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1. Introduction

In the present paper, we investigate the existence of ground states solutions for a

modified fractional Schrödinger equation with a generalized Choquard nonlinearity

(1.1)

(−4)
s
u+ µV (x)u+ 2

[
(−4)

s
u2
]
u = (Iλ ∗ F (u)) f(u) +

|u|22∗s(β)−2u

|x|β
, x ∈ RN,

where N ≥ 3, s ∈ (0, 1), 0 ≤ β < 2s < N, µ is positive constant, 2∗s(β) =
2(n− β)

n− 2s
is the critical β-fractional Sobolev exponent, V(x) is a given potential, f ∈ C(R,R)

and F ∈ C(R,R) with F (u) =
∫ u

0
f(t)dt, Iλ(x) = |x|−λ is the Rieze potential of

order λ ∈ (0, N) and (−4)s denotes the fractional Laplacian of order s is defined

as

(−4)sϕ(x) = 2 lim
ε→0+

∫
RN\Bε(x)

ϕ(x)− ϕ(y)

|x− y|N+2s
dy, x ∈ RN,

with ϕ ∈ C∞0 (RN) and Bε(x) denotes the ball of RN centered at x ∈ RN and radius

ε > 0.

The study of existence and uniqueness of positive solutions for Choquard type

equations attracted a lot of attention of researchers due to its vast applications

in physical models [1]. Fractional Choquard equations and their applications is

very interesting, we refer the readers to [2] –[11] and the references therein. The

authors in [9], by using the Mountain Pass Theorem and the Ekeland variational

principle obtained the existence of nonnegative solutions a Schrödinger-Choquard-
3
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Kirchhoff-type fractional p-equation. Ma and Zhang [8] studied the fractional order

Choquard equation and proved the existence and multiplicity of weak solutions. In

[3], the authors investigated a class of Brézis-Nirenberg type problems of nonlinear

Choquard equation involving the fractional Laplacian in bounded domain Ω. Wang

and Yang [12] by using an abstract critical point theorem based on a pseudo-index

related to the cohomological index studied the bifurcation results for the critical

Choquard problems involving fractional p-Laplacian operator:

(1.2)

(−∆)spu = λ|u|p−2u+

(∫
Ω

|u|p
∗
µ,s

|x− y|µ
dy

)
|u|p

∗
µ,s−2u, x ∈ Ω,

u = 0, x ∈ RN \ Ω,

where Ω is a bounded domain in RN with Lipschitz boundary and λ is a real

parameter. Also, in [13] – [15], the authors have studied the existence of multiple

solutions for problem (1.2), when p = 2. For more works on the Brezis-Nirenberg

type results on semilinear elliptic equations with fractional Laplacian, we refer to

[16] – [17] and references therein.

On the other hand, Shao and Wang in [18] established the following Kirchhoff

equations with Hardy-Littlewood-Sobolev critical nonlinearity:

(1.3)

{
−4u+ V (x)u− u4u2 + λ (Iα ∗ |u|p) |u|p−2u = K(x)u−γ , x ∈ RN ,
u > 0, x ∈ RN ,

where α ∈ (0, N), λ > 0 and Iα is a Riesz potential. Under suitable assumption on

K and V , the author obtained the existence of positive solutions for problem (1.3).

Zhang and Ji [19] studied the following problem

(1.4) −4u+ V (x)u− u4u2 = (Iα ∗G(u)) g(u), x ∈ RN ,

where α ∈ (0, N), Iα is a Riesz potential and V : RN → R is radial potential, and

established the existence of ground state solutions for problem (1.4) by using the

variational method. For more results on equations with Hardy-Littlewood-Sobolev

critical nonlinearity and nonlocal fractional problems, we refer to [20] – [31] and

references therein.

Recently, the authors in [32] studied the existence of ground state solutions for

the following modified fractional Schrödinger equations

(−4)
α
u+ µu+ κ

[
(−4)

α
u2
]
u = σ|u|p−1u+ |u|q−1u, x ∈ RN ,

where 0 < α < 1, µ > 0, N ≥ 2, κ > 0, 2 < p+ 1 < q < 2N
N−2α .

Motivated by the above works, in this paper, we would like to study the existence

of ground state solutions for problem (1.1).
4
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Throughout the paper, we get the following conditions:

(V1) V (x) ≥ 0, V ∈ C(RN ,R) and Ω := int
(
V −1(0)

)
is non-empty with smooth

boundary;

(V2) There exists M > 0 such that meas(x ∈ RN|V (x) ≤M) < ∞, where meas (.)

denotes the Lebesgue measure;

(f1) f ∈ C(R,R), limt→0
f(t)
t = 0;

(f2) limt→∞
f(t)
tq−1 = 0 for some 2N−λ

N ≤ q ≤ 2N−λ
N−2s ;

(f3) There exists α ∈ (4, 22∗s(β)) that 0 < αF (t) < tf(t), for all t ∈ R.
Also, we introduce the following fractional Choquard equation:

(1.5)


(−4)

s
u+ 2

[
(−4)

s
u2
]
u = (Iλ ∗ F (u)) f(u) + |u|22

∗
α(β)−2u
|x|β , x ∈ Ω,

u = 0, x ∈ RN \ Ω,

where Ω is defined in (V1). The main results are as follows:

Theorem 1.1. Let 0 < µ < min{N, 4s}. Assume that (f1)− (f3) and (V1)− (V2)

hold. Then there exists µ∗ > 0 such that (1.1) has a least a ground state solution

for any µ > µ∗.

Theorem 1.2. Under the assumptions of Theorem 1.1, assume that uµn be a

ground state of problem (1.1) with µn → ∞. Then, up to a subsequence, uµn → u

in Hs(RN ) as n→∞. Moreover, u is a ground state solution of problem (1.5).

The paper is organized as follows. In Section 2, we recall some basic definitions

of fractional Sobolev space and Hardy-Littlewood-Sobolev Inequality, and we give

some useful auxiliary lemmas. In Section 3, we give the proof of the main results.

2. Preliminaries

In this section, we present some preliminaries and lemmas that are useful to the

proof to the main results. The fractional Sobolev space Hs(RN ) (0 < s < 1) is

defined by

Hs(RN ) =
{
ψ ∈ L2(RN ) : ‖ (−4)

s
2 ψ‖2 <∞

}
,

with the norm

‖ψ‖Hs(RN ) =
(
‖ψ‖22 + ‖ (−4)

s
2 ψ‖2

) 1
2

,

where

‖ (−4)
s
2 ψ‖ =

(∫∫
R2N

|ψ(x)− ψ(y)|2

|x− y|N+2s
dxdy

) 1
2

.

5
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The space Ds,2(RN ) is the completion of C∞0 (RN ) with respect to the norm

[ψ]s,2 = ‖ (−4)
s
2 ψ‖.

Let S be the best Sobolev constant

(2.1) S := inf
ψ∈Ds,2(RN )\{0}

‖ψ‖2(∫
RN |ψ|2

∗
s(α)dx

) 2
2∗s (α)

.

Also, define the space

E =

{
ψ ∈ Hs(RN)|

∫
RN
µV (x)ψ2dx < +∞

}
,

with the norm

‖u‖2 =

∫
RN

µV (x)u2dx+

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy.

Let us recall the following results.

Lemma 2.1. (see [33, Lemma 1]) (E, ||.||) is a uniformly convex Banach space.

Lemma 2.2 ([34]). Suppose that V satisfies (V2) and µ∗ > 0 be a fixed constant.

Then the embedding E ↪→ Lν(RN) is continuous for all µ > µ∗ and ν ∈ [2, 2∗s(β)).

Moreover, for any R > 0 and ν ∈ [1, 2∗s(β)] the embedding E ↪→ Lν(BR(0)) is

compact.

Proof. The proof is similar to that of Lemma 1 in [34], so we omit it here.

Now, we state the following fractional Hardy-Sobolev inequality

Lemma 2.3. ([35, Lemma 2]) Assume that α ∈ [0, 2s] with 2s < N . Then there

exists a positive constant C such that(∫
RN

|u|2∗s(α)

|x|α
dx

) 1
2∗s (α)

≤ C
(∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

for every u ∈ Hs(RN ).

Lemma 2.4. (Hardy-Littlewood-Sobolev Inequality, [36, Theorem 4.3]) Suppose

that r, t ∈ (1,∞), λ ∈ (0, N) with
1

t
+

1

r
+
λ

N
= 2.

So there exists a sharp constant C(N,λ, r, t) > 0 such that∫∫
R2N

|ζ(x)|.|η(y)|
|x− y|λ

dxdy ≤ C(N,λ, r, t)‖ζ‖r‖η‖t,

for all ζ ∈ Lr(RN) and η ∈ Lt(RN).

If F ∈ Lt(RN) for some t > 1 with 2
t + λ

N = 2, then by Lemma 2.4,∫∫
R2N

|F (u(x))|.|F (u(y))|
|x− y|λ

dxdy

is well defined.
6
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We mean by a weak solution of (1.1), any u ∈ E such that∫
RN

(−4)
s
2 u. (−4)

s
2 ϕdx+

∫
RN
µV (x)uϕdx+ 2

∫
RN

(−4)
s
2 u2. (−4)

s
2 uϕdx

=

∫
RN

(Iλ ∗ F (u)) f(u)ϕdx+

∫
RN

|u|22∗s(β)−2u.ϕ

|x|β
dx,

for any ϕ ∈ E. The energy function corresponding to (1.1) is

Iµ(u) =
1

2
[u]2s,2 +

µ

2

∫
RN
V (x)|u|2dx+

1

2
[u2]2s,2−

1

2

∫∫
R2N

F (u(x))F (u(y))

|x− y|λ
dxdy − 1

22∗s(β)

∫
RN

|u|22∗s(β)

|x|β
,

and energy function corresponding to (1.5) is

I0(u) =
1

2
[u]2s,2 +

1

2
[u2]2s,2

− 1

2

∫∫
Ω×Ω

F (u(x))F (u(y))

|x− y|λ
dxdy − 1

22∗s(β)

∫
Ω

|u|22∗s(β)

|x|β
.

Set X :=
{
ζ ∈ E : ζ2 ∈ E

}
with ‖ζ‖X = ‖ζ‖E and

X0 :=
{
ζ ∈ Hs(RN) : ζ2 ∈ Hs(RN), u = 0 a.e. in RN \ Ω

}
.

Now, we show that X 6= ∅. For simplicity, we assume N= 1. Let

u(x) :=


√
| sin(x)| x ∈ [1, 2π],

0 x ∈ R \ [1, 2π].

and

V (x) :=


|x|−1
|x|3 x ∈ R \ (−1, 1),

0 x ∈ (−1, 1).∫∫
R2

|u(x)− u(y)|2

|x− y|1+2s
dxdy =

∫∫
[1,2π]×[1,2π]

|
√
| sin(x)| −

√
| sin(y)||2

|x− y|1+2s
dxdy

≤
∫∫

[1,2π]×[1,2π]

|
√
| sin(x)− sin(y)||2

|x− y|1+2s
dxdy

≤ C1

∫∫
[1,2π]×[1,2π]

1

|x− y|1+2s
dxdy <∞,

where C1 ≥ 0 and ∫
R
µV (x)|u(x)|2dx ≤

∫
R
µV (x)dx <∞,

then u(x) ∈ E. In addition, we have∫∫
R2

|u2(x)− u2(y)|2

|x− y|1+2s
dxdy =

∫∫
[1,2π]×[1,2π]

|| sin(x)| − | sin(y)||2

|x− y|1+2s
dxdy

≤ C2

∫∫
[1,2π]×[1,2π]

1

|x− y|1+2s
dxdy <∞,

7
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where C2 ≥ 0 and ∫
R
µV (x)|u2(x)|2dx ≤

∫
R
µV (x)dx <∞,

then u2(x) ∈ E and u(x) ∈ X. Then X 6= ∅.
Also, Iµ(u) is well defined on X and I0(u) is well defined on X0. Under the

assumation (V1) asnd (V2), Iµ, I0 are well defined and Iµ, I0 ∈ C1(X,RN ).

Let

J(u) =

∫∫
R2N

|u2(x)− u2(y)|2

|x− y|N+2s
dxdy.

We have

≺ J′(u), v � =
d

dt
J(u+ tv) |t=0=

d

dt

∫∫
R2N

|(u(x) + tv(x))2 − (u(y) + tv(y))2|2

|x− y|N+2s
dxdy

(2.2)

= 2

∫∫
R2N

(
(u(x) + tv(x))2 − (u(y) + tv(y))2

)
|x− y|N+2s

×(2.3) (
2(u(x) + tv(x))v(x)− 2(u(y) + tv(y))v(y)

)
dxdy |t=0

= 4

∫∫
R2N

(
u2(x)− u2(y)

)
(u(x)v(x)− u(y)v(y))

|x− y|N+2s
dxdy.

So by (2.2), we can easily check that〈
I
′

µ(u), %
〉

=

∫∫
R2N

(u(x)− u(y))(%(x)− %(y))

|x− y|N+2s
dxdy +

∫
RN
µV (x)u(x)%(x)dx

+ 2

∫∫
R2N

(u2(x)− u2(y))(u(x)%(x)− u(y)%(y))

|x− y|N+2s
dxdy

−
∫∫

R2N

F (u(y))f(u(x))%(x)

|x− y|λ
dxdy −

∫
RN

|u|22∗s(β)−2u(x)%(x)

|x|β
dx,

for all u, % ∈ X and〈
I
′

0(u), %
〉

=

∫∫
R2N

(u(x)− u(y))(%(x)− %(y))

|x− y|N+2s
dxdy

+ 2

∫∫
R2N

(u2(x)− u2(y))(u(x)%(x)− u(y)%(y))

|x− y|N+2s
dxdy

−
∫∫

Ω×Ω

F (u(y))f(u(x))%(x)

|x− y|λ
dxdy −

∫
Ω

|u|22∗s(β)−2u(x)%(x)

|x|β
dx,

for all u, % ∈ X0.

Lemma 2.5. Assume that (f1) and (f2), we have

(2.4)
∣∣∣∣ ∫

RN

∫
RN

F (u(y))

|x− y|λ
f(u(x))u(x)dxdy

∣∣∣∣ ≤ C([u]4s,2 + [u]2qs,2),

8
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and

(2.5)
∣∣∣∣ ∫

RN

∫
RN

F (u(y))F (u(x))

|x− y|λ
dxdy

∣∣∣∣ ≤ C([u]4s,2 + [u]2qs,2).

Proof. The proof is similar to that of Lemma 2.5 in [37], so we omit it here.

Lemma 2.6. Assume that {un} ⊂ E such that un ⇀ u in E. From (f1), (f2) and

0 < λ < min{N, 4S}, we have∫
RN

(Iλ ∗ F (un))F (un)dx→
∫
RN

(Iλ ∗ F (u))F (u)dx,∫
RN

(Iλ ∗ F (un))f(un)ϕdx→
∫
RN

(Iλ ∗ F (u))f(u)ϕdx.

as n→∞.

Proof. The proof is similar to that of the proof of Lemma 2.6 in [37], so we omit

it here. Set

mµ := inf
u∈Σ

Iµ(u), m0 := inf
u∈Σ0

I0(u),

where

Σ :=
{
u ∈ X \ {0} | < I

′

µ(u), u >= 0
}
, Σ0 :=

{
u ∈ X0 \ {0} | < I

′

0(u), u >= 0
}
.

We know that to prove our main results, we should check that mµ is achieved by a

critical point of Iµ for µ > µ∗.

Lemma 2.7. Σ0 6= ∅.

Proof. Let u0 ∈ X \ {0} with u0 ≥ 0 and κ(t) = ζ
(

tu0

[u0]s,2

)
, where

ζ(u) =

∫∫
Ω×Ω

F (u(y))F (u(x))

|x− y|λ
dxdy.

From (f3), we have
α

t
≤ κ

′
(t)

κ(t)
, ∀ t > 0.

Consequently, by integrating from the above inequality over [1, t[u0]s,2] with t >
1

[u0]s,2
, one can get

ζ(tu0) ≥ ζ
(

u0

[u0]s,2

)
tα[u0]αs,2.

So, we get

I0(t0u0) ≤ t20
2

[u0]2s,2 +
t40
2

[u2
0]2s,2 −

λ

2
ζ(

u0

[u0]s,2
)tα[u0]αs,2,

since α > 4, if t0 → +∞, we have I0(t0u0)→ −∞.

On the other hand,
9
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I0(t0u0) =
t20
2

[u0]2s,2 +
t40
2

[u2
0]2s,2 −

1

2

∫∫
Ω×Ω

F (t0u0(x))F (t0u0(y))

|x− y|λ
dxdy

− t
22∗s(β)
0

22∗s(β)

∫
Ω

|u|22∗s(β)

|x|β
≥ t20

2
[u0]2s,2 +

t40
2

[u2
0]2s,2

− C1

(
t40[u0]4s,2 + t2q0 [u0]2qs,2

)
− C2t

22∗s(β)
0 [u2

0]
2∗s(β)
s,2 ,

which implies that for small t0 > 0, I0(t0u0) > 0. Then, there exists t > 0 such that
d
dt |t0=tI0(tu0) = 0, means, tu0 ∈ Σ0, then we have the conclusion. �

Lemma 2.8. There exists K > 0 such that mµ ≥ K.

Proof. We divide the proof into the following three steps.

Step 1: Σ0 ⊂ Σ and m0 ≥ mµ.

For any u ∈ Σ0, by the definition of Ω, one has∫
RN
µV (x)|u|2dx = 0.

Consequently,

< I
′

µ(u), u >=< I
′

0(u), u >+

∫
RN
µV (x)|u|2dx,

hence, u ∈ Σ and Σ0 ⊂ Σ, Σ 6= ∅. Similarly, we can prove that Iµ(u) = I0(u), and

then we get

mµ = inf
u∈Σ

Iµ(u) ≤ inf
u∈Σ0

Iµ(u) = inf
u∈Σ0

I0(u) = m0.

Step 2: mµ is bounded from below.

From (f3), for any u ∈ Σ, we get

Iµ(u) = Iµ(u)− 1

α
< I

′

µ(u), u >

=

(
1

2
− 1

α

)
[u]2s,2 +

(
1

2
− 1

α

)∫
RN
µV (x)|u|2dx

+

(
1

2
− 2

α

)
[u2]2s,2 −

1

2

∫∫
R2N

F (u(y))F (u(x))

|x− y|λ
dxdy

+
1

α

∫∫
R2N

F (u(y))f(u(x))u(x)

|x− y|λ
dxdy −

(
1

22∗s(β)
− 1

α

)∫
RN

|u|22∗s(β)

|x|β
dx

≥
(

1

2
− 1

α

)
[u]2s,2 +

(
1

2
− 1

α

)∫
RN
µV (x)|u|2dx

+

(
1

2
− 2

α

)
[u2]2s,2 −

1

2

∫∫
R2N

F (u(y))F (u(x))

|x− y|λ
dxdy

10
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+
1

2α

∫∫
R2N

F (u(y))f(u(x))u(x)

|x− y|λ
dxdy −

(
1

22∗s(β)
− 1

α

)∫
RN

|u|22∗s(β)

|x|β
dx(2.6)

=

(
1

2
− 1

α

)
[u]2s,2 +

(
1

2
− 1

α

)∫
RN
µV (x)|u|2dx+

(
1

2
− 2

α

)
[u2]2s,2

−
(

1

22∗s(β)
− 1

α

)∫
RN

|u|22∗s(β)

|x|β
dx,

since α ∈ (4, 22∗s(β)), then ( 1
2 −

1
α ) > 0, ( 1

α −
1

22∗s(β) ) > 0, consequently, Iµ(u) ≥ 0.

This result implies that mµ ≥ 0.

Step 3: mµ have positive uniform bounded from below.

Let {un} be a minimizing sequence of m, then Iµ(un) → m and I
′

µ(un) → 0.

According to the proof of the (2.6), we have

m0 + on(1) ≥ mµ + on(1)

≥
(

1

2
− 1

α

)
[un]2s,2 +

(
1

2
− 1

α

)∫
RN
µV (x)|un|2dx+

(
1

2
− 2

α

)
[u2
n]2s,2

−
(

1

22∗s(β)
− 1

α

)∫
RN

|un|22∗s(β)

|x|β
dx ≥

(
1

2
− 1

α

)
[un]2s,2(2.7)

+

(
1

2
− 1

α

)∫
RN
µV (x)|un|2dx.

Thus

(2.8) m0 + on(1) ≥ mµ + on(1) ≥ C1||un||2,

where C1 = ( 1
2 −

1
α ). From fractional Hardy-Sobolev inequality and lemma 2.5,

there exist two constants C2, C3 > 0 such that

‖un‖2 ≤ ‖un‖2 + [u2
n]2s,2

=

∫∫
R2N

F (un(y))f(un(x))ϕ

|x− y|λ
dxdy +

∫
RN

|un|22∗s(β)−2unϕ

|x|β
dx

≤ C2([un]4s,2 + [un]2qs,2) + C3[un]
22∗s(β)
s,2

≤ C2(‖un‖4 + ‖un‖2q) + C3‖un‖22∗s(β).

So, we may choose a constant C4 > 0 such that

(2.9) ‖un‖2 ≥ C4.

From (2.8) and (2.9), there exist K := C1 × C4 > 0, such that

mµ ≥ ‖un‖2 ≥ K.

Therefore, we have the conclusion. �

11
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3. Proof of the main theorems

In this section, we prove our main results.

Proof of Theorem 1.1. Fix µ > µ∗ and take a sequence {un} ⊂ Σ, that is

Iµ(un) → mµ. Then, by (2.8), {un} is bounded in X. Hence, un ⇀ u, u2
n ⇀ u2 in

E up to subsequence, and thus by Lemma 2.2,
un → u, u2

n → u2 in Lsloc(RN) (1 ≤ s < 2∗s(β)),

un → u, a.e. in RN ,
|un|
|x|β →

|u|
|x|β in Lr(RN, dx

|x|β ) for 2 ≤ r < 2∗s(β) and 0 ≤ β < 2s.

(3.1)

Let ψ ∈ Hs(RN) and we define a linear functional on X as follows

Bψ(ϕ) =

∫∫
R2N

(ψ2(x)− ψ2(y))(ψ(x)ϕ(x)− ψ(y)ϕ(y))

|x− y|N+2s
dxdy, ∀ ϕ ∈ X.

Hence, one has

(3.2) lim
n→∞

Bu(un − u) = 0.

Let ξ ∈ X be fixed and Φυ be the linear functional on X defined by

Φξ(υ) =

∫∫
RN

(ξ(x)− ξ(y))(υ(x)− υ(y))

|x− y|N+2s
dxdy, ∀ υ ∈ X.

Since I
′

µ(un)→ 0, one can get

lim
n→∞

< I
′

µ(un)− I
′

µ(u), un − u >= 0.

Consequently,

o(1) =< I
′

µ(un)− I
′

µ(u), un − u > = Φun(un − u)− Φu(un − u) + 2Bun(un − u)

+

∫
RN
µV (x)|un(x)− u(x)|2dx−

∫∫
R2N

F (un(y))f(un(x))(un(x)− u(x))

|x− y|λ
dxdy

+

∫∫
R2N

F (u(y))f(u(x))(un(x)− u(x))

|x− y|λ
dxdy

−
∫
RN

[
|un|22∗s(β)−2un − |u|22∗s(β)−2u

|x|β
](un − u)dx.

From Lemma 2.6, we have

(3.3)∫∫
R2N

(F (un(y))f(un(x))− F (u(y))f(u(x)))(un(x)− u(x))

|x− y|λ
dxdy → 0, asn→∞.

Also, in view of (3.1), we get

(3.4)
∫
RN
µV (x)|un(x)− u(x)|2dx→ 0, as n→∞.

By similare method of proof Lemma 3.4. in [37], we have

(3.5)
|un|22∗s(β)

|x|β
→ |u|

22∗s(β)

|x|β
.

12
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Moreover, from (3.5) and Brezis-Lieb Lemma [38], we get

(3.6)∫
RN

|un − u|22∗s(α)

|x|β
dx =

∫
RN

|un|22∗s(α)

|x|β
dx−

∫
RN

|u|22∗s(α)

|x|β
dx+ o(1)→ 0, as n→∞.

So, by (3.6) and the Hölder inequality, we have

(3.7)
∫
RN

[
|un|22∗s(β)−2un

|x|β
− |u|

22∗s(β)−2u

|x|β

]
(un − u)dx→ 0 as n→∞.

Hence, in view of the Hölder inequality, one can get

(3.8) Φun(un − u)− Φu(un − u) ≥ ([un]s,2 − [u]s,2)
2 ≥ 0

From (3.3)− (3.8) and Bun(un − u) ≥ 0, we have ‖un‖ → ‖u‖. Since X uniformly

convex Banach space, then the weak convergence and norm convergence imply

strong convergence. In view of Iµ ∈ C(X,R), Iµ(u) = mµ and I
′
(u) = 0. Hence, we

have the conclusion. �

Proof of Theorem 1.2. Take uµn be a ground state of Iµn as µn → ∞, that

is, Iµn(uµn) = mµn and I
′

µn(uµn) = 0. For notion simplicity, we denote uµn by un.

We may suppose that µn > µ∗ for all n without loss of generality. In view of (2.7),

we get

m0 ≥ mµn ≥ (
1

2
− 1

α
)[u]2s,2 + (

1

2
− 1

α
)

∫
RN
µV (x)|u|2dx.

In view of Lemma 2.2, we can get

(3.9)


un ⇀ u, u2

n ⇀ u2, in Hs(RN),

un → u, u2
n → u2 in Lsloc(RN) (1 ≤ s < 2∗s(β)),

un → u, a.e. in RN ,
|un|
|x|β →

|u|
|x|β in Lr(RN, dx

|x|β ) for 2 ≤ r < 2∗s(β) and 0 ≤ β < 2s.

We divide the proof into the following three steps:

Step 1: u(x) = 0 a.e in RN \ Ω.

By (2.7), we get ∫
RN
V (x)|un|2dx ≤

Cm0

µn
→ 0, as n→∞.

Also, the Fatou’s Lemma implies that∫
RN\Ω

V (x)|u|2dx ≤ lim inf
n→∞

∫
RN
V (x)|un|2dx = 0.

Hence, we have u(x) = 0 a.e in RN \ Ω.

Step 2: u is a critical point of I0. Since I
′

µn(un) = 0, we have
13
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∫∫
R2N

(un(x)− un(y))(ζ(x)− ζ(y))

|x− y|N+2s
dxdy +

∫
RN
µnV (x)unζ(x)dx

+ 2

∫∫
R2N

(u2
n(x)− u2

n(y))(un(x)ζ(x)− un(y)ζ(y))

|x− y|N+2s
dxdy

−
∫∫

R2N

F (un(y))f(un(x))ζ(x)

|x− y|λ
dxdy −

∫
RN

|un|22∗s(β)−2unζ(x)

|x|β
dx = 0,

for all ζ ∈ Hs(RN). Now, in view of (3.9) and V (x) = 0 in Ω,

(3.10)∫∫
R2N

(un(x)− un(y))(ζ(x)− ζ(y))

|x− y|N+2s
dxdy →

∫∫
R2N

(u(x)− u(y))(ζ(x)− ζ(y))

|x− y|N+2s
dxdy,

∫∫
R2N

(u2
n(x)− u2

n(y))(un(x)ζ(x)− un(y)ζ(y))

|x− y|N+2s
dxdy →∫∫

R2N

(u2(x)− u2(y))(u(x)ζ(x)− u(y)ζ(y))

|x− y|N+2s
dxdy,(3.11)

as n→∞, and

(3.12) lim
n→∞

∫
RN
µnV (x)unζ(x)dx = 0,

for all ϕ ∈ Hs(RN). From Lemma 2.6, we have

(3.13)∫∫
R2N

F (un(y))f(un(x))ζ(x)

|x− y|λ
dxdy →

∫∫
R2N

F (u(y))f(u(x))ζ(x)

|x− y|λ
dxdy, ∀ζ ∈ Hs(RN),

similarly to (3.7), we get

(3.14)
∫
RN

|un|22∗s(β)−2unζ(x)

|x|β
dx→

∫
RN

|u|22∗s(β)−2uζ(x)

|x|β
dx, ∀ζ ∈ Hs(RN).

Then, (3.10)− (3.14) and step 1 imply that∫∫
R2N

(u(x)− u(y))(ζ(x)− ζ(y))

|x− y|N+2s
dxdy

+ 2

∫∫
R2N

(u2(x)− u2(y))(u(x)ζ(x)− u(y)ζ(y))

|x− y|N+2s
dxdy

−
∫∫

Ω×Ω

F (u(y))f(u(x))ζ(x)

|x− y|λ
dxdy −

∫
Ω

|u|22∗s(β)−2uζ

|x|β
dx = 0, ∀ζ ∈ Hs(RN),

which implies that u is a critical point of I0.

Step 3: un → u in Ls(RN) for 2 ≤ s < 2∗s(β).

From (3.9), by decay of the lebesgue integral, there exist R > 0, such that

(3.15)
∫
RN\BR(0)

|u(x)|2dx < ε.

Let ω1 :=
{
x ∈ RN : |x| > R

′
and V (x) ≤M

}
,

ω2 :=
{
x ∈ RN : |x| > R

′
and V (x) > M

}
.

14
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From (V2), we have

(3.16) lim
R′→∞

meas(ω1(R
′
)) = 0.

By the Hölder inequality and the Sobolev embedding theoream, we can get∫
ω1(R′ )

|un(x)|2dx ≤
(
meas(ω1(R

′
)
) 2s−β
N−β

(∫
ω1(R′ )

|un(x)|2
∗
s(β)dx

) 2
2∗s (β)

≤ C
(
meas(ω1(R

′
)
) 2s−β
N−β

.(3.17)

On the other hand

(3.18)
∫
ω2(R′ )

|un(x)|2dx ≤ 1

µM

∫
ω2(R′ )

µM |un(x)|2dx ≤ C

µM
.

From (3.15)− (3.18), for any ε > 0, we may choose µ0 > 0 and R
′
> 0 such that

(3.19)
∫
RN\B

R
′ (0)

|un(x)|2dx < ε for µ ≥ µ0.

Take R0 = max{R,R′},∫
RN
|un − u|2dx =

∫
BcR0

(0)

|un − u|2dx+

∫
BR0

(0)

|un − u|2dx

≤ 2

∫
BcR0

(0)

|un|2dx+ 2

∫
BcR0

(0)

|u|2dx+

∫
BR0

(0)

|un − u|2dx

≤ 4ε+

∫
BR0

(0)

|un − u|2dx.

Also, by Lemma 2.2, we get un → u in L2(RN) as n→∞. Since un ⇀ u in E and

un → u in L2(RN), one can get un → u in Ls(RN) for 2 ≤ s < 2∗s(β).

Step 4: m0 is achieved by u. Moreover, un → u in Hs(RN).

By the lower semi-continuity, we have

lim inf
n→∞

[un]2s,2 ≥ [u]2s,2, lim inf
n→∞

[u2
n]2s,2 ≥ [u2]2s,2.(3.20)

In the other hand, by similar method in (2.6), we can obtain

m0 ≥ lim
n→∞

mµn = lim
n→∞

(
Iµn(un)− 1

α
< I

′

µn(un), un >

)
= lim
n→∞

{(
1

2
− 1

α

)
[un]2s,2 +

(
1

2
− 1

α

)∫
RN
µnV (x)|un|2dx

+

(
1

2
− 2

α

)
[u2
n]2s,2 −

1

2

∫∫
R2N

F (un(x))F (un(y))

|x− y|λ
dxdy

+
1

α

∫∫
R2N

F (un(y))f(un(x))un(x)

|x− y|λ
dxdy −

(
1

22∗s(β)
− 1

α

)∫
RN

|un|22∗s(β)

|x|β
dx

}

≥
(

1

2
− 1

α

)
[u]2s,2 +

(
1

2
− 2

α

)
[u2]2s,2 −

1

2

∫∫
R2N

F (u(x))F (u(y))

|x− y|λ
dxdy

15
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+
1

α

∫∫
R2N

F (u(y))f(u(x))u(x)

|x− y|λ
dxdy −

(
1

22∗s(β)
− 1

α

)∫
RN

|u|22∗s(β)

|x|β
dx

=

(
1

2
− 1

α

)
[u]2s,2 +

(
1

2
− 2

α

)
[u2]2s,2 −

1

2

∫∫
Ω×Ω

F (u(x))F (u(y))

|x− y|λ
dxdy

+
1

α

∫∫
Ω×Ω

F (u(y))f(u(x))u(x)

|x− y|λ
dxdy −

(
1

22∗s(β)
− 1

α

)∫
Ω

|u|22∗s(β)

|x|β
dx = I0(u) ≥ m0.

which implies that I0(u) = m0, limn→∞mµn = m0, and

lim inf
n→∞

[un]2s,2 = [u]2s,2, lim inf
n→∞

[u2
n]2s,2 = [u2]2s,2.(3.21)

By step 3 and (3.21), we have ‖un‖Hs(RN ) → ‖u‖Hs(RN ). This together with the

fact that un ⇀ u in Hs(RN ), we get un → u in Hs(RN ). �
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1. Introduction

In recent years, the Born-Infeld nonlinear electromagnetism has become more

and more attractive and regained its importance due to its relevance in the theory

of superstring and membranes. Mathematically, some people considered the system

coupled Klein-Gordon equation with Born-Infeld theory through using variational

methods. Furthermore, by variational methods, the existence of solitary wave solution

has been studied in different systems, see References [1, 2, 5, 15, 17].

The Born-Infeld (BI) electromagnetic theory [12] was originally proposed as a

nonlinear correction of the Maxwell theory in order to overcome the problem of

infiniteness in the classical electrodynamics of point particles. The Born–Infeld

geometric theory of electromagnetism is a nonlinear generalization of the classical

Maxwell theory. The underlying idea was to simply modify the classical theory not

to have physical quantities of infinities, that is the principle of finiteness. It was

to replace the original Lagrangian density for the Maxwell electrodynamics with

a square root form with a parameter b, by which the finiteness of electric fields is

ensured.

This paper can be deduced by the search for solutions of the following nonlinear

Klein–Gordon equation:

(1.1) ψtt −∆ψ +m2ψ − |ψ|q−2ψ = 0

1”Supported by NSFC Mathematics Tianyuan Fund (12126334), NSFLN(2021-MS-275) and
EFLN(LJKQZ2021093)
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with Born-Infeld theory [12]

(1.2) ΣBI =
b2

4π

(
1−

√
1− 1

b2
(|E|2 − |B|2)

)
,

where ψ = ψ (x, t) ∈ C, x ∈ R3, t ∈ R, m is a real constant, b � 1 is the so-

called Born–Infeld parameter. It is well known that the classical theory has two

difficulties arising from the divergence of energy (see the first section of [11]).

Born and Infeld suggested a way to overcome such difficulties, thus introduced

the Lagrangian density. Moreover equation (1.2) can be used to develop the theory

of electrically charged fields [10]. In addition, E is the the electric field and B is

the magnetic induction field. The electromagnetic field is described by the gauge

potential (φ,A) :

φ : R3 × R→ R, A : R3 × R→ R3,

from (φ,A), we get the electric field

E = −∇φ−At

and the magnetic induction field B = ∇×A.
Suppose that ψ is a charged field and let e denote the eletric charge. The

interaction of ψ with the electro-magnetic field is described by the minimal coupling

rule, that is, the formal substitution

(1.3)
∂

∂t
→ ∂

∂t
+ ieφ,∇ → ∇− ieA

into the Lagrangian density relative equation (1.1) given by

(1.4) Σ0 =
1

2

[
|∂ψ
∂t
|2 − |∇ψ|2 −m2|ψ|2

]
+

1

q
|ψ|q,

where e denotes the electric charge.

Then equation (1.3) becomes

(1.5) Σ0 =
1

2

[
|∂ψ
∂t

+ ieφψ|2 − |∇ψ − ieAψ|2 −m2|ψ|2
]

+
1

q
|ψ|q.

The total action of the system is Ξ =
∫∫

(ΣBI + Σ0) dxdt.

In [11], the authors considered the second order expansion of equation (1.2) for

β =
1

2b2
→ 0+,

then they got

Σ
′

BI =
1

4π

[
1

2

(
|E|2 − |B|2

)
+
β

4

(
|E|2 − |B|2

)2]
,

the total action given by Ξ =
∫∫ (

Σ
′

BI + Σ0

)
dxdt. Under the electrostatic solitary

wave ansatz

ψ(x, t) = u(x)eiωt, φ = φ(x), A = 0,
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and e = 1, where u and φ are real valued functions defined on R3 and ω is a positive

frequency parameter, so now

Σ
′

BI =
1

4π

[
1

2

(
|E|2 − |B|2

)
+
β

4

(
|E|2 − |B|2

)2]
=

1

8π
|∇φ|2 +

β

16π
|∇φ|4 ,

therefore the Euler–Lagrange equations associated with the total action Ξ take the

the following form

(1.6)

−∆u+
[
m2 − (ω + φ)

2
]
u = |u|p−2u, x ∈ R3,

∆φ+ β∆4φ = 4π (ω + φ)u2, x ∈ R3,

this type of equations has been found via modern variational methods under various

hypotheses on the nonlinear term, see [7, 8, 9, 13, 15]. In [9] the authors found the

existence of infinitely many radially symmetric solutions for this problem when

4 < p < 6 and |m| > ω, in [13] the range p ∈ (2, 4] was also covered provided√(
p
2 − 1

)
|m| > ω.

Then Chen and Li [7] got the existence of multiple solutions for problem

(1.7)

−∆u+
[
m2 − (ω + φ)

2
]
u = |u|p−2u+ h(x), x ∈ R3,

∆φ+ β∆4φ = 4π (ω + φ)u2, x ∈ R3,

when 4 < p < 6 and |m| > ω or 2 < p 6 4 and
√(

p
2 − 1

)
|m| > ω.

Later Teng and Zhang [15] got that problem

(1.8)

−∆u+
[
m2 − (ω + φ)

2
]
u = |u|p−2u+ |u|2

∗−2u, x ∈ R3,

∆φ+ β∆4φ = 4π (ω + φ)u2, x ∈ R3,

has at least a nontrivial solution when 4 < p < 6 and m > ω under the electrostatic

solitary wave ansatz by using variational methods.

On the other hand, by shrinking the area in problem (1.6), Teng [14] showed some

existence and multiple results for the following nonlinear Klein-Gordon equation

coupled with Born-Infeld theory in a bounded domain with smooth boundary

(1.9)


−∆u+

[
m2 − (ω + φ)

2
]
u = f(x, u), in Ω,

∆φ+ β∆4φ = 4π (ω + φ)u2, in Ω,

u = φ = 0, on ∂Ω,

where m2 > µ
µ−2ω

2 − λ1 and f satisfies the following conditions:

(f1) f ∈ C
(
Ω× R

)
and f(x, 0) = 0,

(f2) There are constants a1, a2 > 0 such that |f(x, t)| 6 a1 + a2|t|s, where
1 < s < n+2

n−2 (n > 3),
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(f3) lim
t→0

f(x,t)
t = 0,

(f4) There exists µ > 2 and R > 0 such that tf(x, t) > µF (x, t) > 0 for |t| > R
and x ∈ Ω,

or m2 > µ
µ−2ω

2 − λ1 and f satisfies the conditions above and an extra condition:

(f5) f(x,−u) = −f(x, u) for all u ∈ R and x ∈ Ω.

In addition, the authors in [1] proved the existence of nontrivial ground state

solution for the following nonlinear Klein–Gordon equation coupled with Born–Infeld

theory in R2 involving unbounded or decaying radial potentials

(1.10)

−∆u+
[
m2 − (ω + φ)

2
]
V (|x|)u = K(|x|)f(u), in R2,

∆φ+ β∆4φ = 4π (ω + φ)V (|x|)u2, in R2,

where V,K : R2 → R are radial potentials which may be unbounded, singular at

the origin or vanishing at infinity and the nonlinear term f(s) is allowed to enjoy a

critical exponential growth.

Recently, Che and Chen in [6] proved the existence of infinitely many negative-

energy solutions for the following system via the genus properties in critical point

theory

(1.11)

{
−∆u+ V (x)u− (2ω + φ)φu = f (x, u) , x ∈ R3,

∆φ+ β∆4φ = 4π (ω + φ)u2, x ∈ R3,

where the functions V (x) and f(x, u) satisfy the following hypotheses.

(V1) V ∈ C
(
R3
)
satisfies infx∈R3 V (x) > a > 0, where a > 0 is a constant.

Moreover, for any M > 0,meas{x ∈ R3 : V (x) 6 M} < ∞, where meas denotes

the Lebesgue measure in R3.

(1) f ∈ C
(
R3 × R

)
and there exists 1 < α1 < α2 < · · · < αm < 2,m ∈ N,m >

1, ci(x) ∈ L
2

2−αi
(
R3,R+

)
such that

|f(x, u)| 6
m∑
i=1

αici(x)|u|αi−1, ∀(x, u) ∈ R3 × R.

(2) There exists a bounded open set J ⊂ R3 and three constants a1, a2 > 0 and

a3 ∈ (1, 2) such that

F (x, u) > a2|u|a3 , ∀(x, u) ∈ J × [−a1, a1] ,

where F (x, u) =
∫ u

0
f(x, s)ds.

(3) f(x, u) = −f(x,−u) for all (x, u) ∈ R3 × R.
Immediately after the previous equation, Wen, Tang and Chen in [16] proved the

existence of infinitely many solutions and least energy solutions for the nonhomogeneous

Klein-Gordon equation coupled with Born-Infeld theory.
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For general potential a(x) and the nonlinearity f(x, u) = λK(x)|u|q−2u+g(x)|u|p−2u,

Chen and Song in [8] studied this system

(1.12){
−∆u+ a(x)u− (2ω + φ)φu = λK(x)|u|q−2u+ g(x)|u|p−2u, x ∈ R3,

∆φ+ β∆4φ = 4π (ω + φ)u2, x ∈ R3,

and proved the existence of multiple solutions for Klein–Gordon equation with

concave and convex nonlinearities coupled with Born–Infeld theory when a, k, g are

measurable functions satisfying the following conditions:

(a1) a(x) ∈ C(R3) satisfying a0 := inf
x∈R3

a(x) > 0.

(k) k(x) ∈ L
12q

(6−q)(1+q)
(
R3
)
, k(x) > 0 for a.e. x ∈ R3 and k(x) 6= 0.

(g) g(x) ∈ L∞
(
R3
)
, g(x) > 0 for a.e. x ∈ R3 and g(x) 6= 0.

The main idea of this paper is to establish the existence of solitary wave solutions

of the following Klein-Gordon equation coupled with Born-Infeld theory:

(1.13)

{
−∆u+ η(x)u− (2ω + φ)φu = µK(x)|u|q−2u+ |u|2

∗−2u,

∆φ+ β∆4φ = 4π (ω + φ)u2,

where ω and µ are positive constants, β � 1 is a constant, η(x) ∈ C(R3),K(x) ∈
L∞(R3), 4 6 q < 2∗ = 2N

N−2 . Since we define in three-dimensional space in this

paper, after that 2∗ = 6.

In this case, the functional F corresponding to problem (1.13) defined by

(1.14)
F (u, φ) =

∫ [
1

2
|∇u|2 +

1

2
η(x)u2 − 1

2
(2ω + φ)φu2

− 1

8π
|∇φ|2 − β

16π
|∇φ|4 − µ

q
K(x)|u|q − 1

6
|u|6
]
,

which by a standard argument is C1 on H(R3) ×D(R3), the definitions of H(R3)

and D(R3) will be given later. Here and hereafter,
∫
· denotes

∫
R3 · dx.

Remark 1.1. The functional F is strongly indefinite, i.e. unbounded from below

and from above on infinite subspaces. In order to avoid this indefiniteness, we can

borrow the reduction methods.

2. Main results

Firstly, assume that the system (1.13) satisfies the following conditions:

(i) η(x) > 0 is a radial function, that is, η(x) = η(r), r = |x|,
(ii) K : R3 → R is a radial function, moreover 0 6 K(x) < Λ and K(x) 6≡ 0 for

a.e. x ∈ R3, where Λ > 0 is a constant.

Next some notations are given. For all 1 6 s 6 +∞, Ls(R3) denotes a Lebesgue

space with the norm given by | · |Ls .
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Let D1,2(R3) be the completion of C∞0 (R3) endowed with the norm

‖u‖2D1,2 =

∫
|∇u|2.

The space H1(R3) is endowed with the norm

‖u‖2H1 =

∫ (
|∇u|2 + u2

)
.

D(R3) denotes the the completion of C∞0 (R3) with respect to the norm

‖u‖D =

(∫
|∇u|2

) 1
2

+

(∫
|∇u|4

) 1
4

.

Define

H = {u ∈ H1(R3) :

∫ [
|∇u|2 + η(x)u2

]
<∞}

is a Hilbert space, whose inner product and norm are given, respectively

(u, v) =

∫
(∇u · ∇v + η(x)uv) , ‖u‖2 = (u, u) .

Obviously, by the Poincaré inequality, the embeddingH(R3) ↪→ H1(R3) is continuous

andD(R3) is continuously embedded inD1,2(R3). Moreover, from Sobolev’s imbedding

theorem (see [11]), D(R3) is continuously embedded inL∞(R3).

In this paper, we show the following results about the system (1.13):

Theorem 2.1. Suppose (i)-(ii) hold, if 4 < q < 6, then for each µ > 0 the problem

(1.13) admits a radially symmetric solution.

Theorem 2.2. Suppose (i)-(ii) hold, if q = 4, then for sufficiently large µ > 0, the

problem (1.13) still possesses a radially symmetric solution.

Moreover, we have the following lemma about the second equation of problem

(1.13).

Lemma 2.1. (a) For any u ∈ H(R3), there exists a unique Φ(u) = φ ∈ D(R3)

which satisfies ∆Φ(u) + β∆4Φ(u) = 4π (ω + Φ(u))u2,

(b) If u is radially symmetric, then Φ(u) is also radially symmetric,

(c) For any u ∈ H(R3), it results in Φ(u) 6 0. Moreover, Φ(u)(x) > −ω, provided
u(x) 6= 0.

The results were proved by Lemma 3 in [9], Lemma 5 in [9], Lemma 2.3 in [13],

respectively. Similar to the Proposition 1.1 in Reference [5], we have the following

lemma.

Lemma 2.2. The map φ is C1 and Gφ = {(u, φ) ∈ H(R3)×D(R3)
∣∣F ′φ (u, φ) = 0}.
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Proof. Since

F (u,Φ(u)) =

∫ [
1

2
|∇u|2 +

1

2
η(x)u2 − 1

2
(2ω + Φ(u)) Φ(u)u2 − 1

8π
|∇Φ(u)|2

]
+

∫ [
− β

16π
|∇Φ(u)|4 − µ

q
K(x)|u|q − 1

6
|u|6
]
,

then

(2.1) F ′φ (u,Φ(u)) =

∫ [
− 1

4π
|∇Φ(u)|2 − β

4π
|∇Φ(u)|4 − ωΦ(u)u2 − Φ2(u)u2

]
.

On the other hand, from the second equation in problem (1.13), one gets

−
∫ (
|∇Φ(u)|2 + β |∇Φ(u)|4

)
=

∫
4π (ω + Φ(u)) Φ(u)u2,

i.e.,

(2.2)
∫ [

1

4π
|∇Φ(u)|2 +

β

4π
|∇Φ(u)|4

]
=

∫ [
−ωΦ(u)u2 − Φ2(u)u2

]
.

Therefore, according to equation (2.1), F ′φ (u, φ) = 0. So now we define I(u) =

F (u, φ) in H(R3). �

By Lemma 2.2, we have

I ′(u) = F ′u (u,Φ(u)) + F ′φ (u,Φ(u)) Φ′(u) = F ′u (u,Φ(u)) ,

and if u, v ∈ H(R3) , one gets

(2.3) I ′(u)v =

∫ [
∇u · ∇v + η(x)uv − (2ω + φ)φuv − µK(x)|u|q−2uv − |u|4uv

]
.

Lemma 2.3. The following statements are equivalent:

(a) (u, φ) ∈ H(R3)×D(R3) is a solution of system (1.13),

(b) u is a critical point for I and φ = Φ(u).

Proof. (b) =⇒ (a) Obviously.

(a) =⇒ (b) Suppose F ′u (u, φ) and F ′φ (u, φ) denote the partial derivatives of F at

(u, φ) ∈ H(R3)×D(R3). Then for every v ∈ H(R3) and ψ ∈ D(R3), one gets

(2.4)

F ′u (u, φ) [v] =

∫ [
∇u · ∇v + η(x)uv − (2ω + φ)φuv − µK(x)|u|q−2uv − |u|4uv

]
,

(2.5) F ′φ (u, φ) [ψ] =

∫ [
− 1

2π
∇φ∇ψ − β

π
|∇φ|2 φψ − ωψu2 − 2φψu2

]
.

By the standard computations, we can prove that F ′u (u, φ) and F ′φ (u, φ) are continuous.

From equations (2.4) and (2.5), it is easy to obtain that its critical points are

solutions of problem (1.13), by (a) of Lemma 2.1, one has φ = Φ(u). �

Due to the presence of the critical growth, the Sobolev embedding H(R3) ↪→
Lp(R3)(2 6 p 6 6) is not compact and then it is usually difficult to prove that

a Palais–Smale sequence is strongly convergent when we seek solutions of problem
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(1.13) by variational methods. A standard tool to overcome the problem is to restrict

ourselves to radial functions, namely we look at the functional I on the subspace

Hr(R3) = {u ∈ H(R3)
∣∣u(x) = u(|x|)}, compactly embedded in Lpr(R3) for 2 < p <

6. Moreover, from [2], for all u ∈ H(R3), for any g ∈ O(3), we have

I(Tgu) = I(u).

By standard arguments, one sees that if a critical point u ∈ Hr(R3) for the

functional I
∣∣
Hr(R3)

is also a critical point of I.

3. The Proof of Theorem 2.1

Firstly, we prove the functional I possesses the Mountain-Pass geometry. From

the second equation of system (1.13), one obtains equation (2.2), combining equation

(1.14) with (2.2), one gets

(3.1)

I(u) = F (u, φ) =

∫ [
1

2
|∇u|2 +

1

2
η(x)u2 − 1

2
(2ω + φ)φu2

]
+

∫ [
− 1

8π
|∇φ|2 − β

16π
|∇φ|4 − µ

q
K(x)|u|q − 1

6
|u|6
]

=

∫ [
1

2
|∇u|2 +

1

2
η(x)u2 +

1

8π
|∇φ|2 +

3β

16π
|∇φ|4 +

1

2
φ2u2

]
−
∫ [

µ

q
K(x)|u|q +

1

6
|u|6
]
.

By the Sobolev inequality, one has I(u) > C1‖u‖2 − C2‖u‖q − C3‖u‖6, then there

exists α, ρ > 0 such that inf
‖u‖=ρ

I(u) > α. In addition, from equation (1.14), there

exists a function u ∈ Hr(R3) r {0}, it is easy to obtain

lim
t→+∞

I(tu) =

∫ [
t2

2
|∇u|2 +

t2

2
η(x)u2 − t2

2
(2ω + Φ(tu))Φ(tu)u2 − 1

8π
|∇Φ(tu)|2

]
+

∫ [
− β

16π
|∇Φ(tu)|4 − µtq

q
K(x)|u|q − t6

6
|u|6
]

6
t2

2

∫ [
|∇u|2 + η(x)u2 − 2ωΦ(tu)u2 − 2µtq−2

q
K(x)|u|q − t4

3
|u|6
]

6 −∞,
which implies that I(u) → −∞, as ‖u‖ → ∞. In particular, there exists u1 ∈
Hr(R3), ‖u1‖ > ρ such that I(u1) < 0. Define

(3.2) c = inf
γ∈Γ

max
06t61

I(γ(t)),

where Γ = {γ ∈ C
(
[0, 1], Hr(R3)

) ∣∣γ(0) = 0, γ(1) = u1} is theMP level. Obviously,

c > α > 0. There exists a (PS)c sequence {un} ⊂ E such that

(3.3)
I(un)→ c,

I ′(un)→ 0, n→∞.
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Lemma 3.1. The (PS)c sequence {un} ⊂ E given in equation (3.3) is bounded.

Proof. There is a positive constant M such that

(3.4)

M + o(1)‖un‖ > I(un)− 1

q
(I ′(un), un)

=

(
1

2
− 1

q

)∫ [
|∇un|2 + η(x)u2

n

]
+

1

8π

∫
|∇Φ(un)|2 +

3β

16π

∫
|∇Φ(un)|4

+

(
1

2
+

1

q

)∫
Φ2(un)u2

n +

(
1

q
− 1

6

)∫
|un|6 +

2

q

∫
ωΦ(un)u2

n.

Substituting equation (2.2) into equation (3.4), we get

M + o(1)‖un‖ > I(un)− 1

q
(I ′(un), un)

=

(
1

2
− 1

q

)∫ [
|∇un|2 + η(x)u2

n

]
+

(
1

8π
− 1

2qπ

)∫
|∇Φ(un)|2

+

(
1

2
− 1

q

)∫
Φ2(un)u2

n

+

(
3β

16π
− β

2qπ

)∫
|∇Φ(un)|4 +

(
1

q
− 1

6

)∫
|un|6 > C4‖un‖2.

Since 4 < q < 6, as a consequence of the above inequality, {un} is bounded in

Hr(R3). �

Furthermore, by equation (2.2), one gets

(3.5)
∫ (
|∇Φ(un)|2 + β |∇Φ(un)|4

)
= −4π

∫
ωΦ(un)u2

n − 4π

∫
Φ2(un)u2

n.

Then by Hölder inequality and Sobolev inequality, one obtains∫ (
|∇Φ(un)|2 + β |∇Φ(un)|4

)
6 C5‖Φ(un)‖Dr‖un‖2Hr .

So {Φ(un)} is bounded (even uniformly). Up to subsequence, we may assume that

there exists u ∈ Hr(R3) and ϕ ∈ Dr(R3) such that

un ⇀ u in Hr(R3),(3.6)

un → u in Lsr(R3) for 2 < s < 6,(3.7)

Φ(un) ⇀ ϕ in Dr(R3).(3.8)

Lemma 3.2. ϕ = Φ(u) and Φ(un)→ Φ(u) in Dr(R3).

Proof. First we prove the uniqueness. For every fixed u ∈ Hr(R3), we consider

the following minimizing problem inf
φ∈Dr

Eu(φ), where Eu : Dr → R defined as energy

functional of the second equation in system (1.13).

Eu(φ) =

∫ [
1

8π
|∇φ|2 +

β

16π
|∇φ|4 + ωφu2 +

1

2
φ2u2

]
.
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In fact, by the proof of Lemma 2.1 in [17], one can know

Φ(un)→ ϕ, locally uniformly in R3,

so we obtain ∫
Φ(un)u2

n →
∫
ϕu2,

∫
Φ2(un)u2

n →
∫
ϕ2u2.

From the weak lower semicontinuity of the norm in Dr and the convergence above,

one has

Eu(ϕ) 6 lim inf
n→∞

Eun(Φ(un)) 6 lim inf
n→∞

Eun(Φ(u)) = Eu(Φ(u)),

then by (a) of Lemma 2.1, ϕ = Φ(u).

Next we prove that {Φ(un)} converges strongly in Dr. Since Φ(un) and Φ(u) satisfy

the second equation in problem (1.13).
∫ [
∇Φ(un) · ∇v + β |∇Φ(un)|3 · ∇v

]
=

∫ [
−4πωu2

nv − 4πΦ(un)u2
nv
]
,∫ [

∇Φ(u) · ∇v + β |∇Φ(u)|3 · ∇v
]

=

∫ [
−4πωu2v − 4πΦ(u)u2v

]
,

then we take the difference for Φ to have

(3.9)∫ [
∇ (Φ(un)− Φ(u)) · ∇v + β

(
|∇Φ(un)|2∇Φ(un)− |∇Φ(u)|2∇Φ(u)

)
· ∇v

]
= −4π

∫ [
ω
(
u2
n − u2

)
v +

(
Φ(un)u2

n − Φ(u)u2
)
v
]
, v ∈ Dr(R3).

Testing with v = (Φ(un)− Φ(u)) the following holds:

C6

(
|∇Φ(un)−∇Φ(u)|2L2

r
+ |∇Φ(un)−∇Φ(u)|4L4

r

)
6 −4π

∫ [
w(u2

n − u2)v +
(
Φ(un)u2

n − Φ(u)u2
)
v
]

= −4π

∫ [
w(u2

n − u2)v + u2
n (Φ(un)− Φ(u)) v + (u2

n − u2)Φ(u)v
]
,

the above equation holds since we have inequality[(
|x|p−2x− |y|p−2y

)
(x− y)

]
> Cp|x− y|p, x, y ∈ RN , p > 2.

By Hölder inequality and Sobolev inequality, one has

|∇Φ(un)−∇Φ(u)|2L2
r

+ |∇Φ(un)−∇Φ(u)|4L4
r

6 |4πω|
∫ [∣∣u2

n − u2
∣∣ |Φ(un)− Φ(u)|

]
+ 4π

∫ [∣∣u2
n − u2

∣∣ |Φ(u)| |Φ(un)− Φ(u)|
]

6 |4πω| |Φ(un)− Φ(u)|L6
r

∣∣u2
n − u2

∣∣
L

6
5
r

+ 4π |Φ(u)|L6
r
|Φ(un)− Φ(u)|L6

r

∣∣u2
n − u2

∣∣
L

3
2
r

6 C7 |un − u|
L

12
5
r

+ C8 |un − u|L3
r
.

Thus Φ(un)→ Φ(u) strongly in Dr(R3). �
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Lemma 3.3. The weak limit (u,Φ(u)) solves problem (1.13).

Proof.

(3.10)
(I ′(un), v) =

∫
[∇un · ∇v + η(x)unv − (2ω + Φ(un)) Φ(un)unv]

−
∫ [

µK(x)|un|q−2unv + |un|4unv
]
.

All convergences in the sequel must be understood passing to a subsequence if

necessary. Since {un} is bounded in L6
r(R3), it follows

|un|4un ⇀ |u|4u, in (L6
r(R3))∗.

Moreover by Lemma 3.2, one gets∫
unΦ2(un)v + 2ω

∫
Φ(un)unv →

∫
uΦ2(u)v + 2ω

∫
Φ(u)uv, v ∈ Hr(R3).

In fact one obtains

(3.11)∫
|Φ(u)u− Φ(un)un| |v| 6 |Φ(u)− Φ(un)|L6

r
|u|L3

r
|v|L2

r
+ |Φ(un)|L6

r
|v|L2

r
|un − u|L3

r

and

(3.12)

∫
|unΦ2(un)− uΦ2(u)||v| 6 |un − u|L3

r
|Φ(un)|2L6

r
|v|L3

r
+

|Φ(un)− Φ(u)|L6
r
|Φ(un) + Φ(u)|L6

r
|u|L6

r
|v|L2

r
.

The compactness of the embedding Hr(R3) ↪→ Lqr(R3) the lemma follows. �

Due to the lack of compactness, which prevents us to prove that un converges

strongly in Hr(R3), we do not know yet whether u 6= 0. In order to overcome this

difficulty, we need let c denote the MP level.

Lemma 3.4. Since functions are defined in dimension N = 3, then we can get

c < 1
3S

3
2 , where S corresponds to the best constant for the Sobolev embedding

D1,2(R3) ↪→ L6(R3), precisely,

S := inf
u∈D1,2(R3)r{0}

∫
|∇u|2(∫
|u|6
) 1

3

.

Proof. Now given ε, we consider the Talenti function [3] uε ∈ D1,2(R3) defined by

uε = C
ε

1
4

(ε+ |x|2)
1
2

,

where C > 0 is a normalized constant. Let ϕ ∈ C∞0 (R3) such that 0 6 ϕ 6 1, and

there exists R > 0 such that ϕ
∣∣
BR
≡ 1, suppϕ ⊂ B2R. Set Wε = ϕuε and define

Vε := Wε

|Wε|L6
r

. From the estimates obtained in [4] we get, as ε→ 0,

(3.13) Xε := |∇Vε|2L2
r
6 S +O

(
ε

1
2

)
,
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(3.14) |Vε|2L2
r

= O
(
ε

1
2

)
.

Since as t → +∞, I(tVε) → −∞, we may assume that sup
t>0

I(tVε) = I(tεVε) and

without loss of generality that tε > C0 > 0, for all ε > 0 (otherwise we could find

a sequence εn → 0 such that tεnVεn → 0 contradicting that c > 0). Next for any

ε > 0 small enough, the following estimate holds

(3.15) tε 6

(
Xε +

∫ (
η(x) + 2ω2

)
V 2
ε

) 1
4

= t0.

Let f(t) = I(tVε) and compute

f ′(t) = (I ′(tVε), Vε)

=

∫ [
t|∇Vε|2 + η(x)tV 2

ε − (2ω + Φ(tVε)) Φ(tVε)tV
2
ε − µtq−1K(x)|Vε|q − t5|Vε|6

]
6
∫ [

t|∇Vε|2 + η(x)tV 2
ε − 2ωΦ(tVε)tV

2
ε − t5|Vε|6

]
6
∫ [

t|∇Vε|2 + η(x)tV 2
ε + 2ω2tV 2

ε − t5|Vε|6
]

= t

∫ [
|∇Vε|2 + η(x)V 2

ε + 2ω2V 2
ε

]
− t5 = tt40 − t5 6 0, t > t0.

Thus equation (3.15) holds true. From the second equation in system (1.13), one

gets

(3.16)
∫ (

1

16π
|∇φ|2 +

β

16π
|∇φ|4

)
= −1

4

∫
(ω + φ)φu2.

Now substituting this equation into the functional I(u), one has

(3.17)

I(u) =

∫ [
1

2
|∇u|2 +

1

2
η(x)u2 − 3

4
ωφu2 − 1

4
φ2u2 − 1

16π
|∇φ|2 − µ

q
K(x)|u|q − 1

6
|u|6
]
.

In view of equation (3.16), we have

(3.18) −1

4

∫
φ2u2 6

∫
ω2u2

and the function j(t) = 1
2 t

2t40− 1
6 t

6 is increasing on [0, t0), then by equations (3.13),

(3.17), (3.18) and (c) of Lemma 2.1, one obtains

I(tεVε) =

∫ [
t2ε
2

(
|∇Vε|2 + η(x)V 2

ε

)
− t2ε

4
Φ2(tεVε)V

2
ε −

1

16π
|∇Φ(tεVε)|2

]
+

∫ [
−3t2ε

4
ωΦ(tεVε)V

2
ε −

µtqε
q
K(x)|Vε|q −

t6ε
6
|Vε|6

]
6
∫ [

t2ε
2

(
|∇Vε|2 +

(
η(x) + 2ω2

)
V 2
ε

)]
+

∫ [
−3t2ε

4
ωΦ(tεVε)V

2
ε −

µtqε
q
K(x)|Vε|q −

t6ε
6
|Vε|6

]
6

1

3

(
S +O

(
ε

1
2

)
+

∫ (
η(x) + 2ω2

)
V 2
ε

) 3
2

+
3t2ε
4
ω2

∫
V 2
ε −

µtqε
q

∫
K(x)|Vε|q,
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then using the inequality (a+ b)
δ

= aδ + δ (a+ b)
δ−1

b, for all δ > 1, a, b > 0, we

get

I (tεVε) 6
1

3
S

3
2 +O

(
ε

1
2

)
+ C1 (ε)

∫
V 2
ε − µC2(ε)

∫
|Vε|q,

with constants Ci(ε) > C0 > 0 (i = 1, 2) . On the other hand, we may get the

conclusion that

(3.19) lim
ε→0

1

ε
1
2

∫ (
V 2
ε − µ|Vε|q

)
= −∞ for ε small enough.

In fact, by the definition of Wε, since for ε→ 0, as in [3],

(3.20)
∫
B2R

|Wε|6dx =

∫
B2R

|ϕuε|6dx = C

∫
1

(1 + |x|2)
3 +O

(
ε

3
2

)
.

It suffices to evaluate (3.19) with Wε in place of Vε, one has for p > 1,

(3.21)

|uε|pLpr =

∫
BR

ε
p
4

(ε+ |x|2)
p
2

dx = C

∫ R

0

ε−
p
4 s2(

1 +
(
s√
ε

)2
) p

2

ds = Cε
6−p
4

∫ R√
ε

0

r2

(1 + r2)
p
2

dr,

while

(3.22)
∫
B2RrBR

|Wε|pdx = O
(
ε
p
4

)
, ε→ 0,

and therefore, one has for 4 < q < 6, as ε→ 0,

(3.23)
∫
B2R

W 2
ε dx− µ

∫
B2R

W q
ε dx 6 C9ε

1
2 − C10µε

6−q
4 ,

where Ci > 0 (i = 9, 10) are independent from ε. According to equations (3.20) and

(3.23), we conclude the proof of equation (3.19).

Now we only need prove u 6= 0.Assume that the lemma holds true, by contradiction,

u = 0, (and hence Φ(u) = 0). Since, as n→∞, (I ′(un), un)→ 0, un → 0 in Lsr(R3).

Obviously,
∫ [
u2
nΦ2(un) + 2ωΦ(un)u2

n

]
→ 0. Next we may assume∫ [

|∇un|2 + η(x)u2
n

]
→ l, l > 0.∫

|un|6 → l, n→∞.

So I(un)→ 1
3 l, n→∞. In view of c > 0, then l > 0, by the definition of S,

S 6

∫ [
|∇un|2 + η(x)u2

n

](∫
|un|6

) 1
3

→ l
2
3 ,

so one has

(3.24) c =

(
1

2
− 1

6

)
l >

1

3
S

3
2 ,

which makes a controdiction with the lemma. �
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4. The Proof of Theorem 2.2

We can observe that as in [3], if q = 4, in the equation (3.23) one can stress the
parameter choosing µ = ε−δ, δ > 0, then to get equation (3.19), the rest proof of
Theorem 2.2 is similar to proof of Theorem 2.1.

Список литературы

[1] F. S. B. Albuquerque, S.-J. Chen, and L. Li, “Solitary wave of ground state type for a nonlinear
Klein-Gordon equation coupled with Born-Infeld theory in R2”, Electron. J. Qual. Theory
Differ. Equ., pages Paper No. 12, 18 (2020).

[2] V. Benci and D. Fortunato, “Solitary waves of the nonlinear Klein-Gordon equation coupled
with the Maxwell equations”, Rev. Math. Phys., 14 (4), 409 – 420 (2002).
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Additional we calculate the covariogram and oriented-dependent chord length distribution function
in the case if the base is any trapezoid.
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1. Introduction

Blaschke formulated the question whether the chord length distribution function

characterizes a set [15]. The answer to this question is negative. Mallows and Clark

presented non-congruent convex polygons with the same chord length distribution

function[11]. There are many articles ([6],[7],[16]) where for solving this problem

it is considered that a subclass of the class of convex bodies for which the chord

length distribution function is not equal for non-congruent members.

A convex body in Rn is a compact convex set K with non empty interior. Denote

by Ln n-dimensional Lebesgue measure on Rn. If x ∈ Rn, D+x denote the translate

of D by x, i.e.,

D + x = {y + x, y ∈ D}

If D ⊂ Rn is a convex body, then its covariogram CD(x) is the function defined for

x ∈ Rn by

CD(x) = Ln(D ∩ (D + x)).

G. Matheron posed in [12] the following question.

Covariogram Problem. Does the covariogram determine a convex body D in

Rn, among all convex bodies, up to translation and reflection?

Reflection in this paper always means reflection at a point. Matheron problem is

true if n=2 and it is false for n ≥ 4, but for n = 3 it is still open. In [12] Matheron

showed that for every t > 0 and φ ∈ Sn−1 (Sn−1 is (n-1)-dimensional unit sphere
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centered at the origin)

(1.1)
∂CD(tφ)

∂t
= −Ln−1({y ∈ φ⊥ : L1(D ∩ (lφ + y)) ≥ t})

where lφ + y denotes the line parallel to φ through the point y, while φ⊥ denotes

the hyperplane in Rn with normal direction φ ∈ Sn−1.

Let G be the space of all lines in the Euclidean plane R2, g ∈ G and (p, φ) is

the polar coordinates of the foot of the perpendicular to g from the origin, p ≥ 0,

φ ∈ S1. For a closed bounded convex domain D ⊂ R2 we denote by SD(φ) the

support function in direction φ ∈ S1 defined by

SD(φ) = max{p ≥ 0 : g(p, φ) ∩D 6= ∅}

For a bounded convex domain D ⊂ R2 we denote by bD(φ) the breadth function in

direction φ ∈ S1, that is, the distance between two support lines to the boundary

of D that are perpendicular to φ. We have

bD(φ) = SD(φ) + SD(φ+ π)

Note that bD(φ) is a periodic function with period π [15].

For a bounded convex domain D the chord length distribution function in direction

φ, denoted by FD(x, φ), is defined to be the probability of having chord χ(g) = g∩D
with length at most x in the bundle of lines parallel to φ. A random line which is

parallel to φ and intersects D has an intersection point (denoted by y) with the

line φ⊥. The intersection point y is uniformly distributed on the segment [0, bD(φ)].

Thus, we have

(1.2) FD(x, φ) =
L1(y ∈ ΠD(φ) : χ(lφ + y) ≤ x)

bD(φ)

It is not difficult to verify that for n = 2 formula (1.1) is equivalent to

(1.3)
∂CD(tφ)

∂t
= −bD(φ)(1− FD(t, φ))

Denote by Γ the space of lines γ in R3. Let ΠD(ω) denote the projection of a

bounded convex body D ⊂ R3 in direction ω ∈ S2 and let sD(ω) be its area. Every

line which is parallel to ω and intersects D has an intersection with ΠD(ω). Denote

that point by y and that line by lω + y. The intersection point y is uniformly

distributed on ΠD(ω). The chord length distribution function of D in direction

ω ∈ S2 is defined by

(1.4) FD(x, ω) =
L2{y : χ(lω + y) ≤ x}

sD(ω)

It is easy to verify that for n = 3 formula (1.1) is equivalent to
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(1.5)
∂CD(tφ)

∂t
= −sD(φ)(1− FD(t, φ))

This article aims to calculate covariogram and orientation-dependent chord length

distribution functions (see [1],[2],[5],[8],[9],[13],[14]).

In this paper, we obtain the following results

1)The calculation of the covariogram and Orientation-dependent chord length

distribution function for any trapezoid. This is a generalization of the result of [14].

2)Relationships between the covariogram and the orientation-dependent chord

length distribution function of an oblique prism and those of its base.

3) Explicit forms of the covariogram and the orientation-dependent chord length

distribution function of an oblique prism with cyclic, elliptical, trapezoid and triangular

bases. The second and third results are a generalization of [9].

2. Computation of chord length distribution function of an oblique

prism

Consider the oblique prism U with base B (not necessarily convex), the length of

prism generator is equal to d and angle between prism generator and base is equal

to β. It is obvious that the domain U ∩ (U + x) is also a prism. If we denote by

t the length of x and by ω = (φ, θ), (φ, θ) is the cylindrical parametrization of ω;

φ ∈ S1, θ ∈ [−π/2, π/2] the direction of x, then the base of the prism U ∩ (U + x)

will be the domain B ∩ (B + y), where y is a planar vector of length t sin(β−θ)
sin β

and direction φ, and the height of the new prism will be d sinβ − t sin θ(due to the

symmetry we consider only the case θ ∈ [0, π/2]). We can say that

CU (x) = CU (xω) = L3(U∩(U+tω)) = L2(B∩(B+

(
t sin(β − θ)

sinβ

)
φ)(d sinβ−t sin θ)

Implying that

(2.1) CU (tω) = CB(

(
t sin(β − θ)

sinβ

)
φ)(d sinβ − t sin θ)

Differentiating both sides of equation (2.1) with respect to t, we get

(2.2)

∂CU (tω)

∂t
= − sin θCB(

(
t sin(β − θ)

sinβ

)
φ) + (d sinβ − t sin θ)

∂CB(

(
t sin(β−θ)

sin β

)
φ)

∂t

Using equation (1.3)

(2.3) −
∂CB(

(
t sin(β−θ)

sin β

)
φ)

∂t
= bB(φ)

(
t sin(β − θ)

sinβ

)
(1− FB(

(
t sin(β − θ)

sinβ

)
, φ))
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If we integrate both parts of equation (1.3) from 0 to t sin(β−θ)
sin β , we get

(2.4)

CB(

(
t sin(β − θ)

sinβ

)
φ) = ||B||−bB(φ)

(
t sin(β − θ)

sinβ

)∫ t

0

(1−FB(

(
u sin(β − θ)

sinβ

)
, φ))du

where ||B|| is the area of B. Using equations (1.5),(2.3),(2.4) we can transform

equation (2.2) the following way

sU (ω)(1−FU (t, ω)) = sin θ(||B||−bB(φ)

(
sin(β − θ)

sinβ

)∫ t

0

(1−FB(

(
u sin(β − θ)

sinβ

)
, φ))du)+

+(d sinβ − t sin θ)bB(φ)

(
sin(β − θ)

sinβ

)
(1− FB(

(
t sin(β − θ)

sinβ

)
, φ))

We can say that

sU (ω) = ||B|| sin θ + bB(φ)d sinβ

(
sin(β − θ)

sinβ

)
Using above mentioned we can formulate the following theorem

Theorem 2.1. For oblique prism U with base B (not necessarily convex), with

prism generator d and angle between prism generator and base β the orineted-

dependent chord length distribution given by the following formula

(2.5)

FU (t, ω) =



0, if t ≤ 0

bB(φ)

(
sin(β−θ)

sin β

)
||B|| sin θ+bB(φ)d sin β

(
sin(β−θ)

sin β

)×
×
(
t sin θ + sin θ

∫ t
0
(1− FB(

(
u sin(β−θ)

sin β

)
, φ))du+

+(d sinβ − t sin θ)FB(

(
t sin(β−θ)

sin β

)
, φ)

)
, if 0 ≤ t ≤ tmax(ω)

1, if t ≥ tmax(ω)

Where tmax(ω) is

(2.6)

tmax(ω) =

{
sin βxmax(φ)
| sin(β−θ)| , if θ ∈ [− arctan d sin β

xmax(φ)−d sin β , arccos d sin β
d sin β+xmax(φ) ]

d sin β
| sin θ| , otherwise

when d cosβ < xmax(φ) and

(2.7)

tmax(ω) =


sin βxmax(φ)
| sin(β−θ)| , if θ ∈ [0, arctan d sin β

xmax(φ)+d sin β ]
d sin β
| sin θ| , if θ ∈ [arctan d sin β

xmax(φ)+d sin β , arctan d sin β
d sin β−xmax(φ) ]

sin βxmax(φ)
| sin(θ−β)| , if θ ∈ [arctan d sin β

d sin β−xmax(φ) ], π/2] ∪ [−π/2, 0]

when d cosβ > xmax(φ).
35



3. Chord length distribution in a trapezoid

Let T ⊂ R2 be a trapezoid with bases a and b and the angle between longer base

and legs are ψ1, ψ2. Without loss of generality we can assume that 0 < ψ1 ≤ π/2,

ψ1 ≤ ψ2 < π and b ≤ a. We can translate and rotate trapezoid so that the longer

base be on X-axis.

It is obvious that, the height of trapezoid is equal to h = (a − b) sinψ1sinψ2

sin(ψ1+ψ2) ,

the side OA is equal to lOA = (a − b) sinψ2

sin(ψ1+ψ2) and the side CB is equal to

lCB = (a − b) sinψ1

sin(ψ1+ψ2) . From here we can say that the vertices of trapezoid are

O(0,0), A((a − b) cosψ1sinψ2

sin(ψ1+ψ2) ,(a − b)
sinψ1sinψ2

sin(ψ1+ψ2) ),B(a,0),C(b+(a − b) cosψ1sinψ2

sin(ψ1+ψ2) ,(a −
b) sinψ1sinψ2

sin(ψ1+ψ2) ). If we take the square or rectangle we should know height and side

instead of the above mentioned quantities.

For calculating the orientation-dependent chord length distribution function of

a trapezoid, we firstly need explicit form of breadth function of the trapezoid.

Lemma 3.1. Let T ⊂ R2 be trapezoid with bases a and b and the angle between

longer base and legs are ψ1 ψ2. We can assume that the longer leg is equal to a and

ψ1 ≤ ψ2. Then the breadth function has the following form

(3.1) bT (φ) =


lCBsin(φ+ ψ2) + bsinφ, if 0 ≤ φ ≤ ψ1

asinφ, if ψ1 ≤ φ ≤ π − ψ2

bsin(φ) + lOAsin(φ− ψ1), if π − ψ2 ≤ φ ≤ π

(a) 0 ≤ φ ≤ ψ1 (b) ψ1 ≤ φ ≤ π − ψ2 (c) π − ψ2 ≤ φ ≤ π

Рис. 1

Proof. To prove this lemma firstly we should understand which two vertices

have the last intersection with lines in direction φ. This means that we should find

the lφ + y for every Vertex and take the two vertices for which y has the minimum

and the maximum value.

(Case i) for 0 ≤ φ < ψ1 two vertices are A and B. That means the bT (φ) is equal

to the projection of AB diagonal onto φ⊥.

bT (φ) = L1(ΠAB(φ)) = lCBsin(φ+ ψ2) + bsinφ
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(Case ii) for ψ1 ≤ φ < π − ψ2 two vertices are O and B. That means the bT (φ)

is equal to the projection of OB base onto φ⊥.

bT (φ) = L1(ΠOB(φ)) = asinφ

(Case iii) for π − ψ2 ≤ φ < π two vertices are C and O. That means the bT (φ) is

equal to the projection of OC diagonal onto φ⊥.

bT (φ) = L1(ΠCO(φ)) = bsin(φ) + lOAsin(φ− ψ1). �

We denote the lines x0(φ) and x1(φ) which has φ angle with X-axis, pass through

a vertex of trapezoid and make a chord of positive Lebesgue measure,

x0(φ) = minχ(lφ + y) and x1(φ) = maxχ(lφ + y)

Figure 2 shows all cases of above mentioned quantities.

(a) πk ≤ φ < πk+arcsin h
lOC

(b) πk + arcsin h
lOC

≤ φ <

< πk + ψ1

(c) ψ1+πk ≤ φ < π(k+1)−
−ψ2

(d) π(k+1)−ψ2 ≤ φ < π(k+1)−
− arcsin h

lAB

(e) π(k + 1) − arcsin h
lAB

≤ φ <

< π(k + 1)

Рис. 2

Lemma 3.2. x1(φ) = xmax(φ) for any angle φ. If we choose some k ∈ Z we should

have the following cases for x0(φ) and x1(φ)

(i) If πk ≤ φ < ψ1 + πk

x0(φ) =

{
b sinψ1

| sin (ψ1−φ)| , if πk ≤ φ < πk + arcsin h
lOC

h
| sinφ| , ifπk + arcsin h

lOC
≤ φ < πk + ψ1

xmax(φ) =

{
a sinψ2

| sin (ψ2+φ)| , if πk ≤ φ < πk + arcsin h
lOC

h
| sinφ| , ifπk + arcsin h

lOC
≤ φ < πk + ψ1
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(ii) If ψ1 + πk ≤ φ < π(k + 1)− ψ2

x0(φ) = x1(φ) =
h

| sinφ|
(iii) If π(k + 1)− ψ2 ≤ φ < π(k + 1) , and lOA sinψ1 < a

x0(φ) =

{
h

| sinφ| , if π(k + 1)− ψ2 ≤ φ < π(k + 1)− arcsin h
lAB

b sinψ2

| sin(φ+ψ2)| , ifπ(k + 1)− arcsin h
lAB
≤ φ < π(k + 1)

xmax(φ) =

{
h

| sin (φ)| , if π(k + 1)− ψ2 ≤ φ < π(k + 1)− arcsin h
lAB

a sinψ1

| sin(φ−ψ1)| , ifπ(k + 1)− arcsin h
lAB
≤ φ < π(k + 1)

(iv) If π(k + 1)− ψ2 ≤ φ < π(k + 1) , and lOA cosψ1 > a

x0(φ) =

{
h

| sinφ| , if π(k + 1)− ψ2 ≤ φ < arcsin h
lAB

b sinψ2

| sin(φ+ψ2)| , if arcsin h
lAB
≤ φ < π(k + 1)

xmax(φ) =

{
h

| sin (φ)| , if π(k + 1)− ψ2 ≤ φ < arcsin h
lAB

a sinψ1

| sin(φ−ψ1)| , if arcsin h
lAB
≤ φ < π(k + 1)

Proof. A chord of maximal length in a convex polygon with direction φ, also

known as φ-diameter of the polygon, is not necessarily unique but for any given φ

exists a φ-diameter such that at least one endpoint of the chord coincides with a

vertex of the given polygon.

Case (i) sub-case 1 (πk ≤ φ < πk + arcsin h
lOC

) From Figure 2a it can be seen

that x0(φ) = CC1 and x1(φ) = xmax(φ) = OO1. By Sine Rule

x0(φ) =
b sin(180− ψ1)

sin(ψ1 − φ+ πk)
=

b sinψ1

| sin(ψ1 − φ)|

x1(φ) = xmax(φ) =
a sinψ2

sin(180− ψ2 − φ+ πk)
=

a sinψ2

| sin(ψ2 + φ)|
Case (i) sub-case 2 (πk + arcsin h

lOC
≤ φ < πk + ψ1) From Figure 2b it shows that

x0(φ) = x1(φ) = xmax(φ) = CC1. By Sine Rule

x0(φ) = x1(φ) = xmax(φ) =
h

| sinφ|
Case (ii) (ψ1 + πk ≤ φ < π(k + 1) − ψ2) From Figure 2c it can be seen that

x0(φ) = x1(φ) = xmax(φ) = CC1. By Sine Rule

x0(φ) = x1(φ) = xmax(φ) =
h

| sinφ|

Case (iii) sub-case 1 (π(k + 1) − ψ2 ≤ φ < π(k + 1) − arcsin h
lAB

) From Figure 2d

it shows that x0(φ) = BB1 and x1(φ) = xmax(φ) = AA1. By Sine Rule

x0(φ) =
lCB sin(180− ψ2)

sin(180− φ+ πk)
=

h

| sinφ|

x1(φ) = xmax(φ) =
h

sin(180− φ+ πk)
=

h

| sinφ|
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Case (iii) sub-case 2 (π(k + 1)− arcsin h
lAB
≤ φ < π(k + 1)) From Figure 2e it can

be seen that x0(φ) = AA1 and x1(φ) = xmax(φ) = BB1. By Sine Rule

x0(φ) =
b sin(180− ψ2)

sin(φ+ ψ2 − 180 + πk)
=

b sinψ2

| sin(φ+ ψ2)|

x1(φ) = xmax(φ) =
a sinψ1

| sin(φ− ψ1)|
The proof of case (iv) has the same steps as case(iii). �

Theorem 3.1. FT (x, φ) = 0 if x < 0 and FT (x, φ) = 1 if x > xmax(φ).Now we

discuss the non-trivial cases when 0 < x < xmax. Because this is π periodic function

we can assume that k is equal to 0.

(i) For 0 ≤ φ < ψ1

FT (x, φ) =


x sinφ(sin(ψ1−φ) sinψ2+sinψ1 sin(φ+ψ2))

bT (φ) sinψ1 sinψ2
, if 0 ≤ x < x0(φ)

1
bT (φ) (b sinφ+ (x−x0(φ)) sin(ψ1−φ) sin(ψ2+φ)

sin(ψ1+ψ2) +

+x sin(φ+ψ2) sinφ
sinψ2

), ifx0(φ) ≤ x < xmax(φ)

(ii) For ψ1 ≤ φ < π − ψ2

FT (x, φ) =
x sinφ

bT (φ)

(
sin(ψ2 + φ) sinψ1 + sin(φ− ψ1) sinψ2

sinψ1 sinψ2

)
(iii) For π − ψ2 ≤ φ < π

FT (x, φ) =


−x sinφ(sinψ1 sin(φ+ψ2)−sin(φ−ψ1) sinψ2)

bT (φ) sinψ1 sinψ2
, if 0 ≤ x ≤ x0(φ)

1
bT (φ) (b sinφ− (x−x0(φ))sin(ψ2+φ) sin(φ−ψ1)

sin(ψ1+ψ2) +

+x sinφ sin(φ−ψ1)
sinψ1

), ifx0(φ) ≤ x < xmax(φ)

Proof.

(a) 0 ≤ φ < arcsin h
lOC

,
0 ≤ x < x0(φ)

(b) 0 ≤ φ < arcsin h
lOC

,
x0(φ) ≤ x < xmax(φ)

(c) arcsin h
lOC

≤ φ < ψ1,
0 ≤ x < xmax(φ)

Рис. 3

Case (i) sub-case 1 let 0 ≤ φ < arcsin h
lOC

and 0 ≤ x < x0(φ). In Figure 3a

|MM1| = |NN1| = x < x0(φ) = |CC1| < |OO1| = xmax(φ). For this we can say

that FT (x, φ) = 1
bT (φ) (b∆AMM1

(φ)+b∆BNN1
(φ)). Here b∆AMM1

(φ) and b∆BNN1
(φ)
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are equal to the height of triangle AMM1 (with base MM1) and BNN1 (with base

NN1)

b∆AMM1
(φ) =

x sin(ψ1 − φ) sinφ

sinψ1

b∆BNN1(φ) =
x sin(ψ2 + φ) sinφ

sinψ2

Case (i) sub-case 2 let 0 ≤ φ < arcsin h
lOC

and x0(φ) ≤ x < xmax(φ). In Figure

3b x0(φ) = CC1 < x = MM1 = NN1 < xmax(φ). In this case we have F (x, φ) =
1

bT (φ) (bACMM1(φ) + b∆BNN1(φ)) = 1
bT (φ) (bACC1(φ) + b∆BNN1(φ)) + bMCC1M1) =

1
bT (φ) (b sinφ+x sin(ψ2+φ) sinφ

sinψ2
+bMCC1M1

). We should calculate the height of trapezoid

MCC1M1

bMCC1M1
=

sin(ψ1 − φ) sin(ψ2 + φ)(x− x0(φ))

sin(ψ1 + ψ2)

Case (i) sub-case 3 let arcsin h
lOC
≤ φ < ψ1 and 0 ≤ x < xmax(φ). In Figure 3c

x = |NN1| = |MM1| < |CC1| = |OO1| = x0(φ) = xmax(φ). Computations of this

case are identical as in the previous case (1) sub-case 1. Completing the above we

can say that for any φ ∈ [0, ψ1] it brings to

FT (x, φ) =


1

bT (φ) (x sin(ψ1−φ) sinφ
sinψ1

+ x sin(ψ2+φ) sinφ
sinψ2

), if 0 ≤ x < x0(φ)
1

bT (φ) (b sinφ+ sin(ψ1−φ) sin(ψ2+φ)(x−x0(φ)
sin(ψ1+ψ2) +

+x sin(φ+ψ2) sinφ
sinψ2

), ifx0(φ) ≤ x < xmax(φ)

Case (ii) sub-case 1 ψ1 ≤ φ < π/2 and 0 ≤ x < xmax(φ). Here Ft(x, ψ) =

(a) ψ1 ≤ φ < π/2, 0 ≤ x < xmax(φ)
(b) π/2 ≤ φ < π − ψ2,

0 ≤ x < xmax(φ)

Рис. 4

1
bT (φ) (x sin(φ−ψ1) sinφ

sinψ1
+ x sin(ψ2+φ) sinφ

sinψ2
).

Case (ii) Sub-case 2 π/2 ≤ φ < π − ψ2 and 0 ≤ x < xmax(φ). In Figure 4b

x = |NN1| = |MM1| < |CC1| = |AA1| = x0(φ) = xmax(φ) we have

FT (x, φ) =
1

bT (φ)
(b∆OMM1

+B∆BNN1
) =

=
1

bT (φ)
(
x sin(φ− ψ1) sinφ

sinψ1
+
x sin(ψ2 + φ) sinφ

sinψ2
)

40



(a) π − ψ2 ≤ φ < π − ψ2 −
− arcsin h

lAB
, 0 ≤ x ≤ xmax(φ)

(b)
π−ψ2−arcsin h

lAB
≤ φ < π,

0 ≤ x < x0(φ)

(c)
π−ψ2−arcsin h

lAB
≤ φ < π,

x0(φ) ≤ x < xmax(φ)

Рис. 5

Case (iii) sub-case 1 π − ψ2 ≤ φ < π − ψ2 − arcsin h
lAB

In Figure 5a x = |NN1| =
|MM1| < |AA1| = |BB1| = x0(φ) = xmax(φ)

Ft(x, φ) =
1

bT (φ)
(b∆OMM1 + b∆CNN1) =

=
1

bT (φ)
(
−x sin(ψ2 + φ) sinφ

sinψ2
+
x sin(φ− ψ1) sinφ

sinψ1
)

Case (iii) sub-case 2 π − ψ2 − arcsin h
lAB
≤ φ < π and 0 ≤ x < x0(φ). In Figure 5b

x = |MM1| = |NN1| = x < |AA1| = x0(φ) < |BB1| = xmax(φ)

FT (x, φ) =
1

bT (φ)
(b∆CNN1

(φ) + b∆OMM1
(φ)) =

=
1

bT (φ)
(
−x sin(ψ2 + φ) sinφ

sinψ2
+
x sin(φ− ψ1) sinφ

sinψ1
)

Case (iii) sub-case 3 π − ψ2 − arcsin h
lAB
≤ φ < π and x0(φ) ≤ x < xmax(φ)

FT (x, φ) =
1

bT (φ)
(bACNN1 + b∆OMM1) =

1

bT (φ)
(b∆CAA1 + bAN1A1N + b∆OMM1)

=
1

bT (φ)
(b sinφ− (x− x0(φ))sin(ψ2 + φ) sin(φ− ψ1)

sin(ψ1 + ψ2)
+
x sinφ sin(φ− ψ1)

sinψ1
). �

Object The angles
ψ1, ψ2

The basis a, b
and height h

Article

Square ψ1 = ψ2 =
π/2

a=b=h [13]

Rectangle ψ1 = ψ2 =
π/2

a=b 6= h [14]

Parallelogram ψ1 = π − ψ2 a=b [4]
Right

trapezoid
ψ2 = π/2 a>b [14]

We can use theorem 3.1 and obtain the known results of orientation-dependent

chord length distribution function (for square and rectangle instead of two bases

we should know height and one base). In the table above we show how to do that.
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4. Computation of covariogram and chord length distribution

function of oblique prism

4.1. The case of a cyclic oblique prism. Let Lr be an oblique prism with radius

(of the base) r, side d and sides lean over at the base is β. The covariogram of a

disc with radius r is

Cr(t, φ) =

{
2r2 arccos t

2r −
t
2

√
4r2 − t2, if 0 ≤ t ≤ 2r

0, otherwise

Using equation (2.1) for the covariogram Lr we obtain

CLr (t, ω) =


(d sinβ − t sin θ)2r2 arccos t sin(θ−β)

2r sin β −

− t sin(θ−β)
2 sin β

√
4r2 − t sin(θ−β)

sin β , if 0 ≤ t ≤ χmax(ω)

0, otherwise

where χmax(ω) we calculate using (2.6) or (2.7)

For the orientation-dependent chord length distribution function we have

Fr(t, φ) =


0, if t < 0

1−
√

1− t2

4r2 , if 0 ≤ t < 2r

1, if t ≥ 2r

Using equation (2.5) and knowing that χmax(φ) = 2r, we obtain

FLr (t, φ) =



0, if t < 0

2

(
sin(β−θ)

sin β

)
πr sin θ+2d sin(β−θ)

(
d sinβ − (d sinβ−

− 3t sin θ)
2 )

(√
1−

(
t sin(β−θ)

2r sin β

)2)
+

+ r sin θ sin β
sin(θ−β) (arcsin( t sin(β−θ)

2r sin β )) if 0 ≤ t < χmax(ω)

1, if t ≥ χmax(ω)

4.2. The case of an elliptic oblique prism. Consider a prism Le with prism

generator d, the angle with prism generator and base is β and base as an ellipse

with semi-major axes a and b. The covariogram of an ellipse with semi-major axes

a and b has the form [10]:

Cr(t, φ) =

2ab

(
π
2 −

t
χmax(φ)

√
1− t2

χmax(φ) − arcsin t
χmax(φ)

)
, if 0 ≤ t < χ0(φ)

0, otherwise

where

χmax(φ) =
2ab√

a2 sin2 φ+ b2 cos2 φ

is the maximum chord in direction φ.
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From (2.1) we get

CLr (tω) = 2ab

(
π

2
− t sin(β − θ)
χmax(φ) sinβ

√
1− t2 sin2(β − θ)

χmax(φ)
sin2 β−

-arcsin t sin(β−θ)
χmax(φ) sin β

)(
d sinβ − t sin θ

)
where χmax(ω) we can calculate using equation (2.6) or (2.7)

For the orientation-dependent chord length distribution function we have [10].

Fe(t, φ) =


0, if t < 0

1−
√

1− t2

χmax(φ) , if 0 ≤ t < χmax(φ)

1, if t ≥ χmax(φ)

Using equation (2.5) we get

FLe(t, φ) =



0, if t < 0

be(φ)

(
sin(β−θ)

sin β

)
πab sin θ+be(φ)d sin(β−θ)

(
d sinβ − (d sinβ−

− 3t sin θ)
2 )

(√
1−

(
t sin(β−θ)

χmax(φ) sin β

)2)
+

+χmax(φ) sin θ sin β
2 sin(θ−β) (arcsin( t sin(β−θ)

χmax(φ) sin β )) if 0 ≤ t < χmax(ω)

1, if t ≥ χmax(ω)

and be(φ) is equal to

be(φ) =

√
a2 sin2 φ+ b2 cos2 φ

4.3. The case of a triangle oblique prism. Let L∆ denote an oblique prism

with triangular base ∆. We consider the side of ∆ that lies on the X axes. Let a be

the length of that side, and ψ1 and ψ2 be the corresponding adjacent angles. In [3]

it is shown that the covariogram of ∆ is given by

C∆(t, φ) =

S∆

(
1− t

χmax(φ)

)2

, if 0 ≤ t < χmax(φ)

0, otherwise

where S∆ is the area of the triangle ∆, while χmax(φ) is defined by the following

formula

χmax(φ) =


a sinψ2, if 0 ≤ φ < ψ1

a sinψ1 sinψ2, if ψ1 ≤ φ < π − ψ2

a sinψ1, if π − ψ2 ≤ φ < π

Taking into account (2.1), we obtain

CL∆
(t, φ) =

S∆

(
1− t sin(β−θ)

sin βχmax(φ)

)2(
s sinβ − t sin θ

)
, if 0 ≤ t < χmax(ω)

0, otherwise
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where χmax(φ) is defined by (2.6) or (2.7). Again from [3] we have

F∆(t, φ) =


0, if t < 0

t
χmax(φ) , if 0 ≤ t < χmax(φ)

1, if t ≥ χmax(φ)

Using equation (2.5) we get

(4.1) FU (t, ω) =



0, if t ≤ 0

bB(φ)t

(
sin(β−θ)

sin β

)
S∆ sin θ+bB(φ)d sin β

(
2 sin(β−θ)

sin β

)×
×
(

2 sin θ − 3tsinθ sin(β−θ)
2 sin βχmax(φ) + d sin(β−θ)

χmax(φ)

)
, if 0 ≤ t ≤ tmax(ω)

1, if t ≥ tmax(ω)

If for the three sub-sections above we take β = π/2 then we have same results as

in [9].

4.4. The case of a trapezoidal oblique prism. Denote by DT the oblique prism

with tapezoidal base Using Matheron’s formula we can say that
∂CT (t, φ)

∂t
= −bT (φ)(1− FT (t, φ))

If we integrate both parts the last equations yields

(4.2) CT (t, φ) = CT (0, φ)− bT (φ)

∫ t

0

(1− FT (u, φ))du

Using equation (2.1) and Theorem 3.1 we come to explicit formula for CT (φ). It is

enough to compute for φ ∈ [0, π] because C(·, φ) is π-periodic function.

CT (t, φ) =
h(a+ b)

2
− tbT (φ) + bT (φ)

∫ t

0

FT (u, φ)du =
h(a+ b)

2
− tbT (φ)+

t2 sinφ(sin(ψ1−φ) sinψ2+sinψ1 sin(φ+ψ2))
2 sinψ1 sinψ2

, if 0 ≤ φ ≤ ψ1, 0 ≤ t < x0(φ)

tb sinφ+ t2 sin(ψ1−φ) sin(ψ2+φ)
2 sin(ψ1+ψ2) −

− tx0(φ) sin(ψ1−φ) sin(ψ2+φ)
sin(ψ1+ψ2) + t2 sin(φ+ψ2) sinφ

2 sinψ2
, if 0 ≤ φ ≤ ψ1, x0(φ) ≤ t < xmax(φ)

t2 sinφ

(
sin(ψ2+φ) sinψ1+sin(φ−ψ1) sinψ2

2 sinψ1 sinψ2

)
, if ψ1 ≤ φ ≤ π − ψ2, 0 ≤ t ≤ tmax(φ)

−t2 sinφ(sinψ1 sin(φ+ψ2)−sin(φ−ψ1) sinψ2)
2 sinψ1 sinψ2

, if π − ψ2 ≤ φ ≤ π, 0 ≤ t < x0(φ)

tb sinφ− t2sin(ψ2+φ) sin(φ−ψ1)
2 sin(ψ1+ψ2) +

+ tx0(φ)sin(ψ2+φ) sin(φ−ψ1)
sin(ψ1+ψ2) + t2 sinφ sin(φ−ψ1)

2 sinψ1
, if π − ψ2 ≤ φ ≤ π, x0(φ) ≤ x < xmax(φ)

Using equation (2.5) we can find explicit form of orientation-dependent chord length

distribution function of oblique prism with trapezoid base.

Denote by

m1(φ) =
sinφ(sin(ψ1 − φ) sinψ2 + sinψ1 sin(φ+ ψ2))

bT (φ) sinψ1 sinψ2
,
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c1(φ) =
1

bT (φ)
(b sinφ− x0(φ)(sin(ψ1 − φ) sin(ψ2 + φ)

sin(ψ1 + ψ2)
)

m2(φ) =
1

bT (φ)
(
(sin(ψ1 − φ) sin(ψ2 + φ)

sin(ψ1 + ψ2)
+

sin(φ+ ψ2) sinφ

sinψ2
)

m3(φ) =
sinφ

bT (φ)

(
sin(ψ2 + φ) sinψ1 + sin(φ− ψ1) sinψ2

sinψ1 sinψ2

)
m4(φ) =

− sinφ(sinψ1 sin(φ+ ψ2)− sin(φ− ψ1) sinψ2)

bT (φ) sinψ1 sinψ2

c2(φ) =
1

bT (φ)
(b sinφ+

x0(φ)sin(ψ2 + φ) sin(φ− ψ1)

sin(ψ1 + ψ2)
)

m5(φ) =
1

bT (φ)
(−sin(ψ2 + φ) sin(φ− ψ1)

sin(ψ1 + ψ2)
+

sinφ sin(φ− ψ1)

sinψ1
)

Using the notations above we can rewrite Theorem 3.1

Theorem 3.1(rewrite) FT (x, φ) = 0 if x < 0 and FT (x, φ) = 1 if x > xmax(φ).

Now we discuss the non-trivial cases when 0 < x < xmax(φ). Because this is π

periodic function we can assume that k is equal to 0.

(i) For 0 ≤ φ < ψ1

FT (x, φ) =

{
xm1(φ), if 0 ≤ x < x0(φ)

xm2(φ) + c1(φ), if x0(φ) ≤ x < xmax(φ)

(ii) For ψ1 ≤ φ < π − ψ2

FT (x, φ) = xm3(φ)

(iii)For π − ψ2 ≤ φ < π

FT (x, φ) =

{
xm4(φ), if 0 ≤ x ≤ x0(φ)

xm5(φ) + c2(φ), if x0(φ) ≤ x < xmax(φ)

Lemma 4.1. For oblique prism with trapezoid base we have chord length distribution

function as (for shortness denote by c = sin(β−θ)
sin β )

(i) If πk ≤ φ ≤ ψ1 + πk and x0(φ) ≥ xmax(ω)| sin(β−θ)|
sin β

FDt(t, ω) =
bB(φ)c

||B|| sin θ + bB(φ)d sinβc(
2t sin θ + (d sinβ − t sin θ)tcm1(φ)− t2c sin θm1(φ)

2

)
(ii) If π(k + 1)− ψ2 ≤ φ ≤ π(k + 1) and x0(φ) ≤ xmax(ω)| sin(β−θ)|

sin β

For this case we have 2 sub-cases for calculating FT (uc, φ)

FT (uc, φ) =

{
um1(φ)c, if u < x0(φ) sin β

| sin(β−θ)|
um2(φ)c+ c1(φ), if x0(φ) sin β

| sin(β−θ)| ≤ u ≤ χmax(ω)

Therefore we get

FDt(t, ω) =
bB(φ)c

||B|| sin θ + bB(φ)d sinβc
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(
2t sin θ + (d sinβ − t sin θ)(tcm2(φ)− c1(φ))− sin θ

∫ x0(φ) sin β

| sin(β−θ)|

0

um1(φ)cdu+

− sin θ

∫ t

x0(φ) sin β

| sin(β−θ)|

ucm2(φ)− c1(φ)du =
bB(φ)c

||B|| sin θ + bB(φ)d sinβc(
2t sin θ + (d sinβ − t sin θ)(tcm2(φ)− c1(φ))− sin θ

2

(
x0(φ) sinβ

| sin(β − θ)|

)2

m1(φ)c−

− sin θ

2
(

(
x0(φ) sinβ

| sin(β − θ)|

)2

− t2)cm2(φ) + c1(φ)(
x0(φ) sinβ

| sin(β − θ)|
− t)

Case (iii) If ψ1 + πk ≤ φ ≤ π(k + 1)− ψ2 and 0 ≤ t ≤ tmax(ω)

FU (t, ω) =
bB(φ)c

||B|| sin θ + bB(φ)d sinβc(
2t sin θ + (d sinβ − t sin θ)tcm3(φ)− t2c sin θm3(φ)

2

)
Case (iv) If π(k + 1)− ψ2 ≤ φ ≤ π(k + 1) and t ≤ x0(φ) sin β

| sin(β−θ)|

FDt(t, ω) =
bB(φ)c

||B|| sin θ + bB(φ)d sinβc(
2t sin θ + (d sinβ − t sin θ)tcm4(φ)− t2c sin θm4(φ)

2

)
(v) If πk ≤ φ ≤ ψ1 + πk and x0(φ) sin β

|| sin(β−θ)|| ≤ t ≤ tmax(ω)

For this case we have 2 sub-cases for calculating FT (uc, φ)

FT (uc, φ) =

{
um4(φ)c, if u < x0(φ) sin β

| sin(β−θ)|
um5(φ)c+ c2(φ), if x0(φ) sin β

| sin(β−θ)| ≤ u ≤ χmax(ω)

Therefore we get

FDt(t, ω) =
bB(φ)c

||B|| sin θ + bB(φ)d sinβc(
2t sin θ + (d sinβ − t sin θ)(tcm5(φ)− c2(φ))− sin θ

∫ x0(φ) sin β

| sin(β−θ)|

0

um4(φ)cdu+

− sin θ

∫ t

x0(φ) sin β

| sin(β−θ)|

ucm5(φ)− c2(φ)du =
bB(φ)c

||B|| sin θ + bB(φ)d sinβc(
2t sin θ + (d sinβ − t sin θ)(tcm5(φ)− c2(φ))− sin θ

2

(
x0(φ) sinβ

| sin(β − θ)|

)2

m4(φ)c−

− sin θ

2
(

(
x0(φ) sinβ

| sin(β − θ)|

)2

− t2)cm5(φ) + c2(φ)(
x0(φ) sinβ

| sin(β − θ)|
− t)

where χmax(φ) is defined by (2.6) or (2.7).

If we take β = π/2 then we have same results as in [14].
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1. Introduction

Deriving zero bounds for real and complex zeros of polynomials is a classical

problem that has been proven essential in various disciplines such as engineering,

mathematics, and mathematical chemistry. As indicated, there is a large body

of literature dealing with the problem of providing disks in the complex plane

representing so called inclusion radii (bounds) where all zeros of an univariate

complex polynomial are situated. A review on the location of zeros of polynomials,

where the polynomials can be factored over disks in complex plane can be found in

([13],[8],[17],[16]). In accordance with, the following first result which describes the

inclusion radii where all zeros of an univariate complex polynomial are scattered is

due to Cauchy [3]. All the zeros of a polynomial

P (z) = a0 + a1z + a2z
2 + ...+ anz

n, an 6= 0

lie in the disk

|z| < 1 +M,

where M = max
0≤j≤n−1

∣∣∣ ajan ∣∣∣.
Cauchy type polynomials have been studied extensively in the past more than

one-century. The research associated with this has sprawled into several directions

and generates a plethora of publications for example see ([10], [12], [18], [13]).

The research on mathematical objects associated with polynomials and relative

position of their zeros has been active over a period; there are many research papers

published in a variety of journals each year and different approaches have been taken

for different purposes. The present article is concerned with zero free regions and
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particularly the number of zeros of a polynomial in a given disk. The following

result establishes the improvement of above Cauchy bound under the assumption

that the coefficients satisfy monotonicity condition.

If P (z) =
n∑
j=0

ajz
j is a polynomial of degree n with real coefficients such that

an ≥ an−1 ≥ ... ≥ a1 ≥ a0 > 0.

Then P (z) has all its zeros in |z| ≤ 1. This elegant result is known as Eneström-

Kakeya Theorem, (for reference see section 8.3 of [18]). In the literature, there exist

various extensions and generalizations of Eneström-Kakeya Theorem ([2],[5], [6],

[8], [10], [12], [13], [15], [16], [18]). Following analogous result established by Joyal

et al.[10], the foremost and the most cited one after Eneström-Kakeya Theorem

which acts as a generalization of it.

Let

an ≥ an−1 ≥ an−2... ≥ a1 ≥ a0.

Then the polynomial P (z) = anz
n + an−1z

n−1 + ...+ a1z + a0 of degree n has all

its zeros in

|z| ≤ 1

|an|
{an − a0 + |a0|}.

Several years later Aziz and Zargar [2] relaxed the hypothesis in several ways and

among other things proved the following result.

Let

P (z) = a0 + a1z + ...+ anz
n

be a polynomial of degree n with real coefficients such that, for some k ≥ 1 and for

some 0 < ρ ≤ 1 we have

kan ≥ an−1 ≥ ... ≥ ρa0 ≥ 0,

then P (z) has all its zeros in

|z + k − 1| ≤ k + 2a0(1− ρ)
an

.

These results proved to be, each in its own way, enabling the growth of sophisticated

techniques and critical practices are foundational in the development of the geometry

of the zeros of univariate complex polynomial.

Up till now, we have precisely reviewed the regions containing all the zeros of a

polynomial P (z) under restricted coefficients. Since the motivation of this article is

about the zero free regions and the number of zeros for special family of polynomials

and in view of that it is significant to deal with some preliminary results related to
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zero free regions. The following result is due to Zargar [20].

Let P (z) =
n∑
j=0

ajz
j be a polynomial of degree n. If for some real number k ≥ 1

0 < an ≤ an−1 ≤ ... ≤ a1 ≤ ka0,

then P (z) does not vanish in the disk |z| < 1
2k−1 .

Generally speaking, the methods and techniques to develop the zero free and zero

containing regions are different and are satisfactory for the readers. The theory on

zero free regions for the univariate complex polynomials has been well established

([20], [9], [1], [4], [11]), while somewhat is known for analytic functions. This article

describes zero free regions for lacunary type polynomials and this approach is new

in comparison with previously published material in the study of zero free regions.

Next we move to the number of zeros of a polynomial in a given disk, the following

result concerning the number of zeros of a polynomial in a closed disk can be found

in Titchmarsh’s classic "The Theory of Functions (see [19],page 171, 2nd edition).

Theorem 1.1. Let F (z) be analytic in |z| ≤ R. Let |F (z)| ≤ M in |z| ≤ R and

suppose F (0) 6= 0. Then for 0 < δ < 1, the number of zeros of F (z) in the disk

|z| ≤ Rδ does not exceed

1

log 1
δ

log
M

|F (0)|
.

Regarding the number of zeros of a polynomial in |z| ≤ 1
2 and under the same

Eneström -Kakeya type restrictions on the coefficients. Mohammad [15] used a

special case of Theorem 1.1 in order to establish the following result.

Theorem 1.2. If P (z) =
n∑
j=0

ajz
j is a polynomial of degree n such that

an ≥ an−1 ≥ ... ≥ a1 ≥ a0 > 0,

then the number of zeros of P (z) in |z| ≤ 1
2 does not exceed

1 +
1

log 2
log

an
a0
.

This result has been refined and generalized in different ways (see [5], [7], [8],

[16]). Recently Mir et al. [14] imposed certain conditions on the moduli of coefficients

and among other things of the Lacunary type polynomials P (z) = a0+

n∑
j=µ

ajz
j and

proved the following results.
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Theorem 1.3. Let P (z) = a0+

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where for some t > 0

and some µ ≤ k ≤ n,

tµ|aµ| ≤ ... ≤ tk−1|ak−1| ≤ tk|ak| ≥ tk+1ak+1 ≥ ... ≥ tn−1|an−1| ≥ tn|an|

and |arg aj−β| ≤ α ≤ π
2 for µ ≤ j ≤ n, for some real α and β. Then for 0 < δ < 1,

the number of zeros of P (z) in |z| ≤ δt does not exceed
1

log 1
δ

log
M
|a0|

,

where M = 2|a0|t + (|aµ|tµ+1 + |an|tn+1)(1 − cosα − sinα) + 2|ak|tk+1 cosα +

2

n∑
j=µ

|aj |tj+1 sinα.

Theorem 1.4. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n. Suppose that for some t > 0 and some k with

µ ≤ k ≤ n,

tµαµ ≤ ... ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ ... ≥ tn−1αn−1 ≥ tnαn.

Then for 0 < δ < 1, the number of zeros of P (z) in |z| ≤ δt does not exceed
1

log 1
δ

log
M
|a0|

,

whereM = 2(|α0|+|β0|)t+(|αµ|−αµ)tµ+1+2αkt
k+1+(|αn|−αn)tn+1+2

n∑
j=µ

|βj |tj+1.

Theorem 1.5. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n. Suppose that for some t > 0 ,for some k with

µ ≤ k ≤ n, we have

tµαµ ≤ ... ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ ... ≥ tn−1αn−1 ≥ tnαn,

and for some µ ≤ l ≤ n, we have

tµβµ ≤ ... ≤ tl−1αl−1 ≤ tlβl ≥ tl+1βl+1 ≥ ... ≥ tn−1βn−1 ≥ tnβn.

Then for 0 < δ < 1, the number of zeros of P (z) in |z| ≤ δt does not exceed
1

log 1
δ

log
M
|a0|

,

where

M = 2(|α0|+ |β0|)t+ (|αµ| − αµ + |βµ| − βµ)tµ+1+

+2(αkt
k+1 + βlt

l+1) + (|αn| − αn + |βµ| − βµ)tn+1.
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2. Main results

The purpose of this paper is to obtain zero free regions for the lacunary type

polynomials whose coefficients satisfy certain monotonicity conditions. We shall also

establish the annular region so that number of zeros of P (z) in this region does not

exceed any given real number. Also the parameters can be adapted appropriately

to the intensity required. In fact we prove the following results.

Theorem 2.1. Let P (z) = a0+

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where for some t > 0

and some µ ≤ k ≤ n,

tµ|aµ| ≤ ... ≤ tk−1|ak−1| ≤ tk|ak| ≥ tk+1|ak+1| ≥ ... ≥ tn−1|an−1| ≥ tn|an|

and |arg aj − β| ≤ α ≤ π
2 for µ ≤ j ≤ n, for some real α and β. Then no zero of

P (z) lies in

|z| < t2|a0|

|a0|t+ (|aµ|tµ+1 + |an|tn+1)(1− sinα− cosα) + 2|ak|tk+1 cosα+ 2

n∑
j=µ

|aj |tj+1 sinα

.

Theorem 2.1 in conjunction with Theorem 1.3, immediately leads to the following

result.

Corollary 2.1. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where for some

t > 0 and some µ ≤ k ≤ n,

tµ|aµ| ≤ ... ≤ tk−1|ak−1| ≤ tk|ak| ≥ tk+1ak+1 ≥ ... ≥ tn−1|an−1| ≥ tn|an|

and |arg aj−β| ≤ α ≤ π
2 for µ ≤ j ≤ n, for some real α and β. Then for 0 < δ < 1,

the number of zeros of P (z) in t2|a0|
M1

≤ |z| ≤ δt does not exceed

1

log 1
δ

log
M
|a0|

,

where

M = 2|a0|t+(|aµ|tµ+1+|an|tn+1)(1−cosα−sinα)+2|ak|tk+1 cosα+2

n∑
j=µ

|aj |tj+1 sinα

M1 = |a0|t+(|aµ|tµ+1+|an|tn+1)(1−sinα−cosα)+2|ak|tk+1 cosα+2

n∑
j=µ

|aj |tj+1 sinα.

Notice that when t = 1 in Theorem 2.1, it produces the following result.

Corollary 2.2. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where for some

µ ≤ k ≤ n.
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Theorem 2.2. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n. Suppose that for some t > 0 and some k with

µ ≤ k ≤ n,

tµαµ ≤ ... ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ ... ≥ tn−1αn−1 ≥ tnαn.

Then no zero of P (z) lies in

|z| < t2(|α0|+ |β0|)

(|α0|+ |β0|)t+ (|αµ| − αµ)tµ+1 + 2αktk+1 + (|αn| − αn)tn+1 + 2

n∑
j=µ

|βj |tj+1

.

On combining Theorem 2.2 and Theorem 1.4, we get the following result.

Corollary 2.3. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n. Suppose that for some t > 0 and some k with

µ ≤ k ≤ n, we have

tµαµ ≤ ... ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ ... ≥ tn−1αn−1 ≥ tnαn.

Then for 0 < δ < 1, the number of zeros of P (z) in t2(|α0|+|β0|)
M2

≤ |z| ≤ δt does not

exceed
1

log 1
δ

log
M
|a0|

,

where

M = 2(|α0|+ |β0|)t+ (|αµ| − αµ)tµ+1 + 2αkt
k+1 + (|αn| − αn)tn+1 + 2

n∑
j=µ

|βj |tj+1

and

M2 = (|α0|+ |β0|)t+ (|αµ| − αµ)tµ+1 + 2αkt
k+1 + (|αn| − αn)tn+1 + 2

n∑
j=µ

|βj |tj+1.

Taking t = 1 in Theorem 2.2, we get the following result.

Corollary 2.4. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n. Suppose that for some µ ≤ k ≤ n, we have

αµ ≤ ... ≤ αk−1 ≤ αk ≥ αk+1 ≥ ... ≥ αn−1 ≥ αn.

Then P (z) does not vanish in

|z| < (|α0|+ |β0|)

(|α0|+ |β0|) + (|αµ| − αµ) + 2αk + (|αn| − αn) + 2

n∑
j=µ

|βj |
.
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Finally, we put the monotonicity conditions on the real and imaginary parts of

the coefficients of P (z) = a0 +

n∑
j=µ

ajz
j in order to obtain zero free region and an

annular region onwards. More precisely, we prove the following results.

Theorem 2.3. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n. Suppose that for some t > 0 ,for some k with

µ ≤ k ≤ n,

tµαµ ≤ ... ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ ... ≥ tn−1αn−1 ≥ tnαn

and for some µ ≤ l ≤ n,

tµβµ ≤ ... ≤ tl−1αl−1 ≤ tlβl ≥ tl+1βl+1 ≥ ... ≥ tn−1βn−1 ≥ tnβn.

Then P (z) does not vanish in

|z| < t2(|α0|+ |β0|)
(|α0|+ |β0|)t+ (|αµ| − αµ + |βµ| − βµ)tµ+1 + 2(αktk+1 + βltl+1) + k tn+1

.

where k = |αn| − αn + |βn| − βn.

Theorem 2.3 in conjunction with Theorem 1.5 yields the following result.

Corollary 2.5. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n. Suppose that for some t > 0 ,for some k with

µ ≤ k ≤ n,

tµαµ ≤ ... ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ ... ≥ tn−1αn−1 ≥ tnαn

and for some µ ≤ l ≤ n,

tµβµ ≤ ... ≤ tl−1αl−1 ≤ tlβl ≥ tl+1βl+1 ≥ ... ≥ tn−1βn−1 ≥ tnβn.

Then for 0 < δ < 1, the number of zeros of P (z) in t2(|α0|+|β0|)
M3

≤ |z| ≤ δt does not

exceed
1

log 1
δ

log
M
|a0|

,

where

M = 2(|α0|+ |β0|)t+ (|αµ| − αµ + |βµ| − βµ)tµ+1

+ 2(αkt
k+1 + βlt

l+1) + (|αn| − αn + |βµ| − βµ)tn+1,

M3 = (|α0|+ |β0|)t+ (|αµ| − αµ + |βµ| − βµ)tµ+1

+ 2(αkt
k+1 + βlt

l+1) + (|αn| − αn + |βn| − βn)tn+1.
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Here it is interesting to note that Theorem 2.3 gives us several corollaries under

the monotonicity conditions on real and imaginary parts. Taking t = 1 in Theorem

2.3, we get the following result.

Corollary 2.6. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n. Suppose that for some k with µ ≤ k ≤ n, we have

αµ ≤ ... ≤ αk−1 ≤ αk ≥ αk+1 ≥ ... ≥ αn−1 ≥ αn

and for some µ ≤ l ≤ n,

βµ ≤ ... ≤ αl−1 ≤ βl ≥ βl+1 ≥ ... ≥ βn−1 ≥ βn.

Then no zero of P (z) lies in

|z| < (|α0|+ |β0|)
(|α0|+ |β0|) + (|αµ| − αµ + |βµ| − βµ) + 2(αk + βl) + (|αn| − αn + |βn| − βn)

.

Fix t = 1 and k = l = n in Theorem 2.3, we immediately obtain the following

result.

Corollary 2.7. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n such that

αµ ≤ ... ≤ αn−1 ≤ αn

and

βµ ≤ ... ≤ βn−1 ≤ βn.

Then no zero of P (z) lies in

|z| < (|α0|+ |β0|)
(|α0|+ |β0|) + (|αµ| − αµ + |βµ| − βµ) + (|αn|+ αn + |βµ|+ βµ)

.

Set t = 1 and k = l = µ in Theorem 2.3, we get the following result.

Corollary 2.8. Let P (z) = a0 +

n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj

and Im aj = βj for µ ≤ j ≤ n such that

αµ ≥ ... ≥ αn−1 ≥ αn

and

βµ ≥ ... ≥ βn−1 ≥ βn.

Then no zero of P (z) lies in

|z| < (|α0|+ |β0|)
(|α0|+ |β0|) + (|αµ|+ αµ + |βµ|+ βµ) + (|αn| − αn + |βµ| − βµ)

.
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3. Proofs of theorems

For the proofs of our main results, we need the following auxiliary result.

Lemma 3.1. Let P (z) be a polynomial of degree n. If for some real α and β,

|arg aj −β| ≤ α ≤ π
2 , 0 ≤ j ≤ n and for any t > 0 such that, |aj | ≥ |aj−1|, 0 ≤ j ≤

n, then
∣∣taj − aj−1∣∣ ≤ (t|aj | − |aj−1|)cosα+

(
t|aj |+ |aj−1|

)
sinα.

The above lemma is due to Govil and Rahman [8].

Proof of Theorem 2.1 Consider the polynomial

F (z) =(t− z)P (z) = (t− z)
(
a0 +

n∑
j=µ

ajz
j

)
.

This implies,

F (z) = a0t+

n∑
j=µ

tajz
j − a0z −

n∑
j=µ

ajz
j+1 = a0(t− z) +

n∑
j=µ

tajz
j −

n+1∑
j=µ+1

aj−1z
j

i.e., F (z) = a0(t− z) + taµz
µ +

n∑
j=µ+1

(taj − aj−1)zj − anzn+1 = a0t+R(z), where

R(z) = −a0z + taµz
µ +

n∑
j=µ+1

(taj − aj−1)zj − anzn+1. On |z| = t, we have

|R(z)| =
∣∣∣∣− a0z + taµz

µ +

n∑
j=µ+1

(taj − aj−1)zj − anzn+1

∣∣∣∣
≤|a0|t+ |aµ|tµ+1 +

n∑
j=µ+1

|taj − aj−1|tj + |an|tn+1.

Equivalently,

|R(z)| ≤ t|a0|+ |aµ|tµ+1 +

k∑
j=µ+1

|taj − aj−1|tj +
n∑

j=k+1

|taj − aj−1|tj + |an|tn+1.

Using lemma 3.1, we get

|R(z)| ≤ t|a0|+ |aµ|tµ+1 +

k∑
j=µ+1

{(|aj |t− |aj−1|) cosα+ (|aj |t+ |aj−1|) sinα}tj

+

n∑
j=k+1

{(|aj−1| − |aj |t) cosα+ (|aj |t+ |aj−1|) sinα}tj + |an|tn+1

= t|a0|+ |aµ|tµ+1 +

k∑
j=µ+1

|aj |tj+1 cosα−
k∑

j=µ+1

|aj−1|tj cosα

+

k∑
j=µ+1

|aj |tj+1 sinα+

k∑
j=µ+1

|aj−1|tj sinα+

n∑
j=k+1

|aj−1|tj cosα

56



ZERO-FREE REGIONS FOR LACUNARY ...

−
n∑

j=k+1

|aj |tj+1 cosα+

n∑
j=k+1

|aj−1|tj sinα+

n∑
j=k+1

|aj |tj+1 sinα+ |an|tn+1.

This gives,

|R(z)| ≤ |a0|t+ |aµ|tµ+1 − |aµ|tµ+1 cosα+ |ak|tk+1 cosα+ |aµ|tµ+1 sinα

+ |ak|tk+1 sinα+ 2

k−1∑
j=µ+1

|aj |tj+1 + |ak|tk+1 cosα− |an|tn+1 cosα+ |ak|tk+1 sinα

+ |an|tn+1 sinα+ 2

n−1∑
j=k+1

|aj |tj+1 sinα+ |an|tn+1 = |a0|t+ (|aµ|tµ+1 + |an|tn+1)

× (1− sinα− cosα) + 2|ak|tk+1 cosα+ 2

n∑
j=µ

|aj |tj+1 sinα =M1.

Applying Schwarz lemma to R(z), we get |R(z)| ≤ M1|z|
t

, |z| ≤ t. Hence

|F (z)| = |a0t+R(z)| ≥ |a0|t− |R(z)| ≥ |a0|t−
M1|z|
t

> 0 for |z| ≤ t,

if |a0|t−
M1|z|
t

> 0. That is, if |z| < t2|a0|
M1

. This shows that F (z) and hence P (z)

has no zero in |z| < t2|a0|
M1

. This completes the proof of Theorem 2.1. �

Proof of Theorem 2.2 We consider

F (z) = (t− z)P (z) = a0(t− z) + taµz
µ +

n∑
j=µ+1

(taj − aj−1)zj − anzn+1.

Equivalently,

F (z) = (α0 + iβ0)(t− z) + (αµ + iβµ)tz
µ +

n∑
j=µ+1

(αjt− αj−1)zj

+ i

n∑
j=µ+1

(βjt− βj−1)zj − (αn + iβn)z
n+1 = (α0 + iβ0)t+R(z).

For |z| = t, we have

|R(z)| ≤(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 +

n∑
j=µ+1

|αjt− αj−1|tj

+

n∑
j=µ+1

|βjt− βj−1|tj + (|αn|+ |βn|)tn+1

= (|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 +

k∑
j=µ+1

(αjt− αj−1)tj

+

n∑
j=k+1

(αj−1 − αjt)tj +
n∑

j=µ+1

(
|βj |t+ |βj−1|

)
tj + (|αn|+ |βn|)tn+1 =
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= (|α0|+ |β0|)t+(|αµ|−αµ)tµ+1+2αkt
k+1+(|αn|−αn)tn+1+2

n∑
j=µ

|βj |tj+1 =M2.

Applying Schwarz lemma to the polynomial R(z), we get

|R(z)| ≤ M2|z|
t

, for |z| ≤ t.

Hence |F (z)| = |a0t + R(z)| ≥ |a0|t − |R(z)| ≥ |a0|t −
M2|z|
t

> 0, |z| ≤ t, if

|a0|t −
M2|z|
t

> 0, that is, if |z| < t2|a0|
M2

. This shows that F (z) and hence P (z)

has no zero in |z| < t2|a0|
M2

and the proof of Theorem 2.2 is complete. �

Proof of Theorem 2.3 As in the proof of Theorem 2.2,

F (z) =(α0 + iβ0)(t− z) + (αµ + iβµ)tz
µ +

n∑
j=µ+1

(αjt− αj−1)zj

+ i

n∑
j=µ+1

(βjt− βj−1)zj − (αn + iβn)z
n+1 = (α0 + iβ0)t+R(z).

where

R(z) =− (α0 + iβ0)z + (αµ + iβµ)tz
µ +

n∑
j=µ+1

(αjt− αj−1)zj

+ i

n∑
j=µ+1

(βjt− βj−1)zj − (αn + iβn)z
n+1.

For |z| = t, we have

|R(z)| ≤ (|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 +

n∑
j=µ+1

|αjt− αj−1|tj

+

n∑
j=µ+1

|βjt− βj−1|tj + (|αn|+ |βn|)tn+1 = (|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1

+

k∑
j=µ+1

(αjt− αj−1)tj +
n∑

j=k+1

(αj−1 − αjt)tj +
k∑

j=µ+1

(βjt− βj−1)tj

+

n∑
j=k+1

(βj−1 − βjt)tj + (|αn|+ |βn|)tn+1 = (|α0|+ |β0|)t

+ (|αµ| − αµ + |βµ| − βµ)tµ+1 + 2(αkt
k+1 + βlt

l+1)

+ (|αn| − αn + |βn| − βn)tn+1 =M3.

Applying Schwarz lemma to the polynomial R(z), we get

|R(z)| ≤ M2|z|
t

, for |z| ≤ t.
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Hence

|F (z)| =|(α0 + iβ0)t+R(z)| ≥ (|α0|+ |β0|)t− |R(z)|

≥ (|α0|+ |β0|)t−
M3|z|
t

> 0, |z| ≤ t,

if

(|α0|+ |β0|)t−
M3|z|
t

> 0.

That is, if

|z| < (|α0|+ |β0|)t2

M3
.

This shows that F (z) and hence P (z) has no zero in |z| < (|α0|+|β0|)t2
M3

. This

completes the proof of Theorem 2.3. �

4. Examples

Since the present article is concerned with newly developed approach to obtain

the zero free regions and the number of zeros for the lacunary type polynomials in

a given disk. From this point of view, the comparison of the bounds obtained with

the previous bounds appropriately have no scope within this type of study. Instead

of comparing the bounds, we point out few examples which may be helpful to be

examined.

Example 4.1. Let P (z) = 2z5 + 2.5z4 + 4z3 + 3z2 + 2z + 1. Clearly, here µ = 1

and n = 5. We take k = 3, α = π/2 and t = 1. In view of Theorem 2.1 and due to

this type of intensity of parameters the radius of given disk comes out to be 0.0357.

Since the appropriate zeros of P (z) are −0.358+0.9154i, −0.358−0.9154i, 0.0756+
0.8657i, 0.0756− 0.8657i, −0.6853. Then one can see that P (z) does not vanish in

|z| < 0.0357.

Since corollary 2.1.1 is the union of Theorem 2.1 and Theorem 1.3. Under the

same example it is clear that all the zeros of P (z) = 2z5+2.5z4+4z3+3z2+2z+1

lie in |z| ≥ 0.0357. If we set δ = 0.7, the upper bound of the annular region

in corollary 2.1.1 comes out to be 0.7 as t = 1. In this case, we found that the

number of zeros of underlying polynomial P (z) in 0.0357 ≤ |z| ≤ 0.7 does not

exceed 1
log 1

0.7

log(29) ≈ 9.4524. Hence we conclude that P (z) has at most one zero

in 0.0357 ≤ |z| ≤ 0.7 and of course, P (z) has exactly one zero in 0.0357 ≤ |z| ≤ 0.7.

All above discussion demonstrates one thing, which is beauty to say, that the bound

in Theorem 2.1 becomes the lower bound of the annular region in corollary 2.1.1.

Example 4.2. Let P (z) = 2z5+3z4+4z3+2z2+1.5z+1. Clearly, here µ = 1 and

n = 5. Setting k = 3 and t = 1. In view of Theorem 2.2 the radius comes out to be
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0.1111. Numerically the appropriate zeros of P (z) are −0.6193+1.0343i, −0.6193−
1.0343i, 0.2089+0.6804i, 0.2089−0.6804i, 0.6792. It is clear from these zeros that

P (z) does not vanish in |z| < 0.1111.
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1. Introduction

Denote by Πn the space of bivariate polynomials of total degree at most n :

Πn =

 ∑
i+j≤n

aijx
iyj

 , N := dim Πn =

(
n+ 2

2

)
.

Consider a set of distinct nodes Xs = {(x1, y1), (x2, y2), . . . , (xs, ys)}.
The problem of finding a polynomial p ∈ Πn which satisfies the conditions

(1.1) p(xi, yi) = ci, i = 1, 2, . . . s,

is called interpolation problem.

Definition 1.1. A set of nodes Xs is called n-poised if for any data {c1, . . . , cs} there
exists a unique polynomial p ∈ Πn, satisfying the conditions (1.1).

A necessary condition of n-poisedness is: #Xs = s = N. If this latter equality takes

place then the following holds:

Proposition 1.1. A set of nodes XN is n-poised if and only if

p ∈ Πn, p(xi, yi) = 0 i = 1, . . . , N =⇒ p = 0.
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A polynomial p ∈ Πn is called an n-fundamental polynomial for a node A =

(xk, yk) ∈ Xs if

p(xi, yi) = δik, i = 1, . . . , s,

where δ is the Kronecker symbol. We denote the n-fundamental polynomial of A ∈ Xs

by p?A = p?A,X.

Definition 1.2. A set of nodes Xs is called n-independent if each node has n-

fundamental polynomial. Otherwise, Xs is called n-dependent. A set of nodes Xs

is called essentially n-dependent if none of its nodes has n-fundamental polynomial.

Fundamental polynomials are linearly independent. Therefore a necessary condition

of n-indepen-dence is #Xs = s ≤ N.
One can readily verify that a node set Xs is n-independent if and only if the

interpolation problem (1.1) is solvable, meaning that for any data {c1, . . . , cs} there
exists a (not necessarily unique) polynomial p ∈ Πn satisfying the conditions (1.1).

A plane algebraic curve is the zero set of some bivariate polynomial of degree

≥ 1. To simplify notation, we shall use the same letter, say p, to denote the polynomial

p and the curve given by the equation p(x, y) = 0. In particular, by `, we denote a

linear polynomial ` ∈ Π1 and the line defined by the equation `(x, y) = 0.

Definition 1.3. Let X be an n-poised set. We say, that a node A ∈ X uses a line `,

if ` is a factor of the fundamental polynomial p?A, i.e.,

(1.2) p?A = `q,

where q ∈ Πn−1.

Since the fundamental polynomial of a node in an n-poised set is unique we get

Lemma 1.1 ([9], Lemma 2.5). Suppose X is a poised set and a node A ∈ X uses a

line `. Then ` passes through at least two nodes from X, at which q from (1.2) does

not vanish.

Definition 1.4. Let X be a set of nodes. We say, that a line ` is a k-node line if it

passes through exactly k nodes of X : ` ∩ X = k.

The following proposition is well-known (see e.g. [8] Proposition 1.3):

Proposition 1.2. Suppose that a polynomial p ∈ Πn vanishes at n + 1 points of a

line `. Then we have that p = `r, where r ∈ Πn−1.
62



A NEW PROOF OF THE GASCA - MAEZTU CONJECTURE ...

From here we readily get that at most n + 1 nodes of an n-poised set XN can be

collinear. In view of this an (n+ 1)-node line ` is called a maximal line [2].

Next, let us bring the Cayley-Bacharach theorem (see e.g. [6], Th. CB4; [8], Prop. 4.1).

Theorem 1.1. Assume that two algebraic curves of degree m and n, respectively,

intersect atmn distinct points. Then the set X of these intersection points is essentially

(m+n−3)-dependent.

We are going to consider a special type of n-poised sets defined by Chung and Yao:

Definition 1.5 ([5]). An n-poised set X is called GCn set, if the n-fundamental

polynomial of each node A ∈ X is a product of n linear factors.

Now we are in a position to present the Gasca-Maeztu conjecture.

Conjecture 1.1 ([7]). For any GCn set X there is a maximal line, i.e., a line passing

through its n+ 1 nodes.

Since now the Gasca-Maeztu conjecture was proved to be true only for n ≤ 5. The

case n = 2 is trivial, and the case n = 3 is easy to verify. The case n = 4 first was

proved by J. R. Busch [3]. Several other proofs have been published since then (see

e.g. [4], [9], [1]). For the case n = 5 there is only one proof by H. Hakopian, K. Jetter

and G. Zimmermann [10]. Here we give a second proof, which largely follows the first

one but is much shorter and simpler.

1.1. The m-distribution sequence of a node. In this section we bring a number

of concepts, properties and results from [10].

Suppose that X is a GCn set. Consider a node A ∈ X together with the set of n

used lines denoted by LA. The N − 1 nodes of X \ {A} belong to the lines of LA.

Let us order the lines of LA in the following way:

The line `1 is a line in LA that passes through maximal number of nodes of X,

denoted by k1 : X ∩ `1 = k1.

The line `2 is a line in LA \ {`1} that passes through maximal number of nodes of

X \ `1, denoted by k2 : (X \ `1) ∩ `2 = k2.

In the general case the line `s, s = 1, . . . , n, is a line in LA \ {`1, . . . , `s−1} that

passes through maximal number of nodes of the set X \ ∪s−1i=1 `i, denoted by ks :

(X \ ∪s−1i=1 `i) ∩ `s = ks.
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A correspondingly ordered line sequence

S = (`1, . . . , `n)

is called a maximal line sequence or briefly an m-line sequence if the respective

sequence (k1, . . . , kn) is the maximal in the lexicographic order [10]. Then the latter

sequence is called a maximal distribution sequence or briefly an m-d sequence.

Evidently, for the m-d sequence we have that

(1.3) k1 ≥ k2 ≥ · · · ≥ kn and k1 + · · ·+ kn = N − 1.

Though the m-distribution sequence for a node A is unique, it may correspond to

several m-line sequences.

Note that, an intersection point of several lines of LA is counted for the line

containing it which appears in S first. Each node in X is called a primary node for

the line it is counted for, and a secondary node for the other lines containing it.

According to Lemma 1.1, every used line contains at least two primary nodes, i.e.,

(1.4) ki ≥ 2 for i = 1, . . . , n .

Let S = (`1, . . . , `n) be an m-line sequence with the associated m-d sequence (k1, . . . , kn) .

Lemma 1.2 ([10], Lemma 2.5). Assume that ki = ki+1 =: k for some i. If the

intersection point of lines `i and `i+1 belongs to X, then it is a secondary node for

both `i and `i+1. Moreover, interchanging `i and `i+1 in S still yields an m-line

sequence.

We say that a polynomial has (si, . . . , sj) primary zeroes in the lines (`i, . . . , `j) if

the zeroes are primary nodes in the respective lines. From Proposition 1.2 we get

Corollary 1.1. If a polynomial p ∈ Πm−1 has (m,m−1, . . . ,m−k) primary zeroes in

the lines (`m−k, `m−k+1 . . . , `m) then we have that p = `m`m−1 · · · `m−kr, where r ∈
Πm−k.

In some cases a particular line ˜̀ used by a node is fixed and then the properties

of the other factors of the fundamental polynomial are studied.

In this case in the corresponding m-line sequence, called ˜̀-m-line sequence, one

takes as the first line `1 the line ˜̀, no matter through how many nodes it passes. Then

the second and subsequent lines are chosen, as in the case of the m-line sequence.

Thus the line `2 is a line in LA \ {˜̀1} that passes through maximal number of

nodes of X \ ˜̀1, and so on.
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Correspondingly the ˜̀-m-distribution sequence is defined.

2. The Gasca-Maeztu conjecture for n = 5

Let us formulate the Gasca-Maeztu conjecture for n = 5 as:

Theorem 2.1. For any GC5 set X of 21 nodes there is a maximal line, i.e., a 6-node

line.

To prove the theorem assume by way of contradiction the following.

Assumption 2.1. The set X is a GC5 set with no maximal line.

In view of (1.3) and (1.4) the only possible m-d sequences for any node A ∈ X are

(2.1) (5, 5, 5, 3, 2); (5, 5, 4, 4, 2); (5, 5, 4, 3, 3); (5, 4, 4, 4, 3); (4, 4, 4, 4, 4).

The results from [10] below show how many times a line can be used, depending the

number of nodes it passes through. In each statement it is assumed that X is a GC5

set with no maximal line.

Proposition 2.1 ([10], Prop. 2.11). Suppose that ˜̀ is a 2-node line. Then ˜̀ can be

used by at most one node of X.

Proposition 2.2 ([10], Prop. 2.12). Suppose that ˜̀ is a 3-node line and is used by

two nodes A, B ∈ X. Then there exists a third node C using ˜̀. Furthermore, A, B,

and C share three other lines, each passing through five primary nodes. For each of

the three nodes, the m-d sequence is (5, 5, 5, 3, 2), and the other two nodes are the

primary nodes in the respective fifth line. In particular, ˜̀ is used exactly three times.

Proposition 2.3 ([10], Prop. 2.13). Suppose that a line ˜̀ is used by three nodes A,

B, C ∈ X. Then ˜̀ passes through at least three nodes of X.

If ˜̀ is a 4-node line, then A, B, and C share ˜̀ and three other lines, `2 and `3
passing through five and `4 through four primary nodes. For each of the three nodes,

the ˜̀-m-distribution sequence with respect to ˜̀ is (4, 5, 5, 4, 2). ˜̀ can only be used by

A, B, and C, i.e., it is used exactly three times.

Corollary 2.1 ([10], Cor. 2.14). Suppose that a line ˜̀ is used by four nodes in X.

Then ˜̀ is a 5-node line.
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Proposition 2.4 ([10], Prop. 2.15). Suppose that a line ˜̀ is used by five nodes in X.

Then ˜̀ is a 5-node line, and it is actually used by exactly six nodes in X. These six

nodes form a GC2 set and share two more lines with five primary nodes each, i.e.,

each of these six nodes has the m-d sequence (5, 5, 5, 3, 2).

At the end we bring a (part of a) table from [10] which follows from Propositions 2.1,

2.2, 2.3, 2.4 and Corollary 2.1. It shows under which conditions a k-node line ˜̀, 2 ≤
k ≤ 5, can be used at most how often, provided that the considered GC5 set has no

maximal line.

(2.2)

maximal # of nodes using ˜̀
total # in general no node uses
of nodes (5, 5, 5, 3, 2)

in ˜̀ m-d sequence

5 6 4
4 3 3
3 3 1
2 1 1

2.1. The case (5 , 5 , 5 , 3 , 2). In this and the following sections, we will prove the

following

Proposition 2.5. Assume that X is a GC5 set with no maximal line. Then for no

node in X the m-d sequence is (5, 5, 5, 3, 2).

Assume by way of contradiction the following.

Assumption 2.2. X contains a node for which an m-line sequence (`1, `2, `3, `4, `5)

implies the m-d sequence (5, 5, 5, 3, 2).

Set X = A ∪B (see Fig. 2.1), with

A = X ∩ {`1 ∪ `2 ∪ `3}, #A = 15, and B = X \A, #B = 6.

Denote L3 := {`1, `2, `3}. Note that no intersection point of the three lines of L3

belongs to X.

Below we bring a simple proof for

Lemma 2.1 ([10], Lemma 3.2).
(i) The set B is a GC2 set, and each node B ∈ B uses the three lines of L3 and

the two lines it uses within B, i.e.,

(2.3) p?B,X = `1 `2 `3 p
?
B,B .
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Рис. 2.1. The case (5, 5, 5, 3, 2) with X = A ∪B.

(ii) No node in A uses any of the lines of L3.

Proof. (i) Suppose by way of contradiction that the set B is not 2-poised, i.e., it

is a subset of a conic C. Then X is a subset of the zero set of the polynomial `1 `2 `3 C,

which contradicts Proposition 1.1. Then we readily obtain the formula (2.3).

(ii) Without loss of generality assume that A ∈ `1 uses the line `2. Then p?A =

`2 q, where q ∈ Π4. It is easily seen that q has (5,4) primary zeros in the lines

(`3, `1). Therefore, in view of Corollary 1.1, we obtain that p?A = `2 `3 `1 r, which is a

contradiction. �

Evidently, any node in a GC2 set uses a maximal line, i.e., 3-node line. Hence we

conclude readily that any GC2 set, including also B, possesses at least three maximal

lines (see Figure 2.1).

A node A ∈ X is called a 2m-node if it is the intersection point of two maximal

lines. Note that the nodes Bi, i = 1, 2, 3, in Fig. 2.1, are 2m-nodes for B.

Definition 2.1. We say, that a line ` is a kA-node line if it passes through exactly

k nodes of A.

Lemma 2.2. (i) Assume that a line ˜̀ /∈ L3 does not intersect a line ` ∈ L3 at a node

in X. Then the line ˜̀ can be used at most by one node from A. Moreover, this latter

node belongs to ` ∩A.

(ii) If a line ` is 0A or 1A-node line then no node from A uses the line `.

(iii) If a line ` is 2A-node line then ` can be used by at most one node from A.

(iv) Suppose ` is a maximal line in B. Then ` can be used by at most one node

from A.
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Proof. (i) Without loss of generality assume that ` = `1 and A ∈ `2 uses ˜̀ :

p?A = ˜̀q, q ∈ Π4.

It is easily seen that q has (5, 4, 3) primary zeros in the lines (`1, `3, `2). Therefore,

in view of Corollary 1.1, we conclude that p?A = ˜̀`1 `2 `3 r, r ∈ Π1, which is a

contradiction.

Now assume conversely that A,B ∈ `1 ∩ X use the line ˜̀. Choose a point C ∈
`2 \ (˜̀∪ X). Then choose numbers α and β, with |α| + |β| 6= 0, such that p(C) = 0,

where p := αp?A +βp?B . It is easily seen that p = ˜̀q, q ∈ Π4 and the polynomial q has

(5, 4, 3) primary zeros in the lines (`2, `3, `1). Therefore p = ˜̀̀
1 `2 `3 q, where q ∈ Π1.

Thus p(A) = p(B) = 0, implying that α = β = 0, which is a contradiction.

The items (ii) and (iii) readily follow from (i). The item (iv) readily follows from

(iii). �

Denote by `AB the line passing through the points A and B.

Proposition 2.6. Let `B1M1
be 5-node line, which is used by all the six nodes of a

subset A6 ⊂ A. Suppose also that ` is a 4-node line passing through B1. If the line `

is used by three nodes from A then all these three nodes belong to A6.

Proof. The six nodes of A6 use the 5-node line `B1M1
. Therefore, in view of

Proposition 2.4, these six nodes share also two more lines passing through five primary

nodes. It is easily seen that these latter two lines are the lines `B2M2
and `B3M3

.

Assume by way of contradiction that the nodes D1, D2, D3 ∈ A are using the line

` and D1 /∈ A6. According to Proposition 2.3 these three nodes share also two lines

passing through five primary nodes.

In view of Lemma 2.2, (iv), these latter two lines cannot be maximal lines in B.

Therefore they belong to the set {`B2M2
, `B3M3

, `M1M2
, `M2M3

, `M1M3
}. One of them

should be `B2M2 or `B3M3 , since any two lines from {`M1M2 , `M2M3 , `M1M3} share a

node. Therefore one of them will be used by seven nodes, namely by D1 and the

nodes of A6. This contradicts Proposition 2.4. �

2.2. The proof of Proposition 2.5. Consider all the lines passing through B :=

B1 and at least one more node of X. Denote the set of these lines by L(B). Let

mk(B), k = 1, 2, 3, be the number of kA-node lines from L(B).

We have that

(2.4) 1m1(B) + 2m2(B) + 3m3(B) = #A = 15.
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Lemma 2.3. Suppose that a line `, passing through B and different from the line

`BM1 , is a 3A-node line. Then ` can be used by at most three nodes from A.

Proof. Note that ` is not a maximal line for B, since otherwise ` will be a maximal

line for X. Therefore ` is a 4-node line and Proposition 2.3 completes the proof. �

Lemma 2.4. We have that m3(B) ≤ 4.

Proof. The equality (2.4) implies thatm3(B) ≤ 5. Assume by way of contradiction

that five lines pass through B and three nodes in A. Therefore these five lines intersect

the three lines `1, `2, `3, at the 15 nodes of A. Then, by Theorem 1.1, these 15 nodes

are 5 + 3− 3 = 5-dependent, which is a contradiction. �

Proof of Proposition 2.5. In view of Proposition 2.4 we divide the proof into

three cases.

Case 1. Suppose that `BM1
is 5-node line used by six nodes from A.

Denote the set of these six nodes by A6 ⊂ A. We have that any node from A uses

at least one line from L(B). Proposition 2.6 implies that all 3A-node lines from L(B),

except `BM1
, can be used by at most two nodes from A \A6.

From Lemma 2.2, we have that

(2.5) 15− 6 ≤ 0m1(B) + 1m2(B) + 2(m3(B)− 1).

In view of (2.4) we get

(2.6) m1(B) + 2m2(B) + 3m3(B)− 6 ≤ 1m2(B) + 2m3(B)− 2.

Therefore we conclude thatm1(B)+m2(B)+m3(B) ≤ 4, or, in other words, 3m1(B)+

3m2(B) + 3m3(B) ≤ 12, which contradicts (2.4).

Case 2. Suppose that `BM1
is 5-node line used by at most four nodes of A.

In this case we have that

15 ≤ 1m2(B) + 3(m3(B)− 1) + 4.

In view of (2.4) we get

(2.7) m1(B) + 2m2(B) + 3m3(B) ≤ 1m2(B) + 3m3(B) + 1.

Hence 2m1(B) + 2m2(B) ≤ 2. Now, by using (2.4) again, we conclude that

(2.8) 3m3(B1) ≥ 13,

which contradicts Lemma 2.4.

Case 3. Suppose that `BM1
is not 5-node line.
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Then, in view of the table (2.2), it can be used by at most three nodes of A. From

Lemmas 2.2 and 2.3, (ii),(iii), we have that

(2.9) 15 ≤ 1m2(B) + 3m3(B).

In view of (2.4) we get

(2.10) m1(B) + 2m2(B) + 3m3(B) ≤ m2(B) + 3m3(B).

Hence m1(B) = m2(B) = 0 and m3(B) ≥ 5, which contradicts Lemma 2.4. �

2.3. The cases (5 , 5 , 4 , 4 , 2) , (5 , 5 , 4 , 3 , 3), and (5 , 4 , 4 , 4 , 3). Let us fix a node

A ∈ X and consider the set of lines L(A). Let nk(A) be the number of (k + 1)-node

lines from LA. In view of Assumption 2.1 we have that

(2.11) 1n1(A) + 2n2(A) + 3n3(A) + 4n4(A) = #
(
X \ {A}

)
= 20.

Next we bring a result from [10]. We present also the proof for the convenience.

Lemma 2.5 ([10], Lemma 3.13). Assume that X is a GC5 set with no maximal

line. By Proposition 2.5, for no node of X the m-d sequence is (5, 5, 5, 3, 2). Then the

following hold.

(i) There is no 3-node line and m-node line is used exactly m− 1 times, where

m = 2, 4, 5.

(ii) No two lines used by the same node intersect at a node in X.

Proof. (i) Consider all the lines in L(A). From the third column of the table

in (2.2), it follows that for the total number M(A) of uses of these lines, we have that

(2.12) M(A) ≤ 1n1(A) + 1n2(A) + 3n3(A) + 4n4(A) .

Since each node in X\{A} uses at least one line through A, we must haveM(A) ≥ 20.

In view of the equality (2.11) we conclude that M(A) = 20 and n2(A) = 0.

Moreover, we deduce that any line containing m nodes including A has to be used

exactly m−1 times, where m = 2, 4, 5. Since the node A is arbitrary, this is true for

all lines containing at least two nodes of X.

(ii) Assume conversely that two lines `1, `2, used by a node A ∈ X intersect at a

node B ∈ X. Then each of the nodes in X \ {A,B} uses at least one line through

B, while the node A uses at least two lines. Thus we have M(A) ≥ 21, which is a

contradiction. �

Corollary 2.2. For no node in X the m-d sequence is (5, 5, 4, 3, 3) or (5, 4, 4, 4, 3).
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Proof. Suppose, that for a node A ∈ X, the m-d sequence is (5, 5, 4, 3, 3) or

(5, 4, 4, 4, 3). In view of Lemma 2.5, (ii), there are no secondary nodes in the used

lines. Thus the presence of 3 the m-d sequence implies presence of a 3-node line in

an m-line sequence, which contradicts Lemma 2.5, (i). �

Proposition 2.7. For no node in X the m-d sequence is (5, 5, 4, 4, 2).

Proof. Assume that for a node A ∈ X some m-line sequence (`1, `2, `3, `4, `5)

implies the m-d sequence (5, 5, 4, 4, 2). In view of Lemma 2.5, (ii), the lines `1, ..., `5,

contain exactly 5, 5, 4, 4, 2, nodes, respectively. Denote by B and C the two nodes in

the line `5. Then we have

p?B = `1 `2 `3 `4 `AC and p?C = `1 `2 `3 `4 `AB .

In view of Lemma 2.5 the line `1 is used by exactly four nodes of X. Therefore, there

exists a node D ∈ X \ {A,B,C}, which is using the line `1.

In view of (2.1), Proposition 2.5, and Corollary 2.2, for the node D ∈ X some

m-line sequence (`1, `
′
2, `
′
3, `
′
4, `
′
5) yields the m-d sequence (5, 5, 4, 4, 2).

Now, as above, we have that the two nodes in the line `′5 use the line `1. In view

of Proposition 2.1, the line `′5, used by the node D, cannot coincide with the lines

`AB , `AC or `BC . Therefore `′5 contains a node different from A,B,C,D. Hence, the

line `1 is used at least five times, which is a contradiction. �

2.4. Proof of theorem 2.1. What is left to complete the proof of Theorem 2.1 is

the following

Proposition 2.8. For no node in X the m-d sequence is (4, 4, 4, 4, 4).

Proof. Let us fix a node A ∈ X. In view of (2.1), Propositions 2.5, 2.7 and Corollary

2.2, for the node A, m-d sequence is (4, 4, 4, 4, 4). Thus, in view of Lemma 2.5, (ii),

all used lines are 4-node lines. Therefore, in view of Lemma 2.5, (i), we conclude that

n1(A) = n2(A) = n4(A) = 0. Now, the equality (2.11) implies that 3n3(A) = 20,

which is not possible. �
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1. Introduction and main results

For n ≥ 2, let Rn denote the usual real vector space of dimension n. For two

column vectors x, y ∈ Rn, we use 〈x, y〉 to denote the inner product of x and y. The

ball in Rn with center a and radius r is denoted by B(a, r). In particular, we write

B = B(0, 1) and Br = B(0, r). Let dv be the normalized volume measure on B and

dσ the normalized surface measure on the unit sphere S = ∂B.

The purpose of this paper is to investigate p-harmonic functions whose definition

is as follows.

Definition 1.1. Let p > 1 and Ω be a domain in Rn. A continuous function

u ∈W 1,p
loc (Ω) is p-harmonic if

div
(
|∇u|p−2∇u

)
= 0

in the weak sense, i.e., ∫
Ω

〈|∇u|p−2∇u,∇η〉dv(x) = 0

for each η ∈ C∞0 (Ω).

p-harmonic functions are natural extensions of harmonic functions from a variational

point of view. It has been extensively studied because of its various interesting

1This work was partly supported by the Foundation of Shanghai Polytechnic University(No.
EGD20XQD15).
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features and applications. By a well-known regularity result due to Tolksdorf, p-

harmonic functions are C1(Ω). Moreover u ∈ W 2,2
loc (Ω) if p ≥ 2 and u ∈ W 2,p

loc (Ω) if

1 < p < 2 (cf. [12, 20]).

Let p > 1, we denote by hp(B) the set of all p-harmonic functions on the real

unit ball B in Rn. For α ∈ R and β > 0, the so-called exponential weighted function

ωα,β , introduced by Aleman and Siskakis [2], is defined as

ωα,β(x) = (1− |x|)α exp
( −1

(1− |x|)β
)
, x ∈ B,

and the associated weighted volume measure is denoted by

dvα,β(x) = ωα,β(x)dv(x).

For 1 < s < ∞, α ∈ R and β > 0, the exponentially weighted p-harmonic

Bergman space Asα,β(B) is defined as

Asα,β(B) =
{
u ∈ hp(B) : ‖u‖sAsα,β =

∫
B
|u(x)|sdvα,β(x) <∞

}
.

In particular, if β = 0, then Asα,β(B) becomes the weighted p-harmonic Bergman

space, which is denoted by Asα(B).

For 0 < s < ∞, α > −1, let f be a holomorphic function on the unit disc D

of the complex plane C. The famous Hardy-Littlewood theorem for holomorphic

Bergman spaces asserts that∫
D
|f(z)|s(1− |z|2)αdA(z) ≈ |f(0)|s +

∫
D
|f ′(z)|s(1− |z|2)s+αdA(z),(1.1)

where dA is the area measure on C normalized so that A(D) = 1 (cf. [10]).

It is well-known that integral estimate (1.1) plays an important role in the theory

of holomorphic functions. For the generalizations and applications of (1.1) to the

spaces of holomorphic functions, harmonic functions, and solutions to certain PDEs,

see [3, 4, 5, 9, 15, 11, 14, 21, 25] and the references therein. In [18], Siskakis

extended (1.1) to the setting of exponentially weighted Bergman space of holomorphic

functions for 1 ≤ s < ∞. For the further generalizations of (1.1) to holomorphic

Bergman spaces with some general differential weights, see [15, 19]. By applying

these results, Cho and Park characterized exponentially weighted Bergman space

in terms of Lipschitz type conditions([5, Theorem A ], [6, Theorem 3.1]).

In [11], Kinnunen et al. pointed out that (1.1) is also true for p-harmonic functions.

More precisely, they obtained the following integral estimate.
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Theorem A. Let α > −1, 1 < s <∞, then∫
B
|u(x)|s(1− |x|)αdv(x) ≈ |u(0)|s +

∫
B
|∇u(x)|s(1− |x|)s+αdv(x)(1.2)

for all u ∈ hp(B).

With developing of theory on the standard (weighted) Bergman space, more

general spaces such as weighted Bergman spaces with exponential type weights

have been extensively studied (see [2, 4, 5, 6, 8, 16]). As the first aim of this paper,

we consider an analogue of (1.2) in the setting of exponentially weighted p-harmonic

Bergman space Asα,β(B). The following is our result in this line.

Theorem 1.1. Let 1 < s <∞, α ∈ R and β ≥ s− 1, then∫
B
|u(x)|sdvα,β(x) ≈ |u(0)|s +

∫
B
|∇u(x)|s(1− |x|)sdvα,β(x)(1.3)

for all u ∈ hp(B).

To state our next results, let us recall the following notion.

The weighted hyperbolic distance dλ, due to Dall’Ara [7], is induced by the

metric λ(x)−2dx⊗ dx, i.e,

dλ(x, y) = inf
γ

∫ 1

0

|γ′(t)|
λ(γ(t))

dt, x, y ∈ B,

where λ(x) = (1 − |x|2)2 and γ : [0, 1] → B is a parametrization of a piecewise C1

curve with γ(0) = x and γ(1) = y. By [7], it was shown that dλ(x, y) ≈ |x−y|
[x,y]2 when

x, y are close sufficiently in B, see Section 4 in [7] for details.

As an application of Theorem 1.1, we obtain a Lipschitz type characterization

for exponentially weighted p-harmonic Bergman space Asα,β(B).

Theorem 1.2. Let 1 < s < ∞, α ∈ R, β ≥ 2s − 1 and u ∈ hp(B). Then the

following statements are equivalent:

(a) u ∈ Asα,β(B);

(b) There exists a positive continuous function g ∈ Ls(B, dvα,β) such that

|u(x)− u(y)| ≤ |x− y|
[x, y]2

(
g(x) + g(y)

)
for all x, y ∈ B;

(c) There exists a positive continuous function g ∈ Ls(B, dvα,β) such that

|u(x)− u(y)| ≤ dλ(x, y)
(
g(x) + g(y)

)
for all x, y ∈ B;
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(d) There exists a positive continuous function h ∈ Ls(B, dvα+2s,β) such that

|u(x)− u(y)| ≤ |x− y|
(
h(x) + h(y)

)
for all x, y ∈ B.

Remark 1.1. Theorem 1.2 is a generalization of [5, Theorem A] to the setting of

p-harmonic functions.

In recent years a special class of Möbius invariant function spaces in the unit

disk D of the complex plane C, the so-called holomorphic Qk space, has attracted

much attention. See [23, 24] for a summary of recent research about Qk spaces in

the unit disk D. Recall that for 0 < k < ∞, a holomorphic function f is said to

belong to the Qk space if

‖f‖Qk = sup
a∈D

∫
B
|f ′(z)|2(1− |ϕa(z)|2)kdA(z) <∞.

It is well-known that Qk = B, the holomorphic Bloch space if k > 1 and Qk =

BMOA if k = 1.

In our final results, we focus on the borderline case p = n. It is known that n-

harmonic functions are Möbius invariant, and thus we are able to generalize some

properties of holomorphic Qk spaces to the n-harmonic setting.

Definition 1.2. For 0 < k <∞, the Qk space consists of all u ∈ hn(B) such that

‖u‖Qk = sup
a∈B

∫
B
|∇u(x)|n(1− |ϕa(x)|2)kdv(x) <∞,

where ϕa is the Möbius transformation on the real unit ball B that interchanges

the points 0 and a (see the definition in Section 2).

In [13], Latvala characterized n-harmonic Qk and BMO(B) spaces by means of

certain Möbius invariant weighted Dirichlet integrals. Motivated by the results in

[13, 22], we show a derivative-free characterization of Qk as follows.

Theorem 1.3. Let 0 < k < n and u ∈ hp(B). Then u ∈ Qk if and only if

sup
a∈B

∫
B

∫
B

|u(x)− u(y)|n

[x, y]2n
(1− |ϕa(x)|2)kdv(x)dv(y) <∞.

For 0 < r < 1 and u ∈ hn(B), we define the oscillation of u at x in the pesudo-

hyperbolic metric as or(u)(x) which is given by

or(u)(x) = sup
y∈E(x,r)

|u(x)− u(y)|.

Similarly, define another oscillation of u at x as

ôr(u)(x) = sup
y∈E(x,r)

|ûr(x)− u(y)|,
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where

ûr(x) =
1

|E(x, r)|

∫
E(x,r)

u(y)dv(y).

Theorem 1.4. Let 0 < r < 1 and u ∈ hn(B). Then the following statements are

equivalent:

(a) u ∈ Qk;

(b) sup
a∈B

∫
B
|or(u)(x)|n(1− |ϕa(x)|2)kdτ(x) <∞,

(c) sup
a∈B

∫
B
|ôr(u)(x)|n(1− |ϕa(x)|2)kdτ(x) <∞,

where dτ(x) = (1− |x|2)−ndv(x) is the invariant measure on B.

The rest of this paper is organized as follows. In Section 2, some necessary

terminology and notation will be introduced. In Section 3, we shall prove Theorem

1.1. The proof of Theorem 1.2 will be presented in Section 4 by applying Theorem

1.1. The final Section 5 is devoted to the proofs of Theorems 1.3 and 1.4. Throughout

this paper, constants are denoted by C, they are positive and may differ from one

occurrence to the other. For nonnegative quantities X and Y , X . Y means that

X is dominated by Y times some inessential positive constant. We write X ≈ Y if

Y . X . Y .

2. Preliminaries

In this section, we introduce notation and collect some preliminary results that

involve Möbius transformations and p-harmonic functions.

Let a ∈ Rn, we write a in polar coordinate by a = |a|a′. For a, b ∈ Rn, let

[a, b] =
∣∣∣|a|b− a′∣∣∣.

The symmetric lemma shows

[a, b] = [b, a].

For any a ∈ B, denote by ϕa the Möbius transformation in B. It’s an involution of

B such that ϕa(0) = a and ϕa(a) = 0, which is of the form

ϕa(x) =
|x− a|2a− (1− |a|2)(x− a)

[x, a]2
, x ∈ B.

An elementary computation gives

|ϕa(x)| = |x− a|
[x, a]

.
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In terms of ϕa, the pseudo-hyperbolic metric ρ is given by

ρ(a, b) = |ϕa(b)|, a, b ∈ B.

The pseudo-hyperbolic ball with center a and radius r is denoted by

E(a, r) = {x ∈ B : ρ(a, x) < r}.

However, E(a, r) is also a Euclidean ball with center ca and radius ra given by

ca =
(1− r2)a

1− |a|2r2
and ra =

r(1− |a|2)

1− |a|2r2
,(2.1)

respectively (cf. [1, 17]).

Following [5], we define a positive value function % in B as

%(a, b) =
|a− b|
[a, b]2

, a, b ∈ B.

The ball Br(a) associated with % is given by

Br(a) = {x ∈ B : %(a, x) < r}.

Obviously, one see that %(a, b) < r implies ρ(a, b) < 2r for a small positive r.

Lemma 2.1. Let r be a small positive number and x ∈ Br(a) (resp. E(a, r)). Then

1− |x|2 ≈ 1− |a|2 ≈ [a, x], dλ(a, x) ≈ %(a, x)

and

|Br(a)| ≈ (1− |a|2)2n, (resp. |E(a, r)| ≈ (1− |a|2)n)

where |Br(a)| and |E(a, r)| denote the Euclidean volume of Br(a) and E(a, r),

respectively.

Proof. It is obvious from [17, Lemma 2.1].

By Lemma 2.1, the following comparable results can be easily derived.

Lemma 2.2. For a small r > 0, there exist two positive constants r1, r2 such that

B(a, r1(1− |a|2)2) ⊆ Br(a) ⊆ B(a, r2(1− |a|2)2), a ∈ B.

Let u ∈ hp(B), for convenience, we denote

−
∫

B(x,r)

u(y)dv(y) =
1

|B(x, r)|

∫
B(x,r)

u(y)dv(y).

We end this section with some useful inequalities concerning p-harmonic functions

which are crucial for our investigations (cf. [11]).
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Lemma 2.3. Assume that u ∈ hp(B). Then we have the following inequalities.

(1) For each δ > 1, there is a positive constant C such that∫
B(x,r)

|∇u(y)|pdv(y) ≤ C

rp

∫
B(x,δr)

|u(y)|pdv(y),

whenever B(x, δr) ⊂ B.

(2) For each δ > 1 and 0 < s ≤ t, there is a positive constant C such that

|u(x)| ≤ C
(
−
∫

B(x,r)

|u(y)|tdv(y)
) 1
t ≤ C

(
−
∫

B(x,δr)

|u(y)|sdv(y)
) 1
s

,

whenever B(x, δr) ⊂ B.

(3) For each δ > 1 and 0 < s ≤ t, there is a positive constant C such that

|∇u(x)| ≤ C
(
−
∫

B(x,r)

|∇u(y)|tdv(y)
) 1
t ≤ C

(
−
∫

B(x,δr)

|∇u(y)|sdv(y)
) 1
s

,

whenever B(x, δr) ⊂ B.

(4) For each t > 0 and δ > 1, there is a positive constant C such that

oscx∈B(y,r)u(x) ≤ C
(
−
∫

B(y,δr)

|∇u(y)|tdv(y)
) 1
t

,

whenever B(y, δr) ⊂ B.

3. Proof of Theorem 1.1

Proposition 3.1. Let 1 < s <∞, α ∈ R and β > 0, then

|u(0)|s +

∫
B
(1− |x|)s|∇u(x)|sdvα,β(x) .

∫
B
|u(x)|sdvα,β(x)(3.1)

for all u ∈ hp(B).

Proof. By Lemma 2.3, we have

|u(0)| ≤ C
(∫

B 1
2

|u(x)|sdvα,β(x)
) 1
s

.
(∫

B
|u(x)|sdvα,β(x)

) 1
s

.

Hence it is sufficient to prove without the term |u(0)|s. It follows from Lemma 2.3

again that for each fixed x ∈ B,

|∇u(x)| ≤ C
(
−
∫

B(x,
(1−|x|)

4 )

|∇u(y)|pdv(y)
) 1
p

.
(

(1− |x|)−p−
∫

B(x,
(1−|x|)

3 )

|u(y)|pv(y)
) 1
p

. (1− |x|)−1
(
−
∫

B(x,
(1−|x|)

2 )

|u(y)|sv(y)
) 1
s

.
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Combing this with Lemma 2.1 and Fubini’s theorem, we conclude that∫
B
|∇u(x)|s(1− |x|)sdvα,β(x) .

∫
B
−
∫

B(x,
(1−|x|)

2 )

|u(y)|sdv(y)dvα,β(x)

.
∫
B
−
∫

B(x,
(1−|x|)

2 )

|u(y)|sdvα,β(y)dv(x)

.
∫
B
|u(y)|s−

∫
B(y,

(1−|y|)
2 )

dv(x)dvα,β(y)

.
∫
B
|u(y)|sdvα,β(y).

This proves the result.

Proposition 3.2. Let 1 < s <∞, α ∈ R and β ≥ s− 1, then∫
B
|u(x)|sdvα,β(x) . |u(0)|s +

∫
B
|∇u(x)|s(1− |x|)sdvα,β(x)(3.2)

for all u ∈ hp(B).

Proof. Assume that u(0) = 0. We divide the integral on the left-hand side of

(3.2) into two parts: ∫
B
|u(x)|sdvα,β(x) =

∫
B 1

3

+

∫
B\B 1

3

.

It is easy to see that the integral over B 1
3
is dominated by∫

B 1
3

|u(x)|sdvα,β(x) .
(
oscx∈B 1

3

u(x)
)s

.
∫
B 1

2

|∇u(x)|s(1− |x|)sdvα,β(x)

.
∫
B
|∇u(x)|s(1− |x|)sdvα,β(x).

We now estimate the integral over B \ B 1
3
. Since u is C1(B), for ζ ∈ S, we have

|u(rζ)− u(
1

3
ζ)| . C

∫ r

1
3

|∇u(tζ)|dt.

Thus∫
B\B 1

3

|u(x)|sdvα,β(x) =

∫
S

∫ 1

1
3

nrn−1|u(rζ)|sωα,β(r)drdσ(ζ)

.
∫
S

∫ 1

1
3

rn−1
(
|u(rζ)− u(

1

3
ζ)|s + |u(

1

3
ζ)|s

)
ωα,β(r)drdσ(ζ).

Note that the integral∫
S

∫ 1

1
3

rn−1|u(
1

3
ζ)|sωα,β(r)drdσ(ζ) .

∫
B
|∇u(x)|s(1− |x|)sdvα,β(x)
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by the same reasoning as the above integral estimate over B 1
3
. It follows from

Lemma 2.3 and Hölder’s inequality that

I =

∫
S

∫ 1

1
3

rn−1|u(rζ)− u(
1

3
ζ)|sωα,β(r)drdσ(ζ)

=

∫
S

∫ 1

1
3

rn−1
(∫ r

1
3

|∇u(tζ)|dt
)s
ωα,β(r)drdσ(ζ)

.
∫
S

∫ 1

1
3

(∫ r

0

t(n−1)/s|∇u(tζ)|dt
)s
ωα,β(r)drdσ(ζ)

.
∫
S

∫ 1

0

∫ r

0

tn−1|∇u(tζ)|sdtωα,β(r)drdσ(ζ)

.
∫
S

∫ 1

0

tn−1|∇u(tζ)|sdt
∫ r

t

ωα,β(r)drdσ(ζ).

Observe that ∫ 1

s

ωα,β(r)dr . (1− s)β+1ωα,β(s), 0 < s < 1

from [18, Example 3.2], we obtain

I .
∫
S

∫ 1

0

tn−1|∇u(tζ)|sωα,β(t)(1− |t|)sdt(r)dσ(ζ)

.
∫
B
|∇u(x)|s(1− |x|)sdvα,β(x)

from the assumption β ≥ s− 1.

To remove the restriction u(0) = 0, let u(x) = u(0) + u1(x) with ∇u = ∇u1 and

u1(0) = 0. Therefore,∫
B
|u(x)|sdvα,β(x) =

∫
B
|u(0) + u1(x)|sdvα,β(x)

. |u(0)|s +

∫
B
|u1(x)|sdvα,β(x)

. |u(0)|s +

∫
B
(1− |x|)s|∇u(x)|sdvα,β(x)

as desired. �

Proof of Theorem 1.1. Gathering Propositions 3.1 and 3.2, the assertion (1.3)

follows. By a slight modification on the proof of Proposition 3.2, we can also obtain

the following corollary which can view as an extension of [5, Proposition 2.10] into

p-harmonic setting.

Corollary 3.1. Let 1 < s <∞, α ∈ R and β ≥ 2s− 1, then∫
B
|u(x)|sdvα,β(x) ≈ |u(0)|s +

∫
B
|∇u(x)|s(1− |x|)2sdvα,β(x)(3.3)

for all u ∈ hp(B).
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4. Lipschitz type characterizations for Asα,β(B)

In this section, we discuss Lipschitz type characterizations of the space Asα,β(B)

by applying Corollary 3.1.

Proof of Theorem 1.2. We first prove (b) ⇒ (a). Assume that (b) holds. Then

for each fixed x and all y sufficiently close to x∣∣∣u(x)− u(y)

x− y

∣∣∣ ≤ 1

[x, y]2
(
g(x) + g(y)

)
, x 6= y.

By letting y approach x in the direction of each real coordinate axis, we see that

(1− |x|)2|∇u(x)| ≤ Cg(x)

for all x ∈ B. It follows from the assumption g ∈ Ls(B, dvα,β) that∫
B
(1− |x|)2s|∇u(x)|sdvα,β(x) <∞.

Thus u ∈ Asα,β(B) by Corollary 3.1.

For the converse, we assume u ∈ Asα,β(B). Fix a small r > 0 and consider any

two points x, y ∈ B with %(x, y) < r. By Lemma 2.1, it is given that

|u(x)− u(y)| =
∣∣ ∫ 1

0

du

dt
(ty + (1− t)x)dt

∣∣
≤ C|x− y|

∫ 1

0

|∇u(ty + (1− t)x)|dt

≤ C%(x, y) sup{(1− |ζ|)2|∇u(ζ)| : ζ ∈ Br(x)}

≤ %(x, y)h(x),

where

h(x) = C(r) sup{(1− |ζ|)2|∇u(ζ)| : ζ ∈ Br(x)}.

If %(x, y) ≥ r, the triangle inequality implies

|u(x)− u(y)| ≤ |u(x)|+ |u(y)|

≤ %(x, y)
( |u(x)|

r
+
|u(y)|
r

)
.

Letting g(x) = h(x) + |u(x)|
r , then

|u(x)− u(y)| ≤ %(x, y)
(
g(x) + g(y)

)
for all x, y ∈ B. Note that g(x) = h(x) + |u(x)|

r is the desired function provided that

h ∈ Ls(B, dvα,β).
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Since r is a small positive number, by Lemma 2.2, we see thatBr(ζ) ⊂ B(x, (1−|x|)2
4 )

for every ζ ∈ Br(x). It follows from Lemma 2.3 that

sup
ζ∈Br(x)

|∇u(ζ)| ≤ C
(
−
∫

B(x,
(1−|x|)2

4 )

|∇u(y)|pdv(y)
) 1
p

.
(

(1− |x|)−2p−
∫

B(x,
(1−|x|)2

3 )

|u(y)|pv(y)
) 1
p

. (1− |x|)−2
(
−
∫

B(x,
(1−|x|)2

2 )

|u(y)|sv(y)
) 1
s

.

Hence by Fubini’s theorem and Lemma 2.1,

‖h‖sAsα,β .
∫
B
(1− |x|)−2nωα,β(x)

∫
B(x,

(1−|x|)2
2 )

|u(y)|sdv(y)dv(x)

.
∫
B
|u(y)|sωα,β(y)

∫
B(y,

(1−|y|)2
2 )

(1− |x|)−2ndv(y)dv(x) . ‖u‖sAsα,β ,

which implies h ∈ Ls(B, dvα,β). This proves (a)⇔ (b).

(a) ⇔ (c). It follows from Lemmas 2.1, 2.2 and a discussion similar to the above,

the assertion follows.

(a)⇔ (d). Assume that (d) holds. Then it can be deduced that

(1− |x|)2|∇u(x)| ≤ C(1− |x|)2h(x)

for all x ∈ B. The assumption h ∈ Ls(B, dvα+2s,β) implies (1 − |x|)|2∇u(x)| ∈

Ls(B, dvα,β) and thus, according to Corollary 3.1, means that u ∈ Asα,β(B).

Conversely, suppose that u ∈ Asα,β(B). Then (b) implies that there exists a

positive continuous function g ∈ Ls(B, dvα,β) such that

|u(x)− u(y)| ≤ C |x− y|
[x, y]2

(
g(x) + g(y)

)
for all x, y ∈ B. Since for x, y ∈ B,

[x, y] ≥ 1− |x|, [x, y] ≥ 1− |y|,

we see that

|u(x)− u(y)| ≤ C|x− y|
( g(x)

(1− |x|)2
+

g(y)

(1− |y|)2

)
≤ |x− y|

(
h(x) + h(y)

)
, x, y ∈ B,

where

h(x) =
Cg(x)

(1− |x|)2
.

Hence h ∈ Ls(B, dvα+2s,β) from the assumption g ∈ Ls(B, dvα,β). �
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In the following, we consider a symmetric lifting operator L which is defined as

Lu(x, y) =
u(x)− u(y)

x− y
, x 6= y

where u ∈ hp(B).

As an application of Theorem 1.2, we can obtain the boundedness of operator L

as follows.

Theorem 4.1. Let 1 < s < ∞, α ∈ R, β ≥ 2s − 1. Then L : Asα,β(B) → Ls(B ×

B, dvα+s,β × dvα+s,β) ∩ hp(B× B) is bounded.

Proof. Let u ∈ Asα,β(B). Then there exists a positive continuous function g ∈

Ls(B, dvα,β) such that

|Lu(x, y)|s =
∣∣∣u(x)− u(y)

x− y

∣∣∣s . |g(x)|s + |g(y)|s

[x, y]2s
, x 6= y,

by Theorem 1.2. Applying Fubini’s Theorem, we obtain∫
B

∫
B
|Lu(x, y)|sdvα+s,β(x)dvα+s,β(y)

≤ 2C

∫
B

∫
B

|g(x)|s

[x, y]2s
dvα+s,β(x)dvα+s,β(y)

.
∫
B

∫
B

|g(x)|s

(1− |x|)s(1− |y|)s
dvα+s,β(x)dvα+s,β(y)

.
∫
B
|g(x)|sdvα,β(x) <∞.

Consequently, L : Asα,β(B)→ Ls(B×B, dvα+s,β×dvα+s,β)∩hp(B×B) is bounded. �

5. Characterizations of Qk spaces

In this section, we discuss some derivative-free characterizations for Qk spaces

of n-harmonic functions on the real unit ball B in Rn.

Lemma 5.1. Let 0 < k < ∞ and u ∈ hn(B). Then there exists a constant C > 0

such that∫
B
|∇u(x)|n(1− |x|2)kdv(x) ≤ C

∫
B

∫
B

|u(x)− u(y)|n

[x, y]2n
(1− |x|2)kdv(x)dv(y).

Proof. Write

K =

∫
B

∫
B

|u(x)− u(y)|n

[x, y]2n
(1− |x|2)kdv(x)dv(y).
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Making the change of variables y 7→ ϕx(y) leads to

K =

∫
B

∫
B

|u(x)− u ◦ ϕx(y)|n

[x, ϕx(y)]2n
(1− |x|2)kJϕx(y)dv(x)dv(y)

=

∫
B

∫
B
|u ◦ ϕx(0)− u ◦ ϕx(y)|n(1− |x|2)k−ndv(x)dv(y)

=

∫
B
(1− |x|2)k−ndv(x)

∫
B
|u ◦ ϕx(0)− u ◦ ϕx(y)|ndv(y).

Note that u ◦ ϕx ∈ hn(B), it follows from (1.2) that∫
B
|u ◦ ϕx(0)− u ◦ ϕx(y)|ndv(y) ≈

∫
B
|∇(u ◦ ϕx)(y)|n(1− |y|2)ndv(y).

It deduces from [13, Lemma 4.4] that

K ≈
∫
B
(1− |x|2)k−ndv(x)

∫
B
|∇(u ◦ ϕx)(y)|n(1− |y|2)ndv(y)

≈
∫
B
(1− |x|2)k−ndv(x)

∫
B
|∇u(y)|n(1− |ϕx(y)|2)ndv(y)

≥ C

∫
B
(1− |x|2)k−ndv(x)

∫
E(x, 12 )

|∇u(y)|n(1− |ϕx(y)|2)ndv(y)

≥ C

∫
B
(1− |x|2)kdv(x)−

∫
E(x, 12 )

|∇u(y)|ndv(y)

≥ C

∫
B
|∇u(x)|n(1− |x|2)kdv(x). �

Lemma 5.2. Let 0 < k < n and u ∈ hn(B). Then there exists a constant C > 0

such that

K =

∫
B

∫
B

|u(x)− u(y)|n

[x, y]2n
(1− |x|2)kdv(x)dv(y) ≤ C

∫
B
|∇u(x)|n(1− |x|2)kdv(x).

Proof. From the proof of Lemma 5.1, we see that

K ≈
∫
B
|∇u(y)|ndv(y)

∫
B
(1− |ϕx(y)|2)n(1− |x|2)k−ndv(x)

It follows from the assumption 0 < k < n and [17, Lemma 2.4] that∫
B
(1− |ϕx(y)|2)n(1− |x|2)k−ndv(x) =

∫
B

(1− |x|2)k(1− |y|2)n

[x, y]2n
dv(x)

. (1− |y|2)k,

as desired. �

Proof of Theorem 1.3. By [13, Lemmas 2.3 and 4.4], we know that u ∈ Qk if

and only if

sup
a∈B

∫
B
|∇(u ◦ ϕa)(x)|n(1− |x|2)kdv(x) <∞.

This together with Lemmas 5.1 and 5.2, the assertion follows.
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Proof of Theorem 1.4. The proof will follow by the routes (a)⇒ (b)⇒ (c)⇒ (a).

(a)⇒ (b). Let u ∈ Qk. By Lemma 2.3, for 0 < r < 1 and a fixed x ∈ B,

|or(u)(x)|n .
1

|E(x, r′)|

∫
E(x,r′)

|u(x)− u(y)|ndv(y),

where r < r′ < 1. From Lemmas 2.1 and 2.3, we have

1

|E(x, r′)|

∫
E(x,r′)

|u(x)− u(y)|ndv(y)

.
∫
E(x,r′)

|u(x)− u(y)|n (1− |x|2)n

[x, y]2n
dv(y)

=

∫
B(0,r′)

|u ◦ ϕx(0)− u ◦ ϕx(y)|ndv(y)

.
∫
B(0,r′)

|∇(u ◦ ϕx)(y)|n(1− |y|2)ndv(y).

By making the change of variables and [13, Lemma 4.3],

|or(u)(x)|n .
∫
E(x,r′)

|∇u(y)|ndv(y),

from which we see that∫
B
|or(u)|n(1− |ϕa(x)|2)kdτ(x)

.
∫
B
(1− |ϕa(x)|2)kdτ(x)

∫
E(x,r′)

|∇u(y)|ndv(y)

.
∫
B
|∇u(x)|n(1− |ϕa(x)|2)kdv(x),

for each a ∈ B. Hence (a) implies (b).

(b)⇒ (c). By Lemma 2.3, for 0 < r < 1,

sup
y∈E(x,r)

|ûr(x)− u(y)| . sup
y∈E(x,r)

1

|E(x, r)|

∫
E(x,r)

|u(y)− u(z)|dv(z)

. sup
y∈E(x,r)

sup
z∈E(x,r)

|u(y)− u(z)|

. sup
y∈E(x,r)

|u(x)− u(y)|.

Thus

ôr(u)(x) . or(u)(x),

from which (b)⇒ (c) follows.
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(c)⇒ (a). For 0 < r < 1 and x ∈ B, we have

(1− |x|2)n|∇u(x)|n .
1

|E(x, r)|

∫
E(x,r)

|u(y)− ûr(x)|ndv(y)

.
(

sup
y∈E(x,r)

|ûr(x)− u(y)|
)n

by Lemma 2.3. Consequently,

sup
a∈B

∫
B
|∇u(x)|n(1− |ϕa(x)|2)kdv(x) . sup

a∈B

∫
B
|ôr(u)(x)|n(1− |ϕa(x)|2)kdτ(x).

The proof of this theorem is complete.
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