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1. INTRODUCTION

In the present paper, we investigate the existence of ground states solutions for a
modified fractional Schrédinger equation with a generalized Choquard nonlinearity

(1.1)
223 () -2y,

(=) u+pV(@)u+2[(—A) u]u= (Ix* F(u)) f(u) + T € RN,
- )
where N > 3, s € (0,1), 0 < 8 < 2s < N, p is positive constant, 2*(5) = s

is the critical S-fractional Sobolev exponent, V(x) is a given potential, f € C(R,R)
and F € C(R,R) with F(u) = [ f(t)dt, Ir(z) = |z|~* is the Rieze potential of
order A € (0, N) and (—A)® denotes the fractional Laplacian of order s is defined

as

: e(z) — o(y) N
A)p(x) =2 lim ~dy, xz eRY,
(=A)°p(z) 0+ Jan (o) 1T — g[S

with ¢ € C§°(RY) and B, () denotes the ball of RY centered at x € RY and radius
e>0.

The study of existence and uniqueness of positive solutions for Choquard type
equations attracted a lot of attention of researchers due to its vast applications
in physical models [I]. Fractional Choquard equations and their applications is
very interesting, we refer the readers to [2] —[1I] and the references therein. The
authors in [9], by using the Mountain Pass Theorem and the Ekeland variational

principle obtained the existence of nonnegative solutions a Schrédinger-Choquard-
3
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Kirchhoff-type fractional p-equation. Ma and Zhang [8] studied the fractional order
Choquard equation and proved the existence and multiplicity of weak solutions. In
[3], the authors investigated a class of Brézis-Nirenberg type problems of nonlinear
Choquard equation involving the fractional Laplacian in bounded domain 2. Wang
and Yang [12] by using an abstract critical point theorem based on a pseudo-index
related to the cohomological index studied the bifurcation results for the critical

Choquard problems involving fractional p-Laplacian operator:

CA)Sq — p—2 7|u|17i,5 P2
(1.2) (=A)pu = Aul[P~%u + (/Q T Ldy |u|Prs"%u, x €,
0

u =0, r € RV\Q,

where  is a bounded domain in RY with Lipschitz boundary and X is a real
parameter. Also, in [I3] — [15], the authors have studied the existence of multiple
solutions for problem , when p = 2. For more works on the Brezis-Nirenberg
type results on semilinear elliptic equations with fractional Laplacian, we refer to
[16] — [I7] and references therein.

On the other hand, Shao and Wang in [I8] established the following Kirchhoff
equations with Hardy-Littlewood-Sobolev critical nonlinearity:
(13) {—Au + Vi(z)u — ulu? + X (I * |[ulP) |[ulP~2u = K(z)u™, xcRV,

u >0, z e RN,
where a € (0, N), A > 0 and I, is a Riesz potential. Under suitable assumption on
K and V, the author obtained the existence of positive solutions for problem .

Zhang and Ji [I9] studied the following problem

(1.4) — Au+V(z)u —ulu? = (I, * G(u)) g(u), reRY,

where o € (0, N), I, is a Riesz potential and V : R — R is radial potential, and
established the existence of ground state solutions for problem by using the
variational method. For more results on equations with Hardy-Littlewood-Sobolev
critical nonlinearity and nonlocal fractional problems, we refer to [20] — [3I] and
references therein.

Recently, the authors in [32] studied the existence of ground state solutions for

the following modified fractional Schrodinger equations

(=) u+pu+ K [(0)* W u=olulf'u+ [uftu, xeRY,
2N
N-—-2a"
Motivated by the above works, in this paper, we would like to study the existence
of ground state solutions for problem (1.1)).
4
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Throughout the paper, we get the following conditions:
(V1) V(z) >0,V € C(RY,R) and Q := int (V~1(0)) is non-empty with smooth
boundary;
(V2) There exists M > 0 such that meas(x € RY|V(x) < M) < oo, where meas (.)
denotes the Lebesgue measure;
(f1) f € C(R,R), limy—o (t) =0;
(f2) limy 00 tfq()l = 0 for some 2N N_A < g < 2 - 2?,
(f3) There exists o € (4,22%(5)) that 0 < aF(t) <tf(t), for all t € R.

Also, we introduce the following fractional Choquard equation:

. (—2) u+2[(~A) u?]u= (I« Fw) flu) + M2 g e

u=0, zeRV\Q,

where 2 is defined in (V7). The main results are as follows:

Theorem 1.1. Let 0 < p < min{N,4s}. Assume that (f1) — (f3) and (V1) — (Va)
hold. Then there exists u* > 0 such that (L.1) has a least a ground state solution

for any p > p*.

Theorem 1.2. Under the assumptions of Theorem 1.1, assume that u,, be a
ground state of problem (1.1) with p, — oco. Then, up to a subsequence, u,, — u
in H*(RN) as n — oo. Moreover, u is a ground state solution of problem (|1.5).

The paper is organized as follows. In Section 2, we recall some basic definitions
of fractional Sobolev space and Hardy-Littlewood-Sobolev Inequality, and we give

some useful auxiliary lemmas. In Section 3, we give the proof of the main results.

2. PRELIMINARIES

In this section, we present some preliminaries and lemmas that are useful to the
proof to the main results. The fractional Sobolev space H*(RY) (0 < s < 1) is
defined by

H*®RY) = {0 € 2RY) 1 | (-4)F p|* < oo},

with the norm

N

ey = (1613 + 1 (=27 l2)

(=0 wn(//w o), dyf.

where



I. DEHSARI, N. NYAMORADI

The space D*2(RY) is the completion of C§°(RY) with respect to the norm
[l =11 (=2)% .
Let S be the best Sobolev constant

2
(2.1) S = inf [ —.
YeD*2(RN)\{0} (f]RN 4] )dx)%

Also, define the space

B {w c HS(RN)\/ WV (2)02ds < +oo} ,
RN
with the norm

2 _ 2 u(y)?
[l —/R uVi(x da:—l—//RZN |m— |N+2S —————dxdy.

Let us recall the following results.
Lemma 2.1. (see |33, Lemma 1]|) (E,||.||) is a uniformly convex Banach space.

Lemma 2.2 ([34]). Suppose that V satisfies (Vo) and p* > 0 be a fived constant.
Then the embedding E — L (RY) is continuous for all > p* and v € [2,2(B)).
Moreover, for any R > 0 and v € [1,2%(5)] the embedding E — LY(Bg(0)) is

compact.

Proof. The proof is similar to that of Lemma 1 in [34], so we omit it here.

Now, we state the following fractional Hardy-Sobolev inequality

Lemma 2.3. (|35, Lemma 2|) Assume that o € [0,2s] with 2s < N. Then there

exists a positive constant C such that

g uf o\ R
</]RN d:c) <C’<//Rw P ‘N+25 ddy> for every u e H*(R™).

Lemma 2.4. (Hardy-Littlewood-Sobolev Inequality, [36, Theorem 4.3]) Suppose
that r,t € (1,00), A € (0, N) with
1 1 A

4 ==2
t+r+N

So there exists a sharp constant C(N, \,r,t) > 0 such that

// K@LW gy < o8, A, r, )¢l
S

for all ¢ € L"™(RY) and n € L'(RY).

If F € L*(RY) for some ¢ > 1 with 2 + £ = 2, then by Lemma

[ EGFa,,
R2N |z —y[*

is well defined.
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We mean by a weak solution of (|1.1), any u € F such that

/RN (=8)% u. (D)% pdz + /]RN wV (z)updz + Z/R (=A)
= [ s F) st + |

RN ‘$|B

[SFY
Nl

u?. (=) ? updx

22*
|ul usod

for any ¢ € E. The energy function corresponding to ([1.1]) is
1 1
I = 5l + 5 [ V@l + 50,
2 2 Jun 2

1 Flu(@)F(uly) , 1 228
2//]RzN |1'— |/\ dxdy 22:(ﬂ) /RN |x|5 )

and energy function corresponding to is

1 1
Io(u) :§[U]§,2 + §[uz]§,2

1 Fu@))F(u(y) , o 1 223 8)
o R e e B e A

Set X :={¢ € E:(* € E} with |[(||x =||¢||g and

Xo:={CeH*RY): > H*RY), u=0 ae inRYV\Q}.

Now, we show that X # (). For simplicity, we assume N= 1. Let

| sin(x)] x € [1,2n],
u(x) :=
0 x € R\ [1,27].
and
S 2 eR\(-1,1),
V(z) =

0 xe(-1,1).

2 ; _ ; 2
J[ e, [ VIS0 = VDI 4,
R2 |x— Y| [1,27]x[1,27] |z — vy
<l NETGEETOI,
[1,27]x[1,27]

1
§C1// Ty dady < oo,
[1,27] x[1,27] |z — y|H2s

where C7; > 0 and

[ @@l < [ a@d < .

then u(x) € E. In addition, we have

|u?(z) — u?(y)|? // || sin(z)| — |sin(y)]|?
———"dxdy = dxdy
//]1@2 |95 - y\HQS [1,27] % [1,27] |z —y[t+2s

1
[1,27]x[1,27] |z — y|t+

7
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where Cy > 0 and
/,uV(:r)\uz(:r)\de < / pV(z)dr < oo,
R R

then u?(z) € E and u(x) € X. Then X # 0.
Also, I,,(u) is well defined on X and Iy(u) is well defined on Xy. Under the
assumation (V1) asnd (Va), I,,, Iy are well defined and I,,, Iy € C1(X,RY).

Let
|u?(x
d dy.
//sz Ix—le“s Y
‘We have
(2.2)
+tv — (u(y) +to(y))*?
%J’(u):v%-df (u+tv) |= 0—*//RZN LEET dxdy

)+ tu(@)? — (uly) + to(y))? )

(2.3) _2//RQN < — x

( (ule) + to(a))o(a) — 20uly) + tv<y>>v<y>)dmy o

_ ) (u(@)v(z) = uly)o(y))
4//Rzzv |x [N dzdy.
So by (2.2), we can eablly check that
(z) — o(y))
0=, " y|N+29 dady+ [ iV (@)uta)ofa)da
42 //Rw |x G (T])Vi(i) - U(y)g(y))dxdy
] )y, [ ),
R2N |JI - y|A RN |q;|/3 ’

for all u, o € X and

//RZN ‘xi |N+2)S— (y))dxdy

+2//sz |x_;TLi(i)—U(y)9(y))dxdy
B Flu o) , [ WO (el
/ - |x—y|A dedy = J EE o

for all u, p € Xj.
Lemma 2.5. Assume that (fl) and (f2), we have

/RN /RN |z — y|’\ f Ju(z)dzdy

(2.4)

< O(luls o + [ul3%),
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and

(2.5)

foo L R ] < ottt 2D,

Proof. The proof is similar to that of Lemma 2.5 in [37], so we omit it here.

Lemma 2.6. Assume that {u,} C E such that u, — u in E. From (f1),(f2) and
0 < A < min{N, 45}, we have

/ (In * F(up))F(up)de — | (Ix* F(u))F(u)dz,
RN RN

/RN(I)\ * F(un)) f(un)ode — RN(IA * F(u)) f(u)pde.

as n — oQ.

Proof. The proof is similar to that of the proof of Lemma 2.6 in [37], so we omit

it here. Set
my, = U{relfz‘:_[ ( ) mo = uienzf;() I()(’LL),
where

- {ueX\{0}| < I(u),u>= o}, S = {ueXo\{OH < I)(u),u>= o}.

We know that to prove our main results, we should check that m,, is achieved by a

critical point of I, for u > p*.

Lemma 2.7. ¥ # @.

Proof. Let ug € X \ {0} with ug > 0 and k(t) = ¢ ( tug ), where

[uo]s,2

([ PP,
C“”‘//m o g W

vit>0.

From (f3), we have

<

k(L)
Consequently, by integrating from the above inequality over [1,t[ugls,2] with ¢ >

ﬁ, one can get
s,

C(tuo) > ¢ <[u“]) o]
So, we get

TR T A, u

Io(touo) < 2()[“0]5 9 T 9 [Uo]s 9 — 54(

since a > 4, if tg — +o0, we have Iy(tgug) — —o0.
On the other hand,
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Iotaue) = Bluaf?, + Blugz, - 3 [ Elone o) oy,

2 2 —yA
tgzz(ﬁ) |u‘22:(6) > t% [ }2 4 té [ 2}2

- Z o [Yols o Uols
22;(8) Jo  [al? g e T g e

227 2%
— O (tluol? o + £ mol2%) — ot P )2,

which implies that for small ¢y > 0, Iy(toug) > 0. Then, there exists ¢ > 0 such that
%|t0:tlo(tuo) =0, means, tug € Xg, then we have the conclusion. O

Lemma 2.8. There exists K > 0 such that m, > K.

Proof. We divide the proof into the following three steps.
Step 1: ¥y C ¥ and mo > my,.
For any u € ¥y, by the definition of 2, one has

/ wV () |uPdz = 0.
RN

Consequently,

< I;(u), u>=< Iy(u),u > +/ uV (z)|u|?dz,
RN

hence, v € ¥ and ¥y C X, £ # @. Similarly, we can prove that I, (u) = Ip(u), and

then we get

= inf [, < inf I = inf I = .
my = inf L,(w) < inf L,(uw) = inf To(u) = mo

Step 2: m,, is bounded from below.

From (f3), for any u € X, we get

() = Tw) = < 1) u >
~(5-) e+ (5-1) [aveiia
(b D Tt

’ i / /Rw F(U(yl)a):f—(ix(lgi))u(x) dedy = (22;1(5) - i) /R |u||j:|:a(5) de

s (2D it (3-2) [ vt

I <1 _ 2) 22, — %/Rw F(U(y)zF(ib(x))dxdy

2 o |z =yl

10
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= (; - ;) [u]? 5 + (; — ;) /]R uV (2)|ul?dz + (; - 2) ]2,

1 1 |u| 22 (P)
qER T
22;(8) a/ Jpw |7

since o € (4,22%(53)), then (3 — 1) >0,(L — 22%@) > 0, consequently, I,,(u) > 0.

This result implies that m, > 0.

Step 3: m, have positive uniform bounded from below.

Let {u,} be a minimizing sequence of m, then I,(u,) — m and I;(un) — 0.
According to the proof of the , we have

mo + on(1) >m

(5-5) ket (5-5) [ aviuPass (5-2) .,
00 (g a) L ez (55 ks
(

2

1 1

- — >/ uV (x)|un |2 de.
2 -

=
_|_
)
3
—
—_
~—

e

Thus
(2.8) mo + on(1) > my, + 0,(1) > C1|unl|?,

where C; = (% — é) From fractional Hardy-Sobolev inequality and lemma

there exist two constants Cs, C3 > 0 such that

lunll* < llunll? + [u7]2 5

[ E@ ey, [ P g,
R2N

|z —yl* RY x|’

< C’z([un]iz + [un]i‘g) +C4 [Un]§25 8)
< Colllunll* + Junl[2) + Cs |22,
So, we may choose a constant Cy > 0 such that
(29) Jul? > Ci.
From and 7 there exist K := C; x C4 > 0, such that

my > ||Un||2 > K.

Therefore, we have the conclusion. [l
11
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3. PROOF OF THE MAIN THEOREMS

In this section, we prove our main results.

Proof of Theorem 1.1. Fix p > p* and take a sequence {u,} C X, that is
I,,(un) = my,. Then, by (2.8), {u,} is bounded in X. Hence, u, — u, u2 — u? in
E up to subsequence, and thus by Lemma

Up — u, u2 —u? in L (RY) (1 <s<25(B)),
(3.1) {up, —u, ae inRY,
el - i LR, ) for 2 << 25(8) and 0 < 8 < 2s.
Let ¢ € H*(RY) and we define a linear functional on X as follows

// (¥*(x) = 9* W) W (@)e(z) — ¥(»)e(y))
R2N

|.T _ y|N+2s

dzdy, Y p e X.
Hence, one has
(3.2) nh—>ngo B, (un —u) =0.

Let £ € X be fixed and ®,, be the linear functional on X defined by
y)(v(z) —v(y))
//RN |x—y|N+2$ dxdy, Vv e X.

Since IL(un) — 0, one can get

/

lim <I( n) = 1, (u),up —u>=0.

Consequently,
o(1) =< I, (up) — I, (u), up — u>= By, (uy —u) — CIJ(unfu)+2Bun(unfu)
()P — F(un(y)) f(un(2))(un(@) — u(@)) .
+ [ V@) ao— ] — dudy
/ / F(u(y)) f(u(@))(un(@) — u(@)) , dy
R2N lz —y|*
|un|22f§(ﬁ)*2un — |u|22,§(ﬁ)*2u d
_/RN[ 2]? 1(upn, — u)dez.

From Lemma we have

dxdy — 0, asn — oo.

// (F'(un(y)) f (un(x)) = F(u(y)) f(u())) (un(z) — u(z))
R2N

|z —y?
Also, in view of (3.1]), we get

(3.4) /]RN V()| (x) — u(z)Pde — 0, as n — oo.

By similare method of proof Lemma 3.4. in [37], we have
|y, |22 (P) N |u|?2: (B)
|z|? ||
12

(3.5)
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Moreover, from (3.5) and Brezis-Lieb Lemma [38], we get

(3.6)
— ul?2:(a) 22% (@) 22 (@)
/ de:/ Ldm—/ Ldav—l—o(l)—>0, as n — o0o.
RN || re |zlP re 7P
So, by (3.6) and the Holder inequality, we have
223 (8)—2 223 (8)-2
(3.7 / [un| tn_ Jul 4 (up, —u)dr — 0 asn— oo.
RN |z|? |z|?

Hence, in view of the Hélder inequality, one can get
(3-8) Dy, (U —u) = Pyt —u) > ([un]s2 — [U}s,2)2 >0

From - and By, (u, —u) > 0, we have |Ju,| — ||u||. Since X uniformly
convex Banach space, then the weak convergence and norm convergence imply
strong convergence. In view of I, € C(X, R), I,(u) = m, and I (u) = 0. Hence, we
have the conclusion. O

Proof of Theorem 1.2. Take u,, be a ground state of I,,, as u, — oo, that

is, I

pn (U, ) = my,,, and I;/m (up, ) = 0. For notion simplicity, we denote w,,, by .

We may suppose that p,, > p* for all n without loss of generality. In view of (2.7]),
we get
1. .9 1 1

1
> > (= — — — 2der.
mo > my, > (= Dla+ (G- 5) [ aV@hPde

In view of Lemma [2.2] we can get

Up — u,u? — u?, in H(RY),

up —u, u2 —u? in L (RY) (1 <s<25(B)),
(3.9) N )
Up —> U, a.e. in RY,

o > ML LYRY, 5) for 2<r < 2(8) and 0 < B < 2s.
We divide the proof into the following three steps:
Step 1: u(z) =0 a.e in RV \ Q.
By (2.7), we get

Cmo
— 0, asn — oo.
n

/ V(2)|u,|?dx <
RN

Also, the Fatou’s Lemma implies that
/ V(2)|ul?dr < liminf/ V(z)|u,|?dx = 0.
RN\Q nroo JRN

Hence, we have u(z) = 0 a.e in RN\ Q.
Step 2: u is a critical point of Iy. Since I;Ln (upn) = 0, we have
13
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un () — un ) (C(z) = (y))
//Rw y|N+2s dxdy+/RN pnV (x)un((x)ds

49 / /R N |36(1in(|33]3§ (233) —unW)CW) 4y
[ EOO ) g [ I ),
RN |z =y RN ] ’
for all ¢ € H*(RY). Now, in view of and V(z) =01in Q,
(3.10)
up (@) — un(y)) (((z) — (=) = <)
//]RQN ‘CE - y|N+2S dxdy - //]RZN |JC — y|N+25 drdy,
/ /R N |:)E(1in ;ngi (296) — W) 4y

s // L) )
as n — 0o, and
(3.12) nhHH;O . V(2 u,l(x)dr =

for all ¢ € H*(RY). From Lemma we have
(3.13)

F
// CADFCICHINC RN // D iy, v € HORY),
R2N Il“*ylA R2N \fv*ylA
similarly to , we get

O 2unC(w) [ O Pug()
- |x|ﬂ e ol

Then, and step 1 imply that
(w) — <))
dxd
// |x—y|N+2s o

(3.14) dz, V¢ € H¥(RY).

) (u(z)((x) —u(y)((y))
+2//R2N |x—y|N+2S dxdy
Fu(y)) f(u(z))((z) u?2:=2y¢ s

which implies that u is a critical point of Ij.
Step 3: u, — u in L¥(RY) for 2 < s < 2%(B).
From (3.9)), by decay of the lebesgue integral, there exist R > 0, such that

(3.15) / lu(x)|?dz < e.
R\ BR(0)
Let wy := {x eRY:|z[ >R and V(z)< M},

wo 1= {xERN:|x|>R/ and V(m)>M}.
14
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From (V3), we have
(3.16) lim meas(wi(R)) = 0.
R =0

By the Holder inequality and the Sobolev embedding theoream, we can get

2
/ , |t () Pda < (meas(wl(R/)) ner (/ , |un(x)|2:(6)d:v>
wl(R ) wl(R )

25—
=5

(3.17) <C (meas(w1 (R/))
On the other hand

1 C
(3.18) / [y, ()2 d2 < —/ M |uy, ()| de < ——.
wa(R') pM (R pM
From || — 1) for any € > 0, we may choose py > 0 and R’ > 0 such that
(3.19) / |ty (2)Pdx < € for p > po.
RN\ B _, (0)

Take Ry = max{R, R'},

/ |y, — ul?dx = / [y, — ul*dx + / [ty — ul?dx
RN B, (0) Br, (0)
< 2/ |, |?dx + 2/ |u|?dx +/ |, — u|*dx
B3, (0) B3, (0) By (0)

<4e+ / [y, — ul*d.
Br, (0)

Also, by Lemma we get u, — u in L?(RY) as n — oco. Since u, — u in E and
u, — u in L2(RY), one can get u,, — u in L¥(RY) for 2 < s < 2%(B).
Step 4: my is achieved by u. Moreover, u, — u in H*(RY).

By the lower semi-continuity, we have

(3.20) lim mf[“n]s 9 > [u }5727 lhrggf[ui]gg > [“2]32

n—oo

In the other hand, by similar method in (2.6]), we can obtain

1 /
mo > lim m,, = lim (Iun(un) - <, (un),un >>

n—oo n—oo

- JLH;{ (5- ;) ottt (3 1) [ sV o
+<;> uZ)?, — //RQN unm_y(IA (y))dxdy
+ é / /RQN F(un(y)|)xf(_uz|(§ﬂ))un(a:) dady (223(5) B ;) /R W dm}

N e
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L, P (1) [
(12 (1 2) e [ 2

a |z —y|*

which implies that Io(u) = mo, lim, o my, = mo, and

(321) timinffu, 2, = 25 lminf(u)2, = o

Toor

By step 3 and (3.21), we have |[[u,| gs@~y) — ||ul s~y This together with the
fact that u, — u in H*(RY), we get u,, — u in H*(RY). O
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Abstract. The aim of this paper is to prove the existence of the nonlinear Klein-Gordon

equations coupled with Born-Infeld theory by using variational methods.
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1. INTRODUCTION

In recent years, the Born-Infeld nonlinear electromagnetism has become more
and more attractive and regained its importance due to its relevance in the theory
of superstring and membranes. Mathematically, some people considered the system
coupled Klein-Gordon equation with Born-Infeld theory through using variational
methods. Furthermore, by variational methods, the existence of solitary wave solution
has been studied in different systems, see References [1} 2, [5] [T5] [17].

The Born-Infeld (BI) electromagnetic theory [I2] was originally proposed as a
nonlinear correction of the Maxwell theory in order to overcome the problem of
infiniteness in the classical electrodynamics of point particles. The Born-Infeld
geometric theory of electromagnetism is a nonlinear generalization of the classical
Maxwell theory. The underlying idea was to simply modify the classical theory not
to have physical quantities of infinities, that is the principle of finiteness. It was
to replace the original Lagrangian density for the Maxwell electrodynamics with
a square root form with a parameter b, by which the finiteness of electric fields is
ensured.

This paper can be deduced by the search for solutions of the following nonlinear

Klein—Gordon equation:
(11) 1/)tt —A?,/}—FdeJ— |1/J|q72’l7[}20

"Supported by NSFC Mathematics Tianyuan Fund (12126334), NSFLN(2021-MS-275) and
EFLN(LJKQZ2021093)
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with Born-Infeld theory [12]

(1.2 S =1 (1 SR |B?>) ,

where ¢ = 1 (x,t) € C,x € R®t € R, m is a real constant, b > 1 is the so-

called Born—Infeld parameter. It is well known that the classical theory has two
difficulties arising from the divergence of energy (see the first section of [IT]).
Born and Infeld suggested a way to overcome such difficulties, thus introduced
the Lagrangian density. Moreover equation can be used to develop the theory
of electrically charged fields [I0]. In addition, E is the the electric field and B is
the magnetic induction field. The electromagnetic field is described by the gauge
potential (¢, A) :
é:R3x R — R, A:R*xR—R3,
from (¢, A), we get the electric field
E=-V¢— A

and the magnetic induction field B =V x A.
Suppose that ¢ is a charged field and let e denote the eletric charge. The
interaction of 1) with the electro-magnetic field is described by the minimal coupling

rule, that is, the formal substitution

0 o . )
a—>§+le¢,V—>V—zeA

into the Lagrangian density relative equation (L.1)) given by
1[,0¢, 2 20,2 1

1.4 o= ||=1" = V¥ - —|]9,

(1) 0= 5 |15 - 90 = mup?] + 21w

where e denotes the electric charge.

Then equation (|1.3) becomes

(1.3)

0
(15) So= g |10 +ieoul - (V0 - ieAv — m2luf] + Zlue

The total action of the system is E = [[ (g7 + Zo) dadt.
In [IT], the authors considered the second order expansion of equation (|1.2) for

1
_ +
ﬂ‘?}ﬂﬁo’
then they got
’ 1 1 ﬂ 2
Yo, =— |=(|E|? = |B|?) + 2 (|JE]? — |BJ?

the total action given by = = [[ (ZIB + Eo) dzdt. Under the electrostatic solitary

wave ansatz

¢(mvt) = u(x)eiwt’ ¢ = ¢($),A =0,
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and e = 1, where v and ¢ are real valued functions defined on R? and w is a positive
frequency parameter, so now
’ 1 1 5 2 1 2 /B 4
Yer=— |=(|E?>=|B*)+=(|E? - |B]*)"| = — S
b1 = 1= |5 (BF = 1BP) + 5 (82 - 1B1)7] = L 1VoP + - vl
therefore the Euler-Lagrange equations associated with the total action Z take the

the following form
(16) — Au + [mQ —(w+ ¢)2} u = |ulP~2u, r € R3,
' Ad + BALp = 47 (w + ) u2, z € R?,

this type of equations has been found via modern variational methods under various
hypotheses on the nonlinear term, see |7} [8] [9] 13| 15]. In [9] the authors found the
existence of infinitely many radially symmetric solutions for this problem when
4 < p<6and |m| > w, in [I3] the range p € (2,4] was also covered provided
(2 —1)|m| > w.
Then Chen and Li [7] got the existence of multiple solutions for problem
— Au+ [m2— (w+¢5)2} u = |uP~u + h(z), r € R3,

(1.7) .
A¢ + BALp = 41 (w + @) u?, r € R3,

when 4 <p <6 and |m|>wor2<p<4and./(5—1)m|>w.
Later Teng and Zhang [15] got that problem

—Au+ |m? — (w+ ¢)2} u = uP~2u+ |u* "2, z € R?,
A¢+BA4¢:4T((W+¢)U27 x€R37

has at least a nontrivial solution when 4 < p < 6 and m > w under the electrostatic

(1.8)

solitary wave ansatz by using variational methods.
On the other hand, by shrinking the area in problem (|1.6)), Teng [I4] showed some
existence and multiple results for the following nonlinear Klein-Gordon equation

coupled with Born-Infeld theory in a bounded domain with smooth boundary

_Au+[m2—(w+¢)2 u= f(z,u), in Q,
(1.9) Ad+ BALp = 47 (w + ¢) u?, in Q,
u=¢=0, on 0f,

where m? > ﬁwz — A1 and f satisfies the following conditions:

(f1) f€C(Q2xR) and f(x,0) =0,

(f2) There are constants aj,az > 0 such that |f(z,t)] < a1 + ao|t|®, where
1<s<22(n>3),
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fzt) _
(f3) tlg% 0)
(f1) There exists g > 2 and R > 0 such that tf(x,t) > pF(z,t) > 0 for |t| > R
and z € Q,

or m? > 2w — A1 and f satisfies the conditions above and an extra condition:
(f5) f(:v, —u) = —f(z,u) for all w € R and z € Q.

In addition, the authors in [I] proved the existence of nontrivial ground state
solution for the following nonlinear Klein—Gordon equation coupled with Born—Infeld
theory in R? involving unbounded or decaying radial potentials
w10 — Au+t [m? = @+ 6)| V(lehu = K(2)f(w),  inR2
A¢ + BALp = 47 (w + ¢) V(|z|)u?, in R,
where V, K : R?> — R are radial potentials which may be unbounded, singular at
the origin or vanishing at infinity and the nonlinear term f(s) is allowed to enjoy a
critical exponential growth.

Recently, Che and Chen in [6] proved the existence of infinitely many negative-
energy solutions for the following system via the genus properties in critical point
theory
(L11) A¢+ BALp = 47 (w + ¢) u?, z € R3,
where the functions V(z) and f(x,u) satisfy the following hypotheses.

(Vi) V € C(R®) satisfies inf,egs V(z) > a > 0, where a > 0 is a constant.

{—Au+V(:v)u—(2w+¢)¢u=f(x,u), r € R3,

Moreover, for any M > 0,meas{r € R3 : V(z) < M} < oo, where meas denotes
the Lebesgue measure in R3.

(1) fEC(R3xR) and there exists 1 < a3 <@g < - <y <2;meNm >
1,¢i(x) € L= (R3,R*) such that

m
u)| < Zaici(aj) u
i=1

(2) There exists a bounded open set J C R? and three constants a1, as > 0 and
€ (1,2) such that

@i—l Y(z,u) € R® x R.

F(z,u) > azlul*®, V(z,u) € J x [—a1,a1],

where F(z,u) = [ f(z,s)ds.

(3) f(x,u) = —f(x,—u) for all (z,u) € R3 x R.

Immediately after the previous equation, Wen, Tang and Chen in [I6] proved the
existence of infinitely many solutions and least energy solutions for the nonhomogeneous
Klein-Gordon equation coupled with Born-Infeld theory.
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For general potential a(x) and the nonlinearity f(x,u) = AK (2)|u|?2u+g(z)|u|P~2u,
Chen and Song in [8] studied this system
(1.12)
— Au+a(z)u — 2w + @) pu = AK (x)|u|"*u + g(z)[u|P>u, =€ R3,
{A¢+5A4¢—4w(w+¢)u2, z € R?,
and proved the existence of multiple solutions for Klein—-Gordon equation with
concave and convex nonlinearities coupled with Born—Infeld theory when a, k, g are
measurable functions satisfying the following conditions:
(a1) a(z) € C(R3) satisfying ag := miélu£3 a(zx) > 0.
(k) k(z) € L0 (R?) k(z) > 0 for a.e. x € R and k(z) # 0.
(9) g(z) € L (R?) , g(x) >0 for a.e. z € R* and g(z) # 0.
The main idea of this paper is to establish the existence of solitary wave solutions
of the following Klein-Gordon equation coupled with Born-Infeld theory:
—Au+n(z)u— 2w+ ¢) pu = pK (2)[ul!"*u + [u* u,
{ A+ BAL) = dr (w + §) u?,

where w and p are positive constants, 3 > 1 is a constant, n(z) € C(R3), K(x) €

(1.13)

L®[R?),4 < qg < 2" = % Since we define in three-dimensional space in this
paper, after that 2* = 6.

In this case, the functional F' corresponding to problem (|1.13)) defined by

Fluo) = [ 51902+ gater? - Jaw + oo
(1.14)

1 2 B 4 M L 6
—§|V¢| —E|V¢| —5K(m)|u\q—g|u| )

which by a standard argument is C' on H(R?) x D(R?), the definitions of H(R?)
and D(R?) will be given later. Here and hereafter, [ - denotes Jgs - da.

Remark 1.1. The functional F' is strongly indefinite, i.e. unbounded from below
and from above on infinite subspaces. In order to avoid this indefiniteness, we can

borrow the reduction methods.

2. MAIN RESULTS

Firstly, assume that the system satisfies the following conditions:
(i) n(x) = 0 is a radial function, that is, n(x) = n(r),r = |z|,
(ii) K : R* — R is a radial function, moreover 0 < K(z) < A and K(x) # 0 for
a.e. ¢ € R3, where A > 0 is a constant.

Next some notations are given. For all 1 < s < +o0, LS(R3) denotes a Lebesgue

space with the norm given by |- |1s.
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Let DY2(R3) be the completion of C§°(R3) endowed with the norm

20z = / Vul?,

The space H'(R?) is endowed with the norm

||u||§{1 :/(|Vu|2+u2).

D(R?) denotes the the completion of C§°(R?) with respect to the norm
3 i
follo = ([ 19u) "+ ([ 19ur)

H={uec H' (R?): / [[Vul® + n(z)u’] < oo}

is a Hilbert space, whose inner product and norm are given, respectively

(u,v) = / (V- Yo+ n(@yuv), |ful? = (u,u).

Obviously, by the Poincaré inequality, the embedding H (R?) < H!(R3) is continuous
and D(RR?) is continuously embedded in D*?(R?). Moreover, from Sobolev’s imbedding
theorem (see [11]), D(R?) is continuously embedded inL>°(R?).

In this paper, we show the following results about the system :

Define

Theorem 2.1. Suppose (i)-(ii) hold, if 4 < q < 6, then for each u > 0 the problem
(1.13) admits a radially symmetric solution.

Theorem 2.2. Suppose (i)-(ii) hold, if g = 4, then for sufficiently large p > 0, the
problem (1.13)) still possesses a radially symmetric solution.

Moreover, we have the following lemma about the second equation of problem
(1.13]).

Lemma 2.1. (a) For any u € H(R?), there exists a unique ®(u) = ¢ € D(R?)
which satisfies A®(u) + fALP(u) = 47 (w + P(u)) u?
(b) If u is radially symmetric, then ®(u) is also radially symmetric,

(¢) For any u € H(R3), it results in ®(u) < 0. Moreover, ®(u)(x) > —w, provided
u(zx) # 0.

The results were proved by Lemma 3 in [9], Lemma 5 in [9], Lemma 2.3 in [I3],
respectively. Similar to the Proposition 1.1 in Reference [5], we have the following

lemma.

Lemma 2.2. The map ¢ is C* and Gy = {(u, ¢) € H(R®) x D(R?)|F}, (u, ) = 0}.
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Proof. Since

Fu o) = | B|Vu|2 +gulEe? = 3 (2 + 0(w) B(u? — o |V®(u)|2}

then

/ _ 1 2 ﬁ 4 2 &2 2
(2.1)  Fj(u,®(u) = / [ i |V ®(u)| g VO (u)|” — wd(u)u” — &7 (u)u| .
On the other hand, from the second equation in problem (1.13]), one gets

—/ (|Vc1>(u)|2 +B|V<I>(u)\4) = /47 (w+ O (u)) ®(u)u?,

ie.,
1
(2.2) / [M V<I>(u)|2+£T|V<I>(u)4} - / [ wd(w)u® — 9 (u)u?] .
Therefore, according to equation , F(; (u,¢) = 0. So now we define I(u) =
F(u,¢) in H(R3). O
By Lemma [2.2] we have

I'(u) = F, (u, ®(u)) + F}, (u, ®(u)) ' (u) = F, (u, ®(u)),

and if u,v € H(R?) , one gets

(2.3) I'(u)v = / [Vu - Vo + n(z)uww — (2w + ¢)puv — pK (z)|u|?*uv — |ul*uv] .

Lemma 2.3. The following statements are equivalent:

(a) (u,¢) € H(R3) x D(R?) is a solution of system (1.13)),
(b) w is a critical point for I and ¢ = P(u).

Proof. (b) = (a) Obviously.
a) = (b) Suppose F. (u,¢) and F) (u,d) denote the partial derivatives of F at
(a) = (b) s y
(u,¢) € H(R?) x D(R3). Then for every v € H(R3) and ¢ € D(R?), one gets
(2.4)
Fl (00 o] = [ [Fu- Vot nla)un - (2 + )éuo — u (@)]ul'2uv — [uf*uo].

23 oWl = [ [-5-vevs - 2 [ve v - wwe - 200

By the standard computations, we can prove that F), (u, ¢) and Fé) (u, ¢) are continuous.

From equations and (2.5)), it is easy to obtain that its critical points are

solutions of problem (L.13)), by (a) of Lemma one has ¢ = ®(u). O
Due to the presence of the critical growth, the Sobolev embedding H(R?) <

LP(R?)(2 < p < 6) is not compact and then it is usually difficult to prove that

a Palais—Smale sequence is strongly convergent when we seek solutions of problem
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(1.13)) by variational methods. A standard tool to overcome the problem is to restrict
ourselves to radial functions, namely we look at the functional I on the subspace
H,(R%) = {u € HR?)|u(x) = u(|z|)}, compactly embedded in LE(R?) for 2 < p <
6. Moreover, from [2], for all u € H(R?), for any g € O(3), we have
I(Tyu) = I(u).
By standard arguments, one sees that if a critical point u € H,.(R3) for the
functional (RS is also a critical point of I.
3. THE PROOF oF THEOREM 2.1

Firstly, we prove the functional I possesses the Mountain-Pass geometry. From
the second equation of system (1.13]), one obtains equation (2.2]), combining equation

(1.14) with (2.2)), one gets

1) = (o) = [ |51Vul + Sn(e)ad = 5

5 (20 + <z>)<z>u2]

__i 2 B 4_ K a_ L6
+ [ |5 Vo = 6 1V0l* = ER @l - Gl

1 1 33 1
= [ |51 + Gutat 4 Vol + 5 (e + o]

1 L 6
— Pr a4 = .
AR
By the Sobolev inequality, one has I(u) > Cil|ul|> — Callul|? — C3||u||®, then there
exists «, p > 0 such that inf I(u) > «. In addition, from equation (|1.14)), there

l[ull=p
exists a function u € H,.(R3) \ {0}, it is easy to obtain

, t? , t2 , t2 5 1 9
tl}lﬁloof(tu)—/ {QVu —l—;n(m)u — — (2w + P (tu)) P (tu)u —87T|V<I>(tu)|]

2

£ £
+ [ |55 w2l = Kl - Gl

t2 2utd—?2 tt }

— [Vu|2 +n(z)u? — 2wd(tu)u® —

N

: K@)ult — = ul°

< _007
which implies that I(u) — —oo, as |ju|] — oo. In particular, there exists u; €
H,.(R?), ||uz|| > p such that I(u;) < 0. Define

(3:2) c= inf max I(y(t),

where I' = { € C ([0,1], H,(R?)) [y(0) = 0,7(1) = uy} is the M P level. Obviously,
¢ 2 a > 0. There exists a (PS), sequence {u,} C E such that

I(uy,) — ¢,
(3.3)
I'(uy,) -0, n— .
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Lemma 3.1. The (PS), sequence {u,} C E given in equation (3.3) is bounded.

Proof. There is a positive constant M such that

M+ o) fun] > T(u) — gu’(un),un)

(34) = (; - ;) / [1Vunl? + ()] +8%/|V‘I’(“n)|2+%/|“’(un)|4

1 1 1 1 2
+(=+- /<I>2 U, Ui+(—>/ un6+f/w<1> Un ).
(3+7) [+ (5 -5) [+ o)
Substituting equation ([2.2) into equation (3.4), we get

M+ o) fun]l > I(un) — %uxun),un)

33 B 4 1 1 6 2
e . - — = > .
o 2qﬂ> /|V<I>(un)| + (q 6) /|un| > Cll|un |

Since 4 < g < 6, as a consequence of the above inequality, {u,} is bounded in

H,.(R3). |
Furthermore, by equation ({2.2)), one gets

(3.5) /(|V¢>(un)|2 +mv<1>(un)|4) = —47r/w¢>(un)u;i —4n/¢>2(un)ui.

Then by Hélder inequality and Sobolev inequality, one obtains

[ (192 + 8190 (w,)I") < Call@tun)lo, lunll,

So {®(uy,)} is bounded (even uniformly). Up to subsequence, we may assume that
there exists u € H,(R3) and ¢ € D,.(R?) such that

(3.6) Up —u  in H.(R?),
(3.7 Up —> U in L$(R3) for 2 < s < 6,
(3.8) D(uy) — ¢ in D,(R?).

Lemma 3.2. ¢ = ®(u) and ®(u,) — ®(u) in D,(R3?).

Proof. First we prove the uniqueness. For every fixed u € H,.(R?), we consider
the following minimizing problem ¢i€n[f) ) E,(¢), where E,, : D, — R defined as energy
functional of the second equation in system .

Bu(0) = [ g V60 + 1= Vol 4 won® + Jo%e |
8 167 2
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In fact, by the proof of Lemma 2.1 in [I7], one can know

®(u,) — ¢, locally uniformly in R?,

/@(un)ui — /<pu2, /@2(un)ui — /902u2.

From the weak lower semicontinuity of the norm in D, and the convergence above,

so we obtain

one has
E.(¢) <liminf B, (P(u,)) < liminf B, (®(u)) = E,(P(u)),
n—00

n—oo
then by (a) of Lemma[2.1] ¢ = ®(u).
Next we prove that {®(u,)} converges strongly in D,.. Since ®(u,,) and ®(u) satisfy
the second equation in problem (1.13)).

/ [V@(un) Vv + B|VD(u,) [ - w} - / [~ dmwuv — 47 (u, )uv] |
/ (Vo) - o+ 8|V - Vo] = / [ dmou®o — dnd(u)u®s]
then we take the difference for ® to have
(3.9)
/ [V (@(un) = ®(w)) - Vo + 8 (IVO () * VO (un) — [VE(0)* VI(w)) - Vo]
- / o (02 — ) v+ ((un i — Blw)u®) o] v € Dy (RY).
Testing with v = (®(u,,) — ®(u)) the following holds:
Co (190 (un) ~ VO[3 +[VE(un) ~ VE(W)IL, )
< [ [0l =)o + (Blun)i? - 2(u)i?) o]
=~ [ [l = oo+ (B(ua) — Bw)) v+ (12— )B()1]
the above equation holds since we have inequality
[(lz[P~22 — [yPP~*y) (z — )] = Cpla —yl’,  zyeRY p>2

By Holder inequality and Sobolev inequality, one has
IV (u) = VO(u)|75 + [VO(u,) — V(u)[74

<ol [ [l = @) ~ @) + 4 [ [1 = 0] [B(0)] [B(u,) - B(w)]

< e [®(uy) — D ()] 2 — u?

6
Lp

A7 [0(w)] g [B(un) = D) g [ — ] 3 < Crlun — s + Cis un =l

L
Thus ®(u,) — ®(u) strongly in D,.(R?). O
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Lemma 3.3. The weak limit (u, ®(u)) solves problem (1.13)).

Proof.

(I'(un), v) = / [V - Vo + n(@)upv — (2w + S(un)) @(un)unv]
(3.10)
- / (LK () |[un]? unv + [un[*unv] -

All convergences in the sequel must be understood passing to a subsequence if
necessary. Since {u, } is bounded in LS(R3), it follows
lun|fun = Jul*u, in (L(R?))".
Moreover by Lemma (3.2 one gets
/un¢>2(un)v +2w/¢>(un)unv — /uflJQ(u)U —|—2w/<1>(u)uv, v e H.(R?).

In fact one obtains
(3.11)

[B(w)u — D(un Y| o] < [0(1) = D(uwn) o [ul s o]z + (D)l o [0] 2 — uls
and
[ 102 (0) = w2 @)l <~ s 1) 3y o]+
@ (un) — ®(u)| s [P(un) + (u)|Ls|u

The compactness of the embedding H,.(R?) < L4(R3) the lemma follows. (]

Due to the lack of compactness, which prevents us to prove that wu, converges

(3.12)

Ls|ViL2-

strongly in H,.(R3), we do not know yet whether u # 0. In order to overcome this

difficulty, we need let ¢ denote the M P level.

Lemma 3.4. Since functions are defined in dimension N = 3, then we can get
c < %S%, where S corresponds to the best constant for the Sobolev embedding

D12(R3) — L%(R3), precisely,

2
S = inf ILIZ”I
ueD:2(R3)~{0} (f |u|6) 3

Proof. Now given ¢, we consider the Talenti function [3] u. € D%?(R?) defined by

NG

et
(e +laf)?
where C > 0 is a normalized constant. Let ¢ € C5°(R3) such that 0 < ¢ < 1, and

u, = C

3

there exists R > 0 such that <p‘BR = 1, suppp C Bag. Set W, = pu. and define

V.= W‘E}Vﬁ From the estimates obtained in [4] we get, as € — 0,
<lLs

(3.13) X, = [VV.f3, <S5 +0(eh),
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(3.14) V2, =0 (5%) .
Since as t — 400, I(tV.) — —o0, we may assume that sup I(tV;) = I(¢.V:) and

>0
without loss of generality that t. > Cy > 0, for all € > 0 (otherwise we could find

a sequence &, — 0 such that t. V. — 0 contradicting that ¢ > 0). Next for any

€ > 0 small enough, the following estimate holds

(3.15) t. < (XE + / (n(z) + 2w?) 1/52)4 = to.

Let f(t) = I(tV.) and compute

) =I'@tve), ve)

[EIVVE? 4 n(@)tVE — (2w + @(EV2)) @(V)VE — pt T K ()| Vo] — °|V2|°]

[HVVe? + n(@)tV2 = 2wd(tVo)tV2 — | Ve[]

VP + n(a)tV2 + 2020V — £V ]%]

VAN
\\\

:t/ [[VV2 4+ n(z) V2 + 202 V2] = =t —t° <0,  t>t.

Thus equation (3.15) holds true. From the second equation in system (|1.13)), one
gets

1 2 /8 4 1 2
1 — — =—=
(3.16) [ (555 1997+ 13- 1901') == [ @+ 0)0u
Now substituting this equation into the functional I(u), one has
(3.17)

1

) = [ [5v0P + guteet = Juo? - |

In view of equation (3.16]), we have

(3.18) —%/QSQuQ < /w2u2

and the function j(t) = %tQté — %t6 is increasing on [0, ¢y), then by equations (3.13]),

(3:17), (3.18) and (c) of Lemma [2.1] one obtains

: E |
11.V.) = / [2 (VVLP 4+ @)V2) - Ea2vv2 - 1o (Vv

1
2.2 L 2 M q_
190 = g Vol = K@)l

e 16
[ V2—M5K(x)V6|q—E|VE|6]
q

2 2 q 6
< [[Savnr+ oo +2212)] + [ [-Zonrovz - L x-S

1 Do td
<3 (sr0()+ [+ 2n) + % [v2 -2 [

29



then using the inequality (a + b)(S =a’+6(a+ b)é_1 b, for all § > 1,a,b > 0, we
get
1
1V < g8t 4o () +aile) [v2 - et [
with constants C;(e) > Cyp > 0(i =1,2). On the other hand, we may get the

conclusion that

1
(3.19) lim —1/ (V2 — p|Vz|?) = —oc0 for e small enough.

e—0 g2

In fact, by the definition of W,, since for ¢ — 0, as in [3]

(3.20) / |WE|6dx:/ |<pu€\6d9::C/ 540z
B2R BZR (1+|x|

It suffices to evaluate (3.19) with W, in place of VL, one has for p > 1,
(3.21)

P
- f e
L7 BR(€+|$|2§

e

)

M"d

&

6—p e

~ds = Ce "3 / —
0 (1+712)%

2 5
( ﬁ )
while
(3.22) / \W.|Pda = O (5%) . e,
Bar~Br
and therefore, one has for 4 < ¢ < 6, as ¢ — 0,
(3.23) W2dz — p Widz < 096% — Clousfs%q,
Bar Bar

where C; > 0(i = 9,10) are independent from €. According to equations (3.20) and
(3-23), we conclude the proof of equation (3.19).

Now we only need prove u # 0. Assume that the lemma holds true, by contradiction,
u = 0, (and hence ®(u) = 0). Since, as n — 0o, (I’ (up), un) — 0,u, — 0 in L3 (R3).

Obviously, [ [u2®?(u,) + 2w®(up)uZ] — 0. Next we may assume
J 19w +n@] -1

/|un|6—>l7 n — oo.

WV

0.

So I(uy) — %l, n — oo. In view of ¢ > 0, then [ > 0, by the definition of S,
f[|Vun\2+77( Juy]

S < X — 1%7
(J Jual®)®
so one has
1 1 1 s
3.24 =|l=-—=]1>=52,
(3:24) ¢ (2 6) 37"
which makes a controdiction with the lemma. O
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4. THE PROOF OF THEOREM

We can observe that as in [3], if ¢ = 4, in the equation (3.23)) one can stress the
parameter choosing = 7%, § > 0, then to get equation (3.19), the rest proof of
Theorem [2.2] is similar to proof of Theorem [2.1
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Abstract. In the present paper we obtain explicit form of covariogram and oriented-dependent
chord length distribution function for oblique prism when we know the covariogram of base.
Additional we calculate the covariogram and oriented-dependent chord length distribution function

in the case if the base is any trapezoid.
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Keywords: Stochastic geometry; chord length distribution function; covariogram;
bounded convex body.

1. INTRODUCTION

Blaschke formulated the question whether the chord length distribution function
characterizes a set [I5]. The answer to this question is negative. Mallows and Clark
presented non-congruent convex polygons with the same chord length distribution
function[IT]. There are many articles ([6],[7],[16]) where for solving this problem
it is considered that a subclass of the class of convex bodies for which the chord
length distribution function is not equal for non-congruent members.

A convex body in R"™ is a compact convex set K with non empty interior. Denote
by L, n-dimensional Lebesgue measure on R". If z € R™, D+x denote the translate
of D by x, i.e.,

D+z={y+x,yeD}

If D C R™ is a convex body, then its covariogram Cp(z) is the function defined for
x € R" by
Cp () = La(D N (D + ).

G. Matheron posed in [12] the following question.

Covariogram Problem. Does the covariogram determine a convex body D in
R™, among all convex bodies, up to translation and reflection?

Reflection in this paper always means reflection at a point. Matheron problem is
true if n=2 and it is false for n > 4, but for n = 3 it is still open. In [I2] Matheron
showed that for every t > 0 and ¢ € S"~* (S"~! is (n-1)-dimensional unit sphere
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centered at the origin)

(1) 000 L (e ot LDy 1) 2 1)

where [4 + y denotes the line parallel to ¢ through the point y, while ¢+ denotes
the hyperplane in R” with normal direction ¢ € ™~ 1.

Let G be the space of all lines in the Euclidean plane R?, g € G and (p, ¢) is
the polar coordinates of the foot of the perpendicular to g from the origin, p > 0,
¢ € S'. For a closed bounded convex domain D C R? we denote by Sp(¢) the
support function in direction ¢ € S defined by

Sp(¢) = max{p >0:g(p,¢) N D # 0}

For a bounded convex domain D C R? we denote by bp(¢) the breadth function in
direction ¢ € S', that is, the distance between two support lines to the boundary

of D that are perpendicular to ¢. We have

bp(¢) = Sp(¢) + Sp(¢ + )

Note that bp(¢) is a periodic function with period = [I5].

For a bounded convex domain D the chord length distribution function in direction
¢, denoted by Fp(z, ¢), is defined to be the probability of having chord x(g) = gND
with length at most x in the bundle of lines parallel to ¢. A random line which is
parallel to ¢ and intersects D has an intersection point (denoted by y) with the
line ¢. The intersection point y is uniformly distributed on the segment [0, bp(¢)].

Thus, we have

Li(y € Mp(9) : x(lp +y) <)

(1.2) Fp(x,¢) =

bp(¢)
It is not difficult to verify that for n = 2 formula (1.1)) is equivalent to
dCp(t
(1.3 900 ()1 ~ Pl )

Denote by T' the space of lines v in R®. Let IIp(w) denote the projection of a
bounded convex body D C R? in direction w € S? and let sp(w) be its area. Every
line which is parallel to w and intersects D has an intersection with IIp(w). Denote
that point by y and that line by [, + y. The intersection point y is uniformly
distributed on Ilp(w). The chord length distribution function of D in direction
w € 8?2 is defined by
Loy : x(lw +y) <}

sp(w)
It is easy to verify that for n = 3 formula is equivalent to
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(1.5 0U9) — (@)1 - Folt,9)

This article aims to calculate covariogram and orientation-dependent chord length
distribution functions (see [11,[2],[5],[8],[9],[13],[14]).

In this paper, we obtain the following results

1)The calculation of the covariogram and Orientation-dependent chord length
distribution function for any trapezoid. This is a generalization of the result of [14].

2)Relationships between the covariogram and the orientation-dependent chord
length distribution function of an oblique prism and those of its base.

3) Explicit forms of the covariogram and the orientation-dependent chord length
distribution function of an oblique prism with cyclic, elliptical, trapezoid and triangular

bases. The second and third results are a generalization of [9].

2. COMPUTATION OF CHORD LENGTH DISTRIBUTION FUNCTION OF AN OBLIQUE

PRISM

Consider the oblique prism U with base B (not necessarily convex), the length of
prism generator is equal to d and angle between prism generator and base is equal
to (. It is obvious that the domain U N (U + z) is also a prism. If we denote by
t the length of x and by w = (¢, 0), (¢,0) is the cylindrical parametrization of w;
¢ € 81,0 € [-7/2,7/2] the direction of x, then the base of the prism U N (U + x)
will be the domain B N (B + y), where y is a planar vector of length %
and direction ¢, and the height of the new prism will be dsin 8 — ¢sin #(due to the
symmetry we consider only the case 6 € [0,7/2]). We can say that
tsin(5 — 0)

Cy(z) = Cy(aw) = Ly(UN(U+tw)) = LQ(BH(B—i—( S

)(b)(dsin B—tsin)

Implying that

tsi -0

Sltfﬁ)) @)(dsin 8 — tsin )
Differentiating both sides of equation ([2.1) with respect to t, we get
(2.2)

(2.1) Cu(tw) = oB<(

t Si;(nﬂﬁ_a) > ¢)
ot

OCy (t .
% = —s1n003(<

Using equation (|1.3)
603( (t sin(8—0)

28) ——— " ) ba(o) (L) (1 (P20 )

‘ 9C(
tsin(8 — 0) . . (
smﬁ>¢) + (dsin 8 — tsin0)
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If we integrate both parts of equation Ij from 0 to %, we get
(2.4)

en((BE= D)) = -t (Y [ (Y, gy

where ||B|| is the area of B. Using equations (1.5)),(2.3),(2.4) we can transform
equation (2.2)) the following way

su() (1 (1.) = im0 Bl o) (= ) [ - (“HE ) o)+

+(dsin — tsin0)bg (o) (Si“(ﬁ — 9))(1 - FB(<t§m(M> ;)

sin 8 sin 8

We can say that

sin 3

Using above mentioned we can formulate the following theorem

su(w) = ||B||sinf + bB(qﬁ)dsinﬁ(Sin(ﬁ - 9))

Theorem 2.1. For oblique prism U with base B (not necessarily convex), with
prism generator d and angle between prism generator and base [ the orineted-

dependent chord length distribution given by the following formula

(2.5)
0, ift <0
bi () (“‘;Efff’)
X
|| B|| sin 6+b5 (¢)dsin B ”‘fﬁ"))
FU(t7w> = t .
X (t sin @ + sin 6 fo (1— Fp( (W) , @))du+
+(dsin6—tsinH)FB((w>,¢)>, ifOStStmaa:(w)
17 th 2 tmaz(w>

Where 4. (w) is

(2.6)
sin Brmaz () dsin 8 dsin 3
b (@) = 4 smci 110 € [—arctan STRIER e avecos g, S
e ‘lissifeﬁl , otherwise

when dcos 8 < Tymaqs(P) and

(2.7)
51|nsil:v(7§iz€(;lb) , if 6 € [O, arctan 7£maz%;1)j_g sin,B]
tmaz (W) = ‘lissi‘;‘£7 if € [arctan 7367%1%;1)1[151“5 ,arctan g—g" e gf‘;faz(¢)]
sin BTmaz(P) - dsin 8
W’ if 0 S [arctanm],ﬂ/Q] U[*Tl’/z,o]

when dcos 8 > Timaz ().
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3. CHORD LENGTH DISTRIBUTION IN A TRAPEZOID

Let T C R? be a trapezoid with bases a and b and the angle between longer base
and legs are 11, ¥5. Without loss of generality we can assume that 0 < ¢y < 7/2,
1 < o < 7w and b < a. We can translate and rotate trapezoid so that the longer
base be on X-axis.

It is obvious that, the height of trapezoid is equal to h = (a — b)<inisints

sin(P1+2)’

1 i — sin . .
the side OA is equal to loa = (a — b)m and the side CB is equal to
lep = (a— b)#ﬁﬁ}w From here we can say that the vertices of trapezoid are

Py sini inty siniy Py sint
0(050)7 A((G, - b)%)<a - b)%),B(a,O),C(bwt(a - b)%a(a -
b)%) If we take the square or rectangle we should know height and side
instead of the above mentioned quantities.
For calculating the orientation-dependent chord length distribution function of

a trapezoid, we firstly need explicit form of breadth function of the trapezoid.

Lemma 3.1. Let T C R? be trapezoid with bases a and b and the angle between
longer base and legs are 11 Pa. We can assume that the longer leg is equal to a and

1 < po. Then the breadth function has the following form

lepsin(¢ + 2) + bsing, if0< ¢ <
(3.1) br(¢) = < asing, if 1 <P <=1y
bsin(¢) + loasin(¢ — 1), ifr—Ya <<

(b)) Ypr <Pp<7m—1o ()m—Y2<dp<m

Puc. 1

Proof. To prove this lemma firstly we should understand which two vertices
have the last intersection with lines in direction ¢. This means that we should find
the Iy +y for every Vertex and take the two vertices for which y has the minimum
and the maximum value.

(Case i) for 0 < ¢ < 91 two vertices are A and B. That means the by (¢) is equal
to the projection of AB diagonal onto ¢+.

br(¢) = Li(llap(9)) = lepsin(é + ¢2) + bsing
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(Case ii) for ¢y < ¢ < m — 19 two vertices are O and B. That means the br(¢)

is equal to the projection of OB base onto ¢=.

br(¢) = Li(Ilop(¢)) = asing

(Case iii) for m — 93 < ¢ < 7 two vertices are C and O. That means the bp(¢) is
equal to the projection of OC diagonal onto ¢*.

br(¢) = L1(Mco(¢)) = bsin(@) + loasin(d — 1). O

We denote the lines z¢(¢) and z1(¢) which has ¢ angle with X-axis, pass through

a vertex of trapezoid and make a chord of positive Lebesgue measure,

zo(¢) = minx(ly +y) and 21(¢) = mazx(ls +y)

Figure [2] shows all cases of above mentioned quantities.

A O c
()
@1(¢)
o/ D,

G

. b) 7k 4 arcsin = < ¢ <
kE<o¢<mk o ( loc =
(a) mk < ¢ < wh+arcsin < 7k + 1

s ot

() Y147k < <m(k4+1)— (d) r(k+1) —vo < 6 < w(k+1)— (€) n(k+ 1) — arcsin <o <
_1/]2 — arcsin l:B < m(k+1)

Puc. 2

Lemma 3.2. 21(¢) = Tymaz () for any angle ¢. If we choose some k € Z we should
have the following cases for xo(¢) and x1(9)
(i) If tk < ¢ < 91 + 7k

(@) %7 if Tk < ¢ < wk + arcsin -
o = ) )
m7 szk+arcsm&§¢><7rk+¢l
() %, ifﬁk§¢<7rk:+arcsin&
x =
mazx m, ifmk + arcsin % < ¢ < k4
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(ii) If 1 + 7k < ¢ < mw(k + 1) — 1y
h

(i) If m(k+1) — e < p<m(k+1), andloasiny; < a

h ) o
zo(p) = \SibT?\’ Zf”(kJFl)*?/Jz<¢<7T(k+1)farcsm@
%7 ZJ'"7T(k-|-1)—a1rcsm <¢<7r(k—|—1)

(6) = |Sm(¢)|, ifr(k+1)—Ys <op<mlk+ )—arcsiné
xmaz
%, sz(kJrl)farcsml <¢p<mk+1)
(iv) Ift(k+1) =2 <p<m(k+1), and loacoss > a
zo(¢) = \hmaﬁl’ Yrk+1) =92 << arcsin&
%, zfarcsml <¢p<mk+1)
if w(k + 1) o < ¢ < arcsinﬁ

\sm (&1’
Timaz (@) = { asin if arcsin - < p<mk+1)

[sin(¢—41)]’
Proof. A chord of maximal length in a convex polygon with direction ¢, also
known as ¢-diameter of the polygon, is not necessarily unique but for any given ¢
exists a ¢-diameter such that at least one endpoint of the chord coincides with a
vertex of the given polygon.
Case (i) sub-case 1 (7k < ¢ < 7k + arcsml ) From Figure [2a] it can be seen
that 29(¢) = CCy and x1(d) = Tmaz(d) = OO;. By Sine Rule

_ bsin(180—1¢)  bsinyy
$0(¢) - Sin('l/)l _ ¢ + 7r]§) o |Sin(1,/)1 - ¢)|
asin gy B asin g

PO = el ) = (180 =y — g+ k) [sin(vz +9)
Case (i) sub-case 2 (7wk + arcsin l < ¢<mk+ 1) From Figure [2b| it shows that
2o(9) = 21(¢P) = Timaz(p) = CCy. By Sine Rule
h

$0(¢) = xl((b) = xmaz(¢) = w

Case (ii) (Y1 + 7k < ¢ < w(k + 1) — ¢2) From Figure [2¢| it can be seen that
20(P) = 21(P) = Timaz(d) = CCy. By Sine Rule
h
20(¢) = 71() = Tmaa () = |sing|
Case (iii) sub-case 1 (m(k+1) —¢2 < ¢ < m(k + 1) — arcsin -~ ) From Figure
it shows that zq(¢) = BBy and x1(¢) = Zmaz(¢) = AA;. By Slne Rule
_lopsin(180 —1)  h
70(0) = G180 — ¢ 5 k) _ [sm )
h ok
sin(180 — ¢ + k) | sing|
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Case (iii) sub-case 2 (m(k 4+ 1) — arcsin ;- < ¢ < w(k + 1)) From Figure [2¢|it can
be seen that z¢(¢) = AA; and x1(¢) = xmaw(q’)) = BB;. By Sine Rule

bsin(180 — 1)2) ~ bsinyy

000 = G060+ vs — 180 + 7k)  [sin(d + 03)
B _ asinyy
P10 = e ) = Tt — )]
The proof of case (iv) has the same steps as case(iii). O

Theorem 3.1. Fr(z,¢) =0 if x < 0 and Fr(z,¢) =1 if £ > Zpmaz(¢). Now we
discuss the non-trivial cases when 0 < & < Tyqy- Because this is m periodic function
we can assume that k is equal to 0.

(i) For 0 < ¢ < 4y

st tneseta o<y <a
Fr(z,¢) = —lew) (bsin ¢ + (z—zo(¢ ));;n(%lﬂz))bm(wﬁ@—k
+:Esm(fi—£%)’ ifro (@) < T < Tmaz(P)

(i1) For b1 < ¢ < m — 1y

xsin ¢ (sin(¢e + ¢) sinhy + sin(¢ — 1) sin )y
Fr(z,¢) = . -
br () sin 1)y sin 1y
(iii) Form —ipy < p <
—x sin ¢(sin 1#;:225(2?;16;1)81?11((;5 1) sin 7,!)2) ’Lf 0<z< xo(qs)
Fr(z,¢) = - ( )(bsm(f )L IO(¢)):1;71(%2:£))SIH(¢ Y1)
+W% fo0(¢) <z < Imaw((b)
Proof
¢ +0C
S fent)
Tmaz(9) N
i D
y % £ 8
(a) 0 < ¢ < arcsin &, (b) 0 < ¢ < arcsin &, (c) arcsin —— z < ¢ <Yy,
0 <z <zo(p) 20(¢) < & < Tmaax(9) 0< @ < Trnas(6)

Puc. 3

Case (i) sub-case 1 let 0 < ¢ < arcsin& and 0 < z < zo(¢). In Figure
IMM| = |NN1| = 2 < z0(¢) = |CC4| < |OO1] = Zimae(®). For this we can say
that Fr(z,¢) = ﬁw)(bAAMM1 (¢)+bapnn, (¢)). Here baanrar, (¢) and basnw, (¢)
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are equal to the height of triangle AM M, (with base M M;) and BN Ny (with base

NNy)
xsin(y; — ¢) sin ¢

baamn (¢) = P
xsin(ye + @) sin ¢
b —
ABNN; () sinty
Case (i) sub-case 2 let 0 < ¢ < arcsin& and z20(¢) < & < Tmaz(P). In Figure

x0(¢) =CCy <x=MM; = NN < Zymaz(¢). In this case we have F(z,¢) =

pray (Ao, (8) + bapnn, (9)) = 555 (bace, (6) + basnn, (0)) + bucon,) =
bsin qﬁ—l—w—i—b Mccy M, )- We should calculate the height of trapezoid

1
br(¢) (

sinyz
MCClMl
barco ap = sin(¢1 — ¢) ?in(% + ¢)(z —20(9))
o sin(y1 + 12)
Case (i) sub-case 3 let arcsin% < ¢ < and 0 < < Tyaz(@). In Figure

z = |NNi| = |MM| < |CCi| =|001| = 20(¢) = Tmaz(¢). Computations of this
case are identical as in the previous case (1) sub-case 1. Completing the above we

can say that for any ¢ € [0,1] it brings to

ey (S 2 B ), 05w <ao(9)
Fr(z,¢) = ﬁ@(bsm(ﬁ + Smwl_¢s§i?¢'fi£)(””‘z°(¢) n
] i£20(6) < 7 < Tomas(d)

Case (ii) sub-case 1 ¢; < ¢ < 7/2 and 0 < 2 < Tyaz(p). Here Fy(z,vp) =

(b) 7/2< ¢ < — o,

(a) ¢1§¢<7r/270§x<xma1(¢) 0§x<xmaz(¢)

Puc. 4

1 (zsin(gb—d)l)sinqb + z sin(ya+¢) sin¢>)
br (o) sin sino .

Case (ii) Sub-case 2 7/2 < ¢ < m — g and 0 < & < Tyay(¢). In Figure
z =|NN1| = [MM| < |CC| = [AA1| = 20(}) = Tmaa(¢) we have
1

Fr(z,¢) = W(bAOMMl + BaBNN,) =
1 (xsin(¢—w1)sin¢+msin(¢2+¢)sin¢)
N bT(d)) sim,/;l Sinl/Jg
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(b) (c)

wagfarcsin& <<, wagfarcsinﬁ <¢p<m,
0 <z <wo(9) 70(¢) < T < Tmas(P)

(@) m— 42 < ¢ < 7 — w2 —

—arcsin 72—, 0 < z < Tmax(P)

laB’

Puc. 5

Case (iii) sub-case 1 m — 1)2 < ¢ < ™ — 1) — arcsin é In Figure x=|NN| =
|MM,| < |AAi| = |BB1| = 20(¢) = Tmaz(9)

Fy(x,¢) = fiﬁ)(bAOMMl +bacnw,) =

1 (—x sin(ig + @) sin ¢ . xsin(¢ — 1) sinqS)
br(9) sin i)y sin 1
Case (iii) sub-case 2 m — )2 — arcsin ﬁ <¢<mand 0 <z < z9(¢). In Figure

T = |MM1| = |NN1| =< |AA1‘ = 1’0(¢) < |BB1| = xmar(QS)

Fr(2.0) = 55 (bacwm, (6) + baosran (6)) =
1 (—ac sin(iy + @) sin ¢ . xsin(¢p — 1) sin(;S)
 br(9) sin 1o sin i
Case (iii) sub-case 3 m — 1) — arcsin é < ¢ <mand zo(¢) <& < Tinaz (@)
Fr(z,¢) = le((b) (bacnn, +baomar,) = ﬁw)(bac,q,ql +ban, A, N +baomnr,)
1 . (@—mo(¢))sin(y2 + ¢)sin(¢ — 1) | wsingsin(g — 1)
= gy 050 sin(vy + o) M Sin ) O
Object The angles | The basis a, b Article
Y1, Y2 and height h
Square ) = Py = a=b=h [13]
/2
Rectangle P =g = a=b #£ h [14]
/2
Parallelogram | 1 = 7 — 1o a=b [4]
Right o =7/2 a>b [14]
trapezoid

We can use theorem [3.I] and obtain the known results of orientation-dependent
chord length distribution function (for square and rectangle instead of two bases
we should know height and one base). In the table above we show how to do that.
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4. COMPUTATION OF COVARIOGRAM AND CHORD LENGTH DISTRIBUTION

FUNCTION OF OBLIQUE PRISM

4.1. The case of a cyclic oblique prism. Let L, be an oblique prism with radius
(of the base) r, side d and sides lean over at the base is 8. The covariogram of a

disc with radius r is

2r2 arccos % — %\/47“2 —t2, f0<t<2r
C’f(t7 ¢) =

0, otherwise

Using equation (2.1) for the covariogram L, we obtain

(dsin 3 — tsin 0)2r? arccos %—

O, (tw) = § —0=D) fyp2  Loin@ D) if 0 <t < Xmaw (W)

0, otherwise

where Xmaz(w) we calculate using (2.6) or (2.7))

For the orientation-dependent chord length distribution function we have

0, ift<o0
Fot,¢) =q1—/1— 2L, if0<t<2r
1 if t > 2r

Using equation (2.5)) and knowing that Y.ma.(¢) = 2r, we obtain
0, ift<0

o sinB=6)

sin 3

7rr sin 0+2d sin(3—0) <dSlHﬁ - (dSiH 57

FL1'(t7¢)_ 3t sin 0) ¢ sin(8—0) 2
—2)< ]‘_(2rsin[5> )+

+7rssiinn(gfig)ﬂ (arcsin(it szififn_ge) ) if 0 <t < Xomaz (W)

]-7 if ¢ Z Xmax (W)

4.2. The case of an elliptic oblique prism. Consider a prism L. with prism
generator d, the angle with prism generator and base is 8 and base as an ellipse
with semi-major axes a and b. The covariogram of an ellipse with semi-major axes
a and b has the form [10]:

2ab(T — —t 1 2 aesin—t ), ifo<t<
CT' (t’ ¢) — a (2 Xmaz (¢) Xwnaz'((b) arcsii X'mam(¢) ! - Xo(d))

0, otherwise

_ 2ab
VaZsin? ¢ + b2 cos? ¢
is the maximum chord in direction ¢.

Xmaa: ((b)
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From (2.1) we get

N —oan( T tsin(8 — 0) 7t281n2(579) 2 B
Cr, () =2 b(2 xm<¢>sinﬂ\/1 omae(@) O

sin(B—6 . .
% <d8111[3—ts1n0

where Xmaz(w) we can calculate using equation (2.6 or (2.7))
For the orientation-dependent chord length distribution function we have [10].

-arcsin

0, ift<O0
Fo(t,$) = 41— /1= =t i 0 <t < Xomaz(9)
1, if ¢t > Xmax (¢)
Using equation (2.5) we get
0, ift<0
be(g) | 2nE52
mabsin 6+b. (¢)d sin(B—06) <d SIHIB - (d Slnﬂ_
FLe (tad)) = 3¢ sin 6) ¢ sin(3—6) 2
- 2 ) 1- Xmaa:(¢) Sinﬂ) ) +
mas sin 6 sin . sin(B8—6 .
+%(arcsm(m)) lf O S t < Xmax (w)
L, ift > Xmaz (W)

and b.(¢) is equal to

be(9) = \/a2 sin? ¢ 4 b2 cos? ¢

4.3. The case of a triangle oblique prism. Let La denote an oblique prism
with triangular base A. We consider the side of A that lies on the X axes. Let a be
the length of that side, and v, and 12 be the corresponding adjacent angles. In [3]

it is shown that the covariogram of A is given by

2
ot 0 <
Calt,¢) = Sa (1 xmaz(qs)) ;0 <t < Xomaz(9)

0, otherwise

where Sa is the area of the triangle A, while Y.naz(¢) is defined by the following

formula
a sin g, if0< o<ty
Xmaz($) = { asintysiney, if ¥y < ¢ <7 — 1y
asiny, ifr—<op<m

Taking into account (2.1)), we obtain

2
SA(I - m) <ssm5 tsm9>, if 0 <t < Xman(w)

0, otherwise

CLA (tv ¢) =
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where Xmaz (@) is defined by ([2.6]) or ). Again from [3] we have

0, ift<0
FA(t,(,b): my 1f0§t<Xmam(¢)
1, ift > Xmax(¢)

Using equation ([2.5) we get
0, ift <0

sin(8—8)
bp (o)t (M)

X
(4.1) Fy(t,w)= sAsine+bB(¢)dsing(W>

(2 sinf — 3tsind sin(8—0) + dsin(,@—@))’ if 0 <t< tmaz(w)

2sin BXmaz(P) Xmaz (@)
1, if t Z tmam(w)

If for the three sub-sections above we take § = 7/2 then we have same results as
in [9].

4.4. The case of a trapezoidal oblique prism. Denote by Dr the oblique prism

with tapezoidal base Using Matheron’s formula we can say that

WTT(;’@ = ~br(9)(1 - Fr(t,9))

If we integrate both parts the last equations yields

t
(12) Cr(t,6) = Cr(0,6) ~br(6) [ (1= Fr(u, o))

0
Using equation ({2.1) and Theorem we come to explicit formula for Cr(¢). It is

enough to compute for ¢ € [0, 7] because C(-, ¢) is m-periodic function.

Cr0) =" thr() +000) [ Frtw it ="CD ooy
t? sin ¢ (sin (s Zszﬁlilllézlizlnwl sin(¢+42)) 0 <6<y, 0<t<z0(6)
th tsingb 4+ £ ﬁngﬁfn(i)ﬁ%ﬁ@
rololil e ol o) Sl“é‘iﬁf;j 90 < ¢ <y, 20(6) <t < Tman(6)
A e it < ¢ <=1, 0 <t < brnaa(0)
—t2 sin ¢(sin 52121(n¢$1w52;21 Q;Qm(¢ 1) sin 1/;2) oy << 0<t<ag (d))
thsing — S’"éﬁﬂiiiwg 1) |
lzalOlsiniua o) Sh(omva) | Coing o) 1y < 6 <, 20(6) < T < Tonan(9)

Using equation we can find explicit form of orientation-dependent chord length
distribution function of oblique prism with trapezoid base.
Denote by
mi(6) = sin ¢(sin(¢y — @) sin.wg + s.in 1 sin(¢ + 1/}2))7
by () sinthy sin iy
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_ 1 . wo(@)(sin(y1 — @) sin(Ys + @)
Cl(d)) = bT(¢) (bSlnd) Sin(lbl —‘,—'(/}2) )
1 (sin(¢1 — @) sin(ha + @) = sin(d + v9) sin¢g
m2(¢) o bT(qb)( sin(wl + ’(ﬂg) + sin ¢2 )
(6) — S0 (sin(s £ ¢)sint +sin( — ) sin vy
M) = p(e) sin 4y sin s
ma(6) = — sin ¢(sin ¥y sin(¢ + 99) — sin($ — 1) sin o)
ne br(¢) sin ¢y sin o
- . zo(@)sin(i + ¢)sin(¢p — 1)
62(¢) - bT(¢> (bSlH¢+ Sin(’lﬁl + ’(/}2) )
_ 1 sin(ya+¢)sin(¢ —¢1) | singsin(g — 1)
ms (@) = bT(¢)( sin(11 + 1¥2) N sin 1)y )

Using the notations above we can rewrite Theorem

Theorem [3.1(rewrite) Fr(z,¢) =0ifz <0and Fr(z,¢) = 1if 2 > Zpaa ().
Now we discuss the non-trivial cases when 0 < = < Zyqz(¢). Because this is 7
periodic function we can assume that k is equal to 0.

(i) For 0 < ¢ < 4

FT(x7¢) = {

(11) For v < ¢ < — 1o

xmy (), if0 <z <o)
JL‘TTLQ((]ﬁ) +ca (d))a if $0(¢) <z < xmaﬂc(d))

Fr(z,¢) = zms(9)
(iii)For m — 4o < ¢ <7
Fr(z, ) = {xm4(¢)a if 0 <z <wo(0)

xms (@) + ca(9), if 20(¢) <o < Tinax(9)

Lemma 4.1. For oblique prism with trapezoid base we have chord length distribution
sin(Bfa))

function as (for shortness denote by ¢ = Snp

(i) If mk < ¢ < 1 + 7k and ap(¢) > Lmec(SME0]

sin

Fp,(t,w) = [|B]| sin Hbf (bq;)(cqb)d sin B¢
<2t sin 0 + (dsin 8 — tsin 0)tcmy (¢) — W)
(il) I m(k +1) —1p2 < ¢ < m(k + 1) and () < LmexlsnB0
For this case we have 2 sub-cases for calculating Fr(uc, @)
uma(@)c, ifu< lwslgfz)ﬁi”éﬁ

Fr(uc,¢) = {

uma(g)e + cr(g), if FEPES < < Yonan (@)

Therefore we get

B bp(9)c
Fo (t:9) = 1550 + by (¢)dsin fe
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zg(¢)sin B

(2t sin@ + (dsin 8 — tsin 0)(tema(d) — c1(@)) — sin 6 / e umq (¢)cdu+
0

: ! B bp(o)c
I g O = O GG G e
. . 2
<2t sind + (dsin 8 — tsin0)(tcma(¢p) — c1(9)) — SI;H <|Z(1)1§?; 511196”) mi(¢)c—
sinf, [ zo(¢)sinB \> xo(¢)sin 8
(G ) e+ a@RET -0
Case (iii) If 1 + 7k < ¢ < m(k+1) — 13 and 0 < t < tpgq(w)
_ bp(p)c
Fult:w) = mpma g+ bp (@)dsim e
<2t sin @ + (dsin 8 — tsin0)tems (o) — W)
Case (iv) If w(k +1) — o < ¢ < w(k + 1) and ¢ < {502
_ bs(¢)c
Fp,(t,w) = || B||sin 6 + bp(¢)dsin e
<2t siné + (dsin S — tsin0)temqy(¢p) — W)

(V) If mh < ¢ < 1 + 7k and 2@LB < < ¢ (W)

[ sin(8—06)]|
For this case we have 2 sub-cases for calculating Fr(uc, @)
. zo(¢) sin 8
Fr(uc, ¢) = uma(@)e, I“i Z))lssiil?éﬁ—en
um5(¢)c + 02(¢)7 if \soin(f379)| <u< Xma:r(w)

Therefore we get

_ bg(¢)c
Fp, (t,w) = ||B|[sin 6 + bp(¢)dsin Be

zg(¢) sin B

(Zt sinf + (dsin 8 — tsin 0)(tems (@) — ca(P)) — sind / e umy(¢)edu+
0

. K - bp(¢)c
IO fag ) = O TG b G e
. . . sinf [ zo(¢)sinf \’
<2t sin@ + (dsin 3 — tsin 0)(tems () — c2(9)) — 5 <|sin(6 — 9)|> ma(P)c—
sind [ xo(¢)sinB > 5 2o(¢) sin 8
) ((|sin(ﬁ—9)|) —t )Cm5(¢)+02(¢)(m*0

where Xmaz () is defined by (2.6) or (2.7).
If we take 8 = 7/2 then we have same results as in [14].
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Abstract. This paper aims to set an account of zero-free regions for lacunary type polynomials
whose coefficients or their real and imaginary parts are subjected to certain restrictions. We also

find bounds concerning the number of zeros in a specific annular region.
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1. INTRODUCTION

Deriving zero bounds for real and complex zeros of polynomials is a classical
problem that has been proven essential in various disciplines such as engineering,
mathematics, and mathematical chemistry. As indicated, there is a large body
of literature dealing with the problem of providing disks in the complex plane
representing so called inclusion radii (bounds) where all zeros of an univariate
complex polynomial are situated. A review on the location of zeros of polynomials,
where the polynomials can be factored over disks in complex plane can be found in
([13],[8],[17],[16]). In accordance with, the following first result which describes the
inclusion radii where all zeros of an univariate complex polynomial are scattered is

due to Cauchy [3]. All the zeros of a polynomial
P(z2) =ap+ a1z +az® 4+ ... + a,2", an #0
lie in the disk

|z| <14+ M,

aj

an |°

where M = max
0<j<n—1

Cauchy type polynomials have been studied extensively in the past more than

one-century. The research associated with this has sprawled into several directions
and generates a plethora of publications for example see ([I0], [12], [18], [I3]).
The research on mathematical objects associated with polynomials and relative
position of their zeros has been active over a period; there are many research papers
published in a variety of journals each year and different approaches have been taken

for different purposes. The present article is concerned with zero free regions and
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particularly the number of zeros of a polynomial in a given disk. The following
result establishes the improvement of above Cauchy bound under the assumption

that the coefficients satisfy monotonicity condition.
n

If P(z) = Zajzj is a polynomial of degree n with real coefficients such that
§=0

Ap > Ap_1 > ... > a1 > ag > 0.

Then P(z) has all its zeros in |z| < 1. This elegant result is known as Enestrom-
Kakeya Theorem, (for reference see section 8.3 of [I8]). In the literature, there exist
various extensions and generalizations of Enestrom-Kakeya Theorem ([2],[5], [6],
[8], [10], [12], [13], [15], [16], [18]). Following analogous result established by Joyal
et al.[10], the foremost and the most cited one after Enestrom-Kakeya Theorem
which acts as a generalization of it.

Let

Gp 2 Gp-1 2 Ap_2... 2> a1 = ag.

Then the polynomial P(2) = a,2" + a,_12" " + ... + a1z + ag of degree n has all

its zeros in

1
2| < —{an —ao +|aol}-
|an|
Several years later Aziz and Zargar [2] relaxed the hypothesis in several ways and
among other things proved the following result.

Let
P(z)=ap+a1z+ ...+ apz"

be a polynomial of degree n with real coefficients such that, for some k£ > 1 and for

some 0 < p <1 we have
kan > an_1 > ... > pag > 0,

then P(z) has all its zeros in

lz+k—1 <k+ %n_p).
These results proved to be, each in its own way, enabling the growth of sophisticated
techniques and critical practices are foundational in the development of the geometry
of the zeros of univariate complex polynomial.

Up till now, we have precisely reviewed the regions containing all the zeros of a
polynomial P(z) under restricted coefficients. Since the motivation of this article is
about the zero free regions and the number of zeros for special family of polynomials

and in view of that it is significant to deal with some preliminary results related to
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zero free regions. The following result is due to Zargar [20].
n
Let P(z) = Zajzj be a polynomial of degree n. If for some real number k > 1
5=0

0<an Sanfl é éal Ska@»

then P(z) does not vanish in the disk |z| < 5.

Generally speaking, the methods and techniques to develop the zero free and zero
containing regions are different and are satisfactory for the readers. The theory on
zero free regions for the univariate complex polynomials has been well established
([201, [9], [d, [4], [11]), while somewhat is known for analytic functions. This article
describes zero free regions for lacunary type polynomials and this approach is new
in comparison with previously published material in the study of zero free regions.

Next we move to the number of zeros of a polynomial in a given disk, the following

result concerning the number of zeros of a polynomial in a closed disk can be found

in Titchmarsh’s classic "The Theory of Functions (see [19],page 171, 2nd edition).

Theorem 1.1. Let F(2) be analytic in |z| < R. Let |F(z)] < M in |z| < R and
suppose F(0) # 0. Then for 0 < § < 1, the number of zeros of F(z) in the disk
|z| < RS does not exceed

1 log M
— log +——.
log s |F(0)]

Regarding the number of zeros of a polynomial in |z| < % and under the same
Enestrom -Kakeya type restrictions on the coefficients. Mohammad [I5] used a

special case of Theorem 1.1 in order to establish the following result.

Theorem 1.2. If P(z) = Zajzj is a polynomial of degree n such that
j=0

Op > Gp-1 2> ... 2> a1 > ag >0,
then the number of zeros of P(z) in |z| < 3 does not exceed

1+

! log 22
log 2 & ap’
This result has been refined and generalized in different ways (see [5], [7], [8],

[16]). Recently Mir et al. [14] imposed certain conditions on the moduli of coefficients

and among other things of the Lacunary type polynomials P(z) = ag+ Zaj 27 and
J=n
proved the following results.
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Theorem 1.3. Let P(z) = ag+ Zajzj, 1< p<mn, ag # 0, where for somet >0

J=n
and some p < k <mn,

t'a,| < ... <t Hago1| < Flag] > M agyr > o > a1 | > 17 ag)

and |arg aj—B| < a < T for p < j < n, for some real o and B. Then for0 < 4§ <1,
the number of zeros of P(z) in |z| < 6t does not exceed

1 M
log ‘—

log $ apl’

where M = 2|aglt + (|au[t"T™ + |a, [t ) (1 — cosa — sina) + 2]ag[tFT! cosa +
n

QZ\aﬂtﬂ'l sin a.
J=n

Theorem 1.4. Let P(z) = ag + Zajzj, 1< pu<mn, ag #0, where Re a; = «;

j=n
and Im a; = B; for p < j < n. Suppose that for some t > 0 and some k with
p<k<n,

troy, < . <t oy <oy > tTlag i > L > " ey > .

Then for 0 < § < 1, the number of zeros of P(z) in |z| < &t does not exceed

1 M
171 logi,
0g 5 |ao|

n
where M = 2(Joo|+|Bol )+ (| — S+ 420t F 4 (o | = )E 142 |85 [
Jj=u

n
Theorem 1.5. Let P(z) = ag + Zajzj, 1 <p<n, ag # 0, where Re a; = o
Jj=p

and Im a; = B; for p < j < n. Suppose that for some t > 0 ,for some k with
uw <k <mn, we have

tra, <. <t oy <tPap >t Tlagy > > a, g > tay,

and for some p <1 <n, we have
B, < St o SR =TI B > L >t B > 7B,

Then for 0 < § < 1, the number of zeros of P(z) in |z| < &t does not exceed
1 M
log ‘—

log% apl’

where
M = 2(lao] + |Bol)t + (Jo| — ap + [Bu] — Bu)tu+1+

F2(>et* T+ Bt + (Jom| — an + [Bu] — Bt
51



S. AHMAD MALIK, A. KUMAR, B. AHMAD ZARGAR

2. MAIN RESULTS

The purpose of this paper is to obtain zero free regions for the lacunary type
polynomials whose coefficients satisfy certain monotonicity conditions. We shall also
establish the annular region so that number of zeros of P(z) in this region does not
exceed any given real number. Also the parameters can be adapted appropriately

to the intensity required. In fact we prove the following results.
n
Theorem 2.1. Let P(z) = ap+ Zajzj, 1 <pu<mn, ag # 0, where for somet >0
J=H
and some u < k <mn,
t"ay| < . <t Hagog | < tFlag] > T ags| > > a1 | > s

and |arg aj — ] < a < T for p < j < n, for some real o and . Then no zero of
P(z) lies in

t?|ag|

2] < m

laolt + (Jau|t"! + [an[t"+1)(1 — sina — cos a) + 2|ag[th+ cos o + 2 _|a [t/ T sina
J=p

Theorem 2.1 in conjunction with Theorem 1.3, immediately leads to the following

result.

n
Corollary 2.1. Let P(z) = ag + Zajzj, 1 < pu<n, ag # 0, where for some
J=H
t >0 and some u < k <mn,
tMay < oo < T Hagq | < lag] > T agp > > " a1 | > " an)

and larg aj—B| < a < § for p < j <n, for some real o and 3. Then for 0 <06 <1,

2
the number of zeros of P(z) in %‘zfl < |z| < 6t does not exceed

1 M
log ‘—

log % agl’

where .
M = 2|ag|t+(|au |t T 4| an [t (1—cos a—sin o) +2|ak[tF ! cos a+2Z|aj|tj+1 sin «
J=p

n
M = |aglt+(Jay|th T +]a, [t 1) (1—sin a—cos a)+2|ay [t* 1 cos a+22|aj|tj+1 sin av.
J=H

Notice that when ¢ = 1 in Theorem 2.1, it produces the following result.
n
Corollary 2.2. Let P(z) = ag + Zajzj, 1 < pu<n, ag # 0, where for some
J=u

uw<k<n.
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Theorem 2.2. Let P(z —ao+ZaJ 21, 1< pu<n, ag # 0, where Re a; = o

and Im a; = B for p < j < n. Suppose that for some t > 0 and some k with
p<k<n,

tra, < .. <t oy <trap >t Tlag > L >, > Ty,

Then no zero of P(z) lies in
t*(lao| +1Bol)

n .
(ol + 18]}t + (o] — )ttt + 2045+ + (Jan| — ag )ttt 237|817+
J=n

2| <

On combining Theorem 2.2 and Theorem 1.4, we get the following result.

Corollary 2.3. Let P(z —ao—i—Za] 2, 1< u<mn, ag #0, where Re a; = o

and Im a; = B for p < j < n. Suppose that for some t > 0 and some k with
uw <k <mn, we have

troy, < . <t oy <tPag >t lag g > > " e > .

Then for 0 < § < 1, the number of zeros of P(z) in Wﬂ < |z| < 0t does not

exceed

1 M
— log —,
logs  laol
where

M = 2(|ao| + 1B0)t + (o] — ) t# T + 200t™ T + (Jan| — )t 4237187
Jj=p
and

n

M = (lao| + [Bol)t + (Jou] = ap )t + 200* ! + (Jan| — )t 2 | 854771
J=n

Taking ¢t = 1 in Theorem 2.2, we get the following result.
Corollary 2.4. Let P(z) = ag + Za]zj 1< pu<mn, ap # 0, where Re a; = o
and Im a; = B for p <j <n. Suppose that for some p < k < n, we have
0 <o S g1 S Q) 2 Qg 2 2 Qo1 2 Qg
Then P(z) does not vanish in
(laol + 150])

(ool + 180l) + (] — ) + 20 + (lan| — ) + 2> 1851
J=p

2| <
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Finally, we put the monotonicity conditions on the real and imaginary parts of
n
the coefficients of P(z) = ag + Zajzj in order to obtain zero free region and an

J=H
annular region onwards. More precisely, we prove the following results.

Theorem 2.3. Let P(z —a0+ZaJ 2/, 1< p<n, ag # 0, where Re a; = a;j
and Im a; = pj for p < j < n. Suppose that for some t > 0 ,for some k with
p<k<n,

tra, < . <t ooy <trPag > T oy > ¢!

Y

Op—1 Z tnan
and for some p <1 <mn,
B, < St oy SR > T B > L > T B > B

Then P(z) does not vanish in

t*(Jao| + |Bol)
(Jaol +1BoDt + (lau] — ap + 18] — B )ttt 4+ 2(apth+t 4 Gyt +1) 4 ktntt

where k = o | — an + |Bn| — Bn.

2| <

Theorem 2.3 in conjunction with Theorem 1.5 yields the following result.

Corollary 2.5. Let P(z —ao—i—ZaJ 2, 1< p<n, ag # 0, where Re a; = o

and Im a; = B for p < j < n. Suppose that for some t > 0 ,for some k with
pu<k<n,

troy, < .. <t oy <thap > t"lag > > ay o > "y,
and for some u <1 <n,
B, < <t oy SR > ETIBL > L >t T B > 7B

Then for 0 < 6§ < 1, the number of zeros of P(z) in Wﬂ < |z| < dt does not

exceed

1 1 M
—— log —,
log:  Jao|
where
M = 2(|ao| + |Bol)t + (Jau| — v + |8l — Bu)t"
4 Q(Oéktk+1 +ﬁltl+1) + (lan‘ —ay, + |BM| _ Bu>tn+1,

M = (Jao| + [Bol)t + (levu| — v + 18, = ﬁu)tu—H

+ 2(apt*™ 1+ Bt + (Jan| — o + |Ba] — Bu)t™ L.
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Here it is interesting to note that Theorem 2.3 gives us several corollaries under
the monotonicity conditions on real and imaginary parts. Taking t = 1 in Theorem
2.3, we get the following result.

Corollary 2.6. Let P(z) = ag + Zaj 2/, 1< pu<mn, a#0, where Re a; = «;
and Im a; = B; for p < j < n. Suppose that for some k with p < k < n, we have
o < Sap 1 S 2 Q] 2 2 Qo] 2 Qg

and for some u <1 <n,
Bu< .S 1 <3 2> Bir1 2.2 Bu1 = Ba.

Then no zero of P(z) lies in

L (Ja] + 15o])

(o] + [Bol) + (laul =+ 1Bu] = Bu) + 2(ak + B) + (lan| — an + [Bal = n)’
Fix t =1 and k = [ = n in Theorem 2.3, we immediately obtain the following

result.
Corollary 2.7. Let P(z) = ag + Za] 2, 1< p<n, ag# 0, where Re a; = o
and Im a; =B forp <j<n such that

oy < oS apo Sag
and

Bu < oo < Bn—1 < Bn-
Then no zero of P(z) lies in

. (1ol + 160

(|OZ(]| + |BOD + (|OZ“‘ — oy + |5M‘ - ﬁ,u) + (‘an| + an + |ﬁ#| + ﬂ#)

Set t =1 and k =1 = p in Theorem 2.3, we get the following result.

Corollary 2.8. Let P(z) = ag + Zaj 2, 1< p<n, ag # 0, where Re a; = o
and Im a; = B for p <j<n such that
Qy, Z Z Qp_—1 Z Qp

and
ﬂu Z Z ﬂn—l Z ﬁn

Then no zero of P(z) lies in

. (1ol + 160

(laol +1Bol) + (|au‘ +au+ |ﬁu‘ +ﬁu) + (Jan| — an + |ﬁu| _ﬂ#)'
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3. PROOFS OF THEOREMS

For the proofs of our main results, we need the following auxiliary result.

Lemma 3.1. Let P(z) be a polynomial of degree n. If for some real o and (3,
larg aj — ] < a < Z,0< 5 <n and for any t > 0 such that, |a;| > [a;_1],0 < j <

n, then |ta; — a;—1| < (t|a;| — |aj—1|)cosa + (t|a;| + |aj_1]) sina.

The above lemma is due to Govil and Rahman [§].

Proof of Theorem 2.1 Consider the polynomial

F(2) =(t — 2)P(z) = (t — 2) (ao + Xn:ajzﬂ')

J=p
This implies,
n n n n+1
F(z) = aot + Ztajzj —apz — Zajsz =ao(t—2z2)+ Ztajzj — Z aj_12
J=n J=n J=p j=p+1

ie., F'(2) = ao(t — 2) +ta,2" + Z (ta; —a;j—1)2" — ap,2"t = agt + R(2), where

Jj=ptl
n

R(2) = —apz + ta, 2" + Z (taj —aj—1)27 — a,z""'. On |2| = t, we have
Jj=p+1

n
|R(Z)| _‘ —apz + ta, 2" + Z (taj —a;—1)2" —ap2"*!
J=p+1

n
<laolt + lay|t" ' + > [ta; — aj_a|t! + |an |t" T

J=p+1
Equivalently,
k n
|R(2)| < tlao| + lau [T + D~ [ta; —aja[t) + Y [tay — aga [t + [ag [t
j=p+1 j=k+1
Using lemma 3.1, we get
k
|R(2)] < tlao| + la|t* ' + Y {(laslt = |a;-1]) cos a + (laj|t + |aj—1]) sin a}t?
J=p+1

n

+ 3 {(lagoil — lagle) cosa+ (Jalt + la_1]) sina}t? + [a, [¢+

j=k+1
k k
= t|ao| + |a,[t"t + Z |a;[t7 ! cos a — Z la;—1|t’ cos
J=p+1 J=p+1
k k n
+ Z la |t Tt sina + Z la;_1|t/ sina + Z laj_1|t/ cosa
J=p1 =t i=ht1
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n n n
- Z la;|t7 T cosa + Z la;_1|t/ sina + Z ;|7 T sina + |a, |t
j=k+1 j=k+1 j=k+1

This gives,

|R(2)| < |aolt + |a,[t" T — |a,|t" T cos a + |ag[t* ! cos a + |a, [t sina
k—1
+ Jag|t* L sina + 2 Z |a; |70 + |ag|t" T cos o — |, [t cos ar + |ag |t sin
Jj=ptl
n—1
+ Ja, |t" T sin o 4 2 Z la; |7 sina + |an [t = Jaolt + (|a|t' T + |an, [t"T)
j=k+1

n
X (1 —sina — cos @) + 2|ag|t* ! cosa + 22|aj|tj+1 sina = Mj.

Jj=p
: Mlz|
Applying Schwarz lemma to R(z), we get |R(z)| < P |z| < t. Hence
M|z
F )] = laot + RE)| = laolt ~ 1R = okt~ 500 por ey <,
M t?
if |ag|t — # > 0. That is, if |z| < /\'/C;O|. This shows that F'(z) and hence P(z)
1
has no zero in |z| < tz/\l/l—afl This completes the proof of Theorem 2.1. O

Proof of Theorem 2.2 We consider
F(z) =(t —2)P(2) = ap(t — 2) + ta,z" + Z (taj —aj_1)z7 — a,z"T.
Jj=p+l
Equivalently,

F(z) = (oo +ifo)(t — 2) + (au +iB,)t2" + Z (ot —aj_1)2?
Jj=p+1

+1i Z (Bjt — Bj—1)2" — (an +iB,)2" T = (ap +iBo)t + R(2).
Jj=p+1

For |z| = ¢, we have

[R(2)| <(lawol + [Bol)t + (| + 1Bu)E* T+ D Jast — o[t

Jj=p+l
+ > 1Bt = Bialt? + (o] + |Ba )"
J=p+1
k: .
= (Jao| + 1Bt + (ol + 1Bt + > (it — aj1)t!
J=p+1
+ ) (= at)? + D (1Bl +18-a))t + (lanl + [Ba)E™ ! =
j=k+1 j=ptl

o7
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n
= (ol + [Bo])t + (Jou] — )t + 200 t* 1 + (o | — )" +2D 71|67 = M.

J=H
Applying Schwarz lemma to the polynomial R(z), we get
|R(z)| < M%M, for |z] < t.
Hence |F(z)| = |aot + R(2)| > |aolt — |R(2)| > |aolt — M%M >0, |z <t if

M2|Z|

t*|ao|
Mo
and the proof of Theorem 2.2 is complete. (I

lag|t — > 0, that is, if |z] < . This shows that F(z) and hence P(z)

t
has no zero in |z| < M

Proof of Theorem 2.3 As in the proof of Theorem 2.2,

F(2) =(a0 +iBo)(t — 2) + (au + i)t + Y (ot — aj1)2’
J=p+1

+1 Z (Bjt — ﬂj_l)zj - (Oén + Zﬁn) ntl — (Oéo + Zﬂo)t + R( )

J=p+1
where

R(z) = — (ap +i00)z + (o + 1B )t2" + Z (ot — aj,l)zj
J=ptl

+i Z 6] /Bj 1 (an+i6n)zn+l'

Jj=p+1

For |z| = t, we have

[R(2)| < (lawo| + (B0t + (] + Bt + D oyt — aya [

J=p+1

+ > 1Bt = Bi-alt? + (o] + [Bal)t™ ' = (Jao] + Bol)t + (lovu] + 1B+

j—u+1

k

+ Z (ot —aj—1) tj+ Z aj_1 — ajt) tj Z (Bjt = Bj—1)t!

Jj= /H-l j=k+1 j=p+1
+ Z (Bj—1 = Bit)t + (Jam| + 1Bt = (Jao| + [Bo])t

J=k+1

+ (Jap] — o+ [Bul — 6u)tﬂ+1 + Q(thlHl + 5ltl+1)
+ (|O‘n‘ —ag + |5n| - ﬁn)tn+1 = M3~

Applying Schwarz lemma to the polynomial R(z), we get
Mos)z|
t k)
58
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Hence
[F(2)] =[(a0 +iBo)t + R(z)| = (|| + [Bo])t — [R(2)]
Maslz
> (|| + |Bol)t — Z" S 0, 12| < t,
if
M3z
(|a()\+|50|)t— :' | > 0.
That is, if
(lowo] +1Bo])t
< —.
o] < ol
This shows that F(z) and hence P(z) has no zero in |z| < W This
completes the proof of Theorem 2.3. O

4. EXAMPLES

Since the present article is concerned with newly developed approach to obtain
the zero free regions and the number of zeros for the lacunary type polynomials in
a given disk. From this point of view, the comparison of the bounds obtained with
the previous bounds appropriately have no scope within this type of study. Instead
of comparing the bounds, we point out few examples which may be helpful to be

examined.

Example 4.1. Let P(2) = 22° +2.52% + 423 4 322 + 22 + 1. Clearly, here p = 1
and n = 5. We take k = 3, a = 7/2 and ¢t = 1. In view of Theorem 2.1 and due to
this type of intensity of parameters the radius of given disk comes out to be 0.0357.
Since the appropriate zeros of P(z) are —0.358+0.91544, —0.358 —0.91544, 0.0756+
0.86574, 0.0756 — 0.8657:, —0.6853. Then one can see that P(z) does not vanish in
|z| < 0.0357.

Since corollary 2.1.1 is the union of Theorem 2.1 and Theorem 1.3. Under the
same example it is clear that all the zeros of P(z) = 22° +2.52% +423 +322+22+1
lie in |z| > 0.0357. If we set § = 0.7, the upper bound of the annular region
in corollary 2.1.1 comes out to be 0.7 as ¢ = 1. In this case, we found that the
number of zeros of underlying polynomial P(z) in 0.0357 < |z| < 0.7 does not
exceed ﬁ log(29) =~ 9.4524. Hence we conclude that P(z) has at most one zero
in 0.0357 < |z| < 0.7 and of course, P(z) has exactly one zero in 0.0357 < |z| < 0.7.
All above discussion demonstrates one thing, which is beauty to say, that the bound

in Theorem 2.1 becomes the lower bound of the annular region in corollary 2.1.1.

Example 4.2. Let P(2) = 22° +32% +42% + 222 + 1.52 + 1. Clearly, here u = 1 and

n = 5. Setting k = 3 and ¢t = 1. In view of Theorem 2.2 the radius comes out to be
59
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0.1111. Numerically the appropriate zeros of P(z) are —0.6193+1.03434, —0.6193 —
1.03434, 0.2089 + 0.68047, 0.2089 — 0.6804¢, 0.6792. It is clear from these zeros that
P(z) does not vanish in |z| < 0.1111.
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Abstract. An n-correct node set X is called GC,, set if the fundamental polynomial of each
node is a product of n linear factors. In 1982 Gasca and Maeztu conjectured that for every GC,,
set there is a line passing through n + 1 of its nodes. So far, this conjecture has been confirmed
only for n < 5. The case n = 4, was first proved by J. R. Busch [3]. Several other proofs have been
published since then. For the case n = 5 there is only one proof by H. Hakopian, K. Jetter and G.
Zimmermann (Numer Math 127:685-713, 2014). Here we give a second proof, which largely follows
the first one but is much shorter and simpler.
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1. INTRODUCTION
Denote by II,, the space of bivariate polynomials of total degree at most n :
I, = Z a;jx'y’ N :=dimlIl, = nt2
n = 2 ij LY , = n = 9 .
i+ji<n
Consider a set of distinct nodes Xy = {(x1,91), (22, ¥2), ..., (s, Ys) }-
The problem of finding a polynomial p € II,, which satisfies the conditions

(1.1) (i, y:) = ¢, 1=1,2,...s,
is called interpolation problem.

Definition 1.1. A set of nodes X is called n-poised if for any data {c1,...,cs} there

exists a unique polynomial p € II,,, satisfying the conditions (1.1).

A necessary condition of n-poisedness is: #X; = s = N. If this latter equality takes
place then the following holds:
Proposition 1.1. A set of nodes Xy is n-poised if and only if

p €1Il,, p(zi,y;)) =0 i=1,...,.N = p=0.
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A polynomial p € II,, is called an n-fundamental polynomial for a node A =
(zh, yr) € Xy if
p(@i, i) = 0i, i =1,...,5,
where § is the Kronecker symbol. We denote the n-fundamental polynomial of A € X

by ply = Pl -

Definition 1.2. A set of nodes X, is called m-independent if each node has n-
fundamental polynomial. Otherwise, X is called n-dependent. A set of nodes X,

is called essentially n-dependent if none of its nodes has n-fundamental polynomial.

Fundamental polynomials are linearly independent. Therefore a necessary condition
of n-indepen-dence is #X; = s < N.

One can readily verify that a node set X; is m-independent if and only if the
interpolation problem (1.1) is solvable, meaning that for any data {ci,...,cs} there
exists a (not necessarily unique) polynomial p € II,, satisfying the conditions (1.1).

A plane algebraic curve is the zero set of some bivariate polynomial of degree
> 1. To simplify notation, we shall use the same letter, say p, to denote the polynomial
p and the curve given by the equation p(x,y) = 0. In particular, by ¢, we denote a

linear polynomial ¢ € II; and the line defined by the equation ¢(z,y) = 0.

Definition 1.3. Let X be an n-poised set. We say, that a node A € X uses a line £,

if £ is a factor of the fundamental polynomial p%, i.e.,

(1.2) pa = {q,

where q € 11, 1.
Since the fundamental polynomial of a node in an n-poised set is unique we get

Lemma 1.1 ([9], Lemma 2.5). Suppose X is a poised set and a node A € X uses a
line £. Then ¢ passes through at least two nodes from X, at which q from (1.2) does

not vanish.

Definition 1.4. Let X be a set of nodes. We say, that a line ¢ is a k-node line if it
passes through exactly k£ nodes of X : /NX = k.

The following proposition is well-known (see e.g. [8] Proposition 1.3):

Proposition 1.2. Suppose that a polynomial p € 11,, vanishes at n + 1 points of a

line £. Then we have that p = €r, where r € I1,,_.
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From here we readily get that at most n + 1 nodes of an n-poised set X can be
collinear. In view of this an (n + 1)-node line ¢ is called a mazimal line [2].
Next, let us bring the Cayley-Bacharach theorem (see e.g. [6], Th. CB4; [8], Prop. 4.1).

Theorem 1.1. Assume that two algebraic curves of degree m and n, respectively,
intersect at mn distinct points. Then the set X of these intersection points is essentially

(m+n—3)-dependent.
We are going to consider a special type of n-poised sets defined by Chung and Yao:

Definition 1.5 ([5]). An n-poised set X is called GC), set, if the n-fundamental

polynomial of each node A € X is a product of n linear factors.
Now we are in a position to present the Gasca-Maeztu conjecture.

Conjecture 1.1 ([7]). For any GC,, set X there is a mazimal line, i.e., a line passing

through its n 4+ 1 nodes.

Since now the Gasca-Maeztu conjecture was proved to be true only for n < 5. The
case n = 2 is trivial, and the case n = 3 is easy to verify. The case n = 4 first was
proved by J. R. Busch [3]. Several other proofs have been published since then (see
e.g. [4], [9], [1]). For the case n = 5 there is only one proof by H. Hakopian, K. Jetter
and G. Zimmermann [10]. Here we give a second proof, which largely follows the first

one but is much shorter and simpler.

1.1. The m-distribution sequence of a node. In this section we bring a number
of concepts, properties and results from [10].

Suppose that X is a GC,, set. Consider a node A € X together with the set of n
used lines denoted by £ 4. The N — 1 nodes of X \ {A} belong to the lines of £ 4.

Let us order the lines of £ 4 in the following way:

The line ¢ is a line in £ 4 that passes through maximal number of nodes of X,
denoted by k1 : X N4y = kq.

The line ¢ is a line in £ 4 \ {¢1} that passes through maximal number of nodes of
X\ 41, denoted by ko : (X\ £1) N ¥y = ka.

In the general case the line {5, s = 1,...,n, is a line in L4 \ {¢1,...,¢5s_1} that
passes through maximal number of nodes of the set X \ Uf;ll&, denoted by ks :

(X\USZ16) Nl = k.
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A correspondingly ordered line sequence
S=(l1,...,4,)

is called a maximal line sequence or briefly an m-line sequence if the respective
sequence (k1,...,ky) is the maximal in the lexicographic order [10]. Then the latter
sequence is called a mazimal distribution sequence or briefly an m-d sequence.

Evidently, for the m-d sequence we have that
(1.3) kiy>ke>--->k,and ki1 +---+k, =N — 1.

Though the m-distribution sequence for a node A is unique, it may correspond to
several m-line sequences.

Note that, an intersection point of several lines of £ 4 is counted for the line
containing it which appears in § first. Each node in X is called a primary node for
the line it is counted for, and a secondary node for the other lines containing it.

According to Lemma 1.1, every used line contains at least two primary nodes, i.e.,
(1.4) ki>2 fori=1,...,n.

Let 8§ = (44,...,¢,) be an m-line sequence with the associated m-d sequence (k1, ..., k;,) .

Lemma 1.2 ([10], Lemma 2.5). Assume that k; = k;11 =: k for some i. If the
intersection point of lines €; and ;11 belongs to X, then it is a secondary node for
both ¢; and ;1. Moreover, interchanging ¢; and ¢;y1 in 8§ still yields an m-line

sequence.

We say that a polynomial has (s;,. .., s;) primary zeroes in the lines (¢;,...,¢;) if

the zeroes are primary nodes in the respective lines. From Proposition 1.2 we get

Corollary 1.1. If a polynomial p € 11,1 has (m,m—1,...,m—k) primary zeroes in
the lines (byy—k, bn—kt1 - - - 5 b ) then we have that p = by lyy—1 -+ Ly—gr, where r €
| I P

In some cases a particular line { used by a node is fixed and then the properties
of the other factors of the fundamental polynomial are studied.

In this case in the corresponding m-line sequence, called l-m-line sequence, one
takes as the first line ¢; the line Z, no matter through how many nodes it passes. Then
the second and subsequent lines are chosen, as in the case of the m-line sequence.

Thus the line ¢ is a line in L4 \ {671} that passes through maximal number of

nodes of X \ /1, and so on.
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Correspondingly the (-m-distribution sequence is defined.

2. THE GASCA-MAEZTU CONJECTURE FOR n = 5

Let us formulate the Gasca-Maeztu conjecture for n =5 as:

Theorem 2.1. For any GCs set X of 21 nodes there is a mazimal line, i.e., a 6-node

line.
To prove the theorem assume by way of contradiction the following.
Assumption 2.1. The set X is a GC5 set with no maximal line.

In view of (1.3) and (1.4) the only possible m-d sequences for any node A € X are
(2.1) (5,5,5,3,2); (5,5,4,4,2); (5,5,4,3,3); (5,4,4,4,3); (4,4,4,4,4).

The results from [10] below show how many times a line can be used, depending the
number of nodes it passes through. In each statement it is assumed that X is a GCjs

set with no maximal line.

Proposition 2.1 ([10], Prop. 2.11). Suppose that € is a 2-node line. Then { can be

used by at most one node of X.

Proposition 2.2 ([10], Prop. 2.12). Suppose that { is a 3-node line and is used by
two nodes A, B € X. Then there exists a third node C using ‘. Furthermore, A, B,
and C share three other lines, each passing through five primary nodes. For each of
the three nodes, the m-d sequence is (5,5,5,3,2), and the other two nodes are the

primary nodes in the respective fifth line. In particular, ? is used exactly three times.

Proposition 2.3 ([10], Prop. 2.13). Suppose that a line { is used by three nodes A,
B, C eX. Then Zpasses through at least three nodes of X.

Ifz is a 4-node line, then A, B, and C share ( and three other lines, o and {3
passing through five and £4 through four primary nodes. For each of the three nodes,
the (-m-distribution sequence with respect to ( is (4,5,5,4,2). ? can only be used by

A, B, and C, i.e., it is used exactly three times.

Corollary 2.1 ([10], Cor. 2.14). Suppose that a line { is used by four nodes in X.

Then ¢ is a 5-node line.
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Proposition 2.4 ([10], Prop. 2.15). Suppose that a line 0 is used by five nodes in X.
Then ¢ is a 5-node line, and it is actually used by exactly six nodes in X. These six
nodes form a GCy set and share two more lines with five primary nodes each, i.e.,

each of these six nodes has the m-d sequence (5,5,5,3,2).

At the end we bring a (part of a) table from [10] which follows from Propositions 2.1,
2.2, 2.3, 2.4 and Corollary 2.1. It shows under which conditions a k-node line Z 2 <
k <5, can be used at most how often, provided that the considered GC'5 set has no

maximal line.

maximal # of nodes using ¢
total # in general no node uses
of nodes (5,5,5,3,2)
in ¢ m-d sequence
(2.2)

5 6 4
4 3 3
3 3 1
2 1 1

2.1. The case (5,5,5,3,2). In this and the following sections, we will prove the

following
Proposition 2.5. Assume that X is a GC5 set with no maximal line. Then for no
node in X the m-d sequence is (5,5,5,3,2).
Assume by way of contradiction the following.
Assumption 2.2. X contains a node for which an m-line sequence (€1, ¢, {3, 44, ¢5)
implies the m-d sequence (5,5, 5, 3,2).
Set X = AU B (see Fig. 2.1), with
A=XN{lUlbyUls}, #A=15, and B=X\A, #B=6.
Denote L3 := {¢1,{s,¢3}. Note that no intersection point of the three lines of L3
belongs to X.
Below we bring a simple proof for
Lemma 2.1 ([10], Lemma 3.2).
(i) The set B is a GCy set, and each node B € B uses the three lines of L3 and
the two lines it uses within B, i.e.,

(2.3) Ppx =41 l2l3pp 5 -
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141

[£3

Puc. 2.1. The case (5,5,5,3,2) with X = A U B.

(ii) No node in A uses any of the lines of Ls.

Proof. (i) Suppose by way of contradiction that the set B is not 2-poised, i.e., it
is a subset of a conic €. Then X is a subset of the zero set of the polynomial ¢; ¢5 /5 C,
which contradicts Proposition 1.1. Then we readily obtain the formula (2.3).

(ii) Without loss of generality assume that A € ¢; uses the line ¢5. Then p* =
Uy q, where ¢ € Tly. It is easily seen that ¢ has (5,4) primary zeros in the lines
(£3,£1). Therefore, in view of Corollary 1.1, we obtain that p% = ¢ {3 {1 r, which is a
contradiction. O

Evidently, any node in a GC5 set uses a maximal line, i.e., 3-node line. Hence we
conclude readily that any GCj set, including also B, possesses at least three maximal
lines (see Figure 2.1).

A node A € X is called a 2,,-node if it is the intersection point of two maximal
lines. Note that the nodes B;, i = 1,2,3, in Fig. 2.1, are 2,,-nodes for B.

Definition 2.1. We say, that a line ¢ is a k4-node line if it passes through exactly
k nodes of A.

Lemma 2.2. (i) Assume that a line { ¢ L3 does not intersect a line £ € L3 at a node
in X. Then the line { can be used at most by one node from A. Moreover, this latter
node belongs to £ N A.

(#) If a line £ is 04 or 14-node line then no node from A uses the line L.

(iii) If a line £ is 2 4-node line then £ can be used by at most one node from A.

(iv) Suppose £ is a mazimal line in B. Then £ can be used by at most one node

from A.
67



G. VARDANYAN
Proof. (i) Without loss of generality assume that £ = ¢, and A € £y uses £ :

pa=4Lq, q€lly.

It is easily seen that ¢ has (5,4, 3) primary zeros in the lines ({1, {3, ¢3). Therefore,
in view of Corollary 1.1, we conclude that p%} = Zél lylsr, r € Iy, which is a
contradiction.

Now assume conversely that A, B € £; N X use the line ¢. Choose a point C' €
3\ ({UX). Then choose numbers « and 3, with |a| + || # 0, such that p(C) = 0,
where p := ap’ + Bp}. It is easily seen that p = Zq, q € I14 and the polynomial g has
(5,4,3) primary zeros in the lines ({3, ¢35, ¢1). Therefore p = 5751 £y €3 q, where ¢ € II;.
Thus p(A) = p(B) = 0, implying that o = 8 = 0, which is a contradiction.

The items (ii) and (iii) readily follow from (i). The item (iv) readily follows from
(ii). O
Denote by £4p the line passing through the points A and B.

Proposition 2.6. Let {p,r, be 5-node line, which is used by all the siz nodes of a
subset Ag C A. Suppose also that £ is a 4-node line passing through Bi. If the line ¢
is used by three nodes from A then all these three nodes belong to Ag.

Proof. The six nodes of Ag use the 5-node line ¢p, as,. Therefore, in view of
Proposition 2.4, these six nodes share also two more lines passing through five primary
nodes. It is easily seen that these latter two lines are the lines ¢p,, and £p, ;.
Assume by way of contradiction that the nodes Di, Dy, D3 € A are using the line
¢ and D; ¢ Ag. According to Proposition 2.3 these three nodes share also two lines
passing through five primary nodes.

In view of Lemma 2.2, (iv), these latter two lines cannot be maximal lines in B.
Therefore they belong to the set {€p, sy, £ B30y Cnry Moy Eais s » L1y s - One of them
should be ¢p,nr, or £p,a,, since any two lines from {€as, ary s €ass My €0, M5} Share a
node. Therefore one of them will be used by seven nodes, namely by D; and the

nodes of Ag. This contradicts Proposition 2.4. O

2.2. The proof of Proposition 2.5. Consider all the lines passing through B :=
By and at least one more node of X. Denote the set of these lines by £L(B). Let
my(B), k=1,2,3, be the number of k4-node lines from £(B).

We have that
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Lemma 2.3. Suppose that a line ¢, passing through B and different from the line

L, s a 3a-node line. Then £ can be used by at most three nodes from A.

Proof. Note that ¢ is not a maximal line for B, since otherwise ¢ will be a maximal

line for X. Therefore ¢ is a 4-node line and Proposition 2.3 completes the proof. 0O
Lemma 2.4. We have that ms(B) < 4.

Proof. The equality (2.4) implies that ms(B) < 5. Assume by way of contradiction
that five lines pass through B and three nodes in A. Therefore these five lines intersect
the three lines ¢1, £5, {3, at the 15 nodes of A. Then, by Theorem 1.1, these 15 nodes
are 5 + 3 — 3 = 5-dependent, which is a contradiction. O

Proof of Proposition 2.5. In view of Proposition 2.4 we divide the proof into
three cases.

Case 1. Suppose that £z, is 5-node line used by six nodes from A.

Denote the set of these six nodes by Ag C A. We have that any node from A uses
at least one line from £(B). Proposition 2.6 implies that all 3 4-node lines from £(B),
except ¢pyr,, can be used by at most two nodes from A \ Ag.

From Lemma 2.2, we have that
(2.5) 15— 6 < 0mq(B) + 1ma(B) + 2(ms(B) — 1).
In view of (2.4) we get
(2.6) m1(B) 4 2ma(B) + 3ms(B) — 6 < 1mg(B) + 2m3(B) — 2.

Therefore we conclude that mq (B)+ma(B)+mg(B) < 4, or, in other words, 3m,(B)+
3ma(B) + 3ms(B) < 12, which contradicts (2.4).
Case 2. Suppose that £, is 5-node line used by at most four nodes of A.

In this case we have that
15 < 1mg(B) + 3(m3(B) — 1) + 4.
In view of (2.4) we get
(2.7) m1(B) + 2ma(B) + 3m3(B) < 1msa(B) + 3m3(B) + 1.
Hence 2m (B) + 2mg(B) < 2. Now, by using (2.4) again, we conclude that
(2.8) 3mg(B1) > 13,

which contradicts Lemma 2.4.

Case 3. Suppose that £y, is not 5-node line.
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Then, in view of the table (2.2), it can be used by at most three nodes of A. From
Lemmas 2.2 and 2.3, (ii),(iii), we have that

(2.9) 15 < 1mg(B) + 3ms(B).

In view of (2.4) we get

(2.10) mi(B) + 2ma(B) 4 3m3(B) < ma(B) + 3ms(B).

Hence my(B) = mo(B) = 0 and m3(B) > 5, which contradicts Lemma 2.4. O

2.3. The cases (5,5,4,4,2), (5,5,4,3,3), and (5,4,4,4,3). Let us fix a node
A € X and consider the set of lines £(A). Let ni(A) be the number of (k + 1)-node

lines from £ 4. In view of Assumption 2.1 we have that
(2.11) 1n1(A) + 2ns(A) + 3nz(A) + 4ny(A) = #(.')C \ {A}) = 20.

Next we bring a result from [10]. We present also the proof for the convenience.

Lemma 2.5 ([10], Lemma 3.13). Assume that X is a GC5 set with no mazimal
line. By Proposition 2.5, for no node of X the m-d sequence is (5,5,5,3,2). Then the
following hold.

(i) There is no 3-node line and m-node line is used exactly m — 1 times, where
m=2,4,5.

(ii) No two lines used by the same node intersect at a node in X.

Proof. (i) Consider all the lines in £(A). From the third column of the table
n (2.2), it follows that for the total number M (A) of uses of these lines, we have that

(2.12) M(A) < 1n1(A) + 1na(A) + 3n3(A) + 4ng(A).

Since each node in X'\ { A} uses at least one line through A, we must have M (A) > 20.

In view of the equality (2.11) we conclude that M (A) = 20 and na(A) = 0.
Moreover, we deduce that any line containing m nodes including A has to be used

exactly m—1 times, where m = 2,4, 5. Since the node A is arbitrary, this is true for

all lines containing at least two nodes of X.

(ii) Assume conversely that two lines ¢1, 5, used by a node A € X intersect at a
node B € X. Then each of the nodes in X \ {A, B} uses at least one line through
B, while the node A uses at least two lines. Thus we have M(A) > 21, which is a
contradiction. O

Corollary 2.2. For no node in X the m-d sequence is (5,5,4,3,3) or (5,4,4,4,3).
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Proof. Suppose, that for a node A € X, the m-d sequence is (5,5,4,3,3) or
(5,4,4,4,3). In view of Lemma 2.5, (ii), there are no secondary nodes in the used
lines. Thus the presence of 3 the m-d sequence implies presence of a 3-node line in

an m-line sequence, which contradicts Lemma 2.5, (i). O
Proposition 2.7. For no node in X the m-d sequence is (5,5,4,4,2).

Proof. Assume that for a node A € X some m-line sequence (¢1,%s,03,¥04,0s5)
implies the m-d sequence (5,5,4,4,2). In view of Lemma 2.5, (ii), the lines ¢1, ..., {5,
contain exactly 5,5,4,4,2, nodes, respectively. Denote by B and C' the two nodes in

the line /5. Then we have
pp =Llilalslylac and pG ={1lal3lylap.

In view of Lemma 2.5 the line ¢; is used by exactly four nodes of X. Therefore, there
exists a node D € X'\ {A, B, C'}, which is using the line ¢;.

In view of (2.1), Proposition 2.5, and Corollary 2.2, for the node D € X some
m-line sequence ({1, ¢4, 05, ¢, (%) yields the m-d sequence (5,5,4,4,2).

Now, as above, we have that the two nodes in the line ¢ use the line ¢;. In view
of Proposition 2.1, the line ¢, used by the node D, cannot coincide with the lines
lap,lac or {pc. Therefore ¢ contains a node different from A, B, C, D. Hence, the

line ¢; is used at least five times, which is a contradiction. |

2.4. Proof of theorem 2.1. What is left to complete the proof of Theorem 2.1 is
the following

Proposition 2.8. For no node in X the m-d sequence is (4,4,4,4,4).

Proof. Let us fix anode A € X. In view of (2.1), Propositions 2.5, 2.7 and Corollary
2.2, for the node A, m-d sequence is (4,4,4,4,4). Thus, in view of Lemma 2.5, (ii),
all used lines are 4-node lines. Therefore, in view of Lemma 2.5, (i), we conclude that
n1(A) = n2(A) = ny(A) = 0. Now, the equality (2.11) implies that 3nz(A) = 20,
which is not possible. O
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Abstract. In this paper, we extend a Hardy-Littlewood type theorem to the exponentially
p-harmonic Bergman space on the real unit ball B in R™. As an application, we characterize
exponentially p-harmonic Bergman spaces in terms of Lipschitz type conditions. Furthermore,

some derivative-free characterizations for n-harmonic Qj spaces are established.
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1. INTRODUCTION AND MAIN RESULTS

For n > 2, let R™ denote the usual real vector space of dimension n. For two
column vectors z,y € R™, we use (z,y) to denote the inner product of x and y. The
ball in R™ with center a and radius r is denoted by B(a,r). In particular, we write
B =B(0,1) and B, = B(0,r). Let dv be the normalized volume measure on B and

do the normalized surface measure on the unit sphere S = J0B.

The purpose of this paper is to investigate p-harmonic functions whose definition

is as follows.
Definition 1.1. Let p > 1 and ©Q be a domain in R™. A continuous function
u € WEP(Q) is p-harmonic if
div(|vu|p*2vu) =0
in the weak sense, i.e.,

/ (|Vu|P~2Vu, V)dv(z) = 0
Q
for each n € C§° ().
p-harmonic functions are natural extensions of harmonic functions from a variational

point of view. It has been extensively studied because of its various interesting

IThis work was partly supported by the Foundation of Shanghai Polytechnic University(No.
EGD20XQD15).
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features and applications. By a well-known regularity result due to Tolksdorf, p-
harmonic functions are C''(Q). Moreover u € W22(Q) if p > 2 and u € W2P(Q) if
1 <p<2(cf [1220]).

Let p > 1, we denote by h,(B) the set of all p-harmonic functions on the real
unit ball B in R™. For a € R and 8 > 0, the so-called exponential weighted function
Wa,3, introduced by Aleman and Siskakis [2], is defined as

-1
(1 —1z[)P

and the associated weighted volume measure is denoted by

wa.(x) = (1= [al)* exp ), weB,
dvg g(x) = wa g(x)dv(z).

For 1 < s < oo, @« € R and 8 > 0, the exponentially weighted p-harmonic
Bergman space Aj, 5(B) is defined as

A 5(B) = {u € hy(B)

/|u )I*dv 5(z) < o0 }.

In particular, if 8 = 0, then A, 5(B) becomes the weighted p-harmonic Bergman
space, which is denoted by A% (B).

For 0 < s < o0, a > —1, let f be a holomorphic function on the unit disc D
of the complex plane C. The famous Hardy-Littlewood theorem for holomorphic

Bergman spaces asserts that

(1) [ 17EF0 = PraaE) = FOF + [ 17EF0 = 7t da),
where dA is the area measure on C normalized so that A(D) =1 (cf. [10]).

It is well-known that integral estimate (1.1) plays an important role in the theory
of holomorphic functions. For the generalizations and applications of (1.1) to the
spaces of holomorphic functions, harmonic functions, and solutions to certain PDEs,
see [3, M Bl @ I5, 1T, M4, 21, 25] and the references therein. In [18], Siskakis
extended (1.1) to the setting of exponentially weighted Bergman space of holomorphic
functions for 1 < s < oco. For the further generalizations of (1.1) to holomorphic
Bergman spaces with some general differential weights, see [I5], 19]. By applying
these results, Cho and Park characterized exponentially weighted Bergman space

in terms of Lipschitz type conditions([5, Theorem A |, [6] Theorem 3.1]).

In [TT], Kinnunen et al. pointed out that (1.1) is also true for p-harmonic functions.

More precisely, they obtained the following integral estimate.
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Theorem A. Leta > —1,1< s < oo, then

(1.2) / (@) (1 — [2])*dv(z) ~ [u(0)]* + / V() (1 — [2])*+*do(z)
for all w € hy(B).

With developing of theory on the standard (weighted) Bergman space, more
general spaces such as weighted Bergman spaces with exponential type weights
have been extensively studied (see [2, @} [5] [6l [8, [16]). As the first aim of this paper,
we consider an analogue of (1.2) in the setting of exponentially weighted p-harmonic

Bergman space Aj, 5(B). The following is our result in this line.

Theorem 1.1. Let 1 < s<oo,a €R and 8> s—1, then

) @ dva p(@) = O + [ [Ful@) (= fol)*dvn p(a)
for all u € hy(B).
To state our next results, let us recall the following notion.

The weighted hyperbolic distance dy, due to Dall’Ara [7], is induced by the
metric A(x) " ?dr ® du, i.e,

()
dA(x,y)—lgf/() )\(fy(t))dt’ z,y € B,

where A(z) = (1 — |z|*)? and v : [0,1] — B is a parametrization of a piecewise C'*

curve with v(0) = x and v(1) = y. By [7], it was shown that d(z,y) ~ ‘[z ;]’l

when

x,y are close sufficiently in B, see Section 4 in [7] for details.

As an application of Theorem 1.1, we obtain a Lipschitz type characterization

for exponentially weighted p-harmonic Bergman space A7, 5 (B).

Theorem 1.2. Let 1 < s < o0, « € R, 8 > 25— 1 and u € hy(B). Then the

following statements are equivalent:

(a) u € A 5(B);

(b) There exists a positive continuous function g € L*(B, dv,,g) such that

ute) ~ ulo)| < 1 (0t0) + 9(0)

for all x,y € B;
(¢) There exists a positive continuous function g € L*(B, dv,,g) such that
u(z) = u(y)| < da(z,9)(9(z) + 9(v))

for all x,y € B;
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(d) There exists a positive continuous function h € L*(B, dvay2s ) such that

u(z) — u()| < |z — yl(h(z) + h(y))

forall x,y € B.

Remark 1.1. Theorem 1.2 is a generalization of [5, Theorem A] to the setting of
p-harmonic functions.

In recent years a special class of M&bius invariant function spaces in the unit
disk D of the complex plane C, the so-called holomorphic Q space, has attracted
much attention. See [23] [24] for a summary of recent research about Qj spaces in
the unit disk D. Recall that for 0 < k < oo, a holomorphic function f is said to
belong to the Qj space if

Iflle. = itelg/m [F/(2)P(L — lpa(2)*)*dA(2) < co.
It is well-known that Qr = B, the holomorphic Bloch space if £k > 1 and Q =
BMOA if k= 1.
In our final results, we focus on the borderline case p = n. It is known that n-

harmonic functions are Mobius invariant, and thus we are able to generalize some

properties of holomorphic Qj spaces to the n-harmonic setting.
Definition 1.2. For 0 < k < oo, the Qy, space consists of all u € h,(B) such that
lullg, = Sup/ V()" (1 = |pa(2)]*)* dv(z) < oo,
a€B JB
where ¢, is the Mobius transformation on the real unit ball B that interchanges
the points 0 and a (see the definition in Section 2).
In [I3], Latvala characterized n-harmonic Q) and BMO(B) spaces by means of

certain Mobius invariant weighted Dirichlet integrals. Motivated by the results in

[13, 22], we show a derivative-free characterization of Q) as follows.

Theorem 1.3. Let 0 < k <n and u € hy,(B). Then u € Qy if and only if

u@) —w)"
sup/B/Biu (P2 du()du(y) < oo.

a€B [Z‘, y]Qn
For 0 <r <1 and u € h,(B), we define the oscillation of u at x in the pesudo-

hyperbolic metric as o, (u)(x) which is given by
or(u)(z) = sup Ju(z) —u(y)l.
yEE(z,r)
Similarly, define another oscillation of u at z as
or(u)(z) = sup |ur(z) —u(y)l,
yeEE(z,r)
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where
1

@) =T Lo

u(y)dv(y).

Theorem 1.4. Let 0 < r < 1 and u € hy,(B). Then the following statements are

equivalent:

(@)  uw€Qy

(0) wq/bd@@ﬂwlfwAMFVm@ﬂ<@%
acB

B
() sup [ [6:(u)(@)]"(1 = |pa(w)*)"dr(z) < oo,
a€B JB

where dr(x) = (1 — |z|?)~"dv(x) is the invariant measure on B.

The rest of this paper is organized as follows. In Section 2, some necessary
terminology and notation will be introduced. In Section 3, we shall prove Theorem
1.1. The proof of Theorem 1.2 will be presented in Section 4 by applying Theorem
1.1. The final Section 5 is devoted to the proofs of Theorems 1.3 and 1.4. Throughout
this paper, constants are denoted by C, they are positive and may differ from one
occurrence to the other. For nonnegative quantities X and Y, X <Y means that
X is dominated by Y times some inessential positive constant. We write X ~ Y if

Y<X<Y.

2. PRELIMINARIES

In this section, we introduce notation and collect some preliminary results that
involve M&bius transformations and p-harmonic functions.

Let a € R™, we write a in polar coordinate by a = |a|a’. For a,b € R™, let

[mm:Wwfd

The symmetric lemma shows

[a,b] = [b, a].
For any a € B, denote by ¢, the Mobius transformation in B. It’s an involution of
B such that ¢,(0) = a and ¢, (a) = 0, which is of the form

ey (o=,

An elementary computation gives

pala)] = 2=l

7

[z, a]
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In terms of ¢,, the pseudo-hyperbolic metric p is given by
pla,;b) = |@a(b)|, a,beB.
The pseudo-hyperbolic ball with center a and radius r is denoted by
E(a,r)={z €B: pla,x) <r}.

However, E(a,r) is also a Euclidean ball with center ¢, and radius r, given by

(1—r*)a r(1—laf)

2.1 = T )
(2.1) “ 1—|al?r? 1—|al?r?

and r, =

respectively (cf. [T} [I7]).
Following [5], we define a positive value function ¢ in B as

a—>b
o(a,b) = |[ab]2|’ a,b e B.

The ball B, (a) associated with p is given by
B.(a) ={z €B: g(a,z) < r}.

Obviously, one see that o(a,b) < r implies p(a,b) < 2r for a small positive r.

Lemma 2.1. Let r be a small positive number and x € B,.(a) (resp. E(a,r)). Then
1—|z2=1-|a*=[a,2], dr(a,z)~o(a,x)
and
|Br(a)| = (1= a*)*",  (resp. |E(a,7)| = (1~ |a*)")

where |B,.(a)| and |E(a,r)| denote the Euclidean volume of B,.(a) and E(a,r),

respectively.

Proof. It is obvious from [I7, Lemma 2.1].

By Lemma 2.1, the following comparable results can be easily derived.

Lemma 2.2. For a small r > 0, there exist two positive constants r1,ry such that

B(a,11(1 - [af2)2) € B,(a) C B(a,ra(1 — |a])?), a €B.

Let u € h,(B), for convenience, we denote
1
u(y)dv(y) = m—ri u(y)do(y).
][B(z,r) |B(J}, 7”)| B(z,r)
We end this section with some useful inequalities concerning p-harmonic functions

which are crucial for our investigations (cf. [I1]).
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Lemma 2.3. Assume that u € h,(B). Then we have the following inequalities.

(1) For each § > 1, there is a positive constant C such that

C
[ varaw < S [ P
B(z,r) r B(z,07)

whenever B(z,or) C B.
(2) For each § > 1 and 0 < s < t, there is a positive constant C' such that

wl<o(f,  wraw) <c(f,  wora)

whenever B(z, or) C B.
(3) For each § > 1 and 0 < s < t, there is a positive constant C' such that

whenever B(z, dr) C B.
(4) For each t > 0 and § > 1, there is a positive constant C' such that

05Coep(y,ru(z) < C (][

whenever B(y,dr) C B.

1

IVU(y)Itdv(y)) t,

B(y,or)

3. PROOF OoF THEOREM 1.1

Proposition 3.1. Let 1 < s < oo, a € R and § > 0, then

(3.1) IU(0)|S+/B(1—I$DSIVH( )P dva,p(x /\u )*dva,p(x)

for all w € hy(B).

Proof. By Lemma 2.3, we have

|u<o>sc(/Bl| ) dve@))” S ( [ fuo) o p(2))”

Hence it is sufficient to prove without the term |u(0)|®. It follows from Lemma 2.3

again that for each fixed x € B,

Vu(z)| < C(][mw W)IVu(@/)IPdv(@/))é
S ((1 - lxDp][B(x M)|u(y)|py(y));’
< (1- |x|)—1(][% M)IU(y)ISv(y))i-
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Combing this with Lemma 2.1 and Fubini’s theorem, we conclude that

e s [ f (Hw)|u<y>|5dv<y>dva,a<x>

S N RO IEE
s [l |][B( )
S [ v s

This proves the result.

Proposition 3.2. Let 1 <s<oo,a€R and 8> s—1, then

/|u ) dva p(z) < [u(0)]° + /|Vu (1~ |2])dua s (2)
for all u € hy(B).

Proof. Assume that u(0) = 0. We divide the integral on the left-hand side of

[u@rdas@= [ +[ .
By B\B}

It is easy to see that the integral over B 1 is dominated by

(3.2) into two parts:

/B lu(@)*dva.p(z) S (OSCl-e]B%U(Z‘))S
= / V()] (1 = ] dv 5(2)

< /IVu (1~ |a)*dvap (2).

We now estimate the integral over B\ IBE%. Since u is C1(B), for ¢ € S, we have

\u(rC)—u(%g‘ﬂ < C/:Wu(to\dt.

Thus

| @)
]B\IB%

/S [1 nr™u(r¢) [*wWa,g(r)drdo(C)

A

/ / Q) — w51 + 05O et (r)drdo (©).

Note that the integral

// ne 1|u O)|*wa,p(r)drdo(C /|Vu *(1 - |z])*dva,s(x)
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by the same reasoning as the above integral estimate over B 1 It follows from

Lemma 2.3 and Hélder’s inequality that

[ [ 7 are) = u(g0) P s(r)drda 0
SJ3

- /S/;rn1(/;|vu(t4)|dt)swa,g(r)drdo(o

1

< [ ([ o) oo
<[] 1 / VU0t 5 (r)drdo (C)
< /S/Olt"1|vu(tg)|8dt/trwa,ﬁ(r)drdo(g).

Observe that
1
/ Wa,g(r)dr < (1—s)"Mwap(s), 0<s<1

from [I8, Example 3.2|, we obtain
1
r= /S/o £Vt wa, (1) (1 = [t)*de(r)do (<)
S Vu(z)|*(1 — |z])*dva,s(z
< /B| (@)1 [2])*dva 5(x)

from the assumption 5 > s — 1.
To remove the restriction u(0) = 0, let u(x) = u(0) 4+ u1 (z) with Vu = Vu; and
u1(0) = 0. Therefore,

JACORTE
B

/B [(0) + n (2) v 5 (2)
< () + / i1 (2) g ()

S ) + [ (1= 1al)* Vuta) v, @)
as desired. O
Proof of Theorem 1.1. Gathering Propositions 3.1 and 3.2, the assertion (1.3)
follows. By a slight modification on the proof of Proposition 3.2, we can also obtain
the following corollary which can view as an extension of [5] Proposition 2.10] into

p-harmonic setting.

Corollary 3.1. Let 1 < s < oo, a € R and § > 2s — 1, then

(3.3) / () dv () ~ Ju(O)]* + / V(@) (1 — [2])*dvg p(z)

for all u € hy(B).
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4. LIPSCHITZ TYPE CHARACTERIZATIONS FOR Aj, 5(B)

In this section, we discuss Lipschitz type characterizations of the space A7, 5(B)

by applying Corollary 3.1.

Proof of Theorem 1.2. We first prove (b) = (a). Assume that (b) holds. Then

for each fixed x and all y sufficiently close to x

‘u(x)—z(y)‘ < [ 1

T — z, Y2 (9(x) +9(y), =#v.

By letting y approach x in the direction of each real coordinate axis, we see that
(1 = [z])*|Vu(z)| < Cy(x)
for all z € B. It follows from the assumption g € L*(B, dv,,g) that
/]B(1 — |2])? V() [ 5 () < oo.

Thus u € A}, 5(B) by Corollary 3.1.
For the converse, we assume u € A7, ﬁ(IB%). Fix a small » > 0 and consider any

two points z,y € B with o(x,y) < r. By Lemma 2.1, it is given that

u(z) — u(y)]

]/0 %(ty+(1—t)x)dt’

< C’|:r—y|/0 |Vu(ty + (1 —t)x)|dt
< Co(z,y)sup{(1 — [¢))*|Vu(Q)] : ¢ € By(2)}
< oz, y)h(x),

where
h(x) = C(r)sup{(1 — [¢])?|Vu(C)] : ¢ € B.(x)}.

If o(xz,y) > r, the triangle inequality implies

u(@) —u(y)l < |u(@)] + Ju(y)l
< g(m,y)('“(f)' n \u(ry)l)_

Letting g(x) = h(z) + @, then

lu(z) — u(y)| < olz,y)(g9(z) + g(y))

for all z,y € B. Note that g(z) = h(x)+ M is the desired function provided that
h e L*(B, dvg p)-
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. . .. 122
Since r is a small positive number, by Lemma 2.2, we see that B, (¢) C B(x, w)
for every ¢ € B,.(x). It follows from Lemma 2.3 that

sup |Vu(Q)] < C(][ . |Vu(y)|pdv(y))”
(€B,(x) B(m,%)

< (0mlf L P)’

< 0- x|>-2(][B(Z’U;)2)u(y>|Sv<y>) |

Hence by Fubini’s theorem and Lemma 2.1,

. S / (1= la) ") | [uy)|dv(y)dv(x)

i a2
Bz, =)

s 5
As?

< [ ) Pwns®) / (1~ [a)~2"du(y)dv(z) < [
B Y5

which implies h € L*(B, dv, g). This proves (a) < (b).

(a) < (c). It follows from Lemmas 2.1, 2.2 and a discussion similar to the above,

the assertion follows.
(a) & (d). Assume that (d) holds. Then it can be deduced that
(1= |2)?*Vu(2)| < C(1 — |al)*h(z)

for all x € B. The assumption h € L*(B,dvai2s ) implies (1 — |z])|?Vu(z)| €
L*(B, dva,g) and thus, according to Corollary 3.1, means that u € A7, 45(B).
Conversely, suppose that u € A7 5(B). Then (b) implies that there exists a

positive continuous function g € L*(B, dv,,g) such that

fulz) — u(y)| < c'[”; ‘yfg' (9(2) + (1)

for all z,y € B. Since for z,y € B,

[x,y]21—|33\, [1‘7y}21_|y|a

we see that

g(z) 9(y)
u(z) —u(y < Clr—vy +
ue) vl < =70 o)
< |z —yl(h(z) + h(y), z,y€B,
where
Cy(z)
hiz) = ————.
)= T a2
Hence h € L°(B, dva42s,3) from the assumption g € L*(B, dv, ). O
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In the following, we consider a symmetric lifting operator L which is defined as

u(z) — u(y)
Lu(sc,y) = L? x 7é Yy
T —y
where u € hy,(B).
As an application of Theorem 1.2, we can obtain the boundedness of operator L

as follows.

Theorem 4.1. Let 1 < s < oo, « € R, >2s—1. Then L : A; 5(B) — L*(B x
B, dvats,g X dUats,g) N hy(B x B) is bounded.

Proof. Let u € A3, 5(B). Then there exists a positive continuous function g €

L*(B, dva,g) such that

w(@) —uy) | - lg@)]* +lg@)I°

r—y [z, y)?s

|Luz, )| = | Ty,

by Theorem 1.2. Applying Fubini’s Theorem, we obtain

L [t v @)
20/13/]3 %dva+s,ﬁ(m)dva+sﬁ(y)

lg(z)[*
: /IB/]B (1—|z)s(1 - |y|)sd”aﬂﬂ(“)des,ﬁ(y)

< Amuwm@am<al

Consequently, L : A3, 5(B) — L*(BxB, dva+s,5 X dva+ts,p) hyp(BxB) is bounded. O

IN

5. CHARACTERIZATIONS OF (Jj SPACES

In this section, we discuss some derivative-free characterizations for Qj spaces

of n-harmonic functions on the real unit ball B in R".

Lemma 5.1. Let 0 < k < 0o and u € h,(B). Then there exists a constant C' > 0
such that

n] eV do(x lu(z) — u(y)|" 1212V do(2)dv
L1vu@ra ey as) < ¢ [ [EE—gE 0~ ) dua)anty),
Proof. Write

B A R0 P T
K= [ [ ol du(@)au(y).
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Making the change of variables y — ¢, (y) leads to
= [ [ o) s (o)
= [ [ o eul0) = wo )1 = ) do(a)an(y
= [l / 10 92(0) — wo 0, (1) "du(y).

Note that u o ¢, € hy,(B), it follows from (1.2) that

/\uomm—uwx( )y /|Vuosam (L — [yf) do(y).

It deduces from [I3, Lemma 4.4] that
/ (1~ [af2)* " du(a / 19 (w0 @) () (1 — [y]?)"du(y)
/ (1~ 22" do(a / Vu() (1~ lpa()?)do(y)

K

Q

Q

e / P du(e) /E (ré)m(yn"(l—|w<y>|2>"dv<y>
—zI2)*edv(z U "dv

> o/Bu j2]) o >][E(x7;)|v ()| dv(y)

> C'/IB|VU(:L')|"(17|:17|2)kdv(z). O

Lemma 5.2. Let 0 < k < n and u € hy(B). Then there exists a constant C > 0
such that

[ [ @ =0 gy e
K*/B/B [z, 7" (1 |\)d()d(y)§C/BIV()I(1 |z|?)*dv(z).

Proof. From the proof of Lemma 5.1, we see that

K~ [1vutPav) [ (= lecP) = o) dota)
It follows from the assumption 0 < k < n and [I7, Lemma 2.4] that

N A B AR L
La=lewpra -y raw =[S (@)

< A=l

as desired. O
Proof of Theorem 1.3. By [I3] Lemmas 2.3 and 4.4], we know that u € Q if

and only if
Sup/ |V (1o @) ()" (1 - |z|?)*dv(z) < co.
a€cB JB
This together with Lemmas 5.1 and 5.2, the assertion follows.
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Proof of Theorem 1.4. The proof will follow by the routes (a) = (b) = (¢) = (a).

(a) = (b). Let u € Q. By Lemma 2.3, for 0 < r < 1 and a fixed z € B,

@@ S gy [ @ @),

where 7 < r’ < 1. From Lemmas 2.1 and 2.3, we have

.
_— u(z) — u(y)|"dv(y
E@ o [u(z) — u(y)["dv(y)
(1—[z[*)"
< u(x) — u(y)|"—"—dv(y
L W@ el S )
— [ uopa0) -~ ue i)
B(0,7')
S Vo) @I - Iy duty).
B(0,r")
By making the change of variables and [I3] Lemma 4.3],
ow@" S [ [vul)d).
E(z,r")
from which we see that
n|— 2 k:d
i lor (w)["(1 = |a(2)]7)"dT(x)
s [0-le@Plara) [ [Vu@lda)
B E(x,r')
S [Vu(@)["(1 = [¢a(@)]?) do(z),

for each a € B. Hence (a) implies (b).

(b) = (¢). By Lemma 2.3, for 0 < r < 1,

u(y) = u(z)|dv(2)

N

2, () — u(y)| :
sup |up(x) —u(y sup ———
yEE(z,r) yEE(x,r) ‘E(l‘,?")‘ E(z,r)

S osup osup u(y) —u(z)|
yEE(x,r) z€E(z,r)
S osup u(z) —u(y)l.

yeE(x,r)

Thus

or(u)(z) S or(u)(2),

from which (b) = (c) follows.
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(¢) = (a). For 0 < r < 1 and =z € B, we have

Zyn " _r u(y) — Uy (x)|™"dv
R el I LB I

S (s fae) - uw)l)

yEE(z,r)

by Lemma 2.3. Consequently,

sup [ [Vu(a)"(1 = lea(@) Fdola) S sup [ 6@ (1 = o)) dr(o)

a€B
The proof of this theorem is complete.
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