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Abstract. The element of the Walsh system, that is the Walsh functions map from the unit
interval to the set {—1,1}. They can be extended to the set of nonnegative reals, but not to the
whole real line. The aim of this article is to give an Walsh-like orthonormal and complete function

system which can be extended on the real line.
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1. THE TRIADIC FIELD

We shall denote the set of all non-negative integers by N, the set of all integers
by Z. Let F denote the set of double infinite sequences

= (x,:n€Z)

where x, = 0,1 or —1 and z, — 0 as n — —oo. Thus, to each z € F with x # 0

there corresponds an integer s (z) € Z such that

Ty(z) 7 0 but z, = 0 for n < s(z).
Let x = (zy, :n € Z) and y = (y, : n € Z) be elements of F. Define the sum of x
and y by

z+y=((rn+yn)mod3:necZ).

Notice that (F,+) is an Abelian group. The algebra F is normed. Indeed, for x =
(z, :n € Z) € F define

L |$n‘
|.’13| T Z 3nt+l’

neZ
It is easy to see that |z| > 0,

lz 4+ y| < |z + |yl

IThe first author is supported by projects EFOP-3.6.2-16-2017-00015 and EFOP-3.6.1-16-2016-
00022 supported by the European Union, cofinanced by the European Social Fund. The second
author is very thankful to United Arab Emirates University (UAEU) for the Start-up Grant
125100.
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A character on F is a continuous complex-valued map which satisfies (z,y € F)

p+ty)=¢@) p(y) and |p(z) =1

It is evident that ¢ (0) = 1. Let e; denote the element x = (z,, : n € Z) which
satisfies z; = 1 for some j € Z and z,, = 0 for n # j (n € Z). Since ¢ is continuous

on F and e; — 0 in F as j — oo, we have

plej) =@ (0)=1
as j — 00. On the other hand,e; + e; 4+ e; = 0. Hence
L=0(0)=p(ej+e;+e) =4 (),
pley) = V=5

Consequently, there is a sequence y = {y; : j € Z,y; = —1,0,1} such that for every

k=-1,0,1.

—j—1>s(y) and

oy (€5) = emiv=i=,
It is easy to show that

o (zjej) = (¢ ()™ .
Then from the continuity of ¢ we can write

oy () =] (0(e;)" =e

jez

P
FME DD Y— 1Ty
J€Z

(x,y € F).
The functions ¢, (y € F) exhaut the character of the additive group (F,+).

2. THE WALSH-FOURIER TRANSFORM IN [

For a given f € L; (F) the Walsh-Fourier transform of f is the function on F
will be defined by

Fo) = [ 109, @dut) e,
F

It is quite well-known that a clasical Walsh function maps from the unit interval
to the set {—1,1} and also that it can be extended to the set of nonnegative real
numbers (see e.g. [6], [4]). But cannot to the whole set of reals. Besides, the same
situation hold for the Vilenkin functions (see e.g. [I]). Therefore, in order to involve
the real line we must do something different. Basically the "problem” with the Walsh
functions is that we can “stay” or "step right”. We should be ”able to step left” also.
Next, we introduce Walsh-like functions on the real line as follows. It is easy to

prove that every real number y € R can be expressed by the following sum.

+oo
Yk
37k’

k=—o0
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THE WALSH-FOURIER TRANSFORM ON THE REAL LINE

where yr € {—1,0,1} for all & € N. The digits —1,0,1 mean that we're going
to the left, or getting nowhere, or we're going to the right by 1/3*. There is no
convergence problems, since y is a finite real, and consequently, y, = 0 for k’s
small enough (limg_ ooy = 0). We can identify y be the sequence (yx, k € Z).

Unfortunately, this identification is not always a bijection, since for all j € N the

numbers
. . . +oo
67 +1 1 1 -1
J _ J _J y !
2. 3n+1 3n 2.3n+1 3n 3n+l 3Ic
k=n+2
. “+ o0
] 0 1
= g Tgan T > 3%
k=n+2

have two corresponding —1, 0, 1 sequences. The set of these numbers is called the set
of triadic rationals. In this situation we choose the one terminates in —1’s. Anyhow,
the set of these reals is countable (j,n € N), and consequently of minor importance.
Define the addition & : {—1,0,1}° — {—1,0,1} as the mod 3 addition. (E.g.
1®1 = —-1,(-1) ® (—1) = 1.) Then define the addition @ on R as z @ y :=
(zk ® Yy, k € Z). The inverse operation is denoted by ©
Introduce the set of triadic intervals on R. Let n € Z, and ¢t € R. Then the set

I,(t) ={yeR:y, =t; for i <n}

is called a (triadic) interval. We also use the notation I_.(t) = R. It is easy to

have
1 1 2k—1 2k+1
In(t) = t(n>—2,3nat<n)+2.3n) = [2.3" ’ 2~3”)’
where
n
toy = D /3

l=—00
and

n
(2.1) k= Z tl3nil.

l=—00
The Lebesgue measure of an interval: mes (I, (1)) =37" for all n € Z and t € R.
Introduce the generalized Walsh function in the following way. Let x,y € R, and

oo 1
w(@,y) 1= r2r=-oe TRY=k=1  p — exp (27”3) 1 =1+—1.

Some properties of the Walsh function:

wl=1, w,y) =wly,z), wEozy) =w@yw(y)

for z,y,z € R, and = @ z is triadic irrational.
5
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The Walsh-Fourier transform of an f € L; (R) is defined by

Fo) =5 [t@e@pis Gewr).
R

3. INVERSION OF THE WALSH-FOURIER TRANSFORM

For each f € L; (R) and ¢ > 0 define the Walsh-Dirichlet integral by

&mwr:/f@wmwmu

By Fubin’s theorem it is evident that

t

s = [ 5| [Hwe@de] Gy
R

—t
t t

= o[ | [ewpe i) f -

R —t
_ é/f(u)Dt(u@m)du,
R

where

for t €e Ry and f € Ly (R).
Theorem 3.1. Let N € Z. Then

Dy (2) = 3Ny 0 (@),
where Ly (x) is the characteristic function of the set E.

Proof. Let € In_5(0) and y € [—%,%) Then zp = 0,k < N — 2 and
yr =0, £ < —N. Hence,

3.1 w(x = e%m‘Zk:,m ThY—k-1 — 1.
Y =
6



THE WALSH-FOURIER TRANSFORM ON THE REAL LINE

Now, we suppose that © ¢ Iny_5(0). Then there exists | € Z such that | < N —2
and x; € {—1,1}. We can write

D~ (2)

53
Z

w(z,y)dy

I
m“"’z \M‘

C2nim, 2pi SN2 ,
= E / e 3W1Ile37rzzk:foo,k:;ﬁlxky*kfldy

S (ST N BV A

+ Z / e%wizl.oegmx,?;f&k#l Jzky_k_ldy
meffjffgjl%_’?zl_}l’_g}l—l—l(Ov-~~10’y—N+1,...,y_l_2,0)

+ Z / e%”imlegﬂiZkN;foo,k;ézf”kyfk—ldy
el N gyt OO i=t-2)

— E / (efgﬂ'ia:, +6§7Ti11~0 +e%ﬂ'iml)

y7n6{_17071}7

I_;_4(0,...,0,y— ey Y—j—9,—1
MEENA1, ... —1 2y 100,00,y —N41, - Y—1—2,—1)

2 N-2
xe3™ 2= oo kAl xky*kfldy

Since
— 2z 2 riz;0 2 iz
e 3T 4 3™ L3 = (0, 7y € {—1,1}
we obtain that
(3.2) D% (£) =0,z # In_2(0).

Combining (3.1)) and (3.2) we complete the proof of Theorem |

Now, we prove some inversion result for the Walsh-Fourier transform.
Theorem 3.2. Let f € Ly (R) be W-continuous on R. If f € Ly (R) then

f(y)z/f(x)W(x,y)dx.

Proof. We can write

(3.3) / F@)w (e y)de
R

Il
N‘%\M‘

F@)w(z,y)de + / f(@)w(z,y)de =1+ I1.
ml-i 2]
7
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Since f is integrable for I1 we get

(3.4) |[I1| < / ‘f(x)‘dxﬁo (n — 00).
]

R\[-3},

We can write

3n
2

—

Fa)wmde =) =5 [ £you) Dy wdu-1)

_ 3" R
g2 / [y ®u) — f () du.
In72(0)

Hence,

o~

F@)w @,y do— f ()] <37 / F @ — f ()| du
I,-2(0)

m‘f‘; \m‘“:

Lrt € > 0, fix y € R, and choose an integer n > 0 such that

[flyeu) —fy)l<e

for all y € R which satisfy u € I,,_5 (0). Then we obtain

3n
2

(35) [ F@eo@pd- )| <
3n
2
Combining (3.3), ([3.4) and (3.5 we complete the proof of Theorem [3.2] O

4. GENERALIZED WALSH FUNCTION

Theorem 4.1. Let n € Z. Then the system
{3"/% (z,3"%5) ,j € Z}
is orthonormal and complete in Lo (I, (0)).

Proof. Proof of the orthonormality. For the sake of brevity we prove Theorem [4.1]
for Lo(I_,(0)) instead of Lo (I,(0)). That is, we discuss the system {37"/%w (z,37"%2j) ,j €
Z}. Recall that I_,,(0) = [-3"/2,3™/2). Since to see the normality it is trivial, then
we can suppose that j # k, j, k € Z. We are to prove

(4.1) / : w(z, 37" 25w (2, 37" 2k)dx = 0.
_3n
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‘We can write

an an

2 2

/ w(a, 372w (x, 372 k) de = / w(a, 37" (j O k))dz
3n

2

= Dy (37" (jOK)).

It is easy to see that3™"*2 (j O k) & I,_2(0)  (j # k). Then, from Theoremwe
prove (4.1)). The proof of the orthonormality is complete. Completeness is discused
later. O

Define the Dirichlet kernel functions with respect to the system (3"/%w(z,3"*15),
JjEZ) as:
Dy(z) := Z 3"w(z,3" %) NeNncZurecR.
{5€z:|j|<N}

We prove a formula for the Dirichlet kernels D v, .

Theorem 4.2. Let x € I, (0) and N € N. Then
3N ifx € I4n (0)
Dy () —{ 0, if & ¢ Inyn (0)

Proof. Integrate the function [Dsv., (z)|? on the interval I,, (0). By the help
2

of Theorem that is, by orthonormality we have:
2

/ D,y (z)|de = / E 3"w(x,3" 25| da
Lo 2 10 | cjraitan)
° 2

= Z 32n/ w(x’3n+2j)@($,3n+2k)dm
{3keze k) 1j1 <205+ ) 1,(0)

= > 32" / ldz = 3"V,
1,(0)

AR LES!
{iez:1j1<252 }

It is easy to see that w(z,3"2j) = 1,2 € L.+ n (0),]j] < ?’NT“ On the other hand,

this also gives:

g = / Dy, (2) [Pde = / IDovy, (2) [Pda
I,(0) 2 In4+n(0) 2

+/ ID vy, (2) [Pde = 37N +/ Dy, (z)|*dz.
In(O)\In+N(O) 2 In(O)\In+N(O) 2

This means:

/ Don s (2)[2dz = 0.
I, (0)~1,,+n(0) 2

Consequently, the function D v, (x) equals with zero for almost every x on the
2
set I, (0) ~\ I,+n (0). Since the Walsh-like function w(x, 3"*2j) is continuous, then
9
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so does the Dirichlet kernel Dy~ (x). That is, this function is the constant zero
2
function on the set I, (0) \ I, (0). O
Define the Fourier coefficients of the integrable function f : I,,(0) — C as

)= [ pa)s s e,
I,(0)
where j € Z. It is easy to have for the partial sums of the Fourier series

Sviy) o= S ()2 Py 372)

{J€Z:|j|<N}
~ | f@Dxyond.
1, (0)

Consequently,
St ) =3 [ s,

Inyn(y)
By this equality in the standard way one can prove that the system

(w(w,3"%245), 7 € Z) is complete in the Banach space of the integrable functions on
the interval I,,(0). It is also of interest, that the Dirichlet kernel are integer valued
functions. The reason of this fact is that if w(z, 3"*2;) occurs as an addend in the
kernel function, then so does its conjugate w(x, —3"*2j). The sum of these two
thingsis 2 (1+1=2)or =1 (r+7=—1).

In the sequel we discuss the uniform convergence of these partial sums of the
Fourier series of continuous functions. Denote by the (triadic) modulus of continuity
of the function f : I,(0) — C by

w(In(0), N, f) := sup [f(z) = flzoh)| (NeN).
he€l,in,x€l,(0)
If it does not cause any misunderstood, then we write w(N, f) simply. This is
a monotone decreasing nonnegative sequence. It is not difficult to prove, that a
function f on I,,(0) is continuous if and only if it modulus of continuity converges
to zero. We have

Suanf )= S [ 1f(a) - fw)lda

Intn(y)

< <w(n+ N, f).

gr N / fy @ h) — f(y)dh
I.+n~(0)

Remark 4.1. It seems also to be very interesting to discuss some other materials
with respect to this system, and harmonic analysis. Dirichlet kernels D, the norm
(and pointwise) convergence of the partial sums Sy, the Fejér kernels and means.
We suppose that there are many similarities with the ordinary Walsh system, since
the function w(x, 2"+15) + w(x, —2"*+15) can take the values +2 and —1.

10



THE WALSH-FOURIER TRANSFORM ON THE REAL LINE

5. THE WALSH-FOURIER TRANSFORM IN L, (1 < p < 2)
2) the Walsh-

It this section we obtain that in cases when f € L, (R) (1 <p

Fourier transform is as a limit of truncated Walsh-Fourier transforms

Theorem 5.1. Let f € L, (R) ( < 2) and % + % =1. Then

Fla,a) = /f(y)w(x,y) dy

converges in L, norm. Moreover,
1

//f w(z,y)dy| dx < /\f )P dx B

Proof. Set
2k—1 2k+1
A = = /
k |:23n’23n)’ ap f(u)dua
Ain72)
b, (z) = Z W (x,3_"+2k) ,
|k|<m
® () :==37"2®,, (z) = Z ap3™ W (z,37"%k),
|k|<m
where

m = [a-S"_Q] ,a > 0.

Applying Riesz’s inequality [B] we can write
1/q 1/p

|El<m

3’7L
2

JRLICIEE I T (D DR I
3N

where M := 37"/2. Hence,
i o =
[en@rae < of 3 [ @ra]  <of [Ir@ra
—an \k\<mA;n_z) Ca
For any fixed A < % we obtain
e
(5.1) /\cb z)|Tdr <9 /|f )P du

It is easy to see that
w(z,y) =w (x, 3*”+2k)

11
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ifxe [f%, %) =1_,(0) and y € Aé"_Q) :=I,_2 (t). Indeed,

n—2 ¢ o T
3l7 3k
l=—o0 k=—n+1
Then
w(2,372) = At niatnst)
5
—  eimi(Toni1Yn—2+T ni2yn-st) _ w(z,y) .
Hence

D, (z) = Z / fuw)du | w(z, 37" k)

Al
(2m—1)/(2:3"72)
= Z / f(w)w(z,u)du = / f(w)w(z,u)du,

S ON G (—2m—3)/(2:37~2)

—/f(u)wxudu

(—2m—-3)/(2-3"72)

< [ v [ jfwlduo
—a (2m—1)/(2-37~2)
as n — o00. Then from (5.1]) we obtain

/ﬁ ooy du] dr < Ofw@

Consequently, when A — oo we have

52) /ﬁ ooyl ds < Uuw@

Set
f (J}, a) = f (JI) I[(7o<>,7a]u[a,oo) (JI) .

For b > a we have

/ /bf (,y) dyqdw <9 (/blf(y,a)lpdy) h
R b

Il
e
~
=
QU

i

o

—b,b]\[—a,a]
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as a,b — co. On the other hand,

b q
R//bf(y,a)w(x,y)dy dx
b a 1
- [|[rweeni- [1@e@a)
R o —a
= R/f(x,b)—f(a:,a)’ dr — 0

as a,b — oco. Hence, there exists a function f € L, (R) such that

(5.3) lim |7 ()= F ()

a— o0

=0.
p

Since (see (5.2)))
o b
[|F@nl a<o| [1rwpra
—00 —b
from we conclude that

7 7f(y)W(w7y) qdw<9 7|f(U)|pdu

Theorem is proved.

_1
p—1

Acknowledgement. The first author is indebted to professor Kaoru Yoneda

and wishes to thank for a personal conversation happened around 2003 and the

idea of "going left "stay"or "going right".

CIHUCOK JINTEPATYPHI

[1] G. H. Agaev, N. Ja. Vilenkin, G. M. Dzhafarli and A. I. Rubinstein, Multiplicative Systems of
Functions and Harmonic Analysis on 0-dimensional Groups [in Russian.|, Izd.("ELM"), Baku

(1981).

[2] N. J. Fine, Cesaro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. U.S.A. 41, 558

~ 591 (1955).

[3] B. I. Golubov, Elements of Dyadic Analysis, Moskovskii Gosudarstvennyi Universitet Pechati,

Moscow, 204 pp. (2005).

[4] B. Golubov, A. Efimov, V. Skvortsov, Walsh Series and Transforms. Theory and Applications,
Translated from the 1987 Russian original by W. R. Wade. Mathematics and its Applications

(Soviet Series), 64. Kluwer Academic Publishers Group, Dordrecht (1991).

[5] S. Kaczmarz, H. Steinhaus, Theory of Orthogonal Series”, Gosudarstv. Izdat. Fiz.-Mat. Lit.,

Moscow 507 pp. (1958).
[6

Harmonic Analysis, Adam Hilger, Bristol and New York (1990).

F. Schipp, W. R. Wade, P. Simon, and J. Pal, Walsh Series: An Introduction to Dyadic

IToctynuna 08 asrycra 2021

ITocse mopaborku 31 mexabps 2021

IIpunsra ¥ mybsukarmu 18 saBapst 2022

13



Uszsecrust HAH Apmennu, Maremaruka, Tom 57, u. 4, 2022, crp. 14 — 22.
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AnHOoTALMS. B pabGore mocTpoeH Takoil yHUBEPCATIBHBIA TPUTOHOMETPUIECKUN
P, 9TO IIOCJIE€ YMHOXKEHUS YJIEHOB 3TOTO Ps/ia Ha HEKOTOPYIO IOCJIENOBATEIb-
HOCTh 3HaKOB {0x = £1}72 ero MoykHO mpesBpaTuth B psJ Pypbe HEKOTOPOi
MHTErpupyemMoii (OyHKIHH.

MSC2020 number: 42C10; 43A15.

KurogueBbie ciioBa: yHUBepCabHBIN TpUroHoMeTpudeckuil psi; pan Pypbe; cxomau-
MOCTb.

CymecrBoBanne (DYHKINN U PsiJIOB, YHUBEPCAJIBHBIX B TOM WJIA MHOM CMBICIIE B
PA3/INIHBIX KjaccaxX (YHKIHi, H3yv4aJoch MHOTUMI MaTeMaTHKaMU, U IyO/IHKanm
110 9TON TeMaTUKe PEryJsipHO IOSIBJISIOTCS B MareMaTudIeckoil jureparype. [lonsrue
YHUBEPCAJILHOIO PsiJia (KaK 110 KJIACCHYECKUM, TaK M [0 OOIIIM OPTOHOPMAJIBHBIM CH-
cremaM) BocxoauT K paboram Menbiosa u Tanangua. Hanbosee obimue pesyabrarnt
6I)IJ'II/I MMOJTy9Y€Hbl UMW U UX YYCHUKaMU.

ITepBoit paboToii, rjie HOCTPOEHBI yHUBEPCAJILHBIE B OOBITHOM CMBICJIE TPUTOHOMET-
pUUecKne psiibl B KJIACCE BCEX M3MEPUMBIX (DYHKIUN B CMBICJIE CXOJMMOCTH TOYTH
BCoay aBasiercst pabora [1] Menbrmosa.

Psinpr o s1r060it OpTOHOPMUPOBAHHON TIOJIHOM CHCTEME, YHUBEPCAJBHBIE B KJIacce
BCEX M3MEPHUMBIX (DYHKIIUI B CMBICJIE CXOJMMOCTH IIOYTHU BCIO/LY, ObLIM IIOCTPOEHBI B
pab6ote [2] TanansHoM.

B [3] T'pocce - Dpaman JoKa3adl CylecTBOBaHIE YHUBEPCAIBHOIO psija Teiinopa B

KJjlacce BeeX HenpepbiBHBIX Ha [—1, 1] dyukuuii f(z) ¢ f(0) = 0.

1I/ICCJ'Ie,EL0Ba,HI/Ie BBINOJIHEHO TIpu duHaHCOBOI nojepkke Komurera no nayke PA B pamkax ma-

yuHoro npoekTa Ne 21AG-1A066.
14
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O PAJAX ®YPBE, ITIOYTU YHUBEPCAJIBHBIX ...

Sameuanne 1. Herpyano Bugers, 9To u3 ussectHoil Teopembl Kosmoroposa [4]
(psix Pypbe Kaxk 10§t MHTErpupyeMoii (DYHKIUH 110 TPUTOHOMETPHIECKON CHCTEME CXO-
marcs B LP[—m, 7w , p € (0,1)) cuemyer, 4gro me cymecrByer byukiuun U €
L[, 7] psayn @ypbe KOTOPOii 110 TPUTOHOMETPUUECKOlt crcTeMe (a TakzKe IO CHCTe-
Me Youa) 6611 6bl YHUBEPCAJIBHBIM B KJIACCE BCEX M3MEPUMBbIX (DyHKIIHIA.

BuauuT B KJIacce u3MepuMbIX (QYHKIMI HE CYIIECTBYET YHUBEPCAILHOrO pajga Dy-
pbe (0 TPUTOHOMETPUUECKON CHCTEeMe), HO TeM He MEeHee MOYKHO MOCTPOUTH YHU-
BEPCAJIBHBI TPUTOHOMETPUIECKIN PSIT Z/Zi1 ay cos kx + B sin kx Takoit, uro mocse
BBIOODA ITOIXOJAIIIX 3HAKOB {Jf = +1}7° ) 115t ero KoabPHIMEHTOB MOKHO JIOCTHIb
TOrO, 90 Yoo Ok (e coskx + By sinkz) yxe Gyner pagom Pypbe HEKOTOPOI HH-
rerpupyemoii dyunknun (cm. Teopemy 1 u onpesiesnenue 3).

BosHukaer ciiegyromuii BONpoc OTBET Ha KOTOPbIH HAM HE U3BECTEH.

Bompoc 1. Cymecrsyer jiu orpaHutenHas OpPTOHOPMUPOBaHHas cucTeMa { ¢y, () }72
Takast, YT0 B KJIacce U3MEPUMBIX (DYHKIIUH MOXKHO ObLIO ObI TIOCTPOUTH YHUBEPCAJIb-
ublit psan Pypoe mo cucreme {p, (z)}72 7

Ormernm, uTo B paborax [6] — [13] 6buM MOTYyUeHBI HEKOTOPBIE PE3YJIBTATHI, CBsl-
3aHHBIE C CYIIECTBOBAHUEM M OIMCAHUEM CTPYKTYPBI (byHKIHil, psapl Pypbe KOTO-
poix (10 cucreme Youima ju6o [0 TPUTOHOMETPUYECKOH CUCTEME) YHUBEPCAJIbHLI B
TOM WJIM MHOM CMBICJIE B PA3JINIHBIX (DYHKIIMOHAIBHBIX K/IACCAX.

IMycrs |E|-mepa JIeGera uzmepumoro muokecrsa £ C [—m, 7] u N— cOBOKyNHOCTD
HATYPAJILHBIX YUCE]L.

Mycrs C(E)—knacc wenpepoiBbix Ha E C [0,1] dbysxuuit u M[—m, 7] coo-
KyIHOCTb (HE 0043aTe/IbHO KOHEYHBIX) U3MepuMbix dyHkIimii. [1og cXoquMocThIo B
M[—m, 7] MBI GyZieM TOAPa3yMeBATh CXOJUMOCTD MOYTH BCIOJY, & MOJ, CXOAUMOCTBIO
B C(F) -paBHOMEPHYIO CXOJUMOCTb.

IMycrs ¢ (U) = f; U(z)pr(z)dx — koadbdunuentsr @ypre 110 3amaHHON Ha [a, b]
oproHOpMEpOoBaHHOil cucreme {pk ()}, bynkmun U € L[a,b] u nycrs by (U) :=
L [" U(z)sinkzdz, ap(U) =L [T U(z)coskzdz, k = 0,1,2... - nociesoBaTes-
HOCTH KO3 durnmenToB Pypbe 10 TPUTOHOMETPHIECKOI CHCTEME.

Crektp psima . := Y e k() Gyaem obo3HAYATH Uepes

A= A(Z) = spec (Z) ={ke NU{0}; ¢ #0},

a depe3 # (w) — 9UCI0 TOYEK KOHEYHOro MHoxkecrsa w C N.
ITycrb MeTpryecKoe IPOCTPaHCTBO S— Kakoe-HUOy b u3 npocrpancts M [a, b], LP[a, ],

p>0,C(FE)u uycrs f € S.
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Ounpepenenne 1. Ilycte @ C A C N U {0}

T QN [0,0)

(1) p(Q)p = m@wm

p(Q)A— Ha3bIBaeTCHd IIJIOTHOCTDBHIO IIOJMHOXKECTBaA ) oTHOCHTEJILHO MHOXKeCTBa A.

Omnpenenenne 2. Pan
(2) > fil)
k=0

Ha3bIBAETCSI YHUBEPCAJIbHBIM B S, eciu i Kaxjaoi dyaknun f € S cymecTByer
[I0CIEIOBATEILHOCTD BO3PACTAIONINX HATYDAJILHBIX THCE N TaKasl, ITO OCAeA0Ba~
TeJIBHOCTh YaCTHYHBIX CYMM psijia (2) ¢ HomepaMu ny, cxoaures K f(x) B S.

Omnpenenenne 3. YHUBEpPCAJbHBIN B .S psifl

Z = Z crpr(x)
k=0

HA3bIBAETCS

a) YyCJIOBHO yHUBepCAJbHBIM psiioM Pypbe, eciiu nocie yMHOXKEHUs KO3Dh-
buImeHToB 3TOrO psifia HA IOCJIEIOBATENHLHOCTL 3HAKOB {d) = :I:l}zozo ero MOXKHO
npeBpaTuTh B psji, Pypbe HEKOTOPOil MHTErpupyemMoit (byHKITIH,

6) mouTHn yHUBEpCAJBHBIM psigoM Pypbe 110 OPTOHOPMHUPOBAHHON CHCTeME
{pr(2)}72y B S, ecan cymecTByeT HOCTeNOBATENLHOCTb 3HAKOB {0y = £1}7°, c
p()a =1 (3mece Q = {k € A := spec(}"); 6 = 1}) Takas, 9T0 pag Y e OkCrpr ()
6511 661 psgaom Oypbe HEKOTOPOIt HHTErPUPyeMOi (DYHKITAMN.

Teopema 1. CymecTByrOT TPUTOHOMETPUIECKHUI DSLIT

oo

(67 .

> + E (ag cos kx + By, sin kx),

k=0

KOTODBIH SIBISIETCS YCJIOBHO YHHBEPCAIBHBIM pszaoMm Pypese B M |[—7, .
3ameuanne 1. Teopema 1 OKOHYATENBHA B CJIEAYIOIEM CMBICJIE: HETPYAHO BH-

JIeTh, 9TO U3 m3BeCcTHON Teopembl Kommoroposa [4] (psg @ypbe Kaxoil uHTErpH-

pyeMoit (DYHKIUMYU 110 TPUIOHOMETPUIECKON CUCTEME CXOAUTCs 10 Mepe Ha [—m,7])

1 N

crenyer, aro He cyiecrsyer dyakuun U € L'[—m, 7 | psag Pypbe KOTOPOi 1O Tpu-

POHOMETPHYECKON cucreMe ObLI Obl yHHBEpCAJIbHBbIM B Kiacce M|[—m, 7 | (naxke B

cjlydae, CXOIUMOCTH O Mepe).

Teopema 1 ciiesryer u3 ciemyronieil TeOpeMsbl.
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Teopema 2. CymecTByOT TPUIOHOMETPUIECKHI PSIT

Qo

(3) 5 + Z(ak cos kx + B sin kx)

k=0

M COBOKYHHOCTBH 3aMKHYTbIX MHOXx)ectB { F,}22 ¢ Fy C ... C F, C F41 C ... C
[—7, 7] u limy, o0 |Fy| = 27, Takue, yro

1. psix (3) yrnusepcadgien Bo Bcex C(Fy), k > 1, 6osee Toro, mis Kaxk0i GyHKIHH
f € C|—mn, 7| maiigercs moamocieR0BaTeILHOCTs HATYypaIbHbIx duced {N;} oo
TaKasi, YTO paBHOMEpHO Ha Kaxxkiaom Fy, k > 1,

2. pazn (3) aBisiercsi HOYTH yHUBEPCAJIBbHBIM psigoM Pypse B M[—m, 7.

Sameuanne 2. Herpynuo Bugers, uro Teopema 3 OKOHYATE/NbHA B CJIELYIOIIEM
CMBICJIE:

1. B C[—m, 7 | He cyIecTByeT yCJIOBHO yHUBEPCAJIBLHOro psifa ®ypbe 1o Tpu-
TOHOMETPUYECKOI cucreMe

2. e cymectsyer dbynkmun U € L![—7, 7 ], pag Oypbe KOTOPOii 110 TPUTOHOMET-
pudeckoii cucreme 6b11 661 yHUBEpCATBHBIM Bo Beex C(Fy,), n = 1,2 ..

Sameuanne 3. Teopemsl 1 u 2 BepHBI 1 mus cucteMsl Youma {Wi(z)}52,
HETPYAHO yOeUTCsl, 9TO MOBTOPSAS PACCY K ICHUS, IPUBEIEHHBIE TIPU OKA3ATEIbCTBE
TEOPEMBI 2 U BMECTO HUKe C(POPMYIMPOBAHHOMN JIeMMbI 1 TpuMeHsist JeMMy 3 paboThl

[6] st cucrembl Youira MOKHO TIOCTPOUTH Pl IO CHCTEMe YOJIIIa BAIA
o0
deWk(l‘), 0< |d/k+1| < |dk|7 k=0,1,2,...
k=0

KOTODBI SIBJISIETCS MOYTU YHUBEPCAJIBbHBIM psifioM Dypbe 1o cucreme Youira B
M][0,1] (Bo Bcex C(Fy,), F, C Fpop1 C[0,1] ,n=1,2,. u lim, o |F,|=1).

NunTepecHo ObLIO ObI BBISICHUTH OTBET HA CJIEYIOIINI BOIIPOC.

Bompoc 2. CymiecrByer jin TOYTHA YHUBEPCAAbHBIN psif Pypbe 10 TpUroHo-
METPHUYECKO CUCTEeME C [0 MOJLYJIF0 MOHOTOHHO yOBIBarOIuMu Koaddurmenramu?

Sameuanme 4. Meros nokasarenncrsa Teopembl 2 (CM. TakzKe J10KA3aTeIbCTBO
TeopeMbl 4 paboTel [12]) M03BOJILET 1IOJIyYUTH HOBBIA MOJXOJ JJisl IIOCTPOEHUS YHU-
BepPCaJIbHBIX PSAJOB: JIOOYI0 U3MEPUMYIO, ITOYTH BCIOJAY KOHEYHYIO (DYHKIIMIO IIyTeM
U3MEHEHNUs ee 3HAYCHWII HA HEKOTOPOM MHOXKECTBE CKOJIb YTOIHO MAaJIO MEPBHI MOXK-
HO IIPEBPATHUTDH B TaKy0 (DYHKIMIO, ITO IOCJEe BHIOOPA COOTBETCTBYIOIINX 3HAKOB JIJIsT
yieHoB psiyia Pypbe (KaK [0 TPUIOHOMETPUYECKOIl CHCTEMEe TaK U 110 CHCTeMe YO-
JIA) U3MEHEHHON (DYHKIUK MOYKHO JOCTUYb TOrO, YTO MOJIyYeHHbIH psifl y:ke Oymer

yHUBepcaJbHbIM psiiom B M0, 1].
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Ipu joKa3aTEILCTBE TEOPEMBI 2 BOCHOJIb3YEMCsl CJICAYIOMIEi JIEMMOIA, TOKA3aHHON
B pabore [9)].

Jlemma 1. ITycrs gannot uucia No € N, e, 0 € (0,1) u crynenuaras pyakuus f(x).
Torna moxkHO Hatith GyHKIH0O ¢(T), H3MEpHUMOoe 3aMKHyToe MHOXKecTBO E C [—m, 7 |

¢ mepoii |E| > 27 — 6 u 10JIMHOMBI 110 TPHIOHOMETDHYECKOIH CHCTEMe

N N
H(z) = Z (ag cos kx + b sinkzx), Q(z) = Z O (ay, cos kz + by sin kz), 0 = +1,
k=Ng k=No

YAOBJIETBOPSIOITHAE CJICIYIOIIUM YCJIOBUAM:

27 T
| s@lds<a [ i@l < g@)=f@), B B> 2n-0

—T

2w ™
/0 |H (z)|dz <€, / If(z) — g(z)|dz < e.

—T

W3 3T0i JIeMMBI BBITEKAET
Jlemma 2. ITycrs pamer uncina No € N,e, 6 € (0,1) u rpuronomerpuyeckuii
mosmaoM  f (). Toryia MOXKHO HaHTH H3MEpUMOe 3aMKHYToe MHOXKecTBO F C [—m, 7 |

¢ Mepoit |E| > 27 — 6 u MOJHHOMBI 110 TPUTOHOMETPHYIECKOH CHCTEMe

N N
H(x) = Z ay cos kx + by sinkz, Q(x) = Z Ok (ay, cos kx + by sin kz), §, = +1,
k=No k=No
YVAOBJIETBOPSIONIHE CICIYIONIAM YCAOBHIM:
/ |H (z)|dz < €, / [f(z) — Q(z)|dz <&, |E| > 27— 6
- E

HokazareabcTtBo Teopewmsbr 2. Ilycrn

(4) F={fa(®)}7%
€CTh 1I0CTIEI0BATEIBHOCTD BCEX HOJMHOMOB 110 TPUIOHOMETPUYECKO CHCTEME C PAIy-
oHasbHBIME KO3 durmenramu. HerpytHO BEAETH, 9TO NOCIEIOBATEIBHO TPUMEHUB
JeMMY 2, 110 MHJIYKIUU MOXKEM HAHTH IIOC/IeIOBATEILHOCTH 3aMKHYTBIX MHOXKECTB
{Eﬁ”}?;l, U TIOJIMHOMOB {PT(Lj)(x) ?;1; {ng)(x)};\il, n > 1 Buna
1)1
(5) PY)(z) = Z (aén’j) cos kx + b,(c"’j) sin k;v) ) lgo) =1,
k=1GY
1) -1
6) QW (x)= Z 5,(6"’]‘)(@,(6”’]‘) cos kx + b,(cn’j) sin kx), 5,2”’j) =41, n=1,2,.
k=11

(M) 1<1M =1 <18 <1P) < i) =10 <10 < <) =10 <l
18
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koropblie mig Becex 1 < j < A,, j € [1,\,] yIoBIeTBOPAIOT yCAOBUAM:

(8) 50 = 41, ke IUTV U, 1< i< A, ,n=1,2,,
(9) Ay =210 B, >2m =47 n=1,2,.,
1 . .
(10) / [P (@)]de < 2730 H) 1< j< A, n=1,2,.,
0
S J) (1) 1 _
(11) /E‘ fn - ZP ( ) dr < W,ﬂ—l,Q,..
k=1
ITostozxum
(12) GU) = {x e 0,1], ’P(J ‘ <2 2<”+J’>},
(13)  Gp={_z€Ey,; =Y ZP(” )+ QM @) || <27
J=1 \j=2

"3 (11) and (13) caemyer

n Ak
2" B,\G| < / f@) =S [ PO @) + 0P @) || o <
En\Gn k=1 \j=2
n Ak )
< / fulz) — Z (Z P,gj)(x) + Q,gl)(a:)> dr < 2790
En k=1 \j=2

Orciona u u3 (9) BeITEKaET
(14) |G| > |Ey| — 2727 > 270 — 272072
Ananornuso B cuiny (10) u (12) Gynem umersb
(15) ‘Gg)‘zzw—2 () Y G e [1, ] -

Hcno, uro (cem (10))

W SRS

n=1 j=1

PO (s ‘ > Zg—n

OrpeiesiuM TIOCTIE0BATEBHOCTh 3aMKHYThIX MHOXKeCTB Fy, Fy, .. .Fy..., dyskmio

U(z) n nocnenosarenbroctu uucen {ax} {bx} ciemyromum o6pasom

oo An
(17) Fe=()Gu| (GY ] k=123,
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oo An oo

(18) Uz) = 1+Z ZP,Sj)(;U) :1+Zak coskx + by sin kx,
n=1 \j=1 k=1

e

(19) ap =a\™, by =0 ke UV D), 1< <A\ ,n=1,2,.

Orcrona u u3 (5), (14) — (19) moxyunm
(20)  U(z)e€ L'[-m7], FiCFC. CF,C..Cl[-m7], Jim |Fy| = 27
—00

n 15

lim 1+ Z (ay cos kx + b sinkz) — U(x)|dx =

n—r oo
- k=1

™ S Am,
= lim > (Do PY@) ||dz=0
n—oo
T lm=n+1 \j=1
1, CJIEIOBATE/ILHO,

(21) ao(U) =2, ar, = ar(U), b =bp(U), k>1
TTomoxum
1, ke | )iy u{o}
(22) O = ‘ nL:J1
50 ke 1,10),n =1,2,3
(23) [0 5kak(U), k= 0, 172..., 5]@ = 5kbk(U), k= ].,2..., s

JlokazkeM, ITO Psi
(24) Z = % + ];(ozk cos kx + Py sin kx)

yHUBepcaseH Bo Bcex npocrpancrsax C(Fy), k > 1, cnenosaresnbro, u B M[—m, 7).
Bosee Toro gokaxkem, aro st kKaxkuoit ynkmmm [ € Cl—m, 7], f(z+ 27) = f(z)
CyIIECTBYET BO3pACTAONAs HOINOCIe0BATeIbHOCTE N, ' Takasi, 4To psi| Jisi

Kakjgoro m € N

Nq
. Qo .
(25) qlggo ) + ,;_1 (o coskz + P sinkx) — f(x) =0.

C(Fm)

IIycrs  f(x) npoussonbhast dyukius u3 C|—m, w]. HerpyaHo BuieTh, 94TO MOXKHO

o0

q=1 W3 TIOCJIEJJOBATEIBHOCTI (4) rakyio,

BBIOPATD IIOJIIOCIEI0BATEIbHOCTD { fr, (1)
T

(26) T | fa, (@) = (F@) = 1) g r.m= 0.
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O6oznauas depes N, = 1532 — 1 B cury (5), (6), (21) - (24) u (26) s KaxKIOrO

dukcuposannoro m € N u mjist Bcex ¢ > qo (mg, > m) uMeeM

Ng
S+ (axcoska + fisinka) = f@)|| < fu, (@) = (F@) = 1) llormm +
k=1 cF)
Ng Ak ,
([ fuy@) = D0 [ DB @) + @ @
k=1 \j=2
C(Fm)

Orciona u u3 (13), (17) u (26) 6yxem umers (25).

Ternepb JIOKaXKeM, UTO YHUBEPCAJIEHBIH psifl (24) sIBJIsieTCs] IOUTH YHUBEPCAJIBHBIM
pagom Dypbe, kak B M|[—7, 7] Tak u Bo Beex upocrpancrsax C(Fy), k > 1.

fcHo, uro (cm.(18), (20) u (22)- (24))

(27) 5kak :ak(U), k:O,l,Z..., 5kﬂk :bk(U), k:1,2... .
IMonoxum (cMm. (24) )
(28) A=A ) =spec(d ), Q= {keA, & =1}

IMpurnmast BoO BHUMaHNe HepaBeHCTBO (cM. (9) um (28) )

#(enoa))  # (AN i) - o 1
(o) T A E) L A

OTKyJa BBITEKAET

= lim #(7 -
P = lim =8 10.7))

Teopema 2 nokazaHa.

Abstract. In this work, an universal trigonometric series is constructed such
that, after multiplying the terms of this series by some sequence of signs, it can be

turned into the Fourier series of some integrable function.
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Abstract. We prove the sharp weighted-L2 bounds for the strong-sparse operators introduced
in [3]. The main contribution of the paper is the construction of a weight that is a lacunary mixture
of dual power weights. This weight helps to prove the sharpness of the trivial upper bound of the

operator norm.

MSC2020 numbers: 42B25; 42A82.

Keywords: weighted inequalities; sharp inequalities; sparse operators; power weights.

1. INTRODUCTION

The theory of weighted inequalities started with the seminal work of Muckenhoupt
[10], where he proved that the Hardy-Littlewood maximal operator is bounded on

LP(w), 1 < p < oo, for positive measurable w : R — R if and only if

) G )

where the supremum is taken over all intervals and |I| denotes the Lebesgue measure
of the interval. If holds, then w is said to be in the Muckenhoupt class A, and
the quantity [w]a, is called its A, characteristic. Later, Buckley [1T] obtained the
sharp dependence of the norm of the maximal operator on the A, characteristic.

Namely, he proved that

1
(1.2) M| Lo (w) = Lo (w) S W5

P

—

p—1

(1.3) M| Lo (w)—Lr (w) S [w]AP )

and these are sharp in the sense of the theorems below.

The problem of the sharp dependence of the L?(w) — L?(w) norm of the
Caldéron-Zygmund operator on the As characteristic of w is known as the As-
conjecture. It was first proved by Hytonen [7, 6]. A simpler proof was given by
Lerner [8, @] proving that the Caldéron-Zygmund operators can be dominated by
the simple sparse operators. Later, it was proved that a number of operators in

harmonic analysis admit pointwise or norm domination by the sparse operators
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[12], 13| 2] [T, 8, @]. On the other hand, LP and weighted-LP bounds for the sparse
operators are fairly easy to obtain[I].

Let us have a family S of intervals in R and 0 < v < 1. § is called ~-sparse,
or just sparse, if there exists pairwise disjoint subsets £4 C A, A € S, such that
|E4| > v|A]. Let us set for an interval B

1
o= 5 /B Sl Maf= s (f)a.

A intervals: ADB
For a sparse family S, we define the sparse and the strong-sparse operators as

(L4) Asf(@) = 3 (f)a-1ala),
AeS

(1.5) Asf(x) =Y (Maf) - La(w),

AeS
respectively. The sharp weighted bound for the sparse operator[l] is as follows

max(l,ﬁ)

(1.6) ||-ASHLP(’LU)~>LP(’LU) S [w]AP

The strong-sparse operators were introduced by Karagulyan and the author in
[3], where LP and weak-L! estimates are proved in the setting of an abstract measure
space with ball-basis. In this paper, we obtain the sharp dependence of the weighted-

L? norm of the strong-sparse operator on the A, characteristic of the weight.

Theorem 1.1. For an As weight w we have the bound

’§
(1.7) | AS L2 (w)— L2000 (w) S (W], -
The inequality is sharp in the following sense: there exist a sparse family S and a
sequence of weights wy, such that
(1.8) [Wa]a, — 00, as a — 0,

and for any function ¢ : [0,00) — [0,00) with ¢(z)/x2 — 0 as & — oo, we have

IAS] 22 (wa)— L2 (wa)

¢([wala,)

Theorem 1.2. For an As weight w we have the bound

(1.9)

— 00, as a — 0.

(1.10) A5 L2 () L2 () S (W], -

The inequality is sharp in the following sense: there exist a sparse family S and a

sequence of weights wy, such that
(1.11) [Wa]a, — 00, as a — 0,

and for any function ¢ : [0,00) — [0,00) with ¢(z)/z* — 0 as © — oo, we have

[ AS I 22 () = L2 (wa)

¢([wala,)

(1.12) — 00, as a — 0.
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On the other hand, we have the following simple partial improvement for the
strong bound. For this theorem we assume that all the intervals in the statement,

proof and in the definition of the strong-sparse operator are dyadic.

Theorem 1.3. Let the sparse family S be such that for any two A, B € S either
A C B or BC A. Then, we have

3
(1.13) AS ] L2 (w) = L2 (w) S W3, -

Looking at the definition of the strong-sparse operators, we see that Mpf <
M f(zx) for any = € B. Thus, Mpf < (M f)5 and we obtain
(1.14) Asf(@) < As(MF).
Then, one can try to black-box the sharp weighted bounds , and
for Theorem and Theorem As it will be shown in Section [2] the weighted
weak-L? bound for the sparse operator is the same as for the strong one. Thus,
Theorem will not follow from such a black-box. Instead, we will decompose the
operator according to the magnitude of the Mp f for the sparse intervals B, then,
we will use the weighted weak bound of the maximal function . We will do this
in Section

As for Theorem|1.2] we see that by black-boxing the above mentioned inequalities

we trivially get the upper bound, i.e.
[ AS | L2 (w) = L2 (w) < [As © M2 (w)— L2 (w)
S MAsl 22 (w)—L2() 1M || L2 (w) = 22 (w) S [wﬁxz-
Thus, the interesting thing about Theorem is to obtain the sharpness of this
estimate. For that we will construct a weight which is a lacunary mixture of the
dual power weights x>~ and x!~*. We will do this in Section
In Section [ we will prove Theorem [I.3

We say a < b if there is an absolute constant ¢, maybe depending on the sparse

parameter -, such that a < ¢-b. Furthermore, we say a ~ b if a < b and b < a.

2. THE UPPER BOUND OF THEOREM [L.1]

2.1. A well-known property of A, weights. Following [5 [4], we say that w is
an A, weights if

1
2.1 w = su —/Mwl x)dx < 00.
(2.1) wla = sp s [ M) (@)
It is well-known that any A, weight is also an A, weights and that a reverse Holder
inequality holds for in the latter class. The following theorem with sharp constants

is due to Hytonen, Pérez and Rela[4].
25



G. MNATSAKANYAN

Theorem 2.1. If w is an A, weight and € = W, then (w'*e); < 2 ((w))",

for any interval I.
This implies the following lemma.

Lemma 2.1. For any cube QQ and measurable subset E C @), we have
|E| ) cf[w]a

w(E) < 20(Q) <Q|

where ¢ 1s an absolute constant.

Proof. Let € be as before.

™=
/wg (/ w1+€> | B|/(F€)  (Hélder)
E E

< <w1+e>? . |E‘€/(1+6) ) |Q|1/(1+e)
< 2(w)g|E|¥1+9) . 1Q|Y(1+9  (Reverse Holder)

|E| c/[w]as

~20(Q) (1)

2.2. The proof of the weak bound. The idea is to group Mpf's, B € S,
according to their magnitude and estimate each group applying Lemma |2.1] and
the weighted weak bound for the maximal operator . Denote o := ﬁ, and
for A > 0 let

Ay = {BES : MBf>OZ>\},
Aj={BeS : 277 aX > Mpf >277a)},
for j =1,2,.... Thus, A;’s partition S. We write

w{ALf > \} < Zw{ S (M f)xs > /\2‘j/20}

j=0 BEA;

Sw( U B) +iw{ Z XB > l23'/20}
Be Ao j=1  BeA; @

- > x> éQJ/ZCHC/[w]oo

Sw{Mf>)\a}+Z2w U B BeAs
=1 BEA;

U B/l
BeA;

< w{Mf > )\a} +22w U B | 9-27cae
Jj=1 BEA,

< w{Mf > )\a} + ZZw{Mf > 2_j)\0z}2_002“2
j=1
[

~ )\2 ||MH%2—)L2°°’
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where the first line is due to the triangle inequality, the third inequality follows
from Lemma and the fourth one from the fact, that A; is a sparse collection. It
reimains to apply the bound (|1.2) to get the upper bound of Theorem [L.1

2.3. The lower bound of Theorem Let w = |z|* ! and o = |z|1 7 be the
dual power weights, 0 < a < 1. We know, for example from [11], that

(2.2) (w]a, = [0]a, ~ —.

Let S := {[0,27%) : for k € N} be a sparse family. Then, we claim
* 3/2

(2.3) | AS (0 10,1)) [ L2:00 () ~ [w]A/Q lloLjo,1) [l 22 (w)-

The square of the right-hand side of 1D equals m On the other hand,

A5 (0110, 1)1 72000 () = awlAs(olpn) >~}

1 > 1 1 e 2«
= ?w{; 1[072716) Z a} = ?w([OvQ a)) ~ .

a3

So the proof of Theorem [T.1]is complete.

3. THE LOWER BOUND OF THEOREM [[.2]

3.1. Construction of the weight. Let 0 < o < 1 be small enough integer power
of 2, i.e. & = 27 for large enough integer a. Let us define the weight o : R — [0, 00)

to be even and

3.1
o1 P (g -2 tHDyime g e 274D (14 )2~ D) for k € N
et zel+a)2 ) (1 -a)27F) for k€ N
o(z) = w@_k —x)' ze[(l-a)27%27F) for keN
xafl’ = [%,OO)

The dual weight to o is w(z) := o(x)~!. We will prove that

(3.2) Sgp#(/ﬂ)'(/la)”éa

that is, 0 € Ay with [0]4, ~ L.
First, we show that (3.2) holds for dyadic intervals. Let us partition all dyadic

intervals into three groups.
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a. I =[0,27%) for some k € Ny. Then, we compute

o~k (1_a)27k ok
w(z)dr = / 'y + @22k / (27% — ) ldx
2 (k+1) (14a)2- (1) (1—a)2-*
(1+a)2~ (k+D)
+ q22k(e=1) / (x — 27(k+1))a71d17
2—(k+1)
(1 _ a)Q—aQ—(Q—a)k _ (1 + a)Q—oz2—(2—o¢)(k+l)
2 -«
(3.3) §agthtoen QM@ ko)

@
In the above computations and below c¢(«) is a constant depending on «
absolutely bounded and away from 0. It will be different at each occurence.

Next, we have

9=k o 27 oS
(3.4) / w(z)dr = Z / w(z)dr = Zc(a)?‘j@_a) = ¢(a) - 27FCE),
0 I=ky— G4y 7=k

For o we have

27" (1—a)27* 2" (14a)2- (D
o(z)dx = / o(x)dz + / o(x)dx + / o(x)dx
2—(k+1) (14+a)2— b+ (1—a)2=F 2—(k+1)
_ (1—a)e2ke — (14 a)ram(De 920
! «
o=k (1+a)2~ k+D)
/ (27F —2)' =%z + / (z — 2~y
~k(1—a) 2= (ot 1)

g P et e

—ka 9—ka
(3.5) = c(a) - +a27% = ¢(a) -

Then, we have

2~k 27
> > 9—Jja 9—ka
(3.6) / o(z)dr = Z / o(x)dr = Zc(a) o= c(a) o
0 3=ky_(G+1) i=k
Combining the two computations above, we have for (3.2))
o=k 90—k
2%k 2k o—k(2—a) 27k 1
(3.7 22°( [ w)-( [ o) =cl)2?*2 —~
« e
0 0
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b. One of the following holds: for some k € Ng, I C [27F+D (1 4 a)2-(k+1),
IC[(14+a)2=® D (1—a)2 %) or I C [(1—a)27%,27%). On these intervals,
the weights w and o are just rescaled versions of the power weights. Thus,

we immediately have

(38) ulg(/lw)-(/la)ﬁi,
by the A, characteristic of the power weights .

c. I C [27+D 27F) and either [(1 — a)27%,27%) € T or 2=+ (1 +
@)2=*+1) C T for some k € Ny. This is the intermediate case between
the above two. The computation for the choice of the last two conditions
is identical, so we consider only one of them. Let |I| = 2™ so that
I=1[27F—27m 27F)and k +2 < m < k +a, where we recall @ = 27 We

start calculating

27k (1-a)2* 27k
/ w(z)dz = / ' dx + 2R / (27F — ) ldx
2—k_2-m 2—k_g-m (1—a)2—F
(1 _ 270,)27(127(27(1)16 _ 27(27a)k:(1 _ 2k7m)27a
2 -«
gk
+ o - 22k(a—1) / (27%F — )" ldx
2-k(1—a)

2k7m __9—a
1—2k—m
— C(a7m)2—k(2—a)2k—m +aa2—k(2—a) — c(a’m)2—k(2—a)'

= C(a,m)Q*k(Q*O‘) ((1 4 )2704 _ 1) + O(a27k(27a)

As before ¢(«, m) is a positive constant bounded from above and away from

0. For o we write

o=k (1—a)27* 9=k
/ o(z)dx = / o(x)dx + / o(z)dx
2-k_g-m 9—k_g-m (1—a)2—*
_ (1 _ a)aQ—ka _ 2—ka(1 _ 2k—m)a
o (6]
9=k
22k(1—a)
+— / 27k —p)l-dx
(0%
27k (1—a)
14+ 2022 0o
= c(a,m)27F ( ) + a2~k
(0%

cla,m)2 ke gk=m 4 g=a g=ka _ (o -katkom
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Here, in the penultimate equality we used the the Taylor expansion
(3.9) (1+x)? =1~ Bz for0<z<l.

Thus, for (3.2)) we have

1 1

I I

We conclude, that the dyadic Ay characteristic of w is <. It is important here,
that the supremum is attained at a large number of dyadic intervals and not only
on one chain.

We turn to the case of a general interval I. First of all, the arguments for the case
b are also true for all intervals I due to the As characteristic of power weights. On
the other hand, if I can be covered by a dyadic interval of a comparable size, then
again (3.8) holds. Otherwise, let k be such that I C [0,2==1) [ ¢ [0,2(+1)
and |I| < 27%. We distinguish two cases.

(i) One of the following holds: (1—1—04)2_(’“‘“) el,(1-a)27%el, (1+a)2 % ¢
I, (1 —a)2=® =1 ¢ [. All four cases are similar, so we only consider the
second one. For o we have

(3.10) /U(m)dm ~ 2 k=),
I

As for w we write
r(I)
(3.11) /w(x)dz ~((1—a)27% - l(I))27k(17a) +/ w(x)dz,
I (1—a)2—*
where [(I) and r(I) are the left and right endpoints of I.

(i.1) If r(I) < (1 — a)27% + a2~ then we have
(3.12) /w(;v)dw ~ T2 R0
I
and so

(313) gl [0 ([ox1

(1.2) If (1 — a)27% + a2=*+1) < (1), then using the computation in (3.3)), we

have
(1)
(3.14) / w(z)dr < 27FE),
(1—)2—*
Hence, we obtain
1 / / T ko k(1 27k 1
el w) - o) < =2 ( a).|[|2 (1a)§7§,7
VARV T ~a

where the last step is due to I(r) < (1 —a)27% < (1 —a)27F 4 2=+ <

r(I).

~—
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(ii) Let us have (1 — «)27% ¢ I, (1 +a)27% ¢ I and 27% € I. Without loss
of generality we can assume 7(I) —27% < 27% —(I). Then, we have |I| ~
(2=% —I(I)). Furthermore,

2~k 2~k

/I o(z)dz ~ / o(z)dz, and / 2)dz ~ / w(z)da.

(1) (1)

Thus, as w and ¢ are just power weights on [(1—a)27%, 2¥), and the estimate
(3.2 holds.

3.2. Construction of the sparse family. Let us take the following sparse family:

(3.15) S:={27%-2727%) . forallk,j € Nand j > a+ k}.
We also denote By, ; := [27F —277,27%). Using (3.6, we have
2—k
A 2k:(1—a)
(3.16) Mp, (o) ~2 / o(x)dx ~ ,
: o
0
and the corresponding strong-sparse operator is
> 2k: (1-a) 2®
(3.17) Asf(z) = > 1, (
k=1 j=a+k

3.3. The lower bound. We claim that

(3.18) /1 A (o) ()2 % /1 olz
0 0

By (3.17), we can write

1

22k (1—a)
(3.19) /S*(g)(;p)Qw(:c)dzN /( Z 1p, (= ) w(z)dx.
0 k=1 j=k+a
We make a change of variables in the integral and see that it realizes the sharp
constant for the regular sparse operator. Putting y = %, we can write
1 . ) 1 )
/( > 1Bk,j($)) w(x)dﬂﬂ2042%_%/(21[0,27:')@)) y*dy
0 d=k+a o =1
N OéQak:ka . i _ 2ak72k:
asd a?

where the penultimate estimate is a direct computation. Plugging this into (3.19)),

we obtain

1
22k(1 a) 2ak 2k 1 1
0

o? o? ob
k=1

This ﬁnishes the proof of Theorem
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4. PROOF OF THEOREM [I.3|

We can assume that the intervals in the sparse family are in some bounded
interval, and the general case will follow by a limiting argument. Let us enumerate

the intervals of the sparse family S.
BiD>DByD>:---DBpD---

Let ¢ € L?(w). We inductively choose 7(B;) D B; such that it is the largest
interval with Mp, (g) < 2(g)»B,) and m(B;) C m(B;_1). We can enumerate {7(B;)}
by A1 2 Ay 2 .... Note, that there can be many B; with m(B;) = A;. Moreover,
recalling that A; are dyadic we see that {A;}; is again a sparse family.

Consider the following function

3(z) = 7|Ai\114i+1‘ fAi\Az‘Jrl g, =€ A;\ Ajq for some i € N,
g(x), otherwise.

First of all, it is clear that for all ¢

(4.1) /Ag/Ag

Let B € S be such that A; = 7(B). Then, A;+; C B due to the choice of m(B).
Then, by (4.1)) and by the definition of g, we have

1 1
([ ae ST
|A RV A, \A1+1 |A | J i IB\ Ait1] J\aips

S
N g
B/B

We conclude, that for all =

(4.2) Asg(x) S Asg(x).

We turn to the norm of g.

~92 ~92 2
7w = / §*w + / g*w
‘/R z; Ai\Aita R\U(Ai\Ait1)
2
< g w(A;\ A1) +/ g*w
Z <A \ A1l Japnaia, ) * R\U(A\Ais1)

< Z w(A; \ Aig1) - o(A; \ Ait1) / Pw+ / Fw
= |A‘ \ Aig1]? Aip1\ Az R\U(A:\A;41)

_Z A 5 >/ ggw—i-/ gzwg[w]A2/g2w.
| | A1 \Ai R\U(A;\A;41) R

Combining the last estimate, (| and the sparse bound (1.6)) we conclude

3
A9l 2wy S 1Al 22wy S [w]as 9l 2wy S (w4, 9]l w)

And the proof of Theorem is complete.
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Abstract. The uniqueness problems of the j-th derivative of a meromorphic function f(z)
and the k-th derivative of its shift f(z + c¢) are investigated in this paper, where j, k are integers
with 0 < j < k. We show that when f(9)(z) and f(*)(z + ¢) share one IM value and two partially
shared values CM, the uniqueness result remains valid under some additional hypotheses. With
one CM value and two partially shared values CM, a uniqueness theorem about the j-th derivative
of f(z) and the k-th derivative of its shift f(z + ¢) is also proved.

MSC2020 numbers: 30D35.

Keywords: meromorphic function; difference operator; uniqueness theorem; partially
shared value CM.

1. INTRODUCTION AND MAIN RESULTS

Nevanlinna value distribution theory of meromorphic functions has been extensively
applied to the uniqueness theory of meromorphic functions, see [23]. Given a mero-
morphic function f, recall that a meromorphic function « is said to be a small
functions of f, if T'(r,a(z)) = S(r, f) where S(r, f) is used to denote any quantity
that satisfies S(r, f) = o(T(r, f)) as r — o0, possibly outside of a set of r of finite
logarithmic measure. Let S(f) = S(f) U{oco}. For each a € S(f), we say that two
meromorphic functions f(z) and g(z) share a IM(ignoring multiplicities) if f(z) —a
and ¢g(z)—a have the same zeros, and we say that f(z) and g(z) share a CM(counting
multiplicities) provided that f(z) — a and g(z) — a have the same zeros with the
same multiplicities.

Rubel and Yang|20] considered the uniqueness of a nonconstant entire function
when it shares two values with its first derivative. Mues, Steinmetz [I7] and Gundersen
[12] improved the result to the case of meromorphic functions and obtained the
following result.

Theorem A.[20] Let f be a nonconstant meromorphic function, and let ¢ and b
be two distinct finite values. If f and f’ share a and b CM, then f = f’.

1The work was supported by NNSF of China (No.11971344), Project of Qinglan of Jiangsu
Province.

34


https://doi.org/10.54503/0002-3043-2022.57.4-34-45

UNIQUENESS OF MEROMORPHIC FUNCTIONS ...

Gundersen[I2] showed, by a counter-example, that two shared values CM in
Theorem A cannot be reduced to 1CM+1IM. However, 2CM is able to be replaced
by 3IM, see[10, 17]. Moreover, Frank and Weissenborn[8] proved the conclusion is
still valid by replacing f’ by a higher order derivative f*).

Theorem B.[8] Let f be a nonconstant entire function and k > 2 be a positive
integer. If f shares two distinct finite values @ and b CM with f*), then f = f*).

Later on, there are many related results about the uniqueness of meromorphic
functions with their first derivative f’ or their k-th derivative f*) [I, 2, [8, 21]. In
recent decade, Halburd and Korhonen|[I3]and, independently, Chiang and Feng[d]
developed a parallel difference version of classical Nevanlinna theory for meromorphic
functions. Then, many scholars tried to investigate the uniqueness of a meromorphic
function f(z) taking into account with its shift f(z + ¢) or difference operator
A.f(2) = f(z 4 ¢) — f(2) where ¢ is a complex constant, see[l4, 15, 18| 22]. For
instance, Heittokangas et.al[l4] considered the problem of a meromorphic function
f of finite order with its shift f(z 4 ¢) sharing two values CM and one value IM.
Theorem C.[I4] Let f(z) be a meromorphic function of finite order, and let
a1,az,a3 € g(f) be three distinct periodic functions with period ¢, where ¢ € C~{0}
is a constant. If f(z) and f(z+ ¢) share a;,as CM and az IM, then f(2) = f(z+c¢).

Regarding Theorem A and Theorem C, one may ask a question: What can be said
when the shift or difference operator of a meromorphic function f(z) shares some
values with its derivative? For a transcendental entire function f(z), Qi et.al|I§]
proved the uniqueness result still remains true if f/(z) and f(z+¢) share two values
CM.

Theorem D.[I8] Let f(z) be a transcendental entire function of finite order and a
be a nonzero complex constant. If f/(z) and f(z + ¢) share 0, a CM, then f'(z) =
flz+0).

In 2018, Chen[4] considered the question above using the notation of partially
shared values by some ingenious methods.

Definition 1.1. Denote by E(a, f) the set of all zeros of f — a, where each zero
with multiplicity m times is counted m times. Similarly, we denote by E(a, f) the
set of zeros of f — a, where each zero is counted only once. If E(a, f) C E(a, g),
then we say that f(z) partially shares a with g(z). If E(a, f) C E(a,g), then we
can say that f and g partially share a CM.

Theorem E.[4] Let f(z) be a nonconstant meromorphic function of hyper-order
p2(f) <landc# 0 € C.If A.f and f(z) share value 1 CM and satisfy E(0, f(z)) C
E0,A.f) and E(co, A.f) C E(o0, f(2)), then f(z) = A.(f) for all z € C.
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In [5], Chen et.al extended the result to the case of n-th order differences A” f(z).
More recently, for f/(z) and f(z + ¢) , Qi et.al[I9] proved the following result.
Theorem F.[19] Let f(z) be a nonconstant meromorphic function of finite order,
and a € C~ {0}. If f'(2) and f(z + ¢) share a CM, and satisty E(0, f(z + ¢)) C
E(0, f'(2)), E(c0, f'(z)) C E(c0, f(z+ ¢)), then f/(2) = f(z + ¢). Further, f(z) is
a transcendental entire function.

In this paper we consider the uniqueness of f)(z) and the k-th derivative of shift
f(z+c¢) under the conditions of one shared value IM and two partially shared values
0,00 CM. Actually, we obtain the following Theorem 1.1 by a different method from

those mentioned above.

Theorem 1.1. Let f(z) be a transcendental meromorphic function of finite order,
and let ¢ be a nonzero finite complex number and j, k be integers with 0 < j < k.
Suppose that f9)(z) and f*)(z + ¢) share a finite value a # 0 IM and satisfy
E(0, f9(2)) € E(0, f*) (2+c)) and E(oo, f¥) (2+c)) C E(oo, f9)(2)). If N(r, f(%(z))-i-

N(r, f(lz)) =S5(r, f), then f(j)(z) = f(k)(z +¢).

If we remove the hypothesis "N (r, W) + N (r, ﬁ) = S(r, f)"and replace IM
by CM, then the conclusion still holds.

Theorem 1.2. Let f(z) be a nonconstant meromorphic function of finite order,
a be a monzero finite complex number and j, k be integers with 0 < j < k. If
f9Nz2) and f*)(z + ¢) share a CM, and satisfy E(0, f9)(2)) C E(0, f*) (2 + ¢))
and E(oo, fF) (2 + ¢)) C E(oo, fU9)(2)), then fU)(2) = f®) (2 + ¢).

2. SOME LEMMAS

To prove our result, we recall some notations and results. Let k be a positive
integer, we use Np,(r, f—ia) to denote the counting function of a points of f with
multiplicity < &k and use N1 (r, ﬁ) to denote the counting function of a points of
f with multiplicity > k, where each a point is counted on the basis of its multiplicity.
Similarly, we define Nk) (r, ﬁ) and N(;H_l(r, ﬁ) where in counting the a points

of f we ignore the multiplicities.

Lemma 2.1. [6] Let f(z) be a meromorphic function of finite order and ¢ € C.

Then we have
fz+¢) f(2)
— —— )=9
e Fleva) 0T
where S(r, f) = o(T(r, f)) for all r outside of a possible exceptional set E with finite

m(r, )+ m(r,

linear measure.
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Lemma 2.2. [23] Let f(z) be a nonconstant meromorphic function in the complex

plane and k be a positive integer. Set

Zak FO

where ar(z)(k = 0,1,...,n) are all small functions of f(z). Then
T(r,¥) < T(rf)+kN(r f)+S(rf)
< (k+D)T(r )+ 5 f),

N(r, %) +kN(r, f) +S(r, f).

Lemma 2.3. [6] Let f(z) be a nonconstant meromorphic function of finite order

and ¢ € C. Then

N

]\/v(’l"7 6)

T(r,f(z+c)) = T(r, )+ S(r, f),
1

N fe+0) = N )+ S0 f). N gy) = Nogi) +500),
and
N fG+e) =N+ S0, N ) = N ) + S0 ),

Lemma 2.4. Suppose that f(z) is a nonconstant meromorphic function of finite
order in |z| < R and as(t = 1,2, ...,q) are q(= 2) distinct finite complex numbers.
Let j, k be integers with 0 < j < k. Then for 0 <r < R, we have

(r, f9(2)) + Z m(r f(]) o —a) S LIV = Nair () + (. 1),
where
Npair(r, f) = 2N(r, f9(2)) = N(r, f®) (2 + ¢)) + N(r, m) +S(r, f).
Proof. Set F(z) = i m, then
t=1
F®(z+¢)
G(z) = F(2)f®(z4¢) = 3 00 —a
It follows from the lemma of logarithmic derivatives that
(k) a (k)
m(r, G Zf chat <Xt Zf‘jt>+5(r,f>:5<r,f>-
Thus
1
mir, F(2)) = m(r, G) gy gy) < mir G +
1 1
(2.1) () = M ) S )
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Next, by Nevanlinna’s first fundamental theorem, we get from (2.1) that

1
T’(?"7 f(k) (Z + C)) = T(?"7 W) + O(l)
1 1
= m(r, 7f(k)(z " c)) + N(r, 7f(k)(z n c)) + S(r, f)
> m(r, F(2)) ‘*‘N(Tvm) + S(r, f)
I 1 1
Then by (2.2), we have
q
1
;m 7}0(]) —Clt) = m(r’;if(j)(z) _at)JrO(l)
1
(2.3) < T(r, fO(z +¢) — N(r, m) + S(r, f).
Hence, it is easy to deduce from (2.3) that
(2.4) mlr fO() + X mlr, 7o)

m(r, f9(2) +T(r, f® (= + ) = N(r, Jriery) + 50 )
= T(r, f9(2)) = N(r, f9(2)) + m(r, fO (2 + 6) + N(r, B (2 4 €)) = N(r, 75)
+8(r, f) < T(r, f9(2)) = N(r, O (2)) +m(r, fO)(2)) + m(r, L)
TN, fO(z +6) — N(r, urisrg) + S f)
= 2T(r, f9(2)) = 2N(r, fO)(2)) + N(r, {2 + ) = N(r, srrisgey) + 5(r, )
= 2T(r, f9(2)) — 2N (. fD(2)) = N(r. fO (2 + €)) + N(r, uriegg)] + 5. ).

We use N (r, ﬁ) to denote the counting function of the zeros of f —a where a

p— folds zero is counted m times if m < p and p times if m > p.

Lemma 2.5. |24, Lemma 2.4] Let f be a non-constant transcendental meromorphic
function. If f*) % 0, we have Ny(r, 7iz) < T(r, f¥)=T(r, f)+Nps1(r, )+5(r, f).

Lemma 2.6. Let f be a mon-constant transcendental meromorphic function and
> 0 is an integer. If N(r, ( y) = S(r, f), then S(r, f9)) = S(r, f).

Proof. By Lemma 2.5,

T(r,f) < T(rf9) = Ny(r, z55) + Ny (7, )+ 50 f)

f(J) f
< nnwn+u+ﬂMn%+smn<TmﬂM+smﬂ.

Also by Lemma 2.2, T(r, f4)) < (j 4+ 1)T(r, f) + S(r, f). This completes the proof.
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3. PROOF OF THEOREM 1.1

Without loss of generality, we assume that fU)(z) and f*)(z + ¢) share a = 1
IM. For a general case, we can consider substituting % f(z) for f(z). Suppose on
the contrary that f@)(z) # f*) (2 + ¢).

Set h(z) = fU)(z) and g(2) = f*¥)(z + ¢). By the assumption that E(0,h(z)) C
E(0,9(2)) and E(c0,g(z)) C E(oo, h(z)), we have

®) (2 +¢ z
(3.1) ! f<§'>(::) ) _ iiz; = G(2),

where G(z) is an entire function.

From (3.1), the lemma of logarithmic derivative and Lemma 2.1 it follows that
(3.2)

i, G2 =mir, LD <ot L) o LEE — s, ),
Since G(2) is an entire function, we know that
(3.3) N, G(2)) = 0.
Combining (3.2) and (3.3), we get
(3.4) T(r,G(2)) = m(r,G(2)) + N(r,G(2)) = S(r, ).
Set
52) F;(g{lh}il)z(gg—lli)(hﬂ%'

From the lemma of logarithmic derivative again, (3.2) and (3.5) it follows that

g g/ g/ h/ h/
(3.6) m(r, F) = m(r 7(9—1 P h_l—ﬁ)):S(r,f).

By (3.5), we see that the possible poles of F(z) can occur at the zeros of h(z),

the 1 points of h(z) and g(z), and the poles of h(z) and g(z). If zg is a 1 point of
h(z), then by a short calculation with Laurent series and (8) we know that zg is
a simple pole of F(z). And hence, the 1 points of g(z) are also the simple pole of
F(z). If z9 is a pole of h(z) with multiplicity p > 1, by E(oc0,¢(z)) C E(oco, h(2)),
we have F(z) = O((z — 29)P~!). Similarly, the poles of g(z) are not the poles of
F(z). Therefore, the poles of F(z) can occur at the 1 point of i(z), the 1 point of
g(z) and the zeros of h(z). From (3.1), (3.4), the hypothesis N(r, ﬁ) =S(r,f)
and h shares 1 IM with g, we can find that

)+ NG 7)

N(rF) < N(rn——)+N(

h—1 g—1

1 1
G—1)+N(T7G—1)+N(T7W)
(3.7 < 2T(r,G)+ S(r, f) = S(r, f).
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Combining (3.6) and (3.7), we conclude that
(3.8) T(r,F)=m(r,F)+ N(r,F) = S(r, f).

If F =0, then by (3.5) we find that g — 1 = A(h — 1), with A # 0 being constant.
We assert that A = 1. Otherwise, if A # 1, then m(r, 1) = Z5m(r,$ — A) =
S(r, f). Due to N(r, +) = N(r, ﬁ) = S(r, f), it is easy to deduce that T(r, ;) =
m(r,+) + N(r,+) = S(r, f), and then by the first fundamental theorem, we have
T(r,h) = T(r,+) + O(1) = S(r, f). Noting that h = fU), by Lemma 2.6 we have
S(r, f) = S(r,h), and hence T'(r, h) = S(r, h), which is a contradiction. Then F' £ 0.
And so we can know from (3.5) and (3.8) that

(3.9) m(r,h) < m(r,%) + m(r, gg_/ 1~ h]i/ 1) <T(r,F)+S(r, f)=S(rf).
Set

_ygth-=-1) ¢ 49
(3.10) e =20 L8y,

It follows from the lemma of logarithmic derivative, (12) and (13) that
(3.11)

m(r,H) = m(r

gth=1y o 9 gy, 9
WD) S ) +m(r,

g1 g h/)+m(r,h—1):S(r,f).
We now estimate the poles of H(z). Obviously, the poles of H(z) can only occur at
the 1 point of g, the poles of h and ¢’, and the zeros of k. Since h(z) and g(z) share
1 IM, then by Laurent series we know that H(z) is analytic at the 1 point of g. If
h has a pole z,, with multiplicity p > 2, then by a short calculation with Laurent
series and (3.10) we see that the poles of h are not poles of H(z). Similarly, the
poles of ¢’ are not poles of H(z). Let zg be a zero of h' with multiplicity g, if 2z
is also a zero of h (respectively h — 1) with multiplicity ¢ 4+ 1, then from these and

(3.10) it is easy to see that zg is a pole of H(z) with multiplicity at most ¢g. Thus

1
(312) N(T,H) <NO(Taﬁ)+S(r>f)a
where No(r, 77) denotes the zeros of h’ which are not zeros of h — 1. From (3.11)

and (3.12), we deduce that
1
(3.13) T(r,H) =m(r,H) + N(r, H) < No(r, 77) + 5(r, f),
Next, we consider the simple poles of h(z). Let zy be a simple pole of h. Since
E(00,h(2)) D E(c0,g(z)), we need to discuss two cases:
Case 1. z; is not a simple pole of g. We set

a—1

(314) h(z) - +a0+a1(2—20)—|—a2(z—zo)2+...
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and
(3.15) 9(2) = bo + b1(z — 20) + ba(z — 20)* + - -,

where a;(j = —1,0,1,---) and b;(j = 0,1,---) are the coefficients of the Laurent

series of h(z) and g(z) respectively. Differentiating (3.14) and (3.15), we obtain
a_q

N T,

+ay + 2az(z — 20) + 3az(z — 20)* + - -

and
g’ (2) = by + 2ba(2 — 20) + 3bz(2z — 20)% + - - -
By (3.10) it follows that
g(h—1) [b1 + 2ba(z — z9) + - - }[z Z0+a0—1+a1(z—z0)+ -]
h’( [~ m—i—al—i—Qag(z—zo) < Jbo —14+b1(z —20) + -]
Thus H(zp) = 0. If H(z) = 0, then we have ¢’(h — 1) = 0. By integration, we can
get f(z) is a nonconstant polynomial, this contradicts with the fact that f(z) is a

transcendental function. Thus H # 0, and so
1
(3.16) Nyy(r,h) < N(r, ﬁ)

Case 2. zj is a simple pole of g. Similarly as in Case 1, let

h(z) = e “+co + Cl(Z — ZO) —|—02(z — 20)2 N
Z— 20
and
d_
g(Z) = e _120 +d(] +d1(2 — Z()) —|—d2(2 _ 20)2 + ...
Then
h'(z) = 7(Zi;;.)2 +c1 4 2¢2(2 — 20) + 3e3(z — z0)2 N
and

d_
9'(z) = —m +dy 4 2do(z — 20) + 3d3(z — 29)? + - --

By (3.5), it follows that
d_z

tdy—1+- 7 tc—1l+-
Thus F(zg) = 0. If F(z) = 0, then we haveg— 1 = t(h — 1) with ¢ # 0 constant.

Similarly, we can assert that ¢ = 1, then g = h, this contradicts with the assumption
g Z h. Thus F # 0, and so

1, 9 W 1 (Z Zo2+d1+ —(/Zc;zgy+cl+~--
E(g—fh—ﬂ* +co+- =

zZ—2Zz0

F(z) =

(3.17) Nyy(r,h) < N(r, %)
Combining (3.8), (3.13), (3.16) and (3.17), we have
Nyy(r,h) < N(r,%)+N(r,%) <T(r,F)+T(r,H)
(3.15) < S0 0) + Nolr, 20) + S0, £) = Nolr, ) + 5(r, ).
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Since h and g share 1 IM, it follows from (3.1) and (3.4) that
— 1 1

. " V< — )< - .
(319) N(r, 1) < Nlr, 50) <T(,G) = S, f)
Combining (3.18), (3.19), the second fundamental theorem, N(r, +) = N(r, ﬁ) =
S(r, f) and S(r,h) = S(r, f), we have
T(r,h) < N(r, %) + N(r,h) + N(r, ﬁ) — No(r, %) + S(r, h)
1 1
< S(raf)—’—NO(nﬁ)_NO(rvﬁ)—i—S(nh)
(3.20) = S(r f)+S8(r,h) = S(r,h),

which is impossible. Therefore, fU)(z) = f*) (2 + ¢).

4. PROOF OF THEOREM 1.2
Firstly, we prove that T'(r, fU)(2)) and T(r, f**)(z+c)) can be restricted by each
other. It follows from Lemma 2.2 that
T(r,f9(2)) < T(rf(2) + N f(2)) + S(r, f(2))

(4.1) < G+DT(r f(2) + S(r, f(2))
On the other hand, by Lemma 2.2 and Lemma 2.3, we get

T, fP(z+c) = T(rfP)+S(r f)
T(r, f(2)) + kN (r, f(2)) + S(r, f(2))
(4.2) < (B+1)T(r, f(2)) + S(r, f(2))-

N

Combining (4.1) and (4.2), we have

S(r, f9(2)) = S(r, Pz + ) = S(r. f).
Set
_fME+o
o f(j)(z) ’
From the assumption E(0, fU)(z2)) ¢ E(0, f*)(z + ¢)) and E(co, f*) (2 + ¢)) C

E(co, fU)(2)), we can deduce that H(z) is an entire function. That is to say,

(4.3)

(4.4) N(r,H(z)) = 0.

Case 1 If H(z) =1, then fU)(2) = f*) (2 +¢).
Case 2 We suppose on the contrary that the result of Theorem 1.2 is not valid,
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ie., H(z) # 1. By Lemma 2.1 and the lemma of logarithmic derivative, we know
that

fB(+e) fH+e)
m(r,H(z)) = m(r, W) < m(r, NCIOH
f¥(z)
(4.5) + m(r, f(j)(z)) =S5(r, f).
From (4.4) and (4.5), we can obtain that
(4.6) T(r,H(z)) =m(r,H(z))+ N(r,H(2)) = S(r, f).

Without loss of generality, we assume that fU)(z) and f*)(z +¢) share a = 1 CM.
For a general situation, we can consider replacing f(z) by % f(2). As a result of the
hypothesis that f)(z) and f*)(z + ¢) share 1 CM, we find that

— 1 1
N P P < N Iy v =
AR CIC R L
(47) = Nr ) <TG H) + 5(r.f) = S(r, ).

Secondly, we shall estimate the counting functions of the zeros of fU)(z) — 1 whose
multiplicities are not less than 2.

Differentiating (4.3), we have

(4.8) H'(z) = (f(k)(z +c),, FEED (24 ¢) fO) (2) — fR) (2 + C)f(j"‘l)(z).

fa) T [fD(2)]
It follows from (4.3) and (4.8) that
H'(z) _ f"(+0fD%) = [P+ fV(E)  fD()
H(z) [fD(2)]? B (z+0)
G+ fOE) - [P+ fI)
- fOI(2) f R (2 +¢)

f(k"‘l)(z—i—c) f(j+1)(z)
fB+o)  fO(2)

Let 2o be a 1 point of f)(z) with multiplicity m > 2. Since fU)(z) and f*) (2 +¢)
share 1 CM, we obtain that z, is also a 1 point of f*)(z + ¢) with multiplicity

(4.9) -

m > 2. Then by (4.9) and calculation with Laurent series, we see that zg is also a

zero of Z((j)) with multiplicity at least m — 1. Thus by Lemma 2.2 we can get

1 1 1
N@(T,W) < 2N(r,g) <2N(T,H)+2N(T,F)
< QN(’I“,H)‘FQ[N(T,%)‘FN(T,H)+S(T‘,f)]

(4.10) < 6T(r, H) +S(r, f) = S(r, f).
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Together (4.7) with (4.10), we have
1 — 1 1
f(ﬂ)(z) — 1) = N(Ta f(J)(Z) — 1) +N(2(Ta f(J)(Z) — 1) < S(va)
By the assumption that E(0, f)(2)) C E(0, f*) (2 + ¢)) and E(co, f*) (2 +¢)) C
E(oo, fU)(2)) again, we deduce that
1 1
o) N G

From Lemma 2.4, we get

(4.11)  N(r,

(4.12) N(r, ) <0, N(r, f%(z+4¢)=N(r, f9(2)) <0.

; 1 1
m(r, f9(2)) + m(r, f(T(z)) +m(r, W)
(4.13) < 2T(r, f9(2)) = Npair (1, f) + 5(r, f).
Adding N(r, f9)(z)) + N(r, W) + N(r, W) on both sides of (4.13) at the

same time and by (4.12), we obtain

Tl f(2) € N D) + N g) + N f—) = V) + S(0.)
1 1 1
= Voo ) Vo) TNV e )
NG f® e+ ) = N, f9 )] + S(r. )
< N 710@)(;) —)+ S0 ) <80, 1),

which yields a contradiction.
Therefore, H(z) = 1. Then we have fU)(z) = f®) (2 + ¢).
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Abstract. In this paper, we study the existence of infinitely many nontrivial solutions for a
class of nonlinear Kirchhoff type equation

- <a+ b/ |V)\u|2d93) Asu+ V(z)u = f(z,u), in RY
RN

where constants a > 0, b > 0, Ay is a strongly degenerate elliptic operator, and f is a function

with a more general superlinear conditions or sublinear conditions.

MSC2020 numbers: 35H20; 35J61; 35A30; 35J20.

Keywords: Kirchhoff type equation; symmetric mountain pass theorem; strongly
degenerate elliptic operator.

1. INTRODUCTION

This paper is concerned with a class of nonlinear Kirchhoff type equations
(1.1) — (a—!—b/ V,\u|2daj) Ayu+V(z)u = f(z,u), in RY
RN

where constants a,b > 0, N > 1, V € C(RY,R), Vy = (\0z,U, ..., \NOru) and

A, is a strongly degenerate elliptic operator of the following form
N
Axi=) 0,,(Ns,), A=, ) RV 5 RV,
i=1

Kogoj and Lanconelli in [7] firstly introduced the strongly degenerate elliptic
operator Ay. After that, a growing attention has been devoted to Aj,-Laplacians.
Kogoj and Lanconelli in [7] assume that the operator is homogeneous of degree
two with respect to a group dilation in RY. Kogoj and Sonner [8] showed that
global well-posedness and long-time behavior of solutions of semilinear degenerate
parabolic involving the Ajy-Laplacians, and this result was extended in [9], where
hyperbolic problems were considered. Ahn and My [2] proved that Liouville-type
theorems for elliptic inequalities involving the Aj-Laplacians. Finally, Kogoj and

Sonner remark that the Aj-Laplacians belong to the more general class of X —

1This work is supported by Research Fund of National Natural Science Foundation of China
(No. 11861046), Chongging Municipal Education Commission (No. KJQN20190081), Chongging
Technology and Business University(No. CTBUZDPTTD201909), Graduate Innovation Project
of Chongqing Technology and Business University(yjscxx2021-112-109).
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elliptic operators. The A, operator contains many degenerate elliptic operators

such as the Grushin-type operator
Gy =A, + |:10|2aAy7 a >0,

where (z,y) denotes the point of RVt x RNz | N, + N, = N, and the operator of

the form
Popry = Dotz Ay 4z [y AL, (2,9, 2) € RN xRN xRN Nj4+Ny+N3 = N,

where a, f and v are real positive constants. We can refer the readers to [I] for
some important properties of this operator.

In the last decades, A, elliptic equations

—Aj\u = Q

(1.2) { My /(@) . e o0
where  is a smooth bounded domain of R, has been studied by many authors.
See [3], [ [, 13), 14, 19] and the references therein. The nonlinear term f satisfies
the Ambrosetti-Rabinowitz(AR) condition is studied in [7]. The (AR) condition
guarantees the boundedness of the Palais-Smale(PS) sequence of the energy functional,
which is essential for the application of the critical point theorem. When f does
not satisfy the (AR) condition is studied in [3] [I, 14]. At present, some authors
began to consider problem on unbounded domain RY. The main difficulty in
RY is lack of compactness of Sobolev embedding. For this reason, some authors
work on the subspace of Sobolev space to overcome this difficulty. Luyen and Tri
[15] considered that V'(x) is a coercive potential, which ensures that the weighted
Sobolev space embedding is compactness. They proved that Ay equation possess
infinity many solutions with the nonlinear term has (AR) condition.

Recently, a class of Kirchhoff-type elliptic equation
(13) { ;iao—i— b fon [Vul|?de) Au = f(z,u), i 2 gg,z’
has received extensive attention and research by many authors. Cheng and Wu [4]
proved the existence result of positive solutions to Kirchhoff-type problems with
the variational method. Mao and Zhang [16] shows that in the absence of (PS)
condition, the minimax methods and invariant sets of descent flow are used to
study multiple solutions of Kirchhoff type problems. The problem (|1.3)) is related

to the stationary analogue of the Kirchhoff equation

(1.4) Uty — (a + b/ Vmu|2d;z;> Ayu = g(x,u)
Q
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which was proposed by Kirchhoff in 1883 as a generalization of the well-known
d’Alembert’s wave equation

9%u B <P0 E [Ylou

ox

"oz ~\ 7 tar ),

2 2
dm) % = g(x,u)

for free vibrations of elastic strings. Kirchhoff’s model takes into account the changes
in length of the string produced by transverse vibrations. Here, L is the length of
the string, h is the area of the cross section, F is the Young modulus of the material,
p is the mass density and Fp is the initial tension. Problem models several
physical systems, where u describes a process which depends on the average of
itself. A parabolic version of equation be used to describe the growth and
movement of a particular species. The movement, modeled by the integral term, is
assumed dependent on the “energy” of the entire system with u being its population
density. Alternatively, the movement of a particular species may be subject to the
total population density within the domain (for instance, the spreading of bacteria)
which gives rise to equations of the type u; — a(fQ udx)Au = h.

In this paper, we want to use the idea of [2I] to study the existence of infinitely
many nontrivial solutions for the Kirchhoff type problem with Ay type operator.

Now, we give the following assumptions on potential V' (z):

(Vl) Ve O(RN,R), inf, ey V(.T) > 0.
(V3) There exists a constant R > 0 such that

/ Vldz < .
|z|>R

For the nonlinearity f, we give the following assumptions:

(f1) f € C(RN x R,R) and there exist constants C1,Cy > 0 and p € (2,25)
such that

|f (2, u)] < Crlul + ColuP™t, V(z,u) € RN x R.

where 2} = QZ—% and @ denotes the homogeneous dimension of RY with

respect to a group of dilations(see Section 2 for more details).
(f?) f(x,u) = —f(.'II, _u)7 V(m,u) € RN x R.
(f3) limyy|—oe0 |F|(f"f)| = 0o, uniformly in z € RN, Q < 4, and there exists
ro > 0, such that F(x,u) >0, ¥(z,u) € RV xR, |u| > ro, where F(z,u) :=
Jo [z, t)dt.
(f1) There exist 3 > 0 such that F(z,u) < % f(z,uw)u+ Bu?, V(z,u) € RN x R.
(fs) F(x,u) > 0,V(z,u) € RY x R and G(z,h) < G(z,1) whenever (h,l) €
RT x RT and h < I, where G(z,u) := 1 f(z,u)u — F(z,u).
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In the following theorem, we give the multiplicity result of the solution of problem
(1.1) when f satisfies the superlinear condition.

Theorem 1.1. Assume that the potential V() satisfies (V1), (Va) and nonlinearity
f(z,u) satisfies (f1) — (fa). Then the problem(1.1) has possesses infinitely many

nontrivial solutions {u} such that

1 b ?
lim — (a|lVaugl® + V(2)ui) do+~ </ |V>\uk2dx> 7/ F(z,uy)dz = +o0.
k—oo 2 RN 4 RN RN

Theorem 1.2. Assume that the potential V(z) satisfies (V1), (Va) and nonlinearity
f(z,u) satisfies (f1) — (f3) and (f5). Then the problem(1.1)) has possesses infinitely

many nontrivial solutions {u} such that

1 b ?
lim f/ (a|lVaug]® + V(2)up) do+-— / |V ug |2 da —/ F(z,ug)dz = +o00.
2 RN 4 RN RN

k—o0

Next, in addition to discussing the above results, we also consider the multiplicity

result that can still obtain a solution of problem when f satisfies the sublinear.
(fs) f € C(RYN x R,R), there exist constant 1 < ¢; < g2 < 2, such that
[f(2 )] < quft]™ ™ + gt =7
(f7) There exist a bounded open set B C RY and constants 6,¢ > 0, g3 € (1,2)
such that
F(z,u) > £|u|®, Y(x,u) € B x [-4,4].

Now, we give the second result:

Theorem 1.3. Assume that the potential V(x) satisfies (V1), (Va) and nonlinearity
f(x,u) satisfies (f2), (fs), (f7). Then the problem (1.1]) has possesses infinitely many

nontrivial solutions {uy}.

Remark 1.1. Compared with problem , we extend the equation to operator
A, because operator Ay is more complicated with the addition of function A\. As
can be seen from [7], when the function \ is smooth, then A is the general operator
class studied by Homander in [5], and is hypoelliptic. The typical example is the
Grushin-type operator, which means that Ay is a generalization of Grushin-type
operator. Later, Ay belongs to the more general X — elliptic operators introduced
in [10], and has some of the same important homogeneity as the classical Laplacian.
Therefore, it is meaningful for us to extend the problem to a more general

Kirchhoff-type equation, and it is applicable to more environments.

Now, we give an example that satisfies all the assumptions of Theorem as
follows f(x,u) = ulsin z|-+|u[*u| cos z|, obviously, F(z,u) = Ju?|sinz|+2|ul*| cos z.
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Of course, there is also f that satisfies the sublinear condition, such as f(z,u) =
§|u|_%usin2m + g|u|_% cos?z, and F(z,u) = |u|? sin®z + |u|% cos? z. Through
simple calculations, it can be verified that the assumptions of each theorem are
satisfied.

The main structure of this article is as follows. In the second section, we give
some preliminary knowledge and main theorems. In the third section, we use the
symmetric mountain pass theorem to prove Theorems and In the fourth
section, we apply the theorem in [18], to get the multiplicity result of the solution.

2. PRELIMINARIES

We recall the functional setting in [7, B]. We consider the operator of the form

N
Ay =Y 02,(\0a,),
=1

e}

Bwi ?

strictly positive and of C' outside the coordinate hyperplane, i.e. \; > 0,i =
1,...,N in RY \(T], where [] = {(x1,...,2n) € RV : H?’:lxi = 0}. As in [7], we
assume that \; satisfy the following properties:

1) M(x) =1, N(z) = N1, o oy@im1), i =2,...N;

(2) Forevery x € RNV, \;(z) = \i(z*), i = 1,..., N, where 2* = (|1],...,|zn])

if = (z1,...,2N);

where 0,, = i =1,...,N. Here the function \; : RY — R are continuous,

(3) There exists a constant p > 0 such that
0 < 20z, Ni(x) < phi(x), Vhe{l,...,i—1},i=2,...,N,
and for every x € Rﬂ\_’ ={(z1,...,on) ERN 12, >0, Vi=1,...,N};
(4) Exists a group of dilations {d&; }+~0
8 RN 5 R, 64(z) = 0u(wr,...,zn) = (t9 21, ..., tVay),
where 1 < €1 < €3 < ... < ey, such that \; is §; — homogeneous of degree
€ — 1, ie.
Ni(0(x)) =t N(x), Ve e RN, t>0,i=1,...,N.
This implies that the operation Ay is é; — homogeneous of degree two, i.e.
Ax(u(8(x))) = t2(Axu) (0 (), Yu € C=(RN).
We denote by @ the homogeneous dimension of RN with respect to group of

dilations {d; }+0, i-e.

Q:=¢e +-+en.
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The homogeneous ) plays a crucial role, both in the geometry and the functional
associated to the operator Aj.

Now, we denote by V[/'/\l’2 (R™M) the closure of C&(RY) with respect to the norm

1
2
oy = ([ (Fvul? + a)ie)
A ]RN

is Hilbert space with the inner product
(u,v) = / (VauV v 4+ uv)dz.
RN
Under the hypotheses (V;), we define space

E = {u € W/\I’Q(RN) : V(x)utde < +oo} ,

RN

with the inner product
(u,v) = / (VauVyv + V(z)uv) de,
RN
and the norm
Jull? = [ (9sul? + V) )da.
RN
Here, we denote || - ||, as the norm of Lebesgue space LP(RY).

Proposition 2.1. Under the assumptions (Vi) and (Vz), the embedding E —
LP(RN) is compact for every p € [1,2%).

Proof. In [I5], we know that under the assumption of (V;), the embedding
E — LP(RY) is continuous for p € [2,2}], and E — LP

P (RY) is compact for

p € [1,2%). Then there are constant C), such that
(2.1) lully < Cyllull, Vu € E.

When we want to embedding F — LP(R") is compact for p € [1,2}) under the
assumption of (V1) and (V3), it suffices to prove the result for p = 1. Assume u,, — u

in E. For any R > 0, write

(2.2) / |ty — u|dz = / |, — uldz + / |ty — u|da.
RN lz|<R lz|>R

By the Holder inequality to obtain that
/ V=ldx | =og(1),
|z|>R

(2.3) / |y, — uldz < / Vun — ul*dz
lz|>R |z|>R

where og(1) is a quantity that converges to 0 as R — oo uniformly for n. Then
(RM). O

N
Nl

u, — u strongly in L' (RY) since u,, — w in L},
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Remark 2.1. Several important problems arising in many research fields such
as physics and differential geometry lead to consider semilinear variational elliptic
equations defined on unbounded domains of the Euclidean space and a great deal
of work has been devoted to their study. From the mathematical point of view,
probably the main interest relies on the fact that often the tools of nonlinear
functional analysis, based on compactness arguments, can not be used, at least
in a straight forward way, and some new techniques have to be developed. The
seminal paper [II] by Lions has inspired a (nowadays usual) way to overcome the
lack of compactness by exploiting symmetry. This approach is fruitful in the study
of variational elliptic problems in presence of a suitable continuous action of a
topological group on the Sobolev space where the solutions are being sought.
Here, we use another skill following the idea of Rabinowitz [17] to get the Sobolev
embedding is compact by the potential V. Luyen and Tri [I5] use the idea of
Rabinowitz to get the Sobolev compact embedding, but they only obtained the
embedding map from E into LP(R") is compact for 2 < p < 25. We want to study
the sublinear case, so we give a wider interval for the Sobolev embedding. Moreover,

Assumption (V3) makes V' look like a well-shaped potential.

Now, we define the following energy functional

1 b ?
J(u) = 7/ (a|Vau|?> +V (z)u?)dz+ / |V \u|?dz —/ F(z,u)dz, u € E.
2 RN 4 RN RN
Obviously, given constant a > 0, [on (|Vaul?+V (z)u?)dz is equivalent to [p (a|Vaul?+
V(z)u?)dx. Hence, the norm of u in E denoted by

2

[Jull = (/RN (a|Vaul® + V(x)u2)dx)

that is,

(2.4) T(u) = %HuHQ + g (/RN vAuPdag)Z - /RN Fla, u)da.

Definition 2.1. A sequence {u,} C F is said to be a (C). — sequence if J(u,) — ¢
and J'(u,)(1 + ||unll) — 0. J is said to satisfy the (C). — condition if any (C). —

sequence has a convergent subsequence.

Definition 2.2. A sequence {u,} C FE is said to be a (P.S) — sequence if J(u,) < ¢
and J'(u,) — 0, n — oo. J is said to satisfy (P.S)—-condition if any (PS)—sequence

has a convergent subsequence.
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Definition 2.3. Let X be a Banach space, J € C'(X,R) and ¢ € R. Set

Y={Ac X —{0}: Aisclosed in X and symmetric with respect to 0},
Ke={ueX:Ju)=c¢J(u)=0}, Jo={ue X:J(u)<c},

for A € 3, we say genus of A is n denoted by v(A4) = n if there is an odd map
¢ € C(A,R" . {0}) and n is the smallest integer with this property.

Theorem 2.1. ([I8]) Let X be an infinite dimensional Banach space, X =Y & Z,
where Y is finite dimensional. If J € C*(X,R) satisfies (C). — condition for all
c>0, and
(J1) J(0) =0,J(—u) = J(u) for all u € X;
(J2) there exist constants p, o > 0 such that J|oppnz > ;
(J3) for any finite dimensional subspace X C X, there is R = R(X) > 0 such
that J(u) <0 on X ~ Bg.

Then J possesses an unbounded sequence of critical values.

Theorem 2.2. ([I8]) Let X be a Banach space, J be an even C* functional on X
and satisfy the (PS) — condition. For any n € N, set

Y, ={AeX:~v(A) =n}, ¢, = inf supJ(u).

A€Zn yeA
(1) If ¥, # 0 and ¢, € R, then ¢, is critical value of J;
(ii) If there exists k € N such that ¢, = ¢p41 = -+ = Cpyp = ¢ € R, and

¢ # J(0), then v(K.) = k+ 1.

3. THE SUPERLINEAR CASE

Lemma 3.1. Assume (V1), (Va) and (f1) are satisfied. Then J(u) is well-defined
and of class C*(E,R) and
(3.1)

(J'(u),v) = (u,v) +b (/RN |V,\u|2dm) /RN ViuVyvdx — flz,v)vdz, u,v € E.

RN

And, the critical points of J(u) in E are also solutions of problem (1.1)).
Proof. We can get from (f;), one has
C C
(3.2) |F(x,u)| < ?IW + 2w, V(z,u) € RN x R,
p

for 2 < p < 2%, where F(z,u) = fé‘ f(z,t)dt. It can be known from Proposition
and the above formula, J(u) defined by (2.4)) is well-defined on E.
53



J. CHEN, L. LI, SH. CHEN

Let H(u) = [pn F(z,u)dz. For all u,v € E and 0 < [t| < 1, by the Mean Value
Theorem and (f1), there exist 6 € (0,1) such that
|F (2, u(z) + to(x)) — F(z, u(z))|
I
<Cilu(@)l|o(@)] + Cilv(@)” + Colu(z) + Otv(z) P~ o ()]
<Cilu@)[Jv()] + Cilv(@)* + 277 CoJu(@) [P~ o ()| + [v(z)[P).

= |f(@, u(z) + Otv(z))v(z)]

The Holder inequality implies that
[ @ lo@dz <[u@)lp @) 2.
RN
| @l <@l e
]RN
[ @l o@lde <) ol

2 2(p—1
[ et@)rde <o) 2@ 20,
RN 3

2(p—1)

Hence,
v(z) := Cilu(@)ljo(@)] + Ci|u(@)[* + 277 C(|u(z) [P~ Ho(z)] + Jo(2)P) € LN (RY).

which implies H(u) € C'(E,R). By Lebesgue’s Dominated Convergence Theorem
and Mean Value Theorem, we obtain
H - H F - F
(H'(u),0) = lim (u + tv) (u) ~ im (z,u+ tv) (z,u)
t—0T t t—0+ JpN t

= lim f(z + tbv)vdx / f(x,u)vde.
t—0t JrN RN

dx.

Next, we prove the continuity of H'. Let u,, — u in E, then u,, — u in L?(RY) by
Proposition for p € [1,25). Note that

[ (un) — H'(w)|| = sup [(H'(un) — H'(u),v)]

llvll<1

/ [f(xaun) - f(m,u)]vdx
RN

<smg4Nuumm—fWWMMm.

llvll<1

= sup
llvll<t

By the Holder inequality

sup [ 1f(@,1a) = flaw)llolde

llvl<1
p—1

p=1 1
< sw ([ 1)~ feoitan) T ([ o) o
o<1 \JRN RN
as n — oo. Hence, H' is continuous. This shows that (3.1)) holds. Moreover, by a

standard argument, it is easy to show that the critical points of J in E are solutions

of problem (1.1)). O
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Lemma 3.2. Assume that (V1),(V2), (f1),(f3), (f4) are satisfied. Then any (C). —

sequence {uy} of J is bounded in E.

Proof. We will use the contradiction method to prove the boundness of {uy,},

assume that ||u,| — oo, as n — co. Let {u,} C E be (C). — sequence such that
(3.3) J(un) = ¢, (1+ |lunl))J (un) — 0,

then we have

(3.4) cH13 J(un) -+

J0 (), ).

Setting vp := 2y, then |lvn||=1. And assume that

v, = v in F,
vp — v in LP(RY), for 1 < p < 23,

vp(2) = v(z) ae. z € RY,

If v = 0, then v, — 0 in LP(RY), Vp € [1,2}), and v, (z) — 0 a.e. in RY. By (f4)

and (3.4), we have

c+1 1 ( 1, .,
2 ot () - {0 )
lunll® ™ Jlunl? 4
(3.5) - <1||u ||2+/ 1f(as n)tn — Fz,u )dm)
. ||un||2 4 n RN b n n b n
1 u?
20 —"5 5 v2d$7
4 RN IIunII2
as n — 0o, which 1mphes =+ < 0. Thus, it is a contradiction.

If v # 0. For 0 < § < &1, let A,(00,61) = {z € RN : 6y < |u,| < 61}. Setting
B :={z € RY : v(x) # 0}. Thus, meas(B) > 0. For almost every x € B, we have
lim,, s 00 |Un(z)| = c0. Hence, B C A, (rg,00) for large n € N, where rq is given in
(f3). By (f3), we have

Pl _ @)

n—oo  ||uy|* n—oo  |uy,|*
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From Fatou’s Lemma, (3.2)) and (3.3]) we can get

c+o(1) 5 J(un)

0= 1 - =
nooo fun|t - nooo [up
1 1 b 2
= 1 _— — n 2 — V nzd _/ F y n d
5 T (2'“ | +4(/RN' Atn] ””) o T (B un) T
b (f N \VAuanx)Q 1 1
=— 1 R lim ——— (=, ||?
I Tt A e gl

—/ F(z,u,)dx — / F(z,up)dx
An(0,70) An (ro,+00)

(3.6)
b 1 F ) lonl? F(x,u,
<o+ dim | o f/ LZ) v |2|vn\2d:177/ Luél)dx
4 noo \ 2llun| An(0re)  [unl® [usl An(rotoo)  luall
b . 1 Cl CQ _92 1 2 F(:L‘7’Ll,n) 4
<- + limsu [—i— <+rp 7/ v |“dx — ——— v, |"dz
AT e T T )l S T T
F n
<é + C3 — lim inf/ M|vn|4dx = —00,
4 n—oo f 4. |un|4
which is a contradiction. Thus, {u,} is bounded in E. O

Lemma 3.3. Assume that (V1), (Va), (f1) — (f3) and (f5) are satisfied. Then any
(C)e — sequence {u,} of J is bounded in E.

Proof. The proof method is similar to Lemma also assuming that ||u,|| —
00, as n — oo. We may assume that v, — v in E, by Proposition [2.1} v,, — v in
LP(RY) for 1 < p < 2%, and v, (x) — v(x) a.e. z € RV,

If v = 0, we define

totly) = J(tuy,).
J(tnuy,) Jnax, (tun)

For any K > 0, set v,, = V4K 2 = V4Kuvy, then |v.]|> = 4K. By (3.2) and

Proposition [2.1] we have

/ F(z,v,)dz
RN

Therefore, for a sufficiently large n such that

C C
< —1/ Wn|2dx+—2/ [On|Pdx — 0, n — 0.
2 Jrw P Jry

1 b 2
(3.7) J(tpun) = J(Tp) = =|[oal* + = / |V AT |?d —/ F(z,7,)dz > K.
2 4 RN RN
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Hence, by(f3), (fs5), we obtain

) = 3 )i} =3l + [ () = Floun) ) do

1 1
2f||tnun||2 + / (f(ac,tnun)tnun — F(x,tnun)> dx
4 v \ 4

1
=J(tpun) — 1 (J (tpun), tntin) -

According to , which implies lim, o J(tpu,) = 00, and due to the choice
of t, we know (J'(tnuy), tyu,) = 0. That is, J(u,) — 3 (J'(un),un) > 0o, which
contradicts with .

If v # 0, contradictions can be obtained by similar argument as . The proof

is complete. ([

Lemma 3.4. ([20]) Assume that p1,p2 > 1,7, > 1 and Q@ C R. Let g(x,t) be a

Carathéodory function on RN x R and satisfy
(3.8) lg(x, t)| < ar[t| P~V 4 ag|t| P2~V v(x,t) € RN xR,

where ay,az > 0. If u,, — u in LP*(RN) N LP2(RN), u,(2) — u(z) a.e. x € RV,
then for any v € LP19(RY) N LP29(RY),

(3.9) lim [ [g(e,un) — gla, )| |o|*da = 0.

n—oo RN

Lemma 3.5. (|20]) Assume that p1,p2 > 1,7 > 1 and Q C R. Let g(x,t) be
a Carathéodory function on RN x R and satisfy (3.8)). If u, — w in LP1(RN) N
LP2(RY), u,(x) — u(z) a.e. v € RN, then

(3.10) lim lg(x, up) — g(x, w)|" |uy, — u|ldz = 0.

n—oo RN

Lemma 3.6. Assume that (V1),(Va), (f1),(f3) and (f4) or (fs) are satisfied. Then

any (C). — sequence {u,} has a convergent subsequence in E.

Proof. By the previous lemma, we know that {u,} is bounded in E. Going if
necessary to a subsequence, we can suppose that u,, — u in E. By Proposition [2.1
u, — win LP(RY) for 1 < p < 2%, and together with by Lemma one has

(3.11) /RN |f(z,un) — f(z,u)||un — uldz — 0,n — oo.
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Observe that,

(J' (un) — J' (w), tp — u) =|Jtn, — ul®> +b </ VAun|2dx> / Viaun Va(u, —u)de
RN RN

—b(/ qu|2da:)/ VauVy(uy, — u)dz
RN RN

- /RN [f (2, un) = 2, )] (un — u)dx
(3.12) =[Jun —ul)® +b (/RN an|2dx> /RN Vil — ufde

—b(/ \VAu|2—/ |V)\un|2dx)/ VauVy(un — u)dz
RN RN RN

_ /RN [f (2, un) — fz,w)] (un, — u)da
>l =l = [ [FGon) = £ )

—b(/ \VAu|2—/ |V)\un|2dw)/ VauV(u, —u)dz.
RN RN RN

et — ull® < (un) = (), 2, — ) + /R () = ) (o — w)de

—I—b(/ |V,\u|2—/ |V,\un2da:>/ VauV (i, — u)dz.
RN RN RN

By the definition of weak convergence, we have

It is clear that,

(3.13)

(3.14) (J' (up) — J'(w), up, —u) = 0, n — oco.

_ 1
Set E = {u € L*(RY) : Vyu € L*(RY)} with the norm [lullz = ( [z~ [Vaul?dz)?.
Then the embedding F — E is continuous. Hence, u,, — u in E. According to the

boundedness of {u,} in E, one has
(3.15) b </ |V aul? — / |V>\un|2dx> / VauVy(un, —u)dz — 0, as n — oo.
RN RN RN

From the (3.11)-(3.15) we can get u, — w in E, as n — co. O

Let {e;} is an orthonormal basis of ' and define X; = Re;,
Ve =@ X;, Z =02, 1 X;, kel
Lemma 3.7. Assume that (V1) and (V) are satisfied. Then

B = sup lull, = 0, k& — o0, p€[1,2}).
u€Zy,|lul|=1

Proof. It is clear that 0 < Byy1 < Bk, so that By — 6 > 0, £ — oo. For

every k € N, there exists u, € Z, such that [jug|ls > 2 and [luz| = 1. We denote
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v = Zj‘;l c;je;, for any v € E/ by the Cauchy-Schwarz inequality, one has

o0 oo o0
[k, o) = | [ s s || =1 ums D cies || < llunll | Y ciey
i= i=k i=k
1 1 1
2 2 2

o0 o0 o0
Zc? Ze? = Zc? — 0, as k — oo,
j=k j=k j=k
which implies that ur, — 0 in E. By Proposition we have uy, — 0 in LP(RN).

Hence, letting k£ — oo, we get 8 = 0. (]

Lemma 3.8. Assume that (V1), (Va) and (f1) are satisfied, there exist constants

p, a =0 such that Jx|op,nz,, = «.

Proof. By Lemma [3.7] we can choose an integer m > 1 such that
3.16 5 <
(3.16) Jul < QC

According to (2.4]) (3.2]) and ( , for u € Z,,, we have

ﬂ@:bWW+i(@|%m%02—/ Fla, u)dz

1 Cs
>f||u||2 f/ F(z,u)dx ,” 1> - fll 15— —=Ilull?
RN p

Lo o P21
1<||uu ul) = > =a >0,

—lull, Jlull? < T@”“”pv Vu € Z,,.

choosing p = [Ju|| = 3. O
Lemma 3.9. Assume that (V1), (Va), (f1) and (fs) are satisfied. Then for any
finite dimensional subspace E C E, there is R = R(E) > 0 such that
J(u) <0, Yu € E \ Bg.
Proof. For any E C E, there is a positive integral number m such that E C E,,.

Since all norms are equivalent in finite dimensional space, there is a constant > 0

such that

(3.17) ulls = nllull, Yu € En,.

By (f1) and (f3), one has

(3.18) F(x,u) = 6ul* — Cs|ul?, V(z,u) € RN xR,

for any 6 > ; 4 and constant Cs > 0. Hence, by (3.17) and -, we have

I0) < glulP+ hall =Sl +Calul < (5 + 0603) fulP= (51 - 7 ) Il € .

Hence, there is a large R = R(E) > 0 such that J(u) <0 for allu € E~ Bg. O
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Proof of Theorem[I1 Let X = E, Y =Y,, and Z = Z,,. Obviously, J(0) = 0 and

(f2) implies J is even. By Lemmas and all conditions of Theorem
are satisfied. Thus, problem (|1.1)) possesses infinitely many nontrivial sequence

solutions {uy} such that J(up) — oo as k — oo. O

Proof of Theorem[I.4 Let X = E, Y =Y,, and Z = Z,,. Obviously, J(0) = 0 and

(f2) implies J is even. By Lemmas and all conditions of Theorem
are satisfied. Thus, problem (|1.1)) possesses infinitely many nontrivial sequence
solutions {uy} such that J(ug) — oo as k — oo. O

4. THE SUBLINEAR CASE

Lemma 4.1. Assume that (V1),(Va),(f2), (f6),(f7) are satisfied. Then the J satisfies
the (PS)-condition.

Proof. Obviously, from (V1), (fs), we know the functional J € C'* and also have
the derivative functional (3.1). According to the (fs), one has

(4.1) P, u)] < Jul” + [u]%, ¥(z,u) € RY x R.

From the above formula, for 1 < g1 < g2 < 2, we can get

1 b ?
s = gt + 5 ([ 9sar) - [ P
2 1\ Jan .
1 1
(1.2 > gl = [Pl Gl - [ (a4 jul)ds
2 RN 2 RN

1
= Slull® = CL (flul™ + [lu]**) — oo,

as ||u|| — oo. Hence J is bounded from below. Next we show that J satisfies (PS)-
condition. Suppose that {u,}n,en C E is (PS)-sequence. Therefore, according to
(2.1)), there exist a constant n > 0, such that

(4.3) [ulla < Collul <.
By Proposition let a subsequence still denoted by {u,}, such that

Up — u in B,
t, — win LP(RN), for 1 < p < 23.
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It follows from (fg) that

/ |f($7un)*f(l’,u)||un—u|dx
RN

</\
RN

(4.4)

<q1 (/ |un _ ulqldl‘> a1 [(/ |Un|q1daj> a1 _ (/ |uq1dx> a1
RN RN RN
+ g2 (/ [t — uq2dx>
RN

a1(Jun] ™7 = a7 + ga(un| 27 — w2 |fu, — ulde

| S

2

’ [(/ |unq2dm> - (/ |u|q2dx> " ] — 0,
RN RN

as n — 00. According to (3.12)), we know

lun = ull® (I (un) = J'(w), wp — u) +/ (f (@, un) = f(2,u))(un — u)dz

RN

+b(/ \VAu|2—/ |V,\un|2dx>/ VauVy(u, — u)dz.
RN RN RN

It follow from (3.14)), (3.15), (4.4) and (4.5), we have ||u, —ul| = 0, as n — co. O

Proof of Theorem[I.3 We take n disjoint open sets B; for any n € N, such that
U, B: € B. Let u; € (Wy*(B;) N E) ~ {0} and ||ug||p = 1, i = 1,2,...,n, and

(4.5)

Ay = span{uy,uz, - ,unt, Ao ={u € Ay :|jul|lp =1}

For any u € Ay, there exist 7; € R, i = 1,2, ...,n such that
(4.6) u(zr) = Znui(x), r € RV,

Hence,

qui (x

[l gs

(/RN|u|q3dx);3:</RN )qsdx>q3

(4.7) = (Zlnl‘”/ |ui(z I‘Bdfr> 3,

n

IIUI|2=/ (a|Vaul* + V() =
RN N
(4.8) B =t

= rlul® = ZT&
i=1 i=1

which together with (4.7]) implies there exists a constant x > 0 such that

72 /~ (a|Vui]* + V(x)ui)dx

B;

(4.9) Allull < llullgs, u € A
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It follows from (4.6) — (4.9) and (f7), we have
bt 2
J(tu) = 2 ||ul|* + = (/ |V,\u|2dx> —/ F(z,tu)dx
4 RN RN

bt "
<t2|\u||2+j|\u||4—2/é Flx, tryus)da
=1 i

bt
<P+ 2l - e 3ol [ fudeds

=1 g

2 2 bt4 4 q3 q3
= lull” + -l = &et a3

2 2 bt4 4 q3 q3
S Eull® + - flull® = €r)® flu]
4

bt
=1+ " E(tr)® = —0, u € Ag.

Hence, there exist 0 < ¢ < 1 and o > 0 such that J(tu) < —o, u € Ag. Let
n
h={turue Ao}, B=1 (11,72, ,Tn) GR":ZTf < 2
i=1

Therefore J(u) < —o, u € A,. And by (f2), we know J is even and J(0) = 0, can
deduce Ay, C J77 € X. Also, in view of (4.6), (4.8)), there exist an odd mapping
¢ € C(Ay,dB). By properties of the genus, we obtain that

(4.10) Y(J77) 2 (Ay) = n.
Hence, we get for any n € N, there exists o > 0 such that y(J~7) > n. Now let

¢, = inf sup J(u).
" Aeznueg ( )

In view of J is bounded below on E and (4.10)), one has
(4.11) —o00<c, < —0o<0.

In other words, for any n € N, ¢, is negative real number. Thus, we can apply the
Theorem to get that problem (|1.1)) has infinitely many solutions.
O
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Abstract. Let P(z) be a polynomial of degree n which does not vanish in |z| < 1, it was
proved by S. Gulzar [Anal Math 42, 339-352 (2016). https://doi.org/10.1007/s10476-016-0403-7]
that

1P (2)Il,,
p I+ 2,

(n—=1)..(n—s+1)
2S

2P (2) + ,Bn

P R R
(2) 2 2

Sn(nfl)...(nferl)H(lJr 'B)er p

p
for every B € C with |[8] < 1,1 < s < nand 0 < p < oo. In this paper we extend the above
result to the growth of polynomials and also generalize the above and other related results in this

direction.

MSC2020 numbers: 30C15; 26D10; 41A17.

Keywords: polynomials; integral inequalities; complex domian.

1. INTRODUCTION

Let P,, denote the space of all polynomials of degree at most n over the field of
complex numbers. The subject of inequalities for polynomials and related classes
of functions plays an important and crucial role in obtaining inverse theorems in
Approximation Theory. The extremal problems of analytic functions and the results
were some approaches to obtaining the classical inequalities are developed on using
various methods of the geometric function theory are known for various norms and
for many classes of functions such as polynomials with various constraints and in
various regions of the complex plane. A classical result due to Bernstein [4] is that,
for two polynomials P(z) and T'(z) with degree of P(z) not exceeding that of T'(z)
and T'(z) # 0 for |z| > 1, the inequality |P(z)| < |T(z)| on the unit circle |z| =1
implies the inequality of their derivatives |P’(z)| < |T'(z)| on |z| = 1. In particular,
for T'(z) = 2" max,|— |P(z)| gives a famous Bernstein inequality namely, if P(z)

is a polynomial of degree n then

(1.1) max |P'(2)] < nmax |P(2)].

On the other hand, concerning the growth of polynomials we have for P € P,
and Q(z) = 2"P(2), then |Q(2)| = |P(z)| for |z| = 1. This implies |Q(z)| <
max|, - |P(z)| for |z| = 1. This further implies, by using maximum modulus
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theorem, that |Q(z)| < max, =1 |P(z)| for 2| < 1 or equivalently |z"P(1)| <
max|, =1 |P(z)|. If we take z = €’/R where § € [0,27) and R > 1, we get
(e JR™)P(Re?)| < max|,— |P(z)|. Hence, the growth estimate for |P(z)| over
a large cricle |z| = R in comparsion with its maximum modulus over the unit circle

|z| =1 is given by

These inequalities and are related with each other and have been the
starting point of a considerable literature in polynomial approximations and these
inequalities were generalized and extended in several directions, in different norms
and for different classes of functions.

Define the standard Hardy space norm for P € P,, by

1/p

27
1 4
1Pl = (5 [IPEOras) . o<p<o
0

and the Mahler measure by
2

1 .
1Pl =exp (- [ toelP(eian).
Y[
0

It is well known that lim,_.o1 || P||, = || P|lo. We also note that the supremum norm
of the space H® satisfies ||P||oo := lim, o || P||, = max; = [P(2)].
It P € P, then

13) POl <nlPEl,.

WV
—_

and for R>1

(1.4) I1P(R2)[l, < B* [ P(2)] p>0.

P>
The inequality is due to Zygmund [16], whereas the inequality is a simple
consequences of a result due to Hardy [8]. Arestov [2] verified that remains
true for 0 < p < 1 as well. Also inequalities and are further generalized
by Aziz and Rather [3] as

(1.5) HZP'(Z) + 5%P(Z)HP <nll+ g‘ IPGIL,,  p>0,
and
00 [P es(52) P <l s (5) e, >0

respectively for every 8 € C with |§| < 1 and R > 1. For p = oo, inequalities (1.5)
and (1.6) are due to Jain [I0].
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The inequalities (1.3)) and (1.4) can be sharpened if we restrict ourselves to the
class of polynomials having no zeros in |z| < 1. In fact if P(z) # 0 for |z| < 1, the
inequality (L.3)) can be replaced by

PG,

(1.7) 1P ()], < 0<p< oo,
T
whereas the inequality (1.4) can be replaced by
1+ Rz,
(1.8) I1P(R2)]l,, <HW I1P()l,,  0<p<oo.

For p > 1, inequality (1.7) is due to de Brujin [6] and inequality (1.8) is due to
Boas and Rahman. Rahman and Schmeisser [14] extended both for 0 < p < 1. For
p = o0, inequality was conjectured by Erdos and later verified by Lax [12] and
inequality by Ankeny and Rivlin [I]. Inequalities and are further
generalized by Aziz and Rather [[3] corollary 5, 6] as

/ " 3 1Pl
(1.9) +P (Z)+B§P(Z) pgnH(l+2>z+2 pm, 0,
and
P +5 (232 P
p
. R+1 R+1\"|| PGl
(1.10) H(R +ﬁ< 5 >)z+1+5( 5 ) ,,H1+z||2’ p>0,

respectively for every 8 € C with |§| <1 and R > 1. For p = oo, inequalities
and are due to Jain [I0] which were further generalized by Hans and Lal [9]
for s derivative of polynomials. Recently S. Gulzar [7] obtained an L, version of
Hans and Lal [9] results and proved following theorems:

Theorem A. If P € P, then for f € C with |5] < 1,1<s<m,and 0 < p < o0

(1.11) | 1 + @, -

2P (2) +5%P(Z)H < n
P

where ns =n(n—1)(n—2)...(n —s+1).
Theorem B. If P € P,, and P(z) does not vanish in |z| < 1, then for g € C with

IBl<1,1<s<n,and 0 < p <0
P(z

(1.12) ’ R +Z||

2 PO(z) + B2 P(:)| <
p

where ngs =n(n—1)(n—2)...(n —s+1).

2. MAIN RESULTS

In this paper, we first present the following interesting result which is compact

generalization of inequalities (1.3) — (1.6) and (1.11)).
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Theorem 2.1. If P € P,, then for $ € C with |5 < 1,0<s<n, R>1, and
0<p<x@

2P (Rz) + B(R+ 1)"”%%)
p
(2.1) < s1C(n,s) |R"™ + (R + 1)"—82% 1P(2)]l, -

The result is best possible and equality in (2.1) holds for P(z) = ¢z™, ¢ # 0.

For taking R =1 in (2.1) we obtain (1.11)). The following result is obtained by
letting p — oo in (2.1).

Corollary 2.1. If P € P, then for € C with |8] < 1,0<s<n, R>1, and
0<p<x@
_s8lC(n,s)

ZPY(Re) + SR+ 1"

P(z)

oo

(2.2) < S0, ) [ + (R+ 1" 2| P(2)..

The result is best possible and equality holds for P(z) = cz™, ¢ # 0.

Taking 8 = 0 in ([2.1)), we get the following compact generalization of inequalities
of (T3) and (T).
Corollary 2.2. If P € P,,, then for0<s<n,R>1, and 0 < p <

(2.3) ‘ 2P (Rz)

< s!C(n,s)R™™° ||P(z)||p )

P
For taking both s =1 and R =1 in , we get inequality and for taking

s = 0, inequality reduces to .

Remark 1. Inequality can be obtained by putting s =1 and R =1 in

and for s = 0, inequality reduces to (|1.6)).

Next, we present the following compact generalization of the inequalities , ,

7 and '

Theorem 2.2. If P € P, and P(z) does not vanish in |z| < 1, then for § € C with
B/ <1,0<s<n, R>1,and 0 < p< 0

(2.4)
PO (R2) + (R4 12
p
YA B 1P,
< slC(n, R R+1 — R+1 —| —.
<s (nS)K HREDT S 2+ (R o | T2l

The result is best possible and equality in (2.4) holds for P(z) = az™ + b, |a|] =
|b| = 1.
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Remark 2. By letting p — oo in (2.4)), we obtain a result due to Jain [[LI],
Theorem 3]. Inequality can be obtained by putting R =1 in .
The following is compact generalization of inequalities and is obtained
by putting 8 =0 in .

Corollary 2.3. If P € P,, and P(z) does not vanish in |z| < 1, then for 0 < s < n,
R>1,and0<p<o0

a*(1)
dzs

1P,

2*PU)(Rz) .
p 1+ 20,

< s!C(n, )
P

(2.5) ‘

’RTL—SZ +

For s = 1 and R = 1, inequality (2.5) reduces to (1.7) and inequality (1.8) is
obtained by putting s = 0 in (2.5). Also for s =1 and R = 1 in (2.4)), we obtain
(1.9) and inequality (1.10) can be obtained by putting s = 0 in (2.4)).

Finally, we establish the following result for self-inversive polynomials.

Theorem 2.3. If P € P, and P(z) is a self-inversive polynomial, then for 5 € C
with [B| <1,0<s<n, R>21, and0 < p < o0
(2.6)

PO (Rz) + (R + 1) 20

1P,

< s!lC(n, ) .
p 11 +2,

p
‘ (R"_S +(R+ 1)"_52ﬁn) z+ d;g) +(R+ 1)"_52%

If we let p — oo in (2.6)) , we obtain the following result:

Corollary 2.4. If P € P,, and P(z) is a self-inversive polynomial, then for R > 1,
and g € C with |8 <1
(2.7)

2 PO(Rz) + (R + 1)“%%%)
S'C(TLS) n—s n—s ﬁ ds(l) n—s 5
< 2D s i e ay= || 20 4 vy S e
3. LEMMAS

For the proof of these theorems, we need the following lemmas. The first lemma
is the following well known-result ([[I3] Theorem 14.1.2 and its proof , corollary
12.1.3] and [[6] Theorem 1 and its proof]).

Lemma 3.1. Let F € P, and let P be a polynomial of degree at most n, such that
|P(2)] < |F(2)| for |z| = 1. If F(2) # 0 for |z| <1 (resp. |z| > 1) and for every
z € C and every a, P(z) # ¢'“F(2), then
() IPG)] < [F()] for |2] < 1 (resp. |2] > 1),
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1 and
1.

(ii) F(z) + BP(2) #0 for |z] <1 (resp. |z| > 1) and B € C with |f|

<
(111)P(z) + AF(2) # 0 for |z] <1 (resp. |z| > 1) and X € C with |\ >

Lemma 3.2. If P € P, and P(z) have all its zeros in |z| < 1, then for every

R>1, and|z| =1,
R+1\"
pa) > (554 1P,

Proof. Since all the zeros of P(z) lie in |z| < 1, we write
n
P(z) =c H (z —rje),
j=1

where 7; < 1. Now for 0 < 0 < 27, R > 1, we have

R? 412 — 2Rr;j cos(0 — 6;) 12
| 1472 —2rc08(0 — 0;)

: 1
S Bl N G e G T
1—|—’I“j 2

P ) (5

j=1

Ret? — T e

O

Hence
Reie _ ,,,.jeiej

R

P(Re')
‘ P(e')

for 0 < 6 < 2. This implies for |z] =1 and R > 1,
R+1\"
pra) = (B34 P,
which completes the proof of Lemma [3.2] O
By applying lemma [3.2] to the polynomial P*(z), (1 < s < n), we obtain

Lemma 3.3. If P € P,, and P(z) have all its zeros in |z| < 1, then for 1 < s < n

R+1ns

‘P(s)(Rz)‘>< ’P(s)(z)‘, R>1 and |2|=1.

Lemma 3.4. If P € P,, and P(z) have all its zeros in |z| < 1, then for 0 < s < n,
s!C(n, s)

s p(s) >
2 PO(z)] > 2T

|P(z)], R>1 and |z]=1.

The above lemma is simply consequences of repeated application of Turdn theorem
[15].
Lemma along with lemma (3.3)) leads to following lemma:

Lemma 3.5. If P € P, and P(z) have all its zeros in |z| < 1, then for 0 < s < n,
_sslC(n,s)
2'IL
and for every B € C with |B| < 1, the zeros of polynomial
s s n—ss!C(n,s
2*P)(Rz) + B(R + 1)"—=26(m3) p( )
69
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lies in |z| < 1.

The second part of above lemma is the consequences of lemma [3.1]

The next lemma is due to Jain [IT].

Lemma 3.6. Let F(z) be a polynomial of degree n having all its zeros in |z| < 1
and P(z) be a polynomial of degree not exceeding that of F(z) such that
[P <IF(2), [zl =1,
then for R>1,0< s < n, and |f| <1
s s n—ss!C(n,s
2 PO(R2) + B(R+1)"* 25 P(2)]| <

zSF(S)(Rz)+ﬂ(R+1)”75%]:(2)’ for |z[ > 1.

The next lemma follows immediately from lemma by taking F(z) = Q(2)

where Q(z) = 2" P(1/%).

Lemma 3.7. If P € P, and P(z) does not vanish in |z| < 1, then for every 8 € C
with [B] <1,0<s<n, and R>1

'02(”)13()’

_¢s!C(n,s)
271

(3.1) 2P (Rz) + B(R+1)"

< |[2*QW(R2) + B(R+1)" Q(2)

forlz| > 1,

where Q(z) = 2" P(1/Z%).
Lemma 3.8. If P € P,, and P(z) does not vanish in |z| < 1 and Q(z) = 2" P(1/Zz),
then for every B € C with |8 <1,0<s<n, R>1, and « real

_s!C(n,s)

(ZSP<S> (Rz) + B(R+1)" o

P(z)) ¢o 4 " MAZ) A0 for |z <1,
where M(z) = 2°Q®) (Rz) + B(R + 1)”75&6;(%5)@(2)'

Proof. Since P(2) = Y 7_ja;2’ does not vanish in |2| < 1, therefore by lemma
B.7 for every 3 € C with |8] < 1 and |z| = 1, we have

_s8lC(n,s)

7 QU (R2) + 5 + 1 2 g )

2*P)(Rz) + B(R+1)" P(z)‘ <

=[M(z)] = [z"M(1/2)].

Since P(0) # 0 implies degQ(z) = n. Moreover Q(z) # 0 for |z| > 1 and then

lemma implies that M (z) # 0 for || > 1. Therefore 2" M(1/Z) # 0 for |2| < 1.

Then by lemma for |z| < 1

(ZSP(S)(RZ) +B(R+ 1)"—8%13@)) i + 2" M(1/Z) # 0. O
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Next we describe a result of Arestov [2].
For 6 = (80,01, ,0,) € C"™ and P(2) = X7 a;27 € Py, we define

AsP(z) = Z Sja;z.
3=0

The operator Ay is said to be admissible if it preserves one of the following properties:
(i) P(z) has all its zeros in {z € C: |z] < 1},
(ii) P(z) has all its zeros in{z € C: |z| > 1}.

The result of Arestov [2] may now be stated as follows.

Lemma 3.9. |2 Theorem 4| Let ¢p(x) = ¥ (logz) where ¥ is a convex non decreasing

function on R. Then for all P € P, and each admissible operator As,

2m 2
; S(|AsP(e)])db < ; S(A(8,n)|P(e”)])db,

where A(0,n) = max(|do|, |0n])-

In particular, Lemmaapplies with ¢ : & — P for every p € (0, 00). Therefore,

we have

27 ) 1/p 27 ] 1/p
(3.2) { / (|A5P(ew)|p)d9} < A(6,n) { / |P(ew)|i”d9} .
0 0
From lemma we deduce the following result:

Lemma 3.10. If P € P, and P(z) does not vanish in |z| < 1 and Q(z) =

2"P(1/Z), then for every 8 € C with |[8] < 1,0 < s <n, R > 1, a red, and
p>0,

27
/O

(3.3)

p

do

<ezsap(s)(RezG) + ﬁ(R'i‘ 1)7L—SS'C’2(:”S)P(619)> eta + ezneM(eiG)

d*(1)

< (s! p
< (8!C(n, 9)) Ty

+ (R+ 1)7l—82ﬁn

<Rn—s+(R+1)n—s2/6;) eia+

p 2
[1penpa.
0

where M(z) = 2°Q®) (Rz) + B(R + 1)7’_56‘6‘2(7:&)@(2)

Proof. Since P(z) = Y a;2’ does not vanish in |z| < 1. Therefore by lemma
j=o
the polynomial

AP () = (+PUe) 1o 200

27’7,

P(z)) e 4+ 2"M(1/%)

= s!C(n, s) { (R”S +(R+ 1)”85) e + d;ii) +(R+ 1)"526} anz"+

e+ 81C(n, s) {(d;g) +(R+ 1)n526n> ¢ 4 R"™* 1 (R+ l)nsfn}ao
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does not vanish in |z| < 1 for every § € C with |3] < 1 and « real. Therefore
As is an admissible operator. Applying (3.2]) we get desired result for p > 0. This
completes the proof of lemma, [3.10) O

4. PROOFS OF THE THEOREMS
Proof of Theorem [2.11 By hypothesis P € P,,, we can write

n

k
P(z) = Pi(2)Pa(2) = [[z=2) [] z=2), k=1,
j=1 j=k+1
where the zeros z1, 2o, ..., 2, of Pi(2) lie in |z| < 1 and the zeros zg41, 2k+2, - - - 2n
of Py(z) lie in |z| > 1. Since all the zeros of P5(z) lie in |z| > 1, the polynomial
Q2(z) = 2" "FPy(1/%) has all its zeroes in |z| < 1 and |Q2(2)| = |Pa(2)] for |z| = 1.

Now consider the polynomial

k n
T(z) = Pi(2)Qa2(2) = [[(z — 2) ] (1 —2%),
j=1 j=k+1
then all the zeros of T'(z) lie in |z| < 1, and for |z] =1,

IT(2)] = [P1(2)] 1Q2(2)] = [Pr(2)[ [ P2(2)] = |P(2)] -

Now on applying lemmawe getfor R>1,0<s<n,and |5 <1

S S n—s S!C(n7 S)
2*P®)(R2) + B(R+1) 2nP(z)‘
|
< [0 R + 8+ A7) o ey,
which in particular gives for p > 0,
2 I P
(4.1) / eisOP(s)(ReiH) + B(R 4 1)n—s S 2(:7 8) P(eié) do
0
27 lC’ p
< eisGT(s) (Reie) + B(R T l)n—s wz’(eze) de
0

Since all the zeros of T'(z) lies in |z| < 1, by lemma [3.5| the polynomial

2T (Rz) + B(R + 1"~ 25 T(2),
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has also all its zeros in |z] < 1 for every § € C with |8] < 1. Therefore if T'(z) =
CpZ™ 4 Cp_12" 1+ ... + c12 + cp, then the operator As defined by

|
AsT(2) = 2°T(Rz) + B(R + 1)N*S‘S‘(72(+‘°‘)T(z)
_ S1C(n, 5) (R”S +(R+ 1)“5) en 4 .
ds(1
+5!C(n, s) ( dig +(R+ 1)n_526n> o,
is admissible. Hence by (3.2) of lemma for each p > 0, we have
(4.2)
2T IC P 27
/ 0T (Re) + B(R + 1)”*58‘2(+8)T(ei9) do < (c(8))? / |T(e')|Pab,
0 0

where ¢(8) = max (S!C(n7 s)|R"* + (R + 1)71_82% , slC(n,s)| d;ip +(R+ 1)"‘32%0.
For every f € C with |f] < 1 and R > 1, it can be easily verified that ¢(§) =

slC(n, s) ‘R"_S +(R+ 1)"‘3% . Thus from (4.2), we have

2
. . I P
(4.3) / e“‘gT(s)(Re’e)—i—ﬁ(R—i— 1)n_33 2(;% S)T(ew) do
0
27
sl 0
< (510, )P [ 4 (R L / (TP do.
0
Combining inequalities (4.1]) and (4.3]) and noting that |T'(¢??)| = |P(e??)|, we obtain
2m
is0 p(s 6 n—s S!C(’ﬂ, S) i6 P
/ e P (Re?) + B(R + 1) — ()| df
0
27
BIP 0
< (s!C(n,s))P |[R"° + (R+ 1)"_52—71 /|P(e’ )|Pd6.
0
This proves theorem (2.1)) for p > 0. To obtain this result for p = 0, we simply
make p — 0+. (I

Proof of Theorem [2.21 By hypothesis P(z) does not vanish in z < 1, therefore
by lemmafor every § € C with |8] <1 and 0 <6 < 27
_s!lC(n,s)
277,
_sslC(n,s)
27‘L

(4.4) e PO (Re™) + B(R+1)" P(e")

< |e*Q¥ (Re'?) + B(R + 1)" Q")

)
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where Q(z) = 2" P(1/Z). Also by lemma
(4.5)

27

/

0

e F(0) 4 M (eif)| db

‘ p

< (8! p
< ($1C(n,5)) - -

(Rn_s+(R+1)n_Sﬂ) eia+ ds(l) _’_(R_’_l)n—s%

p 21
/ P(c?) de,
0

where
F(e) _ eisGP(s)(Rew) 4 ﬁ(R'i‘ 1>n—s SICQ(:;L,S)P(e’iQ)
and
i i 1 —ss8!C(n,s i
M(eze) — ezs@Q(s)(Rew) —l—ﬁ(R—l— 1)n s 02(n7 )Q(eza).

Integrating both sides of (4.5 with respect to a from 0 to 27, we get for each p > 0,
21 21

/]

, N—)
e"*F(0) + emeM(ew)’ dfdo

(4.6)
i 5 o, 2°0) EA
n—s n—s i n—s 60
< (s!C(n, s))p/’<R +(R+1) 2n> e S (R+1) on da/\P(e )|[Pd6.
0 0
Now for every real o, t > 1 and p > 0, we have
2 ) 2 )
[ t+e*Pda > [ |14 e"“|Pdor.
0 0
If F() # 0, we take t = |M (e?)/F(0)|, then by (&.4)), t > 1 and we get
2T 2 inGM 7 p
/ COF () + emeM(e“’)’pda - |F(0)|p/ gio . CMED)
F(0)
0 0
2 . 2m
M(eze) p

da > [F(O)P [ |1+ e“[Pda.

| ez PO [ 11+ e o

For F(f) = 0, this inequality is trivially true. Using this in (4.6)) , we conclude that
for every g € C with |8| <1

(4.7)

2 2
/|F(0)|pd0/|1+em|pda
0 0

2m B
< (s!C(n, S))”/ ’ <R”S +(R+ 1)”52ﬂn> e + dd—g) +(R+ 1)”*82%
0

p 2
da / |P(e')|Pd6.
0
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Since
i 8 a*(1) B[
/‘(R +(R+1) 2n)e + s +(R+1) on do
0
2T B ds(l) B p
—/HR +(R+1) o | +W+(R+1) on || da
0
2 ﬁ ds(l) 5 p
0

the desired result follows immediately by combining (4.7) and (4.8]). This proves
Theorem [2.2)for p > 0. To establish this result for p = 0, we simply make p — 0. O

Proof of Theorem [2.3l Since P(2) is a self-inversive polynomial, we have P(z) =
uQ(z) for all z € C where |u| =1 and Q(z) = z"P(1/Z). Therefore for every g € C
with |8] < 1

on

e0QU) (Re™®) + B(R + 1)~ 2GR=Q(e)),

eisep(s)(Rei0)+ﬁ(R+1) n—s s!C(n, S)P 16' ’_

for all z € C. Using (4.4) and proceeding similarly as in the proof of Theorem
we get the desired result. This completes the proof of Theorem (]
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