We will prove Proposition in three steps. Recall that the set B
is a GC35 set.

Step 1. The set B is a Chung-Yao set (with 5 maximal lines, Fig. [3.1]).

Let us fix as a node B € B. Note that all nodes in this case are 2,,-nodes.
According to Lemma any 34 type line { here is used by at most 3 nodes of
A. Indeed, ‘ passes through at most two nodes of B. Thus it intersects at most
4 = 2 x 2 maximal lines of B and the four nodes of the fifth maximal line of B are
outside of B\ { (see Fig. .

Therefore, in view of Lemma the number of usages of the lines ‘ through B

with the nodes from A equals at most:
mg(B) + 3m3(B) > 18 = ml(B) + 2m2(B) + 3m3(B)

Hence my1 = mo = 0 and mg = 6, which contradicts Lemma, |3.6)

Step 2. B is a Carnicer-Gasca set (with 4 maximal lines, Fig. [3.2)).

We have that there are at most four 3-node lines in B ([15], Prop. 5). Moreover,
any 3-node line passes through 1,,, 1,,, 1., or through 2,,, 1,,, 1,,, nodes [I5].
There are exactly six 2,,-nodes in 3. Therefore we have at least two nodes in B,
denoted by By and B, through which no 3-node line passes.

Denote the line passing through the nodes By and By, by £o;.
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Puc. 3.2. The set B is a Carnicer-Gasca set

Lemma 3.7. The line £y; is a 34 type 5-node line and is used by exactly siz nodes

from A.

Proof. Assume by way of contradiction that £p; is a < 4-node line. Then, in
view of Lemma [3.4] it is used < 1 times from A. On the other hand if ¢y is a
5-node line but is not used six times from 4 then, according to Propostion [3.5] it
is used < 4 times from A.

Note that there is no 6-node line through B := By, since there is no 3-node line
through it in B. Next, by Lemma [3.5] any 5-node line through B, except of £g1, is
used by < 3 nodes from A (see Fig. [3.2]).

Thus, in view of Lemma [3.4] we have that the number of usages of the lines

through B with the nodes from A equals at most:

Hence my +my < 1, and mg > 6, which contradicts Lemma [3.6] [l

Denote by Ag C A the set of six nodes that are using the line £p;.

We get from Proposition that the six nodes of Ag besides {y;, share also
three other lines passing through 6, 6,5 primary nodes, respectively. Furthermore
the m-d sequence for the six nodes is (6,6, 6,4,3,2), or (6,6,5,5,3,2).

Lemma [3.3|implies that the first case cannot take place. Thus the m-d sequence
for all nodes of Ag is (6,6,5,5,3,2). Note that, in view of (1.2)), As is a GCj set,
since f - - - {4 is a maximal quartic.

Let /1, ..., g be arespective m-line sequence, where £3 := fp1. Note that £1,...,/0,
are invariable lines, and /5, fg are variable lines, for the nodes of Ag. The lines
l1,...,¢4 have at least 10 = 3 + 3 + 2 + 2 distinct nodes in B. Since #B = 10 we
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conclude that these four lines have exactly 10 nodes in B and 12 = 4 x 3 nodes in
A (see Fig. [3.2)).

Recall that we have four maximal lines in B which are 4-node lines and intersect
in primary nodes of X each of the lines ¢, ...,£¢4. The nodes By and B; are in the
line ¢3. Denote by Bs, Bs the two primary nodes in 4 N B.

We readily conclude that B;, i =0,...,3, are 2,,-nodes of B and the 4 maximal
lines are the lines o2, {03, {12, £13, where £;; is the line passing through the nodes
B, and B; (see Fig. .

The remaining two 2,,-nodes of B are the remaining two intersection points of
the maximal lines denoted by D := fy3 N €15 and Dg := fgo N {13.

The nodes Dy and Dy one by one lie in the lines ¢; and /5, respectively, since the

latters are 3-node lines within B and each contains at most one 2,,-node.

Lemma 3.8. The following is true for at least one of B € {Ba, B3} :
No 3-node line within B passes through the node B.

Proof. Consider the node By. We have that X'\ ({y2U¥12) = {B3,C,C3}. Since
lo3 is a 2-node line in B we get that the only candidate for 3-node line through Bs
is the line passing through the nodes By, C7,C3, provided that the latter triple of
nodes is collinear (see Fig. [3.2).

Similarly we get that the only candidate for a 3-node line through Bs is the line
passing through the nodes Bs, Cy, Ca, provided they are collinear.

What we need to show is that at least one of the two triples of nodes is not
collinear. Assume by way of contradiction that the both triples are collinear, lying
in some two lines £y and £, respectively.

Consider the following collinear sets
Xy = {Cy, D1, C1}, Xy :={Cy, D2,C3}, A3 :={By, B3}.

It is easily seeen that the four maximal lines of B pass through one point from each
of X1, X2, X5. Note that the above two lines ¢y and £f, have the same property.
Therefore we get #Lx, x,,x, > 6, which contradicts (1.3). O Thus from now on
one can assume, without loss of generality, that no 3-node line passes through the
node Bs.

Lemma 3.9. The set B, except of the lines 1 and {2, may have just one more 3-
node line, which passes through the nodes Bs, Cy, Cy, provided that the latter nodes
are collinear.
Moreover, (£1,45) is the only disjoint pair of 3-node lines in B.
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Proof. Indeed, any 3-node line must pass through a node of B outside of the
lines ¢1 and /s, i.e., through one of By, ..., Bs. Thus it must pass through B3 and
therefore also through Cy and Cs, provided that the latter triple of nodes is collinear
(see Fig. . It remains to note that the third 3-node line intersects both of the
lines ¢, and /5 at nodes of B. O

Lemma 3.10. There is a type 34 4-node line through each of the nodes By, By,

and Bs. Moreover, these lines are used by exactly 3 nodes from A.

Proof. Denote by B any of the nodes By, B1, Bo. Note that there are no 6-
node lines through B. Then we get, from Lemma [3.5] that any type 3 4 5-node line
through B, except of £3 or £4 is used by < 3 nodes from A.

Thus, the number of usages of the lines through B with the nodes from A equals

at most:
(3.7) ma(B) + 6 + 3(mg(B) — 1) > 18 = my(B) + 2m2(B) + 3ms(B).

Hence we obtain that mq + mo < 3.

Let us denote by max,se := maxyse(B) the maximum possible usage of lines
through B we obtained, i.e., max,sc = mg + 3mg + 3.

Then, as it follows from the equality in , the quantity mq + 2ms is divisible
by 3. Thus the following four cases are possible here.

1) my = my = 0, then m3 = 6, which contradicts Lemma [3.6]

2) m; = mg = 1, then mg = 5, maxyse = 19,

3) my = 3,my = 0, then mg = 5, mazyse = 18,

4) my = 0,mqy = 3, then ms =4, max,s. = 18.

Note that in each of the above cases 2), 3), 4) there are at least 4,5,4 lines of
type 3.4, respectively. Since in the case 2) maz,s. = 19 = 18 + 1 one of the type
3 4 lines may be used less than 3 times, or more precisely 2 times.

It remains to take into account that from these four lines only three may be
5-node lines. For example, for B = By these three lines are {p,B,,¢B,c, and {p,c,
(see Fig. ) The remaining one certainly is a 4-node line. [l

Consider a 4-node line ¢ through By, By, B2, mentioned in Lemma used
by exactly 3 nodes of A. According to Proposition the f-m-d sequence of each
mentioned triple of nodes is either

(a) (4,6,6,5,4,2) or

(b) (4,6,5,5,5,2).

Note that the first five lines in the respective {-m-line sequences are invariable

for the triples of nodes.
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Now assume that the case (a) holds for a triple of nodes. Denote a respective f-m-
line sequence for the nodes of the triple by Z O, ..., 0g. Consider the m-d sequence
for the nodes of Ag : (6,6,5,5,3,2), and the respective m-line sequence £, ..., fg.
Note that Ag is a GC3 set.

We get from Lemma that the pair of the lines ¢4, ¢4 coincides with £1, fs.
Then note that in the set B\ (¢1 U ¢3) the only 34 lines with two primary nodes
are the lines {3 and ¢4. Thus £ coincides with one of them.

Now, in view of Corollary [I.2] we readily obtain that any node E of Ag, besides
the lines £, ¢4, ¢,, uses also the lines ¢ and 5. Indeed, in view of Proposition
the node E uses one of the lines Zﬁg to which it does not belong. Then we get
that F uses also the other line. This is a contradiction, since outside of the curve
0} - - - 05 € T there are only 3 nodes.

It remains to consider the case when all the three f-m-d sequences equal (b).

Denote a respective {-m-line sequence by Z, /RN /8

Lemma 3.11. (i) The above three triples are disjoint in this case.
(i) Suppose the line £) with 6 primary nodes for a triple coincides with one of the

lines £1 or £y. Then the triple is not a subset of the set Ag.

Proof. (i) Consider a pair of triples. Note that for them a line among the 4
invariable lines £5, . .., ¢ is different. Indeed, assume conversely that all threse lines
coincide with each other. Then as above we readily get that also the 4-node lines ¢
coincide, which is a contradiction. Thus the invariable lines for each pair of triples
differ at least with two lines. Therefore for any variable line the line sequences are
different. Hence the triples are disjoint.

(ii) Assume that the line £ coincides, say, with ¢;. Then the three invariable lines

5,01, ¢¢ cannot coincide with {o, ¢3, ¢4. Indeed, otherwise any node in A, together
with €5, ..., ¢¢ uses also the 4-node line ¢, which is a contradiction since outside of
Z g, ..., 0¢ there are only 3 nodes.

Thus, by taking into account Z, we have two invariable lines in the m-line sequence
of the triple that are not present in {¢q,...,04}. Next let us fix the variable line
l5 such that it differs from the two mentioned lines. Indeed, we may choose as /5
any maximal line of the GCj set Ag. Thus the considered triple is disjoint with the
three nodes of Ag \ £5 that use the lines ¢4, ..., ¢5. It remains to note that the triple
does not coincide with the three nodes of Ag N £5, since the latter three nodes are

collinear. O
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Puc. 3.3. The set B is a principal lattice

Now suppose that for all three triples the the line £§ with 6 primary nodes is the
third possible 3-node line of B, different from #; and /5 (Lemma. Then, in view
of Lemma[3.11] (i), this line is used by 9 = 3+ 3+ 3 nodes, which is a contradiction.

Finally suppose that for one of the triples the line £ coincides with one of the
two disjoint 6-node lines, say with £;. Then, in view of Lemma (ii), the line
¢y is used by at least 7 = 6 + 1 nodes from A. Observe that ¢; is used by a node
from B too. Thus in all the 6-node line ¢; is used by at least 8 nodes. This, in view
of Proposition [3.6| and Lemma [3.3] is a contradiction.

Step 3. The set B is a principal lattice (with three maximal lines).

Concider a 2,,-node B € B. Note that there is no 3-node line through B within
B (see Fig. 3.3)).

Assume that the line ¢ = lpe (or £pp) is a 5-node line and is used > 5 times
from A. Then, according to Proposition [3.5] it is used by exactly 6 nodes from .4
and the 6 nodes besides ¢ share also 3 lines with 6,6,5 primary nodes. The two
6-node lines are 3-node disjoint lines within 5. Thus they pass through the 1,,
nodes C,C’,C"”, and D, D’, D", respectively. This is a contradiction since the node
C belongs to the line ¢ and is not primary.

Thus the lines £ and £gp are used < 4 times from A. Note that the line £g0,
as well as any 4-node line through B, according to Lemma [3.5] is used < 3 times
from A.

Hence the maximal possible number of usages of the lines through B with the

nodes from A equals:
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Hence mq+msg < 2. Then mj+2ms is divisible by 3 and max,s.(B) = ma+3msz+2.
Thus the following two cases are possible:

1) my = my = 0, m3 = 6, which contradicts

2) my =mg =1,m3 =5, mazy,s. = 18.

Now we readily conclude that:

B1) The lines ¢ and pp are 5-node lines used exactly 4 times from A.

B2) No node of A may use two lines through B.

B3) There are at least two 4-node lines through B that are of type 34 and are
used by exactly 3 nodes from A.

B3') Note that if the line /o is not of type 34 then there are three above
mentioned 4-node lines through B.

Then let us consider the usages of lines passing through the 0,, node O € B by
the nodes of A. Consider the three lines through O : OC,OC’, OC"”, which can be
6-node lines. These lines are used by 3 nodes of B and therefore, by Proposition
[3:6] they can be used by at most 4 nodes of A.

Similarly the lines OB, OB’, OB" can be 5-node lines, in which case, according
to Lemma [3.5] they can be used by at most 3 nodes from A.

Thus for the maximal possible number of usages of the lines through O with the

nodes from A we have:
mz(O) +4+4+4+ 3(m3(0) — 3) > 18 = ml(O) + 27712(0) + 3m3(0)

Hence mj+mso < 3. Then my +2my is divisible by 3 and max,s.(O) = ma+3msz—+3.
Thus the following cases are possible

1) m1 = mgy = 0,m3 = 6, which contradicts Lemma

2) my =mg = 1,m3 =5, mazy,s. = 19,

3) my =3,my =0,m3 =5, maxyse = 18,

4) my = 0,my = 3,m3 = 4, maxys. = 18.

Now we readily conclude that

O1) At least two of the three lines through O : OC,OC’, OC", are 6-node lines
and are used exactly 4 times from A.

02) At most one node of A may use two lines through O all others may use only
one line through O.

03) From the six lines through O : OC,0C’,0C” OB,0B’,0B", in view of
Lemma [3.6] at most five are of type 34 and possibly are used by > 3 nodes from
A.

Thus, by the remarks B3), and B3'), there are at least six, possibly seven, type
3.4 4-node lines, through the 2,,-nodes of B, that are used by exactly 3 nodes from
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A. In view of Proposition [3.3] again for these 4-node lines we have one of the two
l-m-d sequences: (a) (1,6,6,5,4,2) or (b) (1,6,5,5,5,2).

Lemma 3.12. The second 4 in the (-m-d sequence (a), in a respective (-m line

sequence, corresponds to a 34 4-node line passing through B, B’ or B”.

Proof. Suppose that ¢4, ..., ¢ is a respective f-m-line sequence. Then /5 and /3
pass through the six 1,,-nodes of B. Thus the line ¢, coincides with one of the lines
B'O, or B"0, say with B’O (see Fig. [3.3).

Now /5 passes through B” as the only remaining primary node in B. Let us show
that it does not pass through any other node of B.

Note that ¢5 cannot pass through O since then each of the three nodes will use
two lines passing through O, which contradicts the remark O2).

Then assume conversely that £5 passes through one of 1,, nodes, say C’. As we
know from the remark B1), the line £p.¢/ is used by the fourth node of A denoted
by F. In view of Proposition the node F' uses one of {5, /3 to which it does not
belong and then the other. Next we readily get that F' uses also the lines ¢4 and /;.
Thus the 4-node line #; is used by 4 nodes which, in view of Proposition and

Lemma [3.3] is a contradiction. O

Lemma 3.13. Any two triples of nodes corresponding to two distributions of type

(a) or (b) are disjoint.

Proof. Note that the variable lines with 2 primary nodes in respective f-m line
sequences cannot be equal to any of the 4-node line. Indeed the first five lines
pass through all the nodes of the set B. Now if a sixth line becomes 4-node line
through a 2,,-node of B then we have two lines passing through the 2,,-node, which
contradicts the remark B2).

Then since in each case of distributions (a) and (b) we have different 4-node lines
therefore the corresponding triples are disjoint. (|

Now assume that for at least two pairs of 4-node lines we have the f-m-d sequence
(a). Then the two disjoint lines ¢ and ¢3 in the respective /-m line sequence are
used by two triples of nodes, i.e., by six nodes.

In view of Proposition we get that each of the six nodes has either m-d
sequence (6,6,6,4,3,2) or (6,6,5,5,3,2). The first case contradicts Lemma
While the second sequence clearly differs from the sequence (a), since there we
have two invariable 4-node lines.

Then assume that for one pair of 4-node lines the -m-d sequence (a) takes place

and for other 4-node lines the sequence (b) takes place.
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In view of the remarks B3'),01), and O3), let us consider the following

Case 1) There are three 6-node lines through O used by three nodes and therefore
there are at least seven 4-node lines through 2,,-nodes, and

Case 2) There are exactly two 6-node lines through O used by three nodes and
therefore there are at least six 4-node lines through 2,,-nodes.

Now recall that the two disjoint 6-node lines are {5 and ¢3. Denote the 6-node
lines passing through O by £y, £, £ . Finally denote the above seven possible 4-node
lines through the 2,,-nodes of B by a;,i =1,...,7.

In Case 1) we have six different triples. Let us consider only the 4-node and
6-node lines in the respective line sequences:

(1, a,02,03); (a3, lo);  (a4,03); (as,fo); (s, lp);  (ar,£g).

In Case 2) we have 5 different triples corresponding to:

(a1, 00,l2,03); (a3, la); (o4, l3); (as,lo);  (ae,Lp)-

Note that in both cases all the possible 6-node lines are used by six nodes,
counted also the triple usage of each of lines ¢o, £(, ¢(, from B. Therefore, in view
of Proposition [3.6] and Lemma [3.3] no place for another 6-node line in the line
sequences, and consequently the additional triple usage.

Thus all the lines with 5 primary nodes in the line sequences, actually have to
be exact 5-node lines.

Let us show that these 5-node lines are different. Indeed, assume conversely that
a 5-node line £ is in two m-line sequences used by different triples. Then 7 is used by
6 nodes. As we know, by Proposition these nodes must have the m-d sequence
(6,6,5,5,3,2), which clearly differs from (a) and (b).

Now in Case 1) we need for 16 (=5 x 3+ 1) and in Case 2) we need for 13 (=
4 x 3+ 1) different 5-node lines.

Below we show that actually there are not that many 34 5-node lines, which
finishes the proof in this case.

For this end let us count the number of 2-node lines in B. There are 9 (=
3 x 3) such lines through the three 2,,-nodes (see Fig. . Then there are 3 such
lines through the 1,, nodes. Here we take into account that C,C’,C” € {5, and
D,D’, D" € /5. Hence in all we may have atmost 12 lines.

Finally, let us consider the case when for all 4-node lines the f-m-d sequence (b)
takes place. Then in Case 1) we have seven disjoint triples whose union is A, which
is a contradiction since #.A4 = 18.

In Case 2) we have 6 different triples corresponding to:
(ala‘€2); (0427162); (a37‘€3); (O[4,£3); (0[5,60); (Ol6,€6)
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In this case no place for another 6-node line too. Thus again all the lines with 5

primary nodes actually are exact 5-node lines. Here we need for 18 (= 6 x 3) 5-node

lines. As we showed above there can be atmost 12 such lines.
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1. INTRODUCTION

This paper belongs to a series of papers studying properties of periodic and
non-periodic orthonormal spline systems with arbitrary knots. The detailed study
of non-periodic orthonormal spline systems started in 1960’s with Z. Ciesielski’s
papers [4, 5] on properties of the Franklin system, which is an orthonormal system
consisting of continuous piecewise linear functions with dyadic knots. Next, the
results by J. Domsta (1972), cf. [9], made it possible to extend such study to
orthonormal spline systems of higher order with dyadic knots. These systems occurred
to be bases or unconditional bases in several function spaces like LP[0,1],1 < p < oo,
C[0,1], H?[0,1], 0 < p < 1, Sobolev spaces WP-*[0, 1], they give characterizations
of BMO and VMO spaces, and various spaces of smooth functions.

The extension of these results to orthonormal spline systems with arbitrary knots
has begun with the case of piecewise linear systems, i.e. general Franklin systems,
or orthonormal spline systems of order 2. This was possible due to precise estimates
of the inverse to the Gram matrix of piecewise linear B-spline bases with arbitrary
knots, as presented in [I4]. We would like to mention here two results by G.G.
Gevorkyan and A. Kamont. First, each general Franklin system is an unconditional
basis in LP[0,1] for 1 < p < oo, cf. [I0]. Second, there is a simple geometric
characterization of knot sequences for which the corresponding general Franklin
system is a basis or an unconditional basis in H'[0,1], cf. [I2]. We note that in

IThe second author was supported by the Science Committee of RA, in the frames of the
research project Ne 21T-1A055
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both of these results, an essential tool for their proof is the association of a so
called characteristic interval to each general Franklin function f,.

The case of splines of higher order is much more difficult. Let us mention that
the basic result — the existence of a uniform bound for L°-norms of orthogonal
projections on spline spaces of order k with arbitrary order (i.e. a bound depending
on the order k, but independent of the sequence of knots) — was a long-standing
problem known as C. de Boor’s conjecture (1973), cf. [2]. The case of k = 2 was
settled even earlier by Z. Ciesielski [4], the cases k = 3,4 were solved by C. de
Boor himself (1968, 1981), cf. [I, [3], but the positive answer in the general case was
given by A. Yu. Shadrin [2I] in 2001. A much simplified and shorter proof of this
theorem was recently obtained by M. v. Golitschek (2014), cf. [22]. An immediate
consequence of A.Yu. Shadrin’s result is that if a sequence of knots is dense in [0, 1],
then the corresponding orthonormal spline system of order k is a basis in L?[0, 1],
1 <p < oo and C[0,1]. Moreover, Z. Ciesielski [6] obtained several consequences of
Shadrin’s result, one of them being some estimate for the inverse to the B-spline
Gram matrix. Using this estimate, G.G. Gevorkyan and A. Kamont [I2] extended
a part of their result from [I1] to orthonormal spline systems of arbitrary order
and obtained a characterization of knot sequences for which the corresponding
orthonormal spline system of order k is a basis in H'[0,1]. Further extension
required more precise estimates for the inverse of B-spline Gram matrices, of the
type known for the piecewise linear case. Such estimates were obtained recently by
M. Passenbrunner and A.Yu. Shadrin [I9]. Using these estimates, M. Passenbrunner
[I7] proved that for each sequence of knots, the corresponding orthonormal spline
system of order k is an unconditional basis in LP[0,1], 1 < p < oo. With the help
of this result it was obtained a characterization of knot sequences for which the
corresponding orthonormal spline system of order k is an unconditional basis in
HY0,1] (see [13]).

Another extension of the previous results can be done for periodic orthonormal
spline systems with arbitrary knots. In the periodic case K. Keryan [I5] proved that
for any admissible point sequence the corresponding periodic Franklin system (i.e.
periodic piecewise linear system) forms an unconditional basis in LP[0,1], 1 < p <
oo. K. Keryan and M. Passenbrunner [16] obtained an essential estimate for general
periodic orthonormal spline functions. Combining the estimate with the methods
developed in [I0] they proved the unconditionality of periodic orthonormal spline
systems in LP(T), 1 < p < oo. A result concerning the basis property of periodic

orthonormal spline systems of order 2 in Hardy’s atomic space on the torus was
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carried out by M. Poghosyan and K. Keryan. In the paper [20] they gave a simple
geometric characterization of knot sequences for which the corresponding general
periodic Franklin system is a basis or unconditional basis in H!(T).

The main result of the present paper is to give a characterization of those knot
sequences for which the corresponding periodic orthonormal spline system of fixed
order of smoothness is a basis in H!(T).

The paper is organized as follows. In Section [2| we give necessary definitions
and we formulate the main result of this paper — Theorem [2.I} The proof of the
main result is presented in Section [3} in Subsection [3.1] some properties of periodic
orthonormal spline systems are provided, then in Subsection [3.2] a lower bound for
H(T) norm of a function is given, and finally in Subsectionsand Sufficiency it is
proved the necessity and sufficiency of k-regularity in Theorem correspondingly.

2. DEFINITIONS, NOTATION AND THE MAIN RESULT

We begin with some preliminary notations. The parameter k£ > 2 will always be
used for the order of the underlying polynomials or splines. We use the notation
A(t) ~ B(t) to indicate the existence of two constants ¢y, ca > 0, such that ¢; B(t) <
A(t) < c2B(t) for all t, where t denotes all implicit and explicit dependencies that
the expressions A and B might have. If the constants ¢, co depend on an additional
parameter p, we write this as A(t) ~, B(t). Correspondingly, we use the symbols
<, 2, Spy Zp- For a subset E of the real line, we denote by |E| the Lebesgue measure
of E.

Now let k > 2 be an integer and T := (s,,)22 be a point sequence from the torus
T such that each point occurs at most k times. Such point sequences are called k
admissible.

For n > k, we define S,, to be the space of polynomial splines of order k with
grid points (s;)7_; C T. For each n > k + 1, the space S,_1 has codimension 1
in S, and, therefore, there exists a function f, € S, with ||anL2(T) = 1 that is
orthogonal to the space Sn_1. Observe that this function fn is unique up to sign.
In addition, let (f,)*_, be an orthonormal basis for Sg. The system of functions

( fn);’f:l is called periodic orthonormal spline system of order k corresponding to

oo

the sequence (s,,)22 ;.

Now we define the atomic Hardy space on T.

Definition 2.1. A function a : T — R is called a periodic atom, if either a =1 or
3T C T interval such that all these conditions are satisfied:

(i) suppa C T,
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(ii) llal[ ooy < |F\71
(i) [pa(z)de = [.a(z)dz=0.

Definition 2.2. HY(T) is the family of all the functions f that has representation

o0
f=Ycnan
n=1

for some periodic atoms (a,)2%, and real scalars (c,)S, € (.

The space H!(T) becomes a Banach space under the norm

oo
£l (py :=inf Y fen]
n=1
where inf is taken over all (periodic) atomic representations Y c,a,, of f. Now, we
introduce regularity conditions in the torus T for sequence (s,)%2 ;.

Assume that n > k + 1. Let (Jj)] '~ be the ordered sequence of knot points

consisting of (s;)7_; in T canonically identified with [0, 1):
(21) 7: = 7: = (O < On,0 < On,1 <-.- < On,n—2 < On,n—1 < 1)

For the integers £ < k and ¢ € Ny, we define Tffz = [On,i,0n,ite) C T interval.
Here we observe index i periodically, i.e. we use the notation of periodic extension
of the sequence (oj)?;ol, ie oppyj=r+0;forj€{0,...,n—1} and r € Z and in

the subindices of the B-spline functions, we take the indices modulo n.

Definition 2.3. Let ¢ < k and (s,)5% 1 be an {-admissible point sequence the in the

torus T. Then, this sequence is called f-regular in torus T with parameter v > 1 if
(4)
| i <ITO 1 <HTEL, n>t+1, ieN,.

Let Py(lk) be the orthogonal projection operator onto S, with respect to the
canonical inner product in L2(T) and DY be its Dirichlet kernel.

The following is the main result of this paper.

Theorem 2.1. Let k > 1 and let (s,,) be a k-admissible sequence of knots in T with
the corresponding periodic orthonormal spline system ( ) of the order k. Then,

p(k)
(

w ) is a basis in HY(T) if and only if (s,) is k-reqular in the torus with some

parameter v > 1

3. PROOF oF THEOREM [2.1]

Since the sequence of knots (s,)% ; is dense in the torus T, the linear span of the
functions { fy(Lk), n > 1} is linearly dense in C(T), which implies its linear density in
H'(T). Therefore, {f,&’“), n > 1} is a basis in H!(T) if and only if the partial sum
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operators P are uniformly bounded in H*(T), i.e. there is a constant C' = C(T),
that only depends on the knot sequence (s,)52 4, such that

n=1»
(3.1) 1B iy = 1P+ HY(T) = HY(T)|| < C(T).

We show that (3.1]) is equivalent to k-regularity of 7. This is an immediate
o . . : 5 (k)
consequence of the Propositions|3.1|and [3.2] which contain estimates of norms P,

from below and from above, respectively.

Proposition 3.1. Let 7A;L =0<o09<o01 < - <op_2<o,_1<1) be a sequence
of knots in the torus T of multiplicities at most k. Let

70 )
‘(Z;Z| ,| n,(z]:;1|: 0<z<n—1}
|Tn,i+l‘ |Tn,z |

Then there is a constant Cy, > 0, depending only on k, such that

M = Mék) = max{

[P || g1 (py > Ci log M.

Proposition 3.2. Let T = (0<09<o01 < - <op_o<o,_1<1) be a sequence
of knots in the torus T of multiplicities at most k. Let vy be such that
T _ b
=S ILDG AL nz kel i€ N
Then there is a constant Cy > 0 depending only on k and vy, such that
1P i1 1y < Cy-

Before we begin to prove the Propositions [3.1] and we recall some properties

of splines and orthogonal projections Py(Lk)

3.1. Properties of periodic orthonormal spline systems. The key result
which let us work with periodic orthonormal spline systems of the order k is the
periodic version of A. Yu. Shadrin’s [2I] theorem, i.e. uniform boundedness of L°-

norms of projections P{®) . The result was obtained by M. Passenbrunner in [18].

Theorem 3.1 ([18]). There exists a constant Cy, depending only on the spline order
k such that for any sequence T of knots of multiplicity at most k

1P ]loo = |1 P L°(T) — L(T)|| < C.
Clearly, this means that

(3.2) 120 = sup/ DY (t,5)|ds < C.
teT JT

Now, as before, let 7, = (0 < 0p <01 < -+ <0,-2 < 0,1 < 1) be a sequence of
knots in the torus T of multiplicities at most k. By N,(L’fi), 1=20,...,n—1 we denote
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the L°°-normalized periodic B-spline basis of Sy (*) These functions are nonnegative,

linearly independent and form a partition of unity, i.e. > ., 'N (k)( t) = 1 for each

% Corresponding to

this basis, there exists a biorthogonal basis of SSJ“), which is denoted by (N (k) )l 0 -
Let G = [(N(k) N(k)) 0 <i,5 < n—1] be the Gram matrix for the system

n,t?

(N i=0,...,n—1}, and let AL = [a;; = (V%" N{V),0 <4, j <n—1]. the

n,:’ n,:.

t € T. Moreover, supp Nr(fi) = [0y, 04+k] and ||N7(1,2||L1(T) =

following is a equivalent version of Theorem [3.1] (See [I8], Section 3, Remark 3.2):

Theorem 3.2 ([I8]). Let n > 2k. Then, there exists a constant q¢ € (0,1) depending
only on the spline order k such that

qd(m‘)

|ais] Sk 0<i4,5<n-1,

o (k
max(| supp N[, | supp M)
where d is the periodic distance function on {0,...,n — 1}.
In particular, since DY (t,s) =St &”N( )( )N(k)( ), Theorem implies

2,7=0
that
n-l 2-9)

(33) DMt s)] Sn NB N (s).

n,j

iﬁmmwNHme
If the setting of the parameters k and n is clear from the context, we will omit k

and n and write ]\77 instead of NT(L]?

3.2. A lower bound for H'(T) norm of a function. In order to prove Proposition

we will need the periodic version of the claim used in [12] (cf. page 7, estimate (3.4)).

Proposition 3.3 ([12]). Define ®(z) := max(0,1/2 — |z/4]) and ®.(z) = 1&(%),

for x € [0,1]. Then, there is a constant C > 0 such that
1
£l 0,1y = Cllf*[lErjo,y,  where  f*(z) = Sl>118| De(z — 1) f(t)dt].
e 0

Using this proposition we prove the following.

Lemma 3.1. Define the I-periodic functions ®(x) := max(0,1/2 — |z/4]) and
és(o:) = %@(%), for x € T. Then, for some constant ¢ > 0 the following holds,

I fllarery > el f|lpiery, where f**(x)—s;lg\ i (ac—t f®)dt).

Proof. Let f be a function from H'(T). Then, there exists a sequence of periodic

atoms (a;)52; and coefficients (A;)$2; such that,

(3.4) =Y Nai, and > N < 2/fllmr)
=1 =1
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Now by (3.4), we get

[Fa /sup\ do(z—1)> Ny (t)dt|dx
( ) T €>0 T ;
< INil [ sup| | ®c(x — t)a;(t)dt|da
; T €>0 T
e ~
< SN[ s | [ e naatds
i1 T 0<e<1/16 JT
+ Z |Ail sup | [ ®(x — t)a;(t)dt|dz =: 2y + s
i—1 T1/16<e JT

First we estimate ¥5. We have that
N 1
(pe < a0
(@) < 2€

and ||a;| r1(ry < 1 so we get the following,

zeT,

oo
¥ < 28\)\i| Sl -
i=1

Now, let I'; C T be the interval that contains the support of the periodic atom a;.
Define J := {i : |I'¢| > 1/4} and split ¥, into 2 sums. The first sums over all the
indices from the set J and the second one sums over indices of J¢. Let’s denote the
sums by X1 ;7 and X je, respectively.

Observe ¥ ;. Fix an arbitrary ¢ € J and identify tours T with [0,1) in such
a way that 0 coincides with the the center of I'{. We have that 0 < ¢ < - and
|rs| > %. Hence, we get that ég() = ®(-). Consequently, by Proposition we

get

Y1, ZI)\Z-I sup I/ée(x—t)&i(t)dﬂd:c
T

= T 0<e<1/16
< S llladliea D illlaillmo,y < 1l
ict ics

The last inequality comes from ||G;|| 10,17 < 1. This is true because by the right
identification of T with [0, 1), i.e. the starting point 0 is not I';, we made sure that
@; is an atom on [0, 1).

Consider ¥ je. For all i € J¢ we have |I;|™! < 4/3 and ||a; || poe(r) < T3]
Thus,

i .
g < Z Al sup /@€(a:—t)dtdz
icJe |Fz| T 0<e<1/16 JT
4
< 3 >INl S Il e

ieJe
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Combining all above we get the desired result, i.e.
1 Nzrery S N1 11memy-

3.3. Necessity of k-regularity: proof of Proposition Since 1575’“) is a
projection onto Sr(f), it follows that ||]57§k)|| mi(r)y = 1. Therefore we can assume

that M > M(k), where M (k) > 2 will be specified later. Let u be such that
|T,

nu‘

M= (clearly, the case of M = —futl

75"

is analogous). As M > 2, it follows

2 k
10 > (M = )T > ST
Here we identified the torus T with [0, 1) in such a way that the starting point 0 is

not in the intervals Télg and T,(LkgH Now let ¢1(:) = Nus1(-) and ¢o(-) =

¢ (- +|Tnkz+1|) Then supp ¢1 = [O'u+170'u+k+1]7 supp ¢o = [O'u+1_|T7(L{2+1|a 0u+1] -
(0w, 0ut1] and [[¢1]l1 = [[¢2]l1 = 1. Put ¢ = ¢y — ¢o. Then [ ¢(x)dx = 0, suppop =
T = o — 1T 1] ourkir) and [[8]ee < 25, 50 (6]l (n) < 2k We need to

estimate from below ||P( )¢||H1 . For this, we use Lemma
At first, consider P,(L )¢2. We observe D% ). the kernel of the projection Py(bk).

k
|qu> N

Note that b,(lk) is a polynomial of degree at most k — 1 on TT(L}%, and by comparison
of different norms of polynomials of fixed degree (cf. e.g. Theorem 2.6 of Chapter
4 in [8])

|DP(t, )| dt ~, | TS max |IDW) (£, z)],

T, teTiM,
and the constants in the above equivalences depend only on k. As supp ¢o C T,(L,ll,
we find

BPet) = | [ DO e < [ DO D0l

. Ch .
< (k) (k) ,
< oy 1D lenllo < / L 1DW ()t

t€Tn

Combining and the last sequence of inequalities we get |PT(Lk)¢) (2)| < \T“ i , and
consequently
(k) Ch
(3.5) (P o)™
=l

Now, we estimate (Py(Lk)qbl)** from below . Clearly, since Pf(lk) is a projection
onto SA',(lk), we have P(k)gbl = ¢1. Take z € T,Sll)“ x < Oyy1 — |T,(Lk3+1| and let
€(x) = oysk+r1 — . Then <I>6(w) (x—1t) = 6(1:)( x) > 46(35) for ¢ € supp ¢1, and

consequently
. 1

@ > [ bt oa0a>
54




PERIODIC ORTHONORMAL SPLINE SYSTEMS ...

Combining this with (3.5) we find that

. N 1 C
(k) 1)** K% o (k) ok N k . (k)
(B 9)™ () = o017 (2) = (P ¢2)™" () = @ ] for z € [ow, our1=[Ty yiall-
Then, as \Tr(llm > %|T£’2+1|, we have for M > 32C},
(3.6) (B g)* (2) > 8e(2) for € [ou1 — m’auﬂ - IT£,3+1H-
Using again |T, 751&\ > %|T7(Lk3 411, we get from the last inequality
~ Uu+1*|Tr(fl+1| R
B I = [ 0" (BP0 @)s
Ou+17 60,
(1)
Tl )l 1
> / —du > -logM — Cl ;.
AT ] Bu— 8

Fix M (k) > 32C), and such that - log M (k) > Cy 1; then for M > M (k) we have
tlog M — Cy > L log M. As ||| g1 (m) < 2k, by Lemmawe get Hp»ygk)”Hl('[) >
CrlogM. e

3.4. Sufficiency of k-regularity: proof of Proposition The idea of the
proof is analogous to the idea of the proof of Proposition 3.2 in [I2]. We recall the
mesh (2.1)) obtained by the canonical identification of T with [0, 1)

Tn = (0 < On,0 < On,1 <. < On,n—2 < Onn—1 < ]-)
Let n > 2k and n be a periodic atom. It is enough to show that

1Bl ey Sy 1
For this, we find a suitable atomic decomposition of PA’,(L’C)U.
If n = 1, then also P,(Lk)n =1 and it is a periodic atom.
Now, let an(t)dt = 0, and let I' C T be an interval such that supp n C T,
9]l poe () < 1oy~ Let
G={0<i<n—1:suppN;NT =0}
Put
(3.7 Y =N;- PPy for ieG, and o= PFy— Zwi'
i€
We check that the collection {1,v;,i € G} gives a desired (periodic) atomic
decomposition of P,S’“) Clearly, ]57(116) =Y+ Zieg ;. For i € G the supports of N;
and 7 are disjoint. Since I—C’ék) is an orthogonal projection onto Sr(lk) we have for
icg
/@bi(t)dt:/Ni(t) ~P,§k)n(t)dt:/]\7i(t) -n(t)dt = 0.
T T T
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Since [ 7(t) = 0, we have also [ PFn(t)dt = 0, which implies Jr(t)dt = 0.
Now, we estimate |||/ for i € G. Let 0 < m < n — 1 be the unique index such
that oy, is not in I', but 0,41 is in I'. Next, we let 0 < [ < n — 1 be the unique
index such that 0,1 isin I', but oy isnot in I', Then § = {0 <i<n—-1:4 <
m—ktU{0<i<n-—1:i>1} =G UG,.
Consider the case i € G;. Note that supp ¢; C supp N; = [0, 0i4k]- Recall that
(cf. formulae in the Section

(3.8) PO = S a0 / w)du Ny, (2).

J1,52=0
By Theorem we have the estimate
d(j1,52)
N q
|a’j1>j2| Sk = = ’
max (| supp Ny, |, | supp Ny, |)
where 0 < ¢ < 1, depends only on the order k. Note that if ¢ € supp ¢; and js is

such that sz (t) # 0, then for those indices jo we have

k k
|()| ‘T()‘

T e
by the k-regularity. Therefore, for jo such that Nj,(t) # 0
‘i(jl \J2)

@51,32) Sk L o

Moreover, the number of the indices jo such that Nj, () # 0 doesn’t exceed 2k — 1.

Thus, (3.8) gives
% o [ 5, oo

Next, note that if j; is such that supp le Nsuppn # P then m—k+1 <7, <Il-—1.

(O] < [PPn(0)] Sen (k)

| n1|j1 0

Moreover, we have [ |le (u)n(u)|du < 1. Therefore the above inequality implies

-1 s N s
1 i qmln{d(z,l)7d(z7m)}
O] S T > S

| |J1 =m—k+1 | n,i|
Now, put a; = ||1/1z'”Loo(1r)|T7(,,i)| and ¢; = a;1);. Clearly, supp ¢); = supp ¢; C

[0i, 0i1k) and ||7;7;||Loo(11‘) < , 50 1; is a periodic atom. Since

_1
1)
0 < a; Sy gmintdEDdGm)

we finally get

(39) Z P; = Z Otil/;i with Z o Sk,'y 1.

0<i<m—k 0<i<m—k 0<i<m—k
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Analogously, for i > | we get 1; = a“/;i with J)Z a periodic atom and 0 < oy S~
qmi“{d(i’l)’d(i’m)}, and consequently

(3.10) Yo=Y aih with > Spyl

1<i<n—1 1<i<n—1 1<i<n—1

It remains to consider w Since the functions Nj, 0 <j <n-—1, are a partition
of unity, we have 1) = P n Z] 1 N- Let T = [6rm—k+1, 01+k—1]- Note that
supp ¢ C T'. We will show that 19l oo (1) Sk IF\
At first, consider the case when I' contains at least one support of N;. Then by

the k-regularity |T'| ~y,, |T|. Using [} IDF (¢, s)|ds i 1 (cf. we get
(O] < 1EE0] < [ 1DEn(e9lnolds < 7 [1DO¢9lds Sy =
IT] L]
In the other case, i.e. when I' does not contain any B-spline support, it follows
by the k-regularity that |T7(L]f,)n| ~k~ |T|. We again use formula (3.8) to estimate
9|0 If 71 is such that (Nj,,n) # 0, then m — k +1 < j; < — 1, so by the k-

regularity |T7(Lk7)n| Ny |T( ) _|. This and Theoremlmply that |a]1 JQ\ Sk 17 (k)

n,m

+k
As ‘( 31a77)| < 1, we get 2]1—0 lay 5,1 1( 11777)| = Z;:L:m_k_u |y, 1( jlan)| kY

\T,(L’i)n\ As the functions sz, 0 < jo < n—1 are a partition of unity, we get for

tel
1 1

m Sk,v ﬁ

It follows from these considerations that ¢ = oa/;, where 1/; is a periodic atom and
0 < o Sgy 1. Putting together this fact, (3.7), (3.9) and (3.10) we get for periodic
atoms 1/1, 1/12-

W) < 1P ()] Sk

Py = Z it + ot + Z i,
0<i<m—k 1<i<n—1
where o, a; > 0 and Zo<z<m RO+ a+ Zlgignfl o; Sk,'y 1. This is the desired

atomic decomposition of P(k)

Next we consider the case when n < 2k. Let f € H'(T), then

| Z(f, Fo) Frnllmrncmy < D oyl fonll oo ey | ol
m=1 m=1

2k

< Nl ey Z ||meL°°(’JI‘)||meH1(T) < Crllf ey

m=1

This concludes the proof of the proposition.
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Abstract. This paper brings out some improvements as well as generalization results of a
paper of X. Qi and L. Yang [I7] [Comput. Methods Funct. Theory, 20, 159-178 (2020)], which
deals with the uniqueness results of f/(z) and f(z + ¢). To be more realistic about the obtained

results, we exhibit some examples.

MSC2020 numbers: 30D35.
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1. INTRODUCTION, DEFINITIONS AND RESULTS

We assume that the reader is familiar with meromorphic function, standard
notations and main results of Nevanlinna’s value distribution theory [9, 20]. As
usual, the abbreviation “CM” means “counting multiplicities while “IM” stands for
“ignoring multiplicities”.

Let f and g be two meromorphic functions in the complex plane C. In particular,
let z,, n =1,2,..., be the zeros of f — a with multiplicity h(n). If z,, are also h(n)
multiple zeros of g — a at least, then we write f = a — g = a, where a € CU {oo}.

The order of f is denoted by o(f) and is defined by

o(f) =limsup M.
oo log r
Rubel and Yang [18] first investigated the uniqueness of an entire function concerning

its derivative, and proved the following result.

Theorem A. Let f(z) be a non-constant entire function. If f(z) and f'(z) share
two distinct finite values a, b CM, then f(z) = f'(z).

Mues and Steinmetz [[14], Satz 1] showed the sharing assumption in Theorem
A can be replaced by 2 IM. Afterwards, Mues and Steinmetz [15], Gundersen [[6],

Thm. 1] improved Theorem A to a non-constant meromorphic function.

Theorem B. Let f(z) be a non-constant meromorphic function. If f(z) and f'(z)
share two distinct finite values a,b CM, then f(z) = f'(2).
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Gundersen [6] has given a counterexample to show the sharing assumption in
Theorem B cannot be improved to 1 CM + 1 IM. Further, 2 CM can be replaced
by 3 IM, see [5 [I4]. Moreover, the results stated above are still true if f/(z) is
changed to f*)(z), where k is a positive integer. For some of related results, the
reader is invited to see [[20],Ch. 8].

As a difference analogue, Heittokangas et al. [I0] [I1] started to consider meromorphic
functions sharing values with their shifts. The background for these considerations
lies in the parallel difference version to the usual Nevanlinna theory which starts

with the papers [4 [7, [§].

Remark A. We denote by S(r, f) any quantity satisfying S(r, f) = o(T(r, f)) as
r — 00 outside a possible exceptional set of finite logarithmic measure. We define
S(f) is the family of all meromorphic functions a(z) such that T(r,a) = S(r, f) as

r — oo. Here we call a(z) as a small function with respect to f.
A key results in [10] reads as follows.

Theorem C. Let f(z) be a meromorphic function of finite order, let ¢ € C, and
let a1,az2,a3 € S(f)U{oo} be three distinct periodic functions with period c. If f(z)
and f(z + ¢) share a1,a2 CM and as IM, then f(z) = f(z + ¢).

Later on, many authors consider the uniqueness of meromorphic functions of
finite order concerning their shifts or differences. Some attempts towards relaxing
the sharing assumptions can be found in [T}, 2 [3] 13}, 21].

In real analysis, the time-delay differential equation f'(x) = f(x — k), k > 0,
has been extensively studied. As for a complex variable counterpart, Liu and Dong
studied the complex differential-difference equation f’'(z) = f(z + ¢), where ¢ is a
non-zero constant, see [12].

In [I6], Qi and Yang looked at this complex differential-difference equation from
different perspective. That is, “under what sharing values conditions, does f'(z) =
f(z+ ¢) hold?” And they investigated the value sharing problem related to f'(z)
and f(z + ¢) as follows.

Theorem D. Let f(z) be a transcendental entire function of finite order, and let
a(£0) € C. If f'(2) and f(z + ¢) share 0, a CM, then f'(z) = f(z + ¢).

Then, Qi and Yang [I7] posed a list of questions related to Theorem D in the

following.

Question A. Can the value sharing condition be improved in Theorem D?
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Question B. Can the condition “f(z) is transcendental” be deleted in Theorem D?
Corresponding to the questions above, they obtained the following results.

Theorem E. Let f(z) be a non-constant meromorphic function of finite order, let
a(£0) € C. If f'(2) and f(z+c) share a CM, and satisfy f(z+¢) =0— f'(z) =0,
f(z4c) =00+ f'(2) = 00. Then f'(z) = f(z+c). Further, f(z) is a transcendental

entire function.

Theorem F. Let f(z) be a transcendental entire function of finite order, and let
a(#0) e C. If f'(z) and f(z+ ¢) share 0 CM and a IM, then f'(z) = f(z + ¢).

Theorem G. Let f(z) be a transcendental entire function of finite order, and let
a,b be two distinct finite values. If f'(z) and f(z + ¢) share a,b IM, then

T(r.f(z+0)=0(T(r, f), T(r,f')=0(T(r,f(z+0))),

as r — oo outside a possible exceptional set of finite logarithmic measure.

In the following, we now pose a list of questions relevant to Theorems E-G such

that the conclusions of the theorems are intact.

Question 1.1. Can the value sharing condition “f'(z) and f(z + ¢) share a CM”
be further improved by “f'(z) and f(z + ¢) share a IM” in Theorem E, where a(#
0)eC?

Question 1.2. Can one further weaker the condition “f'(z) and f(z + ¢) share 0
CM” by “f(z+¢) =0— f'(2) =07 in Theorem F?

Question 1.3. What happen if the condition “f'(z) and f(z+ c) share a,b IM for
a transcendental entire function f(z)” be replaced by “f(z+¢) =0 — f/(2) =0
and f(z+¢) = 00 + f'(2) = oo for transcendental meromorphic function f(z)” in
Theorem G?

Corresponding to the questions above, we get the following main results of this

paper.

Theorem 1.1. Let f(z) be a non-constant meromorphic function of finite order, let
a(#0) € C. If f'(z) and f(z + ¢) share a IM and satisfy f(z+¢) =0 — f'(2) =0,
fz4c¢) =00 « f'(2) = o0, then f'(z) = f(z + ¢) and f(z) is a transcendental

entire function of finite order.

Remark 1.1. Clearly we see that Theorem E holds for the condition “f'(z) and
f(z+c) share a CM” whenever Theorem[1.] holds for the condition “f'(z) and f(z+
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¢) share a IM”. We know that, in a particular case ‘IM’ sharing condition becomes
‘CM’ sharing condition. So Theorem [I.1] is an improvement result of Theorem E.

From Theorem it is sufficient to consider the condition that f(z) is an entire

function. And then we obtain the following result.

Corollary 1.1. Let f(z) be a transcendental entire function of finite order, and let
a(£0) e C. If f'(z) and f(z+c¢) share a IM and satisfy f(z+c¢) =0 — f'(z) = 0.
Then f'(z) = f(z + ¢).

Remark 1.2. Clearly if we consider “Let f(z) be a transcendental entire function”
in Theorem then the condition “f(z + ¢) = 0o + f/(2) = 00” doesn’t arise.
Then this theorem becomes the same as Corollary[1.1l So the proof of Corollary[1.]]
follows from the proof of Theorem [I_1]

Again we observe that Theorem F holds for the condition “f'(z) and f(z+c) share
0 CM” whenever Corollary[1.1] holds for the condition “f(z+c) =0— f'(z) =0".
By definition, in a particular situation the condition “f(z+¢) =0 — f'(z) =0”
becomes the condition “f'(z) and f(z+c) share 0 CM”. In this sense, Corollary[1.]]

is an improvement result of Theorem F.

By Theorem [1.1} we can consider the condition that f(z) is a transcendental

meromorphic function and obtain the result as follows.

Theorem 1.2. Let f(z) be a transcendental meromorphic function of finite order.
If f'(2) and f(z+c) satisfy f(z+c) =0 = f'(2) =0 and f(z+¢c) = 00 + f/(2) = o0,
then

T(r, f') =T(r, f(z+ ) + S(r, f).

Remark 1.3. We observe that if we consider “Let f(z) be a transcendental entire
function” in Theorem [1.9, then the condition “f(z 4 ¢) = 0o < f'(z) = 00” doesn’t
arise. Then Theorem holds for one finite shared-value 0 whenever Theorem
G holds for two finite shared-value a and b. In this sense, Theorem is an
improvement result of Theorem G. Also we observe that Theorem G holds for
an entire function whenever Theorem [1.9 holds for a transcendental meromorphic

function. In this sense, Theorem|[1.4is a generalization result of Theorem G.

Remark 1.4. To be more realistic about Theorem[I.1] and validity of the conditions

in theorem, the following examples are relevant.

Example 1.1. Let f(z) = e %, a € C\ {0} and ¢ = mi. Then f(z+¢) = —e % and
fl(z) = —e7%. So f'(2) and f(z+ c) share 0, oo CM and a CM. Thus f(z) satisfy
the conditions of Theorem , Consequently, f'(2) = f(z + ¢) follows.
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Example 1.2. Let f(z) =sinz+cosz, b € C\ {0} and c = 5. Then f(z+c) =
cosz —sinz and f'(z) = cosz —sinz. So f/(z) and f(z + ¢) share 0, co CM and a
CM. Thus f(2) satisfy the conditions of Theorem, Consequently, '(z) = f(z+c)

follows.

Example 1.3. [12] We consider the following functions:
(1) f(2) = (b1z + by)ec* B, where by (# 0),by, B € C and c = *
z

= ( g;'
(i) f(2) = boe*+ B, where ¢ = MARNergATIkT) 4 o 7 4nd A(#0) € C;
(iii) f(2) = g(2)e?**B, where g(z) is a transcendental entire function and

satisfies ¢'(z) = A(g(z +¢) — g(2)) and o(g) < 1, where A(# 0) € C and
_ In]A|+i(argA+2km)
= " )

We observe that the above functions satisfy the conditions of Theorem[I.1l Consequently,
f'(z) = f(z + ¢) follows.

Remark 1.5. The condition “f(z+c) = 00 < f'(z) = 00” in Theorem[1.1]is sharp
and it follows by the following example.

Example 1.4. [12] Let f(z) = —25 and ¢ = mi. Then even f'(z) and f(z + )
share 1 IM and satisfies f(z+¢) =0 — f'(2) =0, f'(z) £ f(z + ¢) follows, since
f(z+¢) =00 ¢ f(z) = .

Remark 1.6. The condition “f(z+c) =0 — f'(z) = 07 in Theorem[1.1] is sharp
and it follows by the following example.

Example 1.5. Let f(z) = k1% — 1 and e*2¢ = 2ky, where ki, ko € C\ {0}. Then
even f'(z) and f(z + ¢) share 1 IM and satisfies f(z + ¢) = oo + f'(z) = oo,
f'(z) £ f(z + ¢) follows, since f(z+¢) =0+ f'(z) =0.

Remark 1.7. The condition “f'(z) and f(z + ¢) share a IM, a € C\ {0}” in
Theorem[1.1] is sharp and it follows by the following example.

Example 1.6. Let f(z) = %642_% and e* = 5. Then even f'(z) and f(z + c)
satisfy (=) = 0 = ['(2) = 0, [z +¢) = 00  f'(2) = 00, ['(2) £ (2 +¢)
follows, since f'(z) and f(z 4+ c¢) does not share a IM.

Remark 1.8. Clearly, the function f(2) is of finite order in Theorem is sharp
by the following example.

Example 1.7. Let f(z) be a transcendental meromorphic function of infinite order

such that f(z + ¢) = Zf;ﬁ and f'(z) = % Clearly, f'(z) — 1 =

e (f(z+¢) —1) and f'(z) = (e — 2) f(z+¢). So f'(z) and f(z+c) share 1 CM
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and satisfy f(z+¢) =0 — f'(2) =0, f(z+¢) = 0 + f'(2) = co. Clearly, the
conclusion of Theorem[1.1] doesn’t hold in this situation, i.e., f'(z) # f(z + c).
2. SOME LEMMAS

The following are relevant lemmas of this paper and are used in the sequel.

Lemma 2.1. [19] Let f(z) be a non-constant meromorphic function, and let a;(2)
be meromorphic functions such that T'(r,a;) = S(r, f) for i =0,1,2,...,n, where
an(z) £ 0. Then we have

T (ryanf™ + an1 f" '+ ...+ arf +ao) =nT(r, f) + S(r, f).

Lemma 2.2. [4[7] Let f(z) be a non-constant meromorphic function of finite order
o, and let ¢ € C\ {0} be fized. Then for each ¢ > 0, we have

n(n5552) e () —o 0.

Lemma 2.3. [I0] Let f(2) be a non-constant meromorphic function of finite order,
and let ¢ € C\ {0} be fizred. Then we have

(2.1) N(r,0; f(z +¢)) < N(r,0; f(2)) + S(r, f),

N(r,00; f(z +¢)) < N(r,00; f) + 5(r, f),
(2.2) N(r,0: f(z +¢)) < N(r,0; f(2)) + S(r, f)
(2:3) and  N(r,00; f(z +c)) < N(r, 003 f) + S(r, ).

Lemma 2.4. [[], Lem. 5.1 ] Let f(z) be a non-constant meromorphic function
of finite order o, and let ¢ € C\ {0} be fized. Then for each € > 0, we have

T(r,f(z+¢) =T(r,f) + O (r""1%) + O(log ).

Furthermore, if f(z) is a transcendental meromorphic function with finite order,

then we have
T(r, f(z+¢) =T(r, f) + S(r, [).

Remark 2.1. By Lemmal[2.7), we conclude for a non-constant meromorphic function

f(2) of finite order that, S(r, f) = S(r, f(z + ¢)).

Remark 2.2. By Lemmas and we can see that, if f(z) is a transcendental
meromorphic function with finite order, then
(2.4) N(r,00; f) = N(r,00; f(z + ¢)) + S(r, f)

(2.5) and  N(r,0; f) = N(r,0; f(z + ¢)) + S(r, f).
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Lemma 2.5. [[9], p. 55] Let f(z) be a non-constant meromorphic function, and let

k be a positive integer. Then we have

T (r, £9) < (1+ o)k + DT ),

as r — 0o possibly outside some exceptional set of finite linear measure.

Remark 2.3. By Remark and Lemma we conclude for a non-constant
meromorphic function f(z) of finite order that S(r, f') < S(r, f) = S(r, f(z + ¢)).

We now introduce some relevant notations for this paper. Let a € CU {oo}. We
denote by N (r,a; f'(2) | f(z + ¢) = a) the reduced counting function of common

a-points of f'(z) and f(z + ¢) of different multiplicities, whereas

Ng (r,a; f'(2) | f(z+¢) = a)

denotes the counting function of common a-points of f’(z) and f(z + ¢) of equal
multiplicities.
Again we denote by N (r,a; f'(2) | f(z + ¢) # a) the counting function of a-
points of f’(z) which are not the a-points of f(z + c¢).
In the following, we define
f'(2)
flz+¢)
Lemma 2.6. Let f(z) be a non-constant meromorphic function of finite order, and
let H(z) be defined in (2.6). If f'(2) and f(z + c) satisfy f(z+¢c)=0— f'(z) =0
and f(z+¢) = 0o + f/(2) = oo, then the following conclusions occur:
(i)
(i)
(iii)
)
)
)

(2.6) H(z) =

H(z) is an entire function and T (r,H) = S(r, f),

No (r,0; f'(2) | f(z4¢) = 0) + N (r,0; f'(2) [ f(z +¢) #0) = S(r, f),

No (1,00 f(z +¢) | ['(2) = 00) + N (r,00; f(z +¢) | ['(2) # 00) = 5(r, f),

T(r, f)=T(r f(z+¢) + 5 ),

S(r, f) = S5(r, f(z+¢)) =S, f') a
)=

(iv

(v

(vi

N (r, 005 f(z + ¢)) = N(r, 00; f' ( f):

Proof. Clearly from f(z+¢)=0— f'(2) =0and f(z+¢) =0 + f/(2) =
it follows that H has zeros only and so H is an entire function. But the zeros of
f'(z) and f(z + ¢) of equal multiplicities are not zeros of H(z). Since f(z) is a non-
constant meromorphic function of finite order, in view of Logarithmic Derivative

Lemma and by Lemma [2.2] we get
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Then we see that
T(r,H)=N(r,o0; H) +m(r,H) = S(r, f).
This completes the proof (i). Note that
No (r,05 f'(2) [ f(z+¢) =0) + N (r,0; f'(2) | f(z+¢) #0) <
<N(r,0;H) <T(r,H)=S(r, f).
Similarly, we get
No (1,00 f(z +¢) | f'(2) = 00) + N (r,00; f(z +¢) | f'(2) # 00) = S(r, f).

This completes the proofs (ii) and (iii). Now using (2.6)), the conclusion (i) and the

first fundamental theorem of Nevanlinna, we get
T(r,f) <T(r,H)+T(r,f(z+¢) =T(r, f(z + c)) + 5(r, f)
and T(r,f(z4+¢)<T (7’, ;) +T(r, )
< T H)+T(r )+ S0, f)=T(r, )+ S f).

Hence the conclusion (iv) follows. So we use this result whenever needed in the
following. By Remark [2.3]and the conclusion (iv), we get S(r, f) = S(r, f(z+¢)) =

S(r, f). Hence the conclusion (v) follows. From the assumption, we have

(2.7) N(r, 003 f) < N(r,00; f(z + ) + S(r, ).
Note that

(2.8) N(r,00; f') = N(r,00; f) + N(r,00; f)
(2.9) e,  N(ro0;f) > N(r,o00;f)

By and (2.9), we get

(2.10) N(r,00; f') = N(r,00; f(2 +¢)) + S(r, f).

Then from , (2.8) and (2.7), , we get respectively
N(r,00; f') = N(r,00; f(2 + ¢)) + N(r,00; f) + S(r, f)
and N(r,00; f') = N(r,o00; f(z +¢)) + S(r, ).

Consequently we get
(2.11) N(r,00; f') = N(r,00; f) = S(r, f).
Note that

N (r,00: f(z+¢) | f'(2) = 00) < N(r,00; f') = S(r, f).
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Then using the conclusion (iii), we get
N(r,00; f(z+¢)) = No(r,00; f(z+¢) | f'(2) = 00) + N (r,00; f(z + ¢) | f'(2) = 00)
(2.12) +N (r,00; f(z 4 ¢) | ['(2) # 00) = S(r, ).
So from and (2.12)), we get
N(r, 005 f') = N(r,00; f(z + ¢)) = S(r, f).

Hence the result (vi) follows. O

Lemma 2.7. Let f(z) be a transcendental meromorphic function of finite order,
let H(z) be defined in (2.6) and a € C\ {0}. If f'(2) and f(z + c) share a IM
and satisfy f(z+¢) =0 = f'(2) =0 and f(z+¢) = 00 + f'(z) = 00. Then

f'(z) = f(z+c¢) and further f(z) is a transcendental entire function of finite order.

Proof. From (2.6, we get
f'(z) = flz+¢)
2.13 Hz)-1=—"————=,
(213) (2 e
Now the two possibilities may arise, i.e., either H(z) £ 1 or H(z) = 1. So we
consider two cases separately in the following.

Case 1. Suppose H(z) = 1. Consequently from (2.13]), we get
(2.14) f'(z) = f(z+0).
Then by the same argument of proof used in Theorem E, we get that f(z) is a

transcendental entire function.
Case 2. Suppose H(z) # 1. Then H(z) — 1 has zeros. Since f'(z) and f(z + ¢)

share a IM, from we get
(2.15) N(r,a; f'(2)) = N(r,a; f(z +¢)) < N(r,1; H) < T(r, H) = S(r, f).
We claim that N 5 (r,0; f'(2) | f(2+¢) = 0) # S(r, f). If not, suppose N (-, 0; f'(2) |
f(z+c¢) =0) = S(r, f). Then from the conclusion (ii) of Lemma we deduce
that
N(r,0;f'(2)) = No(r,0;f(2) [ f(z+¢)=0)+Ng(r,0; f'(2) | f(z+c)=0)
+N (r,0; f'(2) | f(z+¢) #0) = S(r, f).
So by the second fundamental theorem of Nevanlinna, we get
T(r, f') < N(r,00; f') + N(r,0; f') + N(r,a; f') + S(r, f') = S(r, [),

which is impossible. Hence N g(r,0; f/(2) | f(2+c¢) = 0) # S(r, f). We now consider

(2.16) Hi(2) = ff(cz)(z_)a _ f(J;(j:Sc_)a
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Then the two possibilities may arise, i.e., either Hy(z) # 0 or Hy(z) = 0. First we
suppose Hi(z) = 0. Then on integration from (2.16)), we get

fl(z)—a=d(f(z+c)—a),

where d € C\ {0}. Let zp be a common zero of f'(z) and f(z+c¢). Then f'(z9) =0
and f(z0+¢) =0. So d =1 and then f'(z) = f(z + ¢). Thus again the conclusions
follow.
Next we suppose Hi(z) # 0. Now by the conclusion (vi) of Lemma [2.6]and (2.15)),
we get
N(r,00; Hi) = N(r,00; f') + N(r,a; f') + N(r,00; f(z + ¢)) + N(r, a; f(z + ¢)) = S(r, f).
Alsom(r, Hy) = S(r, f). Therefore T'(r, Hy) = S(r, f). Now from ({2.6) by differentiation,
we get

f'(z) = Hf'(z+¢) + H'f(z + c).

Putting the above value in 7 we get
_Hf G+ +H'f(z+¢)  fz+¢)
B Hf(z+¢)—a flz+¢)—a
CH'f?(z+c¢)—aHf'(z+¢)—aH ' f(z4¢) +af'(z+¢c)
B Hf2(z+c¢)—af(z+c)—aHf(z+c) + a? ’
ie., HH f*(z+¢) —aH f(z +¢) — aHH, f(z2 + ¢) + a*H,
=H' f(z24¢)—aHf (z+¢) —aH f(z +¢) + af (2 + ¢)
ie, a(H-1)f(2+¢c)=(H —HH)f*(z2+¢)+ (aH, + aHH, — aH)f(z + ¢) — *H,;
Af'(z+¢)=Bf*(z+c)+Cf(z+¢)+ D,
where A =a(H —1), B=H' — HHy, C = aH; + aHH; —aH' and D = —a?H;.
Now suppose B # 0. Note that A, B, C and D are small functions of f(z + ¢).
Then using Lemmas and we get
2T(r, f(z+¢)) < T(rf'(z+¢)+S(r, f(z+0))
T <7~ f'(”c)) +T(r, f(z+ ) + S(r, f(z +¢))
"zt ’ ’
N (T 00; JU(ZM) +T(r, f(z+0¢)+ S(r, f(z+¢))
) b f(z+c) ) b
= N(r,00; f(z+¢)) + T(r, f(z +¢) + S(r, f (2 + €))
= T(r, f(z+¢)) + S(r, f(z + ),
ie, T(r, f(z 4+ ¢)) < S(r, f(z + ¢)), which is impossible. So B = 0 and then by
, we get

H,

<

H_ ') f+o
-0 e fero-a
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On integration, we have

f'(z)—a
flz+e)—a’
where k € C\ {0}. So by (2.6)), we have

_re) S
O =Fera = ero-a

Now let zg be an a-point of f(z + ¢) of multiplicity p, where p € N. Since f/(z) and

H=k

f(z+ ¢) share a IM, we conclude that zg be also an a-point of f'(z) of multiplicity
q, where ¢ € N and f/(z29) = a. Since H is an entire function, we get that p < gq.
If p < g, then zp must be a zero of f/(z). Consequently, we get f'(z9) = 0. Since
a € C\ {0}, simultaneously f'(z9) = 0 and f’(z9) = a are impossible. So the only
possibility is p = ¢. This shows that f/(z) and f(z + ¢) share a CM. Now it is clear
that f'(z) and f(z + c¢) satisfy all conditions of Theorem E and consequently the

claimed conclusions arise. O

3. PROOFS OF THE MAIN THEOREMS

Proof of Theorem [I.1l Here f(z) is a non-constant meromorphic function of

finite order. So the following two cases separately occur.

Case 1. Let f(z) be a non-constant rational function. Then f(z) = ggg, where

P(z) and Q(z)(# 0) are two mutually prime polynomials. Following the same
argument of proof used in Theorem E, we get Q(z) = constant = k, say, where
ke C\ {0}.

As f(z) is a non-constant rational function, P(z) is a non-constant polynomial.
Then f(z) = 1 P(2). Furthermore, we have f'(z) = +P'(z) and f(z+c) = 1 P(z+c).
As f(z+¢) =0 — f'(2) =0, we see that P(z +¢) = 0 — P’(z) = 0. Therefore
P'(z) = P(z + ¢)p(z), where p(z)(# 0) is a polynomial of deg(p(z)) > 0. But this
contadicts the fact that deg(P’(z)) < deg(P(z + ¢)p(z)). So f(z) is not a non-
constant rational function.

Case 2. Let f(z) be a transcendental meromorphic function of finite order. The

next part of the theorem follows from the Lemma [2.7] O

Proof of Theorem [1.2] The proof of the theorem follows from the conclusion

(iv) of Lemma [2.6] O
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Abstract. First of all, in continuation of our previous result related to “2 CM-+1 IM” small
functions sharing of a meromorphic function of restricted hyper order and its linear shift delay
differential operator, in some extend we have been able to answer a question paused by us
in [Rendiconti del Circolo Mat. di Palermo, 2021 (Published online)]. As another attempt we
improve and extend a result of [Comput. Methods Funct. Theory, 22(2), 197 — 205 (2022)]. Most
importantly, we have pointed out a gap in the proof of a recent theorem [Results Math., 76, Article
number: 147 (2021)] and citing a proper example we have shown that the result is true only for a

particular case. Finally we present the compact version of the same result as an improvement.
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1. INTRODUCTION AND SOME USEFUL NOTATIONS

At the outset we will assume that the readers are familiar with the standard
notations and expressions like m(r, f), N(r, f) (N(r,00; f)), N(r, f—ia) (N(r,a; f)),
T(r, f) in Nevanlinna theory for meromorphic functions defined on whole complex
plane C (see [10], [19]). In addition, by S(r, f) we mean a quantity satisfies S(r, f) =
o(T(r, f)) as r — oo outside of a possible exceptional set E of finite logarithmic
measure. We say that a(z)(# oo) is a small function compared to f(z) or slowly
moving with respect to f(z) if T(r,a) = S(r, f). We denote by S(f) the set of all
small functions compared to f(z) and S(f) by S(f) U {oo}.

Some important terms namely order, hyper-order and ramification index of f
will be defined respectively as follows:

. log T'(r, . loglog T'(r,
o) = limsup ELCL) () < timsup 28108 T)
r—oo  logr r—s00 log r

IThe first author is thankful to the Council of Scientific and Industrial Research (India) for
their financial support under File No: 09/106 (0188)/ 2019- EMR-I. The second author is thankful
to DST-PURSE —1II Programme for financial assistance.
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N ;
and Oa; f)=1- lim sup T(’I(“;',Cl},)f)’
where a € CU {oo}.

The following definitions and notations are required in the sequel.

Definition 1.1. For some a € C, we denote by E(a; f), the collection of the zeros
of f — a, where a zero is counted according to its multiplicity. In addition to this,
when a = 0o, the above notation implies that we are considering the poles. In the
same manner, by E(a; f), we denote the collection of the distinct zeros or poles of
f —a according as a € C or a = 0o respectively.

If E(a; f) = E(a;g) we say that f and g share the value a CM (counting
multiplicities) and if E(a; f) = E(a;g), then we say that f and g share the value a
IM (ignoring multiplicities).

Especially, for a(z) € S(f), if f —a(z) and g—a(z) share 0 CM (IM), then we will
say that f and g share a(z) CM (IM). Let zy be a zero of f — a(z) and g — a(z) of
multiplicity p(> 0) and ¢(> 0) respectively. We denote by N (r, 0, f—a(z); g—a(z)),
the reduced counting function of common zeros of f — a(z) and g — a(z) with
different multiplicities that is p # ¢. On the other hand, for a(z) € S(f) U {oo}, if
E(0,f—a(z)) C E(0,9 —a(z)) (E(0,g —a(z)) C E(0, f —a(z))), then we say that
f(g) and g(f) share the small function a(z) CM partially from f(g) to g(f).

Also we denote N—q(r, f) by the counting function of simple poles of f.

For ¢ € C\ {0}, we define the shift of f(z) by f(z + ¢) or f. and the difference
operators of f(z) by

k ke
Af=flz+c) = f(2),  Abf=AL(AE ) = S (—1)F () F(z+ i)

=0
where k(> 2) is an integer. Generalization of shifts and derivatives operators,
were recently done in [I]. We have defined the operators namely linear shift, shift-
differential and differential operator, linear shift delay differential operator as follows:

k

L) = a0(2)f () + Y ai(@) e+ )y La(f(2) = Yo b0z +eo),

Ls(f(2)) = Y di(2)fV(2),  L(f(2)) = Li(f(2)) + L2(f(2)) + Ls(f (),

i=1

where a;(z) (i =0,1,...,k); bi(z) (i =1,...,s); di(2) (i =1,...,t) € S(f) and all

c}s are non-zero complex constants. Also by delay-differential operator denoted by

L(f(2)) and defined by Lo(f(2)) + Ls(f(2)). Choosing ¢; = ic for i = 0,1,...,k,
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where ¢ is non-zero complex constant, we denote L1 (f(2)) as

k
Lof [ = 3 a;(2)f (2 + o) 0)
=0

with ag(z) # 0 (k > 1) and it is called as linear c-shift operator. If we impose
k

the restriction Zaj (z) = s on the coeflicients of L.f, then we denote it by L3 f.
§=0
By virtue of the definition, all the operators functioning in the following section

#0,[(2).

2. BACKGROUND AND MAIN RESULTS

In 2014, Liu et al. [I4] were the first to investigate the uniqueness theorem for a
finite order entire function sharing two small functions with its linear shift operator

as follows:

Theorem A. [I4] Let f be a non-constant entire function of finite order and a(z),
b(z) be two distinct small functions related to f(z), let L1(f(2)) be linear shift
operator of f(z) with constant coefficients. If f(z) and Li(f(z)) share a(z), b(z)
CM, then f(z) = L1(f(2)).

After that, in 2017, concerning entire function of finite order, Li et al. [I3] tackle

the “1 CM+ 1 IM” value sharing problem as follows:

Theorem B. [I3] Let b € C\ {0} and let f(z) be a non constant entire function
of finite order. If f(2) and AFf(2) share 0 CM and b IM, then f(z) = AFf(2).

Theorem C. [I3] Let f(z) be a non constant entire function of finite order. If f(z)
and AF f(2) share two distinct complex constants a CM and b IM and if

(2.1) N (r, f(z)la) =T(r, f)+ S(r, f),
then f(z) = AFf(2).

Recently, adopting the same procedure of [13], Kaish-Rahaman [12] again proved
Theorem C but they did not mention it. Also Qi-Yang [17] extended Theorem B
from finite order entire function to entire function of po(f) < 1 and asked the

following question:

Question 2.1. [I7] If the sharing condition in Theorem B is changed into sharing
“a CM+ b IM”, where a, b are two distinct constants such that ab # 0, is the result
still valid?
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In aspect of the uniqueness result of a meromorphic function f sharing “3
CM values” with its difference operators, Lu-Lu [I5], Cui-Chen [6] contributed
remarkably. Again we would like to mention that Kaish-Rahaman [12] proved
uniqueness result of a meromorphic function f sharing “2 CM values” with its
difference operators with the support of the assumption N(r, f) = S(r, f). So
the previous results on “3 CM value” sharing are far better than “2 CM value”
sharing result in [I2]. Unfortunately, again Kaish-Rahaman [12] did not provide
any information about [I5] and [6]. So considering these facts the paper of Kaish-
Rahaman [12] has hardly any value.

After that, Deng et al. [7], Gau et al. [§] investigated the “3 CM small functions”
sharing problem for the difference operator or even k-th order difference operator.

In connection with the Question Qi-Yang [17] also asked the following

question:

Question 2.2. [I7] Can the value sharing condition “3 CM” for a meromorphic

function with its difference operators be reduced up to “2 CM + 1 IM"?

It is to be noted that for finite order entire function, Question 2.1 has already
been answered in Theorem C. Recently, by the following results, we have answered
of Questions 2.1 and 2.2 in a compact form for a larger class of operators in view

of small functions sharing.

Theorem D. (see Theorem 2.1 & Corollary 2.1, [I]) Let f(z) be a transcendental
meromorphic function of po(f) < 1 and let a(z), b(z) be two distinct small functions.
If L(f(z)) and f(z) share a(z), oo CM and b(z) IM with ©(0; f—a(z))+©(oc0; f) > 0
and one of the following cases is satisfied:

(i) a(2) =0,

(i) a(2) £ 0 with N (r, 745 ) =T /) + S0, /),

then L(f(z)) = f(2).

Theorem E. (see Corollaries 2.2 & 2.3, [1]) Let f(z) be a transcendental entire
function of po(f) < 1 and let b(z) (£ 0) € S(f). If L(f(z)) and f(z) share a(z) CM
and b(z) IM and one of the following cases is satisfied:

(i) a(2) =0,

(ii) a(z) # 0 with N (r, f%()) =T(r, f) + S(r, f),

then L(f(z)) = f(2).

And also in the same paper [I], we asked the following question:

Question 2.3. [I] Is it possible to remove the condition on ramification index in
Theorem D?
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When in Theorem D, a(z) = 0, b(z) = 1 and specifically L(f(2)) = A.f(z), the
condition ©(0; f) + ©(o0; f) > 0 is no longer required. Recently, by the following

theorem, Chen-Xu [3] have been able to prove it.

Theorem F. [3| Let f(z) be a meromorphic function of p2(f) < 1. If A f(2) and
f(z) share 0, co CM and 1 IM, then A.f(z) = f(z).

In view of partially sharing values, in 2018, Chen [2] investigated the following

uniqueness result.

Theorem G. [2] Let f be a non constant meromorphic function of hyper order
p2(f) < 1. If A.f and f(2) share the value 1 CM and satisfy

E(0, f) € E(0,Acf) and E(co,A.f) € E(oo, ),
then A.f = f.

In this paper we not only resolve the Questions 2.3 partially as well as we are
able the relax the sharing conditions of a(z) and oo in view of partially sharing as

follows:

Theorem 2.1. Let f(z) be a transcendental meromorphic function of po(f) < 1
and let a(z), b(z) be two distinct small functions of f. If L(f(2)), f(z) share b(z)
IM and satisfy

E(0, f —a(z)) € E(0, L(f(2)) — a(2)), E(c0, L(f(2))) € E(oo, f) with
Nz (r, L(f(2))) = S(r, f),

and one of the following cases is satisfied:

(i) a(z) =0,

(i) a(z) # 0 with N ('r, f%t(z)) =T(r, f)+S(r, ),

then L(f(2)) = f(2).

Consequently we have the following corollary, which is more relaxed with respect
to Theorem E.

Corollary 2.1. Under the same situation as in Theorem 2.1 if f(2) be a transcendental
entire function then L(f(2)) = f(z).

It is to be noted that Theorem C provides the answer of Question [2.1] with
one extra supposition on counting function. Continuous efforts are being put in by
researchers to remove the condition, but nobody succeeded. Recently, Huang [I1]

proved the following result which gives the better answer of the Question [2.1
75



A. ROY, A. BANERJEE

Theorem H. [I1] Let f(z) be a transcendental entire function of finite order. If
f(2) and (AF£(2))™, n > 0 share two distinct complex constants a CM and b IM
then f(z) = (A¥f(2))™.

Remark 2.1. Inspecting closely the proof of Theorem H, we can see that there was

a fatal error in the proof of Lemma 2.6 (see p. 6, I. 4 from top, [11]).

For the sake of argument, let us think that the Lemma 2.6 in [II] is correct
and consequently that means Theorem H is also true for ab # 0. Then, from the

following example we can exhibit an evidence of lacuna in the proof of Theorem H.

Example 2.1. Let f(z) = €2** — 2e** + 2, where ) is a complex constant. Choose

¢, k and n (> 1) satisfying e’ = —1 and \" = ﬁ Now,

k

s = St (o= (o))

=0

b K k -k
o 26)\,2 (71)k71 ' eMc) +2< -1 k—1 ' )
() (i)
o2)z (€2Ac _ l)k 9N (6,\(; _ 1)76.

Putting e*® = —1, we have AF f(2) = (=2)F1er. So, (AF f(2))) = (—2)FF1Ame)
=M. Here f(2) and (AFf(2))™) share 2 OM and 1 IM but (AFf(2))™) # f(2).

In the above example, N (r, ﬁ =N (1", ﬁ) = T(r,e*) £ T(r, f) =

2T (r,e**) and this does not conform (2.1). Since Lemma 2.6 is used to deal “ab #
0”, under subcase 2.3 (see p.12, [I1]), so the existence of Theorem H for the case
“ab # 0”7 is under question. Thus for ab # 0, without the aid of supposition ,
the existence of Theorem H seems to be impossible.

As a result, till now, for the case ab # 0, Corollary [2.1]is the best possible answer
to Question We see that it automatically covers the case “a = 0” of Theorem
H. However, in Theorem H the case “b = 0” has been resolved conveniently. Hence
Theorem H is true only when ab = 0.

From the above theorem, we see that the only option left to improve Theorem
H is to manipulate the case b = 0. Now we are going to present the next theorem

which will significantly extend Theorem H for b = 0.

<1
and let a(z) be a non zero periodic small function of f with period c. If (LY f(z))™
(n>0), f(2) share a(z) CM, 0 IM and N(r, f) = S(r, f), then (LYf(2))™) = f(z).
76
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Very recently, concerning shift and k-th derivative of a meromorphic function,

Chen-Xu [4] proved the following result.

Theorem 1. [4] Let f(z) be a meromorphic function of pa(f) < 1. If f*)(2) and
fo share 0, co CM and 1 IM, then f%*)(z) = f..

In view of partially sharing Qi-Yang [I6] proved the following result:

Theorem J. [I6] Let f(z) be a non constant meromorphic function of finite order
and let b#0 € C. If ', f. share b CM and satisfy

E(0, fo) C E(0, f') and E(co, f') C E(c0, fe),
then f' = f.. Further, f(z) is a transcendental entire function.

Remark 2.2. In Theorem J, the authors showed that when f' = f. the meromorphic
function is ultimately reduces to an entire function. As it is not possible to get
such a meromorphic function satisfying f' = f. so we wonder that why the result
carried forward in meromorphic function. Although we are considering meromorphic
functions to continue their research and improve their results, still we believe that,
in the next theorem, it would have been better to consider the function as an entire

function.

Related to Theorem I, we can have the following theorem which will relax and
extend the conditions of the shared values of the same theorem from “CM” to

“partially CM small functions sharing”. The theorem improves Theorem J as well.

Theorem 2.3. Let f(z) be a transcendental meromorphic function of pa(f) < 1
and let a(z), b(z) be two distinct small functions of f. If L(f(2)), f. share b(z) IM
and satisfy

B(0, fe — a(2)) € B(0,L(f(2)) — a(z)) and E(co, L(f(2))) C E(co, f.)
and one of the following cases is satisfied:
(i) a(z) =0,
(ii) al2) £ 0 with N (r, 745 ) = T(r, ) + S(r, 1),
then L(f(2)) = fe.

3. LEMMAS

In this section, we present some lemmas, which will be needed to proceed further.

Lemma 3.1. [9] Let f(z) be a meromorphic function of p2(f) <1 and ¢ € C\ {0}.

Then
& m ri = S(r
m(n 2 (n L) =)
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Lemma 3.2. [9] Let T : [0,+00) — [0,400) be a non-decreasing continuous
function, and let s € (0,400). If the hyper-order of T is strictly less than 1, i.e.,
li ———— =y <1,
ITHLS,I:OP log r P2

and 6 € (0,1 — p2), then

T(r
T(r+s) :T(r)—l—o( 7,(5)> 7
where r Tuns to infinity outside of a set of finite logarithmic measures.

Using this lemma by a simple alteration of the result for finite order meromorphic

functions in [5], one can have the following lemma.

Lemma 3.3. Let f(z) be a meromorphic function of pa(f) < 1, then we have
N(r,fe) = N(r, )+ 5(r. f) and T(r,fc) =T(r, f) + S(r f).

Lemma 3.4. [I8] Let f be a non-constant meromorphic function, a; € S’(f), j=

1,2,...,q, (g > 3). Then for any positive real number €, we have

@-2-0T0.N < YN (n o) e B
j=1 ’

where E C [0,00) and satisfies [}, dloglogr < co.

Lemma 3.5. [I] Let f(z) be a non constant meromorphic function of p2(f) <1 in
C, p € C. Then for a small function b(z) of f,

 (r A L0
ENCETYE

) = S(r, f).

Lemma 3.6. Let f(z) be a non constant meromorphic function of po(f) < 1 and
g=L(f(2)). If forc e C, E(0, f. —a(z)) C E(0,9—a(z)) and E(c0,g) C E(oc0, f.)
or N(r, f) = S(r, /), then S(r,g) = S(r, f) and pa(g) = pa(f2) < 1.

Proof. When E(co,g) C E(o0, f), then by Lemma N(r,g) < N(r, fo) =
N(r, f) 4+ S(r, f). So, in view of Lemma we obtain that

(3.1) T(r.g) = m(r,g)+N(rg)
g

< )t (1) £ N + 50 5)
< T(r,f)+S(r f).
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When N(r, f) = S(r, f), we also can establish (3.1)). Now by the First fundamental
Theorem, Lemma 3.1 and Lemma [3.5 we get,

T(r,f)<T (r, f_la(z)) +5(r,f)

N (r, f_la(z)> + S0 )
1

1
< (i raeme) Y ) 00
Since E(0, f. — a(z)) C E(0,g9 — a(z)), thereby

(3-2) T(r, f) <2T(r,g) + S(r, f).

Combining (3.1]) and (3.2)), it follows that S(r, f) = S(r,¢) and pa2(g) = p2(fe) < 1
a
Throughout the paper we use the notation of P(h) and its use, which is given in

the following lemma.

Lemma 3.7. For some meromorphic function h, we define

hz) —a(z)  alz) = b(2) h(z) =b(z)  a(z) = b(2)

PO = we) —a() @) -¥@)| = e -3 a() -¥()
_ ‘hz az W (z)—d(z)
h(z) =b(z) hW(z)-=V(z)
= /() - b/( Jh(z) — [a(z) — B (2) + [a(2)V (2) — ' (2)b(2)],

a(z), b(z) € S(f) N S(g), where f, g are defined in Lemma[3.6, Then P(f), P(g)

#0 and

m (r, h}j(:()z)) =S(r,h)+S(r, f) =m (r, h}i(lil()z)> .
Proof. On the contrary, if P(f) =0, then by a simple integration we have f(z) is
small function which shows T(r, f) = S(r, f), that is not possible. Similarly P(g) =
0 gives T(r,g) = S(r,g), which also makes a contradiction. So P(f), P(g) # 0.
Now from the construction of P(h), we can easily deduce that

<T P(h) ) o (r (h — a(2))(a'(2) = b'(2)) — (a(z) = b(2)) (W'(2) — a'(z))>
"h—a(z) ’ h—a(z)

= S(r,h)+S(r, f).

Similarly,

m <r, P ) — S(r k) + S(r, f).
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Lemma 3.8. Let f and g be two non constant meromorphic functions as defined
in Lemma[3.8. Set
o P9 P
o (g—a2)g-0bz) (f—al)(f b))
a(z), b(z) € S(f) N S(g). Then the following occurs:
(i) m(r, H]) = S(r, f).
(i)
T(r,H;) < Ng(r,0,f—a(2);9 - a(z)) + Na(r,0,f = b(2);g = b(2)) + S(r, f).

(#ii) Let N(r, f) = N(r,g9) = S(r,g). IfH: =0, then either g= f or

> +N <r, f_lb(z)) + S(r, f).

2T(r, f) < N (r, Fald)

Proof. (i)

(. H,) =m ( a(z) ib(z) ((g 1—3(53@ - glj(zf()z)) - (flj(afga - f]i(g()z)») '
Now we apply Lemma[3.7 to obtain

m(r, Hf) = S(r, f).
(ii) Rewriting Hi we have

- () (2 -1).

Clearly
N(r,H;) < Ng(r,0,f—a(2);g - a(2)) + Ne(r,0, f —b(2); g = b(2)) + S(r, f)
and so in view of (i), (i¢) holds.
(iii) Now H;’ = ( implies
f(z) —a(z) f'(z) —d'(2)
f(z)=b(z) f2) V()| _
(f —a(2))(f = b(2)) (9 —a(2))(g — b(z))

Integrating we have

f=bz)  Tg—b(2)’
where A is a non zero constant. If A =1 then g = f. So let A # 1. Proceeding in a

f-alz) _ 9-alz)

similar way as in page 15 of [I] we have

Fo Ab(z) — a(z) _ (a(z) = b(z))A f - b(2)

A—1 A-1 “g—0b(2)
Let d(z) = %. As A#0,1 and a(z) # b(2), so d(z) # a(z), b(z). From the

above equation it is obvious that any zero of f — d(z) must be a zero of at least one
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of a(z) — b(2) or d(z) — b(z). Therefore N (r, f%d(z)) = S(r, f). So, by Lemma

we obtain
27(r, f) < N(r,f)+N< . ) N( 1b( )) +N<r’f—1d(2)>
1

v s (r ) ¥ (o

4. PROOFS OF THE THEOREMS

The following proof of the Theorem is based on some ideas from Chen-Xu [4].

Proof of Theorem [2.1l Set g = L(f(z)). Since E(0, f —a(z)) C FE(0,g — a(z)),
E(00,9) € E(0, f), so
g —a(z)
4.1 =~(z),
(4.1) 4o =)
where 7y(z) is a meromorphic function such that N(r,v(z)) = S(r, f).
First suppose a(z) # 0 with N (r, ﬁ(z)) =T(r,f)+ S(r, f). By Lemma

and then applying the First Fundamental Theorem we have,

T(r,v(2)) = m(r,y(z))+S(r, f)
g — L(a(z)) L(a(2)) — a(2)
< n(n S e () s
1 1
< m (r, F—ald) +S(r, f)=T(0,f)— N (r, f—a(z)) + S(r, f),

which implies

(4.2) T(r,y(2)) = S(r, f).
If a(z) = 0, then in view of Lemma[3.5 from (4.1)) we automatically get (4.2).
Let zg be a zero of f —b(z) such that it is not a zero of b(z) — a(z). Since g and
f share b(z) IM, so zg is also a zero of g — b(z). Therefore from (4.1]) we have,
b(z0) — a(20)
2)=177_~ . L
’7( 0) b(Z()) _ (L(Z())
which yields all zeros of f — b(z) are zeros of v(z) — 1 as long as they are not zeros
of b(z) — a(z). Suppose g # f. So v(z) # 1. Therefore we can write

@ *(r5=m) = (=)
¥(rsm1) Y ()

T(r,(2)) +5(r, f) = S5(r, f).
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Set dy(z) = a(z) — %. Then it is obvious that d(z) # a(z) as well as # b(z).

Rewriting we have,
9 —b(z) =v(2)[f — dy(2)].

Therefore,

44 N (7“, f:lM) _N (r, glb(z)> +S(r, f) = S(r, f).

Let us consider the same auxiliary function H: as defined in Lemma Since
E(0, f —a(z)) C E(0,g — a(z)) and f, g share b(z) IM, so by Lemmal[3.§

TG H') < N <r, f_lb<z)> + Na(r,0,f —a(2); g — a(2)) + S(r, )
N <7‘, f_lb(z)> +N (r, W(lz)> +S(r, f)

Using (4.2)) and (4.3]) we obtain that
(4.5) T(r,H})=S(r,f).

IN

Now we consider two cases:
Case 1: H' = 0. Since g # f, so proceeding in a similar way as in case (iii)
of Lemma |3.8 we have N (r, f%d(z)) = S(r, f). Also, one can easily check that

d(z) # d(z). So, by Lemma from (4.3)) and (4.4) we obtain

— 1 — 1 ~ 1
100 < W (rry) 47 () (e 50
= S /),
which is a contradiction.
Case 2: qu # 0. Here d% (z) = a(z) — (a(z) — b(2))7y(z). Then it is obvious that
d%(z) # a(z) as well as # b(z). Rewriting we have,

Therefore,

— 1 — 1
(4.6) N<T’5M}M> :N<r’fb(z)> +S(r, f) = S(r, f).
Since E(00,g) C E(oo, f) with N_y(r,g) = S(r, f), so in view of we get

Now, by Lemma[3.4, ([£.3) and (4.6) we obtain

T(r,g) < N(T,g)—l—N(r,glb(z)>+N(r,g;(z)>—l—S(r,g)
= S f),

1
e
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which is a contradiction. Hence g = f holds. (]

Proof of Theorem 2.2l Suppose g1 = (LYf(2))™ and g; # f. Since f and g,

share a(z) CM, so there exist a meromorphic function h(z) such that

g1 —a(z) — h(x
(4.7) F—al2) = h(z).

Here h # 0, 1. Clearly N(r, f) = S(r, f) with Lemma[3.3, implies N (r, g1) = S(r, f),
which yields N(r,h) = S(r, ). As f and gy share a(z) CM and 0 IM, so by Lemma
and then by applying Lemma[3.5 we have

T(rf) < Nrf)+N <7~, }) Y (r, f_la(z)> + S0 1)

< T(rogi—f) + S0 f) < mlr.gy — )+ S(r, )
< m(r,f)+m <r, 91; f) +S(r, f)
< m(r.f)+m ( 5}1) +5(r, f) < T(r, ) + S(r, f)-
Therefore
48) T f) = N( f> N (r, fla(z)) + 5, f)
= T = 1)+ S(0) =N (r L) 4 505)
and so

1
m |7, =S(r, f).
( g —f > :5)
From (L.7)), in view of Lemma [3.5 using (4.8) we can obtain

T(r,h) = m(r,h)+ N(r,h) =m(r,h)+ S(r, f)

m ( f(Léz((; )(n)) +m (r, f_la(z)) +5(r,f)
1

m (rf_a(z)> +8(r, f)=m <r, ;:;) +S(r, f)
m(r,h) +m <r,

IN

IN

IN

g —f
So,

(4.9) T(r,h) =m <r,
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Since f and g; share 0 IM, from (4.7)) we can say that all zeros of f are 1-point of
h(z) or zeros of a(z). Hence, in view of (4.9)) we can write

(4.10) N <r, }) <N <r, h;) +S(r. f) < T(r,h)+S(r, f)

o (n f_la(z)) LSO ).

By the First Main Theorem and then using (4.8)), (4.10) we get

that yields

1 — 1
N(r,—=|=N|r,—— | +50f
(r=em) =T y=ag) 500
and consequently in view of (4.10)) we have

1 — 1
4.11 mlr,——— | =N|(r,— | +S(r,f)=T(r,h)+ S(r, f).
) ogeig) F (o) s s
Now we consider two auxiliary functions as follows:

P(f)(g1— f) P(gl)(gl - f)

G -am) 0 YT e e

~ gilgr —a(2))

where P(f) is as defined in Lemma|[3.7 together with b(z) = 0. Here a(z) as well
as B(z) £ 0. As f and g; share a(z) CM, 0 IM and N(r, f) = N(r,g1) = S(r, f), so
N(r,a(z)) = S(r, f) and N(r, 5(z)) = S(r, f). In a similar way as in page 11 of [1]

we can easily have m(r, a(z)) = S(r, f). Thus,
(4.12) T(r,a(z)) = S(r, f).

Following the same logic of construction of the auxiliary function qu in Lemma
here we define Hfg1 with b(z) = 0. Since f and g; share a(z) CM, 0 IM, from

Lemma [3.8 we have

(4.13) T(r,H')<N <7", }) + S(r, f).

As a(z) is periodic small function with period ¢, so (L%a(2))™ = 0 which in view of

_ (n)
Lemma gives m (r, #1@) =m (7“, %) = S(r, f). Rewriting 1'
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and then using (4.9 we can obtain

(4.14) m<r’gfl—_a(fz)) _ m<r’h;1)

< T(r,h)+0(1)=m (r,

)+ 50

< n(n i) () Hsen)

< m (T, 1) +S(r, f).

g1

Now we distinguish in two cases on the consideration of H ;71.

Case 1. Suppose H;l = 0. Then by Lemma in view of 1) we get a
contradiction.

Case 2. Next suppose H;“ # 0. Since N(r, f) = S(r, f) and N(r,g1) = S(r, f),
so from (4.8]), we can write

Hgl 1 —
T(r.f) = m(r, f)+ S f) = mlrgi =)+ S(r.f) = m ( S‘”) +5(r,f)

= m (7"7 a(Z)H_Fflﬂ(Z)> +S(r, f)

< m(r,a(z) — B(z) +m (7’, ch:1> + S(r, f).

Now, using (4.12), (4.13)), (4.14) and Lemmas and[3.5 we can have

m(r,8) + N (n }) +S(r, f)

() (e 2 o5 (o)

m (7“, gll) +N (r, gll) +S(r, f)

T(r,g1) + S(r, £) < mlr, 1) + S(r, 1)

mir, f) +m ( 91) T S(r, £) = m(r. )+ S(r. £) < T(r. £) + S(r. ).

f
Noting that N(r, B(z)) = S(r, f), also from the above we see that i.e.,

T(r, f)

IA

IN

IN A

IN

(415) T(nf) = T0)+ N (n )+ 500
and
(4.16) T(r,g1) =T(r, f)+ S(r, f).

Now our claim is T'(r, 8(z)) = S(r, f). Putting b(z) = 0, using (4.16]), in a similar
manner as used in Page 12-14 of [I] we can easily establish our claim. Therefore,
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(E15) yields
— 1
(4.17) T(r,f)=N (7“, f) + S(r, f).
Using (4.17)), from 1) we get N (r, f%‘@) = S(r, f). As f and g; share a(z)
CM, so N (r, g _a(z) =5 ( f). Again according to the sharing hypothesis of f

and g¢; using ) from (| we have

SR SR
o

)+srn (n;>+ﬂnﬁ§TWyn+ﬂnﬁ,

T,

S\H‘S\

that implies

T(r,q1) = N (r, gll> +8(r, f) and so m <7", 1) = S(r, f).

Now from , using and (| we have
—/ 1 1 1
T(T,f) =N (T,f) +S(’I",f) =m (T,lf_a(z)> +S(7”,f) < m(T, gl) +S(T,f)

Hence from the above two lines we get T'(r, f) = S(r, f), a contradiction. Hence
gn=f O

Proof of Theorem 2.3l Set go = L(f(z)). Since E(0, f.—a(z)) C E(0, ga—a(z)),
E(ooagZ) g E(Ooafc)7 S50

(4.18) ﬁ:jiizw@»

where 71 (2) is a meromorphic function such that N(r,v1(2)) = S(r, f).
First suppose a(z) # 0 with N ( a(z)) T(r, )+ S(r, f). Now, by Lemma

and then applying the First Fundamental Theorem we have,

T(rim(z) = m(rm(z)+ S0 f)

L=\ LaG-c) @), o
§7”Q’ Jo— a2 )* <’ o a2 >+S“ﬁ
1 1
< m<r’fc—a(z)> +S(T7f)T(T7f)N<T7fC_a(Z)> +5(r, f),

that implies
(4.19) T(r,v(2)) = S(r, f).

If a(z) = 0, then in view of Lemma[3.5 from (4.18) we automatically get (£.19). By
similar argument as used in Theorem we can have

(4.20) iy (r, f_lb(z)) _N <r, 92_1b(z>> — S(r, ).
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Clearly d., (z) # a(z) as well as # b(z). Rewriting (4.18]) we have,
g2 = b(2) = n(2)fe — dy, (2)]-

Therefore,

(4.21) N(r’fc—cli,h(z)> = N(r,gz_lb(z)>+5(r,f)=5(7“,f)-

Here as usual we can define H:j like Lemma Since fc, g2 share b(z) IM and
E(0, f. — a(z)) € E(0,g2 — a(z)), by the similar argument as used in Theorem[2.]]

we can get
(4.22) T(r,H,” ) = 5(r, f).

Now we consider two cases:

Case 1: Hjj = 0. Then proceeding in a similar manner as in Case 1 of Theorem
we can reach up to a contradiction.

Case 2: H:f # 0. Since F(00,g2) C E(c0, f.) and g has no simple poles, so in

view of (4.22]) we get

N(r,g2) <N | r = 5(r, f)-

1
) Ir92
Hy
After that, following Case 2 of Theorem[2.1]we can again reach up to a contradiction.
O
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CORRIGENDUM TO 'ON WEIGHTS WHICH ADMIT
REPRODUCING KERNEL OF SZEGO TYPE’

T. LUKASZ ZYNDA

Military University of Technology, Warsaw, Poland
E-mail: tomasz.zynda@Quwat. edu.pl

In Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences)
volume 55 (5), pages 320 — 327, 2020, the paper ’On weights which admit reproducing
kernel of Szegd type’ was published. The author found a mistake which he wants
to fix.

Theorem 5.2. is miscited. Instead of
fds = / (f o ®) det |Jc®|FF1dS
Qs o0,
we should have
fdom, :/ (f o @) det | Jc®| ¥+ dop, ,
692 BQI

where we integrate using Fefferman measure instead of Lebesgue measure.

Theorem 5.2. Let Q1,Qs be domains of one of types 1-3 introduced above
and ® : Q; — Q9 be a biholomorphic mapping. Then for any integrable function
f 099 — C we have

fdngz/ (f 0 ®)| det Jod| F T dop,,
692 891

where Jc® is the complex Jacobian matrix of ®.

Theorem 5.3. remains true, since integrating in Lebesgue measure and integrating
in Fefferman measure define the same topologies, i.e. for any domain €); which
satisfies assumptions of the theorem, there exist positive constants d;, D;, such

that for any positive almost everywhere f we have

0% o9 29

The proof however needs some changes.

Theorem 5.3.: Let 21,5 be of type 1, 2 or 3. Let ® : Q; — Q3 be a
biholomorphism. Then

(i) for any g measurable and non-negative almost everywhere we have:

/ gudS < oo & (go®@)(ppo ®)dS < o0
1923 (21951
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In particular, g € L2H (0o, p) if and only if go ® € L2H(0Q4, pu o ®).
(ii) p is S-admissible on 02 if and only if o ® is S-admissible on 9.
Proof: (i) By the fact that u := |det JC<I>|137$1 is smooth function on compact

set 1, we have

01/ (go(I))(uoq))ng/ (go@)(uoq>)|detjcq>|%ds302/ (go®)(puo®)dS,
o004

o0 12951

where C; := min, gu(w) > 0 and Cy := max, qu(w). By theorem 5.2. and
inequality ([0.1)) we have

D
/ (9o ®@)(uo®)dS < Dy / (go®)(no®)dop <~ [ (9o ®)(uo ®udor,
o0, o0, C1 Joo,

Dy / D, /
= — dop, < —— ds.
Cl 8522 g/“(’ F2 — Cld2 892 g/’L
Similarly
/ gpdS < Dg/ gpdop, = Dg/ (go ®@)(pwo ®)udop,
a0 a0 a0
DyCs
<D0 [ (go®)(uo@)dop, < (g0 ®) (0 B)dS.
691 1 891

So we showed that there exist positive constants ¢, C, such that

(0.2) c/{ml(go D) (o ®)dS < /392 gudS < C/agl(go(l))(uo ®)dS

If the integral on the right-hand side is finite, then the integral in the middle is also
finite. If the integral in the middle is finite, then the integral on the left-hand side
is also finite.

To complete the proof of (i) we just need to recall that composition of two
holomorphic functions is also a holomorphic function.

(ii) Since  is biholomorphism, we need only to show implication in one direction.

If p is S-admissible on 99, then for any compact set X C Qo, w € X and any
fe B(@Qg, w) we have

(0.3) fw)] < Cx, [ /@ 1Puds.

By using (0.2)) for inequality (0.3]) we gain
(0 0)(@)| < Cx@\// £ 0 B2 (uo0)ds,
o

for ) DY := @ 1(X),w := & !(w) € Y, so (CB) is satisfied for Cy := Cx+/C2. B
Also in an example of non-admissible weight all instances of Q\ A,, should be
replaced with Q\ A,,.

Other parts of the text should remain unchanged.
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