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1. NOTATIONS AND FORMULATION OF THE MAIN THEOREM

Let f be a 2w-periodic locally integrable function and

n
a
Sp(z, f) = ?O + Z(ak cos kx + by sin kx)
k=1
be the partial sums of the Fourier series of f with respect to the trigonometric

system.
Let () be a sequence of real numbers, where o, > —1, n=1,2,.... Suppose
o (x, ) = ZA%*S @, f)/Ax,
where

AP = (an + 1) (an +2) ... (0 + k) /K.

These means (generalized Cesaro (C, o, ) means) were introduced by Kaplan [7].
The author compared the methods of summability (C,a,) and (C, «) for number
series, and obtained necessary and sufficient conditions, in terms of the «,,, for
the inclusion (C,a,) C (C,«), and sufficient conditions for (C,a) C (C, ).
Later Akhobadze ([I]-[5]) and Tetunashvili [10]-[I5] investigated problems of (C, av,)
summability of trigonometric Fourier series.

If (o) is a constant sequence (o, = o, n = 1,2,...) then o~ (z, f) coincides
with the usual Cesédro o (x, f)—means [I8, Ch. III].

One of the most general test of convergence of Fourier series at a point was given
by Lebesgue [g].

This work was supported by Shota Rustaveli National Science Foundation of Georgia

(SRNSFG) grant no.: FR-18-1599.
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Theorem 1.1 (Lebesgue). Let f be 2m-periodic locally integrable function (f €
L(]0,27])) and at a point x the following conditions are fulfilled:
h

(1.1) h*1/|<p(x,t)\dt=o(1)

0

and

(1.2) /t’1|<p(:1:,t) (@t 4 B dt = o(1), h— 40,
h

where

(1.3) o(x,t) = flx+t) + flx —t) — 2f(z).

Then the trigonometric Fourier series convergence at the point x.
In 1930 Gergen [6] improved the last Lebesgue statement. In particular, he proved

Theorem 1.2 (Gergen). Let

O(z,t) = /@(x,u)du.
0

If f € L([0,27]) and at a point x relations (L1.2) and
(1.4) h=t®(x,h) = o(1), h — 40,
are valid, then the Fourier series of f convergence at the point x.

In 1981 Sahney and Waterman [9] proved

Theorem 1.3 (Sahney, Waterman). Let —1 < « < 0. Suppose that assumption

holds true and

™

/ 7 (1) — (et )| dt = o(n®), 0 =m/(n+ (a4 1)/2) = +0.

Moreover, let
(1.5) O(z,7) — O(x,m — h) =o(h™%), h — +0.
Then the trigonometric Fourier series is (C, «)-summable at x.

Long ago (in 1964) Zhizhiashvili (JI6]; see, also, [I7, Theorem 2.2.1]), proved

more strong result then the last theorem. In particular, he showed that condition

(1.5) is not necessary.
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Theorem 1.4 (Zhizhiashvili). Suppose —1 < a < 1. Then under assumptions (L.4))

and

(1.6) ho /fl*a (@, ) — p(a, £+ h)| dt = o(1), h — +0,
h

the Fourier series of f is (C, a)-summable at point x.

The object of this paper is to generalize the above result for (C, a, )-summability

method.

Theorem 1.5. Let -1 < a, <1, n=1,2,..., and

O(x,t) = sup |P(z,u)|.
0<u<t

Suppose that

™

1 D(z,t) Yy
(17) )n/ dt = of1),

1+ ay t3

(1.8) ———~— sup /til*a" lo(x,t) — p(z,t + h)| dt = o(1), n — oo,
<

hold true. Then the trigonometric Fourier series is (C, a,) -summable at x. Summability
is uniform over any closed interval inside interval of continuity where (1.7)) and (|1.8))

are satisfied uniformly.
Using the last statement it is easy to prove

Corollary 1.1. Let ag € [0, 1) and for all n natural number o, € (oo, 1). Then for

almost all © the trigonometric Fourier series is (C, —a,,)-summable at point x.

Corollary 1.2. Theorem[L.4) in the case —1 < o < 0 is a consequence of Theorem
L5l

2. AUXILIARY STATEMENTS

Let K2n(t) be the kernel of the (C, o, )-summability method.

Lemma 2.1. [3, Lemma 2| For every natural n and «, € (—1,1)

n 1

2.1 Ko < —.
(2.1) K@) € T+ 5
Lemma 2.2. If k,n and i are natural numbers then

Cr(0) (i + an) (i + 14 an) k" < A < Co(3) (i 4 an) (1 4+ 1 + ay ) kO,
5
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tn € (—i—1,—)f]
This lemma actually was proved in [3, Lemma 2].

Lemma 2.3. For every natural n and o, € (—1,1)

4n?
Kan ! < .
@) <
Proof. The proof of this lemma is a simple consequence of Jackson’s well-known
inequality (see, e.g., [I8, Ch. III, Lemma (13.16)]) and Lemma O

Using representation (1.12) (see [19, Ch. XI]) for sequence (a,) we get

Ko (t) = @pn (1) + 7 (b),

where
Qp (t) — Sin[(n + 1/2 + an/2>t - Oén7T/2]
o Afn (2sin(t/2))1+on
and
. . Qn — e*ll/
,,,an (t) — _]m 6_15 i Agn_] + el(n-‘rl/Z)t :%;ﬁ»l v _
n 245" sin L =~ (I—c )i " 24% smL  (1—e i)
1 L

2.2 - e, Im i (2sin - etU=Dt/2 gan=j 4
g ()

—4
1 Z Ao (281n2> ei("“_”)t}.

v=n-+1

Lemma 2.4. For every natural n and o, € (—1,1)
C
T (1+an)nt?

Proof. Using representation (2.2)) we get

3 —j—2
1 . t
(23) [ ()] = e Im Zi‘] (2sin2) (j+1) cos Sl 45077
1< £\
,Z —j+1 (QSm ) (j — 1)eili=Dt/2 gan—i _
2 n

—5
t t
4i E Agnt (2sin 2) cos 5@’(’”2"’”—

j=n+1

e —4 4
¢ 4
g Agnt (2 sin 2) (n+2— V)ez("”_”)t} =: E Ng.
k=1

v=n-+1

2In what follows by C1(i),C2(4),C, ... we denote positive constants, respectively, absolute or
dependent on parameters and indices which are, in general different in different formulas.
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By Lemma [2.2]it is easy verify that for ¢ € [7/n,

; 1
—J 42 _
)t _O((1+an)nt3

w

7]

).

(2.4) Ny =
j=1
(2.5)
3 .
1 A%»—J 1 1
2 Z:: t1+i AG 1+ o ; (nt Iy
(2.6)
1 O, poan—d
N3 =0<{ —— _
’ {A%" u:;rl t5

Furthermore, it is easy to see that

}‘O{Aiﬁ“”*”"g} dGr

).
).

(G

1 > ven=4n +2 — v
2. = _
0 » O{Azn P
1 a,, —4 Z Z 3
0 v—n— 2
(1 + an) ( A(’" t4 v=n-+3 Aa" ‘ v=2n+1
0 1 N nan—Q N nan—2 B
(1+ay,) (nt)*  Apnet - Agmed |

O<u+JM%J:O<<

_
14+ ap)nt® )
Therefore, according to . the lemma follows.

3. PROOFS OF THE RESULTS

Proof of Theorem 1.5l Let —1 < a,, < 1,n =1,2,3,....

(5.4)])
(3.1)

T/n

1

™
0

t/ﬂnmﬁ%@ﬁ+l
T

We have (see [I8, Ch. III,

s

/ o(x, ) K, *(t)dt =: I + I,

w/n

where ¢(z,t) is defined by (1.3]). Using Lemmas and by the formula for

integration by parts, we get

T/n
1 T™/n
62) Il =|; R @] 7 - 1 [ e K@) d) <
0
) 177/71
™ _ /
7<1>x,fHKn°‘" f‘—i— su z, )| |[Kom (z)] | dt <
o) S (e[ )]
1— s n 1 =« 4n? Yo T
“F (2, “4 T 3 (2, 7).
T (x’n)<1—an+2 n 1—an><1—an (I’n>

7
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On the other hand by the well-known representation [I8, Ch. III, (5.14)] we have
sin[(n+1/2 — ap/2) t + ap7/2]

(2 sin %) t-om

dt+

ﬂ.A;an
™

(33) L= / (1)
/n

™

1
/wuﬁq%@a:g”+§%

s

w/n
where
(3.4) ey = -2 0 g <1
n I
n (251n§)
Besides,
| = %[‘I’(:c,t)?"ﬁa"(t)] i / Bz, 1) [ry " (@)] dt| <
T/n
X . ST c [ |@(e,t)
%|<D(x,7r)|+;’q> (ZE,E) Tn (ﬁ)’Jrﬂ(l_an)n / t3 dt.

T/n
Therefore, by (3.4) and (1.7) we can conclude that for the estimation I5 it suffices

(see (3.3)) to consider

™

M =: 1710‘;% / o(x,t)gn (t)cosntdt,
x/n
where
(3.5) gn(t) = cos ! _2ant (sin ;)O‘n 1 .
It may be easily verified that
-
(3.6) 2M = Jf;n / [o(z,t) — p(z,t + 7/n)] gn(t) cos ntdt+
x/n
r—7/m
/ o(x,t +7/n) [gn(t) — gn(t + 7/n)] cos ntdt—
r/n
7/n m 4
/ o(z,t +7/n)gn(t + 7/n) cosntdt + / p(x,t)gn(t) cosntdt p =: Z M;.
o an/n i=1

By the condition (1.8)) of Theorem we obtain

(3.7 M; =0(1), n — 0.
8
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Now from (3.6)), taking into account the estimation

(3.5 jgu(t /) — gu(t) < S0 0n)
and condition , we get
@ mn/m
(3.9) M,y — 171 ;n / o(z,t) [gn(t) — gn(t + m/n)] cosntdt| <
n/n
e mn/m
[ ettt/ = (e ) lgalt) - galt +m/m]de <
n/n
T—7/n
cnet [ ol mim) - (o 0] e <
n/n
T—7/n
Cn» / lo(x, t +7/n) — oz, )] tﬁ%n =0(1), n = oc.
7/
Therefore, instead of My it suffices to estimate
[e% ﬂ-iﬂ-/n
M = 171 ;n / o(x,t) [gn(t) — gn(t + 7/n)] cos ntdt.
s
Analogously to the representation of we have
N 27 /n
(3.10) 2M3 = ln_ ;n / o(z,t) [gn(t) — gn(t + m/n)] cos ntdt+
x/n
r—27/n
[ 10(et) = oot 1w 9a(0) = gt -+ /)] cosmtdr+
27 /n
r—27/n

oz, t +7/n) [gn(t) — 290 (t + 7/n) + gn(t + 27 /n)] cos ntdt—

21 /n
27 /n
/ olx, t+m/n) [gn(t + 7/n) — gn(t + 27/n)] cos ntdt+
0
r—n/n 0
/ o(x,t) [gn(t) — gn(t + 7/n)] cosntdt 3 =: ZM’
o in i=5

It is easy verify that for ¢ € [7/n, 7]

guio) < So=)

t3—an
9
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and ( )
C(1 - ay,
97(13)@)‘ < e,

Hence, using Lagrange theorem repeatedly, we obtain

1) (0) — gt + /)| < S 0n)
(3.12) |90 (t) = 2gn(t + 7/n) + g (t + 27 /n)| < %
(3.13) |97(t) — 295, (t + 7/n) + g, (t + 27 /n)| < %

Now applying formula for integration by parts and take into account piece wise

monotonicity of cosnr on [0, 27”] it follows by , ,

27 /n
[62%) 2 3
(3.14) |Ms| < & 9n (ﬂ) — gn ( W) / o(x,t) cos ntdt| +
1-— n n
0
5 T/n
In (ﬁ) — n (;)’ / o(x,t) cosntdt| +
n
0
27 /n ¢
o(x,7)cosnrdr - [g),(t) — g, (t + 7/n)] dt| <
7/n 0
1—a, n n
27‘(‘/7’7,7( )
Cn® 1—ay, D (z,t
—a. n / prm— dt = o(1), n — oo.
w/n
On the other hand, by (3.8) and (1.8]) we can conclude
T—27/n
Cnon 1—a, ) — (42
(3.15) M| < < 1o / lp(@,t) = (@,t +2m/n)] \,
1-— Qp n tZ_O‘"
27 /n
T—27/n
t) — t+2
On%n / |90(‘T7 ) ;’;Ea;) + 7T/n)|df: 0(1)7 n — oo.
27 /n
Let

T 2
=: -2 — — .
bn(t) =: gn(t) — 2gn <t+ n) + gn <t+ - )
Then

T—2m/n

Qn 2
|M7| = 1” b, (77 — 7T> cos(mn — 2) / @ (x77— + z) dr—
-« n n

0

10



ON THE SUMMABILITY OF FOURIER SERIES ...

27 /n
2
bn <7T> cos(27) / ® (z,T + z) dr—
n n
0
T=27/n t
/ /ap ($7 T+ z) dr (b, (t) cosnt — nby,(t) sinnt) dt
n
2n/n 0
Now taking into account (3.12)), (3.13) and (1.7), we get
(3.16)
( ) T—7/n 37/n
Cn%n 1—a, 1-a,
‘M7|§1—Oén n2(7r72i)37a" / (P($7T)d7 +W / QD(ZL',T)dT"‘
n T/n w/n

=27 /n| t+7/n

l—a,  n(l-—ay)
/ / ¢ (z,7)dr -<n2t4an + — 5o )dt = o(1), n — 0.

27 /n w/n

In the same manner we can see that
(3.17) Mg = 0(1), n — oc.
Besides, by (3.8) simply obtain

(3.18) Mgy = 0(1), n — oc.

Now applying (3.10)), (3.14]) - (3.18]) we get that

(3.19) My = 0(1), n — oc.

On the other hand, for M3 (see (3.6])) as well easily we have
w/n

Qan o 2

(3.20) |M3| < 1Cn / % (:l:, 7r> n-n'Tmdt = o(1), n — oo.
—ap n

0

Furthermore, since g,, (t) is a decreasing function, by the second mean-value theorem

it follows (&, € (7 — Z, 7)) (see )

T En
nn nn ™
|My| = . / ¢ (z,t) gn(t)dt| = T (ﬂ—g) / ¢ (,t)dt| <
T—7/n T—m/n
Cne &n T—7/n
S| [ ewna- [ ewod -
27 /n 27 /n
T—m/n T—7/n
Cn®n s
go(x,t—i—én—l—f—W)dt— p(z,t)dt| <
1—a, n
7 /n4(m—E&n) 27 /n

11
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One T—m/n m/n+m—Ep
i / ’(p(m,t—an-i-I—ﬂ')—(p(l‘,t)’dt+ / o (x,t)dt
1—a, n
27 /n 2m/n

Hence according to the conditions of Theorem [I.5] we obtain
(3.21) My = 0(1), n = oc.

Finally, on the base of (3.1), (3.2), (3.6), (3.7, (3:9), (3-10), (3.14) - (3-21) the

proof of the first part of Theorem 1 is complete. It is easy see that in corresponding

restrictions uniform (C, «,,)-summability of trigonometric Fourier series can be

proved similarly. |

Proof of Corollary[L.2] By definition of ®(xz,t) there exists a ¢y € [0,¢] such that

to

D(,t) = /g@(w,u)du .
0
Thus
to
—®(x,t) < % p(z,u)du|.
0
Hence implies

O(x,t) =o(t), t — +0,

and for constant sequence o, (o, = o € (—1,0]) this in turn implies (1.7]).
Let a € (—1,0] and h € (0,7/n]. There exists hg € (0,7/n] such that

sup / 1% o(2,t) — @z, t + h)|dt =
0<h<m/n )

™

/t*ﬂwmaw—@u¢+hQWt

T/n
We have
T\ f —l-a
(7) sup t lo(x,t) — p(z,t+ h)|dt <
n/ o<h<z )
g [ €10 plat) — olat+ ho)ldt
ho
Hence (1.6)) implies (|1.8). O

12
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Abstract. Exponential polynomials, an important subclass of finite order entire functions,
as solutions of differential or difference or differential-difference equations are considered

in [} 10} 19} 20]. The critical domains of zeros and the quotients of exponential polynomials
are considered in [6]. In this paper, we proceed to consider the exponential polynomials as

solutions of some general complex differential-difference equations and extend existence results.

MSC2020 numbers: 30D35; 39A45.

Keywords: exponential polynomial; differential-difference equation; entire solution.

1. INTRODUCTION

Assume that the reader is familiar with the standard notation and fundamental
results of Nevanlinna theory [4}[8,22]. A meromorphic function f(z) means meromorphic
in the complex plane. If a meromorphic function f(z) has at least one pole, then
f(2) is called a properly meromorphic function. Recall the definitions of the order

and the hyper-order for a meromorphic function f(z) as follows

log T loglog T
o(f) = limsup ET0S) i g 108108 ).
oo IOg’I" r—00 10g7“

Exponential polynomials, an important subclass of finite order entire functions with

the form
(1.1) f(2) :Pl(z)te(Z) +...+Pk(z)er(Z)

where Pj(z) and Q;(z) (j = 1,2,--- ,k) are polynomials in z. It is easy to find
that o(f) = max{deg@,} in . Exponential polynomials are the generalizations
of exponential sums which implies that max{deg@;} = 1 in (L.I). Recently, the
exponential polynomial solutions of complex differential or difference or differential-
difference equations are considered in [5, 10 19l 20]. The critical domains of zeros

of exponential polynomials and the quotients of exponential polynomials are also

1This work was partially supported by the NSFC (No.12061042, 11661052), and the Natural
Science Foundation of Jiangxi (No. 20202BAB201003).
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considered in [6]. More details on value distribution of exponential sums and exponential
polynomials could be seen in [1], [II]-[I5].
Let

¢ = max{deg(Q;) : @;(2) # 0},

and let wy, - - -, wy, be pairwise different leading coefficients of the polynomials @, (z)

with the maximum degree ¢q. Thus, (1.1) can be written as
(1.2) F(2) = Ho(2) + Hy(2)e ™" + -+ Hp(2)en™",

where H,(z) are either exponential polynomials of degree < ¢ or ordinary polynomials
in z. To express the characteristic function of 7 we recall the definition of convex
hull below.

We fix the notations W = {w1,--- ,0n}, Wy = {0,001, ,wm}. The convex
hull of a set W C C, denoted by co(W), is the intersection of all convex sets
containing W. If W contains only finitely many elements, then co(W) is obtained
as an intersection of finitely closed half-planes, and hence co(W) is either a compact
polygon (with a non-empty interior) or a line segment. We denote the perimeter
of co(W) by C(co(W)). If co(W) is a line segment, then C(co(W)) equals to twice
the length of this line segment. The following result for exponential polynomials is

given by Steinmetz [14].

Theorem A. Let f be given by (|1.2)). Then
q
(1.3) T(r, f) = C(co(wo));i7T + o(r9).
Yang and Laine [21I] investigated the existence of finite order entire solutions

f(2) of non-linear differential-difference equations of the form

f(2)" + Lz, f) = h(z),

where L(z, f) is a linear differential-difference polynomial, n > 2 is an integer. In

particular, Yang and Laine [2I] showed that the equation

(1.4) F2)? +a(2)f(z +1) = P(2),

has no transcendental entire solutions of finite order, where P(z), ¢(z) are polynomials.
Thus, there does not exist exponential polynomial solutions on . However, if
we replace g(z) with ¢(z)e?®) in (T4, there exist transcendental entire solutions
of finite order. Wen, Heittokangas and Laine [19] studied and classified the finite

order entire solutions f of non-linear difference equation

(1.5) F2)" +a(2)e?@ f(z + ¢) = P(2).
15
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For the statement on the properties of transcendental entire solutions below, we
give the following notations. Denote

I = {e*®) +d:d e C and a(z) is a non-constant polynomial},

I'o = {e*(*): a(2) is a non-constant polynomial},

I = {p(2)e®®) +-h(2): p(z) # 0, h(z) are polynomials and «(z) is a non-constant
polynomial},

Iy = {p(2)e*®): p(z) is a non-zero polynomial and a(z) is a non-constant

polynomial}.

Theorem B.[19] Let n > 2 be an integer, let ¢ € C\{0} and q(z), Q(z), P(z) be
polynomials such that Q(z) is not a constant and q(z) # 0. Then the finite order
transcendental entire solution f of satisfies the follows:

(a) Every solution f satisfies o(f) = deg(Q) and is of mean type.

(b) Every solution f satisfies A(f) = o(f) if and only if P(z) # 0.

(¢) A solution f belongs to Ty if and only if P(z) = 0. In particular, this is the case
ifn>3.

(d) If a solution f belongs to T and if g is any other finite order entire solution to
, then f = ng, where n" ! = 1.

(e) If f is an ezponential polynomial solution of the form (L1, then f € T4.
Moreover, if f € T1\I'y, then o(f) = 1.

Results in the spirit of Theorem B have been obtained by Li and Yang [9] for

more generalized complex difference equation of the form
(1.6) FE™ +an 1 f(2)" 4+ arf(2) + q(2)e? P f(z + ¢) = P(2),

where ¢(z), P(z), Q(z) are polynomials, n > 2 is an integer and Q(z) is not a
constant, ¢(z) # 0, ¢ € C\{0} and a4, ,a,—1 € C.

Note that and are complex non-linear difference equations. Motivated
by (L.F), Liu [I0] has classified the finite order entire solutions f of non-linear

differential-difference equations of the form
(1.7) FE)™ +q(2)e%F) P (z 4 ¢) = P(2),

where ¢(z), P(z), Q(z) are polynomials. The results in [19] regarding concern
the classes Ty and T'y. Meanwhile, the results in [I0] regarding concern the
classes I'|, and T'}.

We have two motivations as follows and will present some results and discussions

in the last two sections.
16
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Motivation 1: Can the results regarding the solutions of , and
be extended to differential-difference equations, where f(z + ¢) or f*)(z + ¢) is
replaced with a differential-difference polynomial?

Motivation 2: How to classify the properly meromorphic solutions of these
differential-difference equations?

For the discussions of Motivation 1, it should be very difficult for arbitrary
differential-difference polynomials. In this paper, we consider a complex k-homogeneous

differential-difference polynomial
(18) LS = @@ (a4 ea)F - [f) (z 4+ e,
i=1

where kiy + -+ kin =k, 0 =1,--- ;m and ¢;(2)(i = 1,--- ,m) are polynomials.
We also say L(z, f) has the same shifts, if ¢;; = ¢io =+ = ¢, ¢ = 1,--- ,m. For
example, f(z+c¢), f'(z4+c¢) — f(z+¢), fB(z + ¢) are 1-homogeneous differential-
difference polynomials with the same shifts, f(z+c¢)f'(z+¢)+ f"(z+¢) f"(z + ¢)

is a 2-homogeneous differential-difference polynomial with the same shifts.

2. LEMMAS

Given a meromorphic function f(z), recall that a(z) # 0,00 is a small function
with respect to f(z), if T(r,a) = S(r, f), where S(r, f) is used to denote any
quantity satisfying S(r, f) = o(T'(r, f)), and r — oo outside of a possible exceptional
set of finite logarithmic measure. The following lemma can be seen as the differential-
difference analogue of the logarithmic derivative lemma which is a combination [7]

Lemma 2.2] with the lemma on the logarithmic derivative.

Lemma 2.1. Let f be a transcendental meromorphic function with finite order

o(f), let ¢, h be two complex numbers, € > 0. Then

F® (= + h)
flz+¢)

Furthermore, if L(z, f) is a k-homogeneous differential-difference polynomial, then

(2.1) m (7‘, ) = O(r°V)=1%) 1 O(logr) = S(r, f).

(2.2) m (7’, Lf((zz’>£)> = 0=y L O(logr) = S(r, f).

Lemma 2.2. [2,[3] Let f(z) be a transcendental meromorphic function with o(f) <

o0, and let ¢ be a fixed non-zero constant. Then, for each € > 0, we have
T(r, f(z +¢)) = T(r, f(2)) + O(r" P ~+¢) 4 O(log ).

N(r, f(z +¢)) = N(r, f(2)) + 07D =1+%) + O(log ).
17



L. K. GAO, K. LIU AND X. L. LIU
Recall the following two results on the zeros of the 1-homogeneous differential-

difference polynomials f(*)(z2) and f(z + c).

Lemma 2.3. [22, Theorem 1.24] Let f(z) be a transcendental meromorphic function

and k be a positive integer. Then

801

1
N () ST) =T ) + N

and

N<n;b><NW;H%NWﬂ+SMﬁ~

Lemma 2.4. [9, Lemma 2.3] Let f(z) be a transcendental meromorphic function
with o2(f) <1, and ¢ € C\{0}. Then

N(r,1/f(z+¢)) = N(r,1/f) + S(r, f).

Related to the zeros of k-homogeneous differential-difference polynomials, we

obtain the result below.

Lemma 2.5. Let f(z) be a transcendental meromorphic function with finite order

and L(z, ) be a k-homogeneous differential-difference polynomial. Then

1 1
N (r, L(va)> <T(r,L(z, f) = T(r, f) + kN(r, ?) +S(r, f),

and

1 1
N (r, L(z,f)) < 2kN(r, ?) + AN(r, f) + S(r, f),

where A is a constant.

Proof. From Lemma [2.1] then

(2$m(“;)gm(“uﬁﬁ>+m(“m;ﬂ><m(“miﬁ>+““”

Using the first main theorem of Nevanlinna theory, we have

TWJ”—N<n;)<Tu¢uJ»—N<nL2

Using Lemma we obtain
18
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N (r, L(Zlﬁ> < T(r,L(z f)) = T(r, f*) + N (r, flk) +5(r, f)
- T (r, L(;,;f)f’“) —T(r, f*)+ N (r, flk> +S(r, f)
< T (r, L(;,;f)> +EN <7‘, }) +S(r, f)
¢ w(nHED) o () st
< N(r,L(z,f)) + 2kN (r, }) +S(r, f)
< AN(rf) +2kN <r, ch) LS50 ).

Remark. (1) If f is a transcendental entire function in Lemma then

1 1
N <T’L(z,f)) < kN(h?) + S(r, f),

using the similar reason as the above.

(2) The constant A depends on the expression of L(z, f), which can be obtained
by the second equality of Lemma and the trivial inequality N(r, f*)) < (k +
)N (r, f) + S(r, f). For example, A =3 for L(z, f) = f'(z+¢) — f(z+¢).

Lemma 2.6. [4] Let f be a meromorphic function. Suppose that
U(z) = anf(2)" + -+ ao(2)

has small meromorphic coefficients a;(z), a, # 0 in the sense of T(r,a;) = S(r, f).

Moreover, assume that

N(r, é) +N(r, f) = S(r, f).

V—a, <f+an—1>
na,

Lemma 2.7. [I9] Let ¢ € N, ao(2),--- ,an(z) be either exponential polynomials

Then

of degree < q or ordinary polynomials in z, and let by,--- ,b, € C\{0} be distinct

constants. Then

holds only when ag(z) = a1(2)

If
Il
S
3
—
S
N
If
o
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3. THE EXPONENTIAL POLYNOMIALS SOLUTIONS ON A GENERAL EQUATION

Remark that the equations (1.5)), (1.6) and (1.7)), the last term on the left hand
side has only one term f(z +c¢) or f*)(z4 ¢). It is natural to ask what will happen
f(z4c) or f®)(z4-c) is replaced with differential-difference polynomials. We mainly

consider the non-linear differential-difference equations
B fR)"Hanf()" T+t asf(2)° + a(2)e? DLz, )] = Pl2),

where L(z, f) is a k-homogeneous differential-difference polynomial. We will assume
that ¢(z), P(2), Q(z) are polynomials, k > 1 is an integer and ¢ is a positive integer,
n>s >tk > 1 and Q(z) is not a constant, ¢(z) £ 0 and as, -+ ,a,—1 € C. It is
easy to see that both equations and have no polynomial solutions, since
Q(z) is not a constant. However, there exist polynomial solutions with degree less
than k in and , resp. For example, f(z) = z is a solution of

F)" = a(2)e? P [z + 1) = 2.

Recent results on complex differential-difference equations also can be found in
[16, 17, [18]. In this paper, we mainly consider the transcendental solutions in (3.1))

and obtain the following result.

Theorem 3.1. The finite order transcendental entire solution f of should
satisfy the following conclusions:

(a) Every solution f satisfies o(f) = deg(Q) and is of mean type.

(b) If M(f) < o(f), thenap—1 =---=as =0 and P(z) =0.

(¢) If P(2) =0, then 2" 5 +a,_12" 51+ - Fa, = (24 22=2)""5. Furthermore,
if there exists ig € {s,...,n—1} such that a;, = 0, then all the a;(j =s,...,n—1)
must be zeros as well and A(f) < o(f); otherwise A\(f) = o(f).

Furthermore, the following conclusions are true for a k-homogeneous differential-
difference polynomial L(z, f) with the same shifts.

(d) f €Ty if and only if P(z) =0 and there exists ig € {s,...,n — 1} such that
a;, = 0.

(e) If the solution f belongs to Ty, then o(f) = 1. What’s more, if g € Ty, then
f =ng, where n"* =1.

(f) If there exists ig € {s,...,n — 1} such that a;, = 0. Then

fery and P(z)=0=as="-=ay_1

provided that one of the following holds:
1) s> k+2;
2)s=k+1and 2" *+---+a, =0 has at least one zero with multiplicity 2;
20
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3) s < k+1 and either 2" *+---+as = 0 has at least two zeros with multiplicity

2 or at least one zero with multiplicity 3.
Remark 3.1. (1) Transcendental entire solutions with finite order of (3.1)) exist.
For example, the function f(z) = e* + a solves

f(2)? =2af(2) — 2¢* (2 — log2) = —a*.

(2) From Theorem B (e), we can not get o(f) = 1 when f belongs to I'g. For

example, the functionf(z) = e solves
f2)? = e 2T (2 + 1) = 0.
However, from Theorem (e), if f belongs to I'y, the solutions of the equation

P+ an-1f(2)" 7+t asf(2)° + a(2)e? P Lz, )] =0,

must satisfy o(f) = 1. Such solutions exist, for example, the function f(z) = e*

solves f(2)? —e*71f/(z+1) = 0.

Proof of Theorem [3.1](a). Assume that f(2) is a finite order transcendental entire
solution of . From Valiron-Mohon’ko theorem and Lemma we obtain

nT(r, f) = T(r, f* + -+ asf*) + S(r, f) = T(r, P(2) = 4(2)e?P[L(=, )]') + S(r, f)
m(r, P(2) = q(2)e? D [L(z, ) + 5(r, f)

<m(r, P(2)) +m(r,q(2)) + m(r,e9®) +m(r, [L(z, f)]") + S(r, )

<m(r, @) +m ( (L(Z’ /) )tf(Z)““> 50 f)

N

f(=2)*
<m(r,e%D) + kT (r, f(2)) + S(r, f).
Since n > tk, then

(n — tk)T(r, ) < m(r,e?®) + S(r, f),

which implies that o(f) < deg(Q(2)). If o(f) < deg(Q(z)), then o(L(z, f)) <
deg(Q(z)), which is impossible for (3.1). Hence, o(f) = deg(Q(z)). From the
definition of type, we get

i T(r, f)
7(f) = lim sup ~deE(@() € (0, +00),

T—00

which implies that f(z) is of mean type.

Proof of Theorem [3.1) (). If A(f) < o(f), that is the value 0 is a Borel exceptional
value of f(z), then f is of regular growth (or normal growth) [22] Theorem 2.11].
Thus, N(r, %) = S(r, f) follows by [22, Theorem 1.18]. Let

(32) G(2) == f(2)" +an—1f(2)" "+ +a.f(2)° = P(2) = —q(2)e* P [L(z, f)]".

From the Remark after Lemma and f is an entire function, we have
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(3.3)
1 1 1
<N (r, q(z)) +tN (r, M) < thN(r, ?) +S(r, f) = S(r, ).
Thus N (r, %) + N(r, f) = S(r, f). Lemmaimplies that
(3.4) G(=) = (f+ a’;;l)".

If a,,—1 # 0, using the second main theorem of Nevanlinna theory, we have

T(r, f) < N(r,f_’_lann_l>+N<7‘,}>+N(7‘,f)+5(r,f)

_ 1 _ 1 _
< N(ng)+¥(n7) + N0 +500) =501,
a contradiction. Thus a,_; = 0. Therefore, from (3.4) and (3.2), we have

p—1 =---=as=0= P(2).

Proof of Theorem (c). Since P(z) =0 and s > tk, then (3.1) can be written

as
H(Z) .= f(z)nfkt + an,lf(z)”fktfl S asf(z)sfkt
(3.5) Lz, )1
- _ Q(») ’
- ot [ 252
From , we have
L(z, f) 1Y _
(3.6) tN (r, ) > <N (r, q(z)) =S5(r, f).
Combining with Lemma we obtain
Lz f)\ _
(3.7) T (r, BL ) = S(r, f).
Using the first main theorem of Nevanlinna theory, we have
1 L(z f)

From (3.5) and (3.8)), we obtain

N < Hb) + N ) <N ( L(lf)> o (q(1)> -

fz)F

Lemma [2:6] implies that

59 e (f(z) L >"_kt — _q(z)e”® <L(z,f)>t.
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Case 1. There exists ig € {s,--- ,n — 1} such that a;, = 0. From (3.9)), we have

ap_1=---=as =0. Thus, (3.1) can be reduced to the follows form
_ L(z, £)\'

3.10 F(2)" R = —q(2)eQ®) ( . )

(3.10) (=) (2690 (S

Since n > kt, then N(r, %) = S(r, f). So A(f) < a(f).

Case 2. There does not exist ig € {s,---,n — 1} such that a;, = 0. From (3.8)

and (3.9), we have

— 1 — 1 _
N(m)“ nzg )+ () =S

f(2)*

Using the second main theorem, we have

T(r, f) <N <T,M

>+NQ,1>+Nmﬂm+Smﬁ

_ ¥ (r, f(lz)) + S0 f).

Therefore, A(f) = o(f).
Proof of Theorem (d). If f €Ty, then A(f) < o(f) follows. From Theorem
(b), we have a1 = -+ =as =0= P(2).

On the other hand, we will prove that if P(z) = 0 and there exists ig € {s,...,n—
1} such that a;, = 0, then f € I'j. The condition P(z) = 0 implies that reduces

to

(3.11) F(2)" +a(2)e?P[L(z, )] = 0.

Since P(z) = 0 and there exists an ig € {s,...,n — 1} such that a;, = 0, from
Theorem [3.1f (¢), then A(f) < o(f). The Hadamard factorization theorem implies
that

(3.12) f(z) = H(z)e*®),

where a(z) is a non-constant polynomial with deg(a(z)) = deg(Q(z)) and H(z) is

an entire function satisfying

A(H(2)) = o(H(2)) = AM(f) < o(f).
In the following, we will prove H(z) is a non-zero polynomial. Otherwise, if H(z)
is a transcendental entire function, from (3.12)), then
f(vij)(z 4 C) _ Hij(Z + C)ea(z+6) (j €1,2,--- 7n),

where H;;(z + ¢) is 1-homogeneous differential-difference polynomial in H(z + ¢).

Remark that L(z, f) is a k-homogeneous differential-difference polynomial with the
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same shifts in (1.8]), then

L(z, f) Z Hii(z 4 ¢) - Hin(z + )bt
i=1

eka(zte) ZH“(Z 4 C) A Hm(z + c) =: eka(Z+C)Hk(Z)
=1

where o(Hy(2)) < o(f) and Hy(z) is a k-homogeneous differential-difference polynomial.

Substituting (3.12) and (3.13)) into (3.11), we have

(3.13) H(2)"e" ) 4 q(z)e@@EFhRtat4e) ()t = g,
o
_ N Hi(2)\'
n—kt Q(z)+kta(z+c)—na(z k _
(3.14) H(z)" 7kt 4 g(2)e@@) thta(zte)—nal(z) (H(Z)k> =0.
By Lemma [2.1] we have
Hi(2) o (H)—
(3.15) " (ﬂ H(z)k> = O(r=1e),
From (3.14)), the poles of g’(‘z()z,z are the zeros of ¢(z), then
Hy(z
(3.16) N (T, lei)z) = O(logr).
Thus,
H
(3.17) T <r, H’ZS’Z) = O(r*H 1%y L O(log ).

Hence, we have N (I‘Ikl(z)) = O(reH)=1%¢) 1 O(logr). Since n > kt, so the zeros
H(z)F

of H(z) are the zeros of g,zz()zg or ¢(z), thus A\(H) < o(H), which is a contradiction

with A\(H) = o(H). So H(z) is a polynomial. Hence, f € I'j.
Proof of Theorem (e). If f,g € Ty, then a,—1 = -+ = a; = 0 = P(z) follows
by Theorem (b) and H(z) =1 in (3.12)). From (3.13]), we have ¢(z), Hy(z) are

also constants. If Hy(z) is a constant, then «(z) must be a linear polynomial and
— eblz+d1

vi(z) are also constants ¢;. We may assume that ¢(z) = ¢ € C and f(z)
and g(z) = e?*T% where b;(# 0),d; (i = 1,2) are constants. Substituting f(2)

and ¢g(z) into (3.11), we can get

(318) enb1z+nd1 + q(z)eQ(z)Ll(bl)ektb1z+kt(d1+c) — 0,
and
(319) enbzerndQ + q(z)eQ(z)Ll(bQ)ektbgz+kt(d2+c) _ 07

where Ly (z) = > it pizPivit ... zFinvin Combining (3.18) and (3.19), we have

Ly (bl)e(ktfn)bler(ktfn)ah =1, (b2)e(kt7n)b2z+(kt7n)d2 )
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Thus, we have by = by and e(?—*t)(d1—d2)

n—kt
n =1
Proof of Theorem (f). If P(z) # 0, from Lemma 2.1, Lemma 2.2 and the
second main theorem of Nevanlinna theory, then

(3.20)
WT(r, f) =T (r. f" + -+ asf*) + 5(r. f)

1 _ 1 o S
<N<T’f"+"'+asfs—P(z))+N<T’W>+N(rvf +dasf5) + S(r, f)

_ 1 — 1
SN ( o +asfs> N ( q<z>[L<z,f>]t) 5 1)
S ICT(T, f) +N (T, W) + S(’/‘, f)

We will get a contradiction from ({3.20)) in every case of 1), 2), 3) to show P(z) =0
below. Thus, the conclusion of (f) follows by Theorem (c) and (d).
Case 1). If s > k + 2, from (3.20)), we have

= 1, which implies that f = ng, where

_ 1
(n—ki)T(’I“, f) <N (7“, f(z)s(f(z)nfs'k""'_as)
<(n—s+1)T(r f)+S(r, ),

)R

which is a contradiction.
Case 2). If s = k+ 1 and 2"+ --- + a;, = 0 has at least one zero with
multiplicity 2. From (3.20)), we have

(n=Fk)T(r, f) < (n=s)T(r, f) + 5(r, f),

a contradiction.
Case 3). If s < k+ 1 and 2" ® +--- + a; = 0 has at least two zeros with

multiplicity 2 or at least one zero with multiplicity 3, we also get a contradiction

from (3.20).

4. PROPERLY MEROMORPHIC SOLUTIONS

In this section, we will consider the properly meromorphic solutions on non-linear
differential-difference equations.

Wen etc. [19] proved that there is no properly meromorphic solutions with hyper-
order less than one on by considering the poles multiplicities provided that
n > 2, which is also true for (1.6). In fact, we know that both and has
no any properly meromorphic solutions by the follows statements. We assume that
f(2) is a properly meromorphic solution of or and f(z) has a pole zy,
then zp, = 2o+ kc are also the poles of f(z), where k is any integer, thus f(z) should
have infinitely many poles. Let E be the set of all poles multiplicities of f(z) and m
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be the minimum of E, where m is called the index of f(z). Obviously, f(z + ¢) has
the same index m, but the index of f(z)™ is mn, which is impossible for or
(1.6), when n > 2. Thus, f(z) has no poles. Similarly, if L(z, f) is a linear difference
polynomial, then has no properly meromorphic solutions.

Remark that if L(z, f) includes the derivatives of f(z) or the derivatives of
f(z+¢), then may have properly meromorphic solutions, which can be seen

by the examples below.

1
1—e*

Examples (1) Properly meromorphic function f(z) = solves the follows two

equations

FEE— e f (4 2mi) =0, f(2)2—ef(z) =0

(2) Properly meromorphic function f(z) = # solves
5 1 1
FEP = 2f + 20+ e 1) = 5.
and f(z) = 2(1;751) solves

3 2 1 1 z gl _
&) = (2 + 7 £(2) + 5671 (2) = 0.

(3) Properly meromorphic solutions with infinite order of (3.1)) also exist. For
1

e—e 71

f(2)2+ f(2) +e*f'(2) = 0.

and the function f(z) = 3::%_’12 solves

F(2)? = 5f(2) = €*f'(2) = 6.

solves

example, the function f(z) =

Remark that some functions are periodic functions in the above examples, so f'(2)
can be replaced with f’(z + ¢) in the above equations for suitable constants c¢. An

elementary calculation to find that the non-linear differential equation
(4.1) FEP QP () =0

has solutions f(z) C' is a constant. In addition, the solutions of

= m
(4.2) F(2)? + a1 f(2) + q(2)e?@ f'(2) = 0

can be expressed by f =

91 _—Q(2)qz —Q(2) [ =M e—QR(2)ax
ef q(z) d f%el q(z) a dz+C

Question 1: How to classify the properly meromorphic solutions of
(4.3) fU ot anaf" 4+t anf +q(2)e9P Lz, f) = P(2),

where L(z, f) is a k-homogeneous differential-difference polynomial, ¥ > 1 is an

integer and ¢(z), P(z), Q(z) are polynomials, a1, -+ ,a,—_1 are constants.
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In the paper, using the exponential polynomials, we consider the simple case of
n=2, L(z, f) = f'(z) and P(z) =0 in (4.3), that is
(4.4) PPt af +q(2)e?@f(2) =0,

where Q(z) = bgz? + --- + by, by # 0, a1 is a constant and ¢(z) is a non-zero
polynomial.

It is easy to find that the meromorphic solutions of have only finitely many
zeros. For the simplified expressions, we can consider the meromorphic solutions f

with the form

f(z) ! !
zZ) = = 5
9~ Gl F D@ Tt Gz
where g(z) is an exponential polynomial and G,(z)(j = 0,1,---,m) are either

exponential polynomials of degrees < ¢ or ordinary polynomials in z.

Theorem 4.1. (i) If a1 =0, then (4.4) admits properly meromorphic solutions of

_1_ 1
the form f = 5 = 7=,
(ii) If a1 # 0, then (4.4) has no meromorphic solutions of the form f =1

g°

where d, A,wy are constants.

Proof of Theorem (i) If a; = 0, substitute f = é and
9(2’) = Go(z) + Gl(z)ewlzq N Gm(z)ewmzq

into (4.4)), then

(4.5) 1—q(2)eQ@(Gp(2)e?™ + Gy (2)e TP 4o L G,y i (2)e@m 0027y = 0,
where Qo(z) = Q(z) — byz? is a polynomial of degree < ¢ — 1 and

(4.6) Gr1(2) = Gi(2) + quizt'Gr(2) 20

fork=1,---,m.

If m > 2, from Lemmaand (475), we get that at least one of ¢(2)e@°*)Gy 1 (z)
and ¢(2)e@ )G, 1(2) is equal to zero, thus Gy 1(2) or Gy,1(2) is equal to zero,
which is impossible.

If m =1, then (4.5) reduces to
(4.7) 1 — g(z)e@0() (Gg(z)equq + Gl,l(Z)e(w1+bQ)Zq> ~0.

Let hi(2) = q(2)e9 3Gl (2)eb*” and hy(z) = q(2)eQE) Gy 1 (2)el@1H0a)2" | Thus,
hi1(z) + ha(z) = 1. Using the second main theorem of Nevanlinna theory for hy(z),
we have hi(z) and ho(z) must be constants. Hence, G{(z) = 0 and wy = —by by
the expressions of hy(z) and hy(z). Let g(2) = d+ G1(z)e¥*". We proceed to prove
that ¢ = 1. Otherwise, can be written as
(4.8) q(2)eQ@H = (G (2) + Gy (2)qui297h) = 1.
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means that ¢(z) is a non-zero constant. Furthermore, Q(z)+w12? and G} (z) +
G1(2)qw1277! must be constants, otherwise G1(z) is of order ¢q. Hence, ¢ = 1 and
G1(z) is a non-zero constant A. Thus, g(z) = d + Ae“1*.
(#) If a1 # 0, substitute f = é into , we have
14 a1(Go(2) + G1(2)er* 4+ -+ + Gpu(2)em*") — q(2)e2° ) (G (2)ebs*" +
(4.9) Gl’l(z)e(wwbq)zq N Gm,l(z)e(wm%q)zq) -0,

where Gy 1(z) are the same as . If G{)(z) # 0, then by, w1 + by, -+, wm + by
are m+ 1 distinct constants, hence {w1, -+ ,wm} # {bg, w1 +by, - -+ ,wm + by}, then
there exists i € {0,1,2,---,m} such that w; +by # w;, j =1,--- ,mand wy = 0. By
Lemma we have G; 1(z) = 0, which is a contradiction. Thus, we have G(z) =0
and {w1, -, wm f={w1+byg, -+ ,wm+by} for m > 1, which is also impossible unless
by = 0.

Remark 4.1. (1) The case (i) shows that all properly meromorphic solutions with
the form f(z) = é are of order 1. However, if a; = 0 and ¢(z) is a rational function,
then has properly meromorphic solutions f with finite order o(f) > 1. For
example, the function f(z) = solves

PP+ e () =0
(2) If P(z) #0 in ([4.3), the equation

(4.10) f2+aif +q(2)e?P f'(z) = P(z)

1

may admit properly meromorphic solutions of the form f = %, where h(z) and g(z)

1—e®

507 solve

are exponential polynomials. The functions fi(z) = ﬁ and fo(z) =

F(2)2+2f(2) + e f(2) = —1.

Hence, to classify the general ratios of exponential polynomials for non-linear differential-

difference equation is deserved to considering.

(3) We have the basic discussions on L(z, f) = f'(z) in (4.4). However, if L(z, )
includes differential-difference polynomials, for example L(z, f) = f'(z + ¢), the
corresponding substitution will be more complicated than . In this case, it is
not clear for the expressions of properly meromorphic solutions of .
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AHHOTALMSA. 3aMeHOIl B OlIpe/ie/IEHIH OllepaTopa CBepPTKH IpeobpasoBanus Dy-
pbe creKTpasbHBIM IpeobpasoBanueM oneparopa IlIrypma-JInysunns £, mopox-
JIeHHOro 6e30TpakKaTe/IbHBIM IIOTEHIMAJIOM, BBOJUTCH IIOHSTHE olneparopa L-
Bunepa-Xonda B seberossix mpocrpaHcTBax ¢ Becom Makenxaymra. [Tosryaenst
Kpurepuu PppesroIbMOBOCTH U 06paTUMOCTH U (GOPMyJIa JJIsi UHIEKCA B CJLydae
KYCOYHO-HEIIPEPHIBHOTO CUMBOJIA.

MSC2020 number: 47G10; 47B35.

KuroueBble ciioBa: Ge3oTpakarenbHbl noTeHinas; onepatop L-Bunepa-Xomda;
omepatop Ppearosbma.

1. BBEJIEHUE

3aMeHOIi B KJIACCUYECKOM OIIPEJIEJIEHUU OIEPaTOpa CBePTKU rpeobpasoBanns Pypbe
CITEKTPAILHBIM ITpeobpa3oBaHueM caMmoconpsizkenroro oneparopa Illrypma-JInysuiis
B pabore [1] BBeenbl noHaATHS OnepaTopa L-cBepTKu u oneparopa L-Bunepa-Xonda,
JIefiCTBYIOINX B NIPOCTPaHCTBaX L,. B ciy4ae Korja HOTEHIMAJ COOTBETCTBYIOIIETO
ypasuenus [Irypma-JInyBuiiis sBjseTCs HyJIEBBIM, 9TH OMEPATOPHI COBIAIAIOT CO-
OTBETCTBEHHO C ONEPATOPOM CBepTKH U omeparopoM Bunepa-Xonda. B paborax [2]
— [5] mpm pasTMYHBIX TpEIIOIOKEHNSIX OTHOCUTENBFHO CUMBOJIA, U3YYEHBI CBOWCTBA
dpearoapmoBocTu u obparumoctu oreparopa L-Bunepa-Xomda B Tom cirydae, Korga
[TOTEHITUAJI sIBJIsIeTCsl 6e30Tpazkare/ibHbIM. Harmomanm, aro oneparop A : X — Y, rye
X, Y — banaxoBbl IPOCTPAHCTBA, HA3BIBAETCA (DPEIATrOIbMOBBIM, €CJIN €ro 00pas3 3a-
MrHYT (T.e. Im A = Im A), u koneunomepus! ero syipo ker A := {r € X : Az =0} un
kosipo Coker A := Y /Ty A. Yncso Ind A := dimker A — dim Coker A maspiBaior un-
JekcoM oneparopa A, a MaoxkecTBO {A € C : T'— Al He dperoabMoB} CyIeCTBEHHBIM

CIIEKTPOM omeparopa A.
30


https://doi.org/10.54503/0002-3043-2022.57.2-0-43

OIIEPATOPBI £-BMHEPA-XOII®A B BECOBBIX ITPOCTPAHCTBAX ...

ycrs E mubo R, 6o Ry :={+x >0:2 € R}, uw: E — [0, 00| BecoBag byHK-
mus (T.e. maMepuMas QYHKIMA Takas, 9To Jjeberoa Mepa MHoxkecTBa w ™ 1{0,00}
paBma Hym0), a L,(E,w), 1 < p < 00, 1e6eroBo IpoCTPaHCTBO ¢ HOPMOit

1/p

1l = [l fooll, = / @) w(e) d
E

Yepes A,(R), 1 < p < 00, bymem 0603HAUATE MHOXKECTBO BeCOB Ha R, yIOBIETBO-

PSIIOIIIX U3BECTHOMY ycJIoBHIO Ap:
1/p 1/q
1 1 _
sup m/w(m)p dx m/w(m) Tdx < o0,
1 1

rze I mpoGeraer Bce orpaHnvyeHHbIe HHTEPBAJIbI BelecTBeHHOi npsamoii R, |I| — niuna
uarepsBaia lu 1/p+1/g=1.

Jamnass paboTa IMOCBsAIIEHA UCCIEIOBAHUIO 33a9U (DPEIrOIbMOBOCTH OIIEPATO-
pa L-Buuepa-Xonda B mpocrpanctse Ly(Ri,w) = L,y(Ry, w|R+) B CJIy4ae KOrja
w € A,(R). Iomyuensr kpurepur GpeArosbMOBOCTH B GOPMyJIa IJIs BBIYUCICHUS

UHJIEKCA B CJIydae KyCOYHO-HEIPEPHIBHOrO (HEIPEPhIBHOIO) CUMBOJIA oneparopa L.

2. CIHEKTPAJIbHOE I[IPEOBPA3BOBAHUE. JIAHHBIE PACCEAHUSA

ITycts £ — camoconpsikenssiii B Lo(R) oneparop, mopoxenssiii quddepenmu-

aJIbHBIM BbIPDazKE€HHUEM

(2.1) (ty)(x) = —y"(z) +v(x)y(z), T E€R,

e

(2.2) / 1+ Jz|) v(z)dr < 0.

Bazknyio posb (cMm., Hanpumep, [6] — [§8]) B cekTpanbHOit Teopun onepatopa L u, B

JaCTHOCTH, B OOPATHOI 3a/1a9e TeOPUN PACCESTHUS Ha OCH, YPABHEHUS
__ 2
(2.3) by = Xy,

urpator pemenns Vocra, T.e. pemenus e; (z,\) (r € R, ImA > 0) me_(z,)) (z € R,

Im A < 0) onpezessemMble rPAHUIHBIME YCJIAOBUAME

im e ey (2,0) = 1, im e (2, \) = i\
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Oru pemenust (eM. [6] — [8]) momyckaror mpecTaBiIeHe
(2.4) ex(r,\) = (14+K1)(e™®),  NeER,

rie omeparopsl npeobpazoanus 1 + K aefictByror mo dhopmysiam

(T4 %)) (@) = y(a) + / Ky (o, 1) () dt

(2.5) ((T+ %)) (@) = yla) + / K_(x)y(t) dt

U OIPAHMUYEHBI COOTBETCTBEHHO B IPOCTPaHCcTBax Ly, (7, 00) 1 Ly(—00,7), 1 < p < oo,
npu Beex v € R. fdapa Ky (z,t), —co <z <t <oou K_(z,t), —o0o <t <z < 00
YZOBJIETBOPAIOT U3BEeCTHBIM ypaBHenusiM [enbdana-JIesurana-Mapuenko (cm. [6] —
81).

ITpu BemecrBennbix 3HadeHusx A # 0 napsl dyuxumit ey (z, A), e (z, —A) me_(z, \),

e_(xz,—\) obpasyior dyHmaMeHTATbHBIE cucTeMbl perennii (2.3). B wacraocTn
er(z,A) =b(Ne—(x, =) +bg(Ne—(z, N).

Dyuknus by(\) aHaIuTHIHA B BepxHeli nosynsoctkocTd Im A > 0 u uMeeT TaM JIMIb
KOHEYHOE YHCJIO IIPOCThIX Hystell iy (pr > 0, k = 1,... N) KoTOpble JiexkaT Ha MHY-
MOl ITOJIyOCH.

JluckpeTnblit ciekTp onepatopa £ cosmasaer ¢ MmuozkecTBoM { (ip1)?, ..., (ipxn)?}.

Kaxioe cobersennoe snadenue Ay = (ipg)? (k= 1,..., N) gBjigercs npocTbiM 1
eMy COOTBETCTBYIOT IIpaBasi cobcTBeHHast QyHKIWMs e (x, 1)) 1 JTMHEeHHO 3aBUCHMAsT
or Hee JieBas cobcrBenHas byHkuusa e_(z, —ipg) (cm. [6] — [8]). Pynkuma t(A) =
byt (\) (A € R) maseaercs xosbdumuentom npoxoxenus. Pemenus ypapHemrus

(2.6) uz(x, A) == t(N\) ex(z,£N)

HOPOXK/IAI0T UHTErPaJibl
oo
2.7) (Ury)(N) = / wp(e, N y(z)de,  AER,
— 00
KOTOpre CXOOATCA 110 HOpMe L2 (R) u OHpe,HeJIHIOT OFpaHI/IquHBIe OHepaTOpr U:F .

Ls(R) — Ly(R) (em. [6], a Takske [1]).
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Hasee, mb1 uepe3 m(a) OyaeMm 06o3HAYATH JEHCTBYIONMI B (DyHKIIMOHAIBHBIX
NPOCTPAHCTBAX OIEPATOp yMHOXKeHusi Ha dbyHkumio a (m(a)y := ay), a 1epes J :
Ly(R) — La(R) onepatop neiicreytormuii mo dopmyite (Jy)(z) = y(—x).

Moz cekTpasbHBIM IpeoOpa3oBaHueM omeparopa L Mbl IOHIMaeM OlepaTop
(2.8) U:=m(x+)U- + m(x-)JUy : Ly(R) = La(R),

rue X+ (x—) — xapakrepucrudeckaga Gyuknus Ry (R_). Oueparop U ynosiersopsier
paBeHCcTBaM

U'U=1-P, UU* =1,

rue I — eauaunanblii oneparop, a P — oproronababiii npoekTop B Lo(R) na cobersen-
HO€ TIOZITPOCTPAHCTBO COOTBETCTBYIOIIEE AMCKPETHOMY CcrieKTpy omeparopa L (cm. [6],
[1])-
B caygae v = 0, oneparop U cosuaaer ¢ npeobpasosanuem ®@ypoe F : Lo(R) —
L2 (R)
o0

1

(P = <= [ e*y(a)da.

—o0
Bamernm Takxke (cM. [6] u [1]), aro Ha Bcroay miaorHOM B Lo(R) MHOXKecTBe mmeer
MECTO PABEHCTBO
ULU* =m()\?).
Oyukmun v (A) = b(A)E(A) u 7H(N) = —b(—N)t(\) Ha3BIBAIOTCA COOTBETCTBEHHO
JIEBBIM U TIPABBIM KOI(MDPUITHEHTAMIA OTPaYKEHUSI.
O6paTHBIe BeJIMIMHBI HOPM COOCTBEHHDLIX (DYyHKITHiT

—1/2

oo
mE = / les (z, Fipg)|? do
— 00

HA3BIBAIOT HOPMUPYIOMIMMI MHOKITEIAMH, a Habopsl sesmems {1 (N), ipgk, mi 3k =
1,...,N} u {r=(A),ipg,m; ;k = 1,..., N} Ha3bBalOT COOTBETCTBEHHO LPAaBLIM I
JIEBBIM JIAHHBIMA DACCESTHUSI.

ObpatHas 3ajada TEOPUM DPacCesiHus ypasHeHUs (2.3) COCTOUT B BOCCTAHOBIIE-
HHY NOTEHIIUAJA 110 JIEBBIM HJIM IPABBIM JIAHHBIM DACCESHHS W HAXOXKJICHUH HEOO-
XOJIUMBIX ¥ JIOCTATOYHBIX YCJIOBHH, KOTOPBIM JIOJIZKEH YJIOBJIETBODPSTH B3sITHIH HAGOD
{r(\),ipg,mg : k= 1,..., N}, 910065l OH SIBJISLIICS JIEBBIME JINOO PABBIME JIAHHbBI-
MU paccesiHusl ypasHeHHst (2.3) IpU HEKOTOPOM IIOTEHIHAJIE U YIOBJIETBODPSIOIEMY

yeqosuio (2.2).
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3. BE3OTPAXKATEJILHBIN [TOTEHIUAJT

Kaxk wussectno, (cm. [6] — [8]) mabop suma {0,ipg,my : k = 1,...,N}, tae p,
M TTOJOXKUTEILHBIC YUCTIA, IPUYEM [ PA3JIUYHBI IPYT OT JAPYTa W BCETIA SABJIAIOT-
csl JAHHBIMH paccessHus. IloTeHIuabl, UMeIolnue JaHHbIe PACCESHHUs TAKOIO THIIA,
HA3BIBAIOTCS besompasicamenvhvimy (IIOCKOJIBKY B 9ToM cirydae r4 = 0). Samerum

(cm. manpumep [8]), aro B 3TOM Ciaydae KO3(DMUIMEHT TPOXOKICHUST OIPEIEIsIeTcs

o dpopmyire

N .
A
(3.1) () = T Ak
1 A — g
Y0661 HAOOPDI
(3.2) {0,ipp, mf :k=1,...,N}, {0,ipp,my k=1,...,N},

ObLIN OJHOBPEMEHHO NIPABBIMU W JIEBBIMU JAHHBIMU DACCESTHUS OJHOTO M TOTO YKe
ypasHaerus (cM. [6]), HeOGXOIMMO 1 JIOCTATOYHO, YTOOBI
(3.3) (mymi)* = — 42H<“k+”ﬂ>  k=1,....N.

b (Z:uk j#k My
BameTnm TakzKe, 9T0 6e30TPaAKATEIbHBIE IOTEHIUAIBI UIPAIOT BAZKHYIO DOJIb B T€O-
PHU MHTEIrPUPOBaHUs HeJMHEHHBIX b depeHnuaibabix ypasHeHuit. C X IOMOIIBIO
CTPOATCA TOYHBIE, TaK Ha3blBaeMble N-COJUTOHHbIE, PellleHns ypasHeHns Kapresera-

je @pusa (cMm., Hanpumep, [9] — [11]).

ITycrsb nanHBIE paccesiHUsI OIIpe/ieeHbl paBeHcTBamu (3.2), (3.3). O6osHaunm w,f (x):

m,fe%“cm, kE=1,...,N, x € R. Jlerko Bugers (cM. [6] — [8]), 9ro mpu 9THX JaHHBIX

paccesinus ypaBHeHust |enbdania-J/luurana-MapueHKO UMeOT BUJ

(3.4) Zmzwk (x+y)+ Ki(z,y +Z1/Jk /K+ z, o) (o) do =0,

k=1 k=1
N N o0

35) S mpvile )+ Ko@)+ Y vr @) [ K-(@.0)u; (0)do =0
k=1 k=1

Crenys (8, 9], pemenus (3.4) u (3.5) GygeM uCKaTb B BHIE

N
(3.6) Ki(z,y) ==Y ¢p (@)}
k=1

Hoxacrasmss onpenensiembie 1o dopmynam (3.6) byuxnun Ky u K_ cooTBeTCTBEHHO

B (3.4) u (3.5), MBI IPHUJIEM K JIMHEHHBIM YPABHEHHsIM OTHOCUTEIBHO ¢ U ¢ , k =
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1,...,N:
(3.7) (En + Vi(@)) ¢"(z) =97 (2)
(3.8) (Bn +V_(2)) ¢~ (x) = ¢~ (2),

e o (z) = (Sﬁia ceey @ﬁ)T’ vE(z) = (wf[(x), e ¢$(w))T, EN — enuHuYHAA MaT-

puna u

£t )\
(3.9) Vi(z) = <¢()¢J()> :

Wi+ g
Opuosraunocts pemenus (3.7) nokasana B [9]. Ilocrynas amanormanbivM o6pasoM
3aMeTHM, 9TO KBaparndHas ¢hopMma oTBevaomas Marpuie Fy + V_(x) umeer Bug

o 2

N N
S OXE+ / > Wi (0)X; | do.
k=1 o |i=t
U3 OMI0KATETHHON OITpeIeIEHHOCTH KBAAPATAIHON (hOPMBI CJIEYET €MHCTBEHHOCTD
pererns (3.8). Takum o6paszom, dyukuun Ky (z,y) u K_(z,y), onpenenennsie dhop-
MyJ10#i (3.6), ABISIOTCH sIpaMu OllepaTopoB Ipeobpasosanuii. 113 (2.4) caexyer, aro
pemmenus MocTa ompee/sioress paBeHCTBAMM

N

(3.10) ex(z,N) =e™ [1— Z

i @

B ugacrHoCTH, 105IB3ysach (3.7) u (3.8) mosyduM, 4To

. 1 4
e+ (x, i) = — i (v),
My
T.e. o) (z) 1 p} (¥) ABAAIOTCS HOPMHUPOBAHHBIMI COOCTBEHHBIMH (DYHKIHAMI COOT-

BETCTBYIOIMX COOCTBEHHOMY 3HaueHmo \x = (ijy ).

B [9] 1o cymecrBy s0Ka3aHo, 9TO0

(3.11) lim ¢ F(x)et :m;r, j=1,...,N.

Tr—r00

ITocTynas anajgorugHbIM 0Opa30M, 3aMETHM, 9TO B ULy ¢dopmysibl Kpamepa

#; (@) = det(EN +V_( Z Vi ()@
rae Qj, — anrebpamdyecKue JONOJIHEHH K JeMEHTaM j-To crojbua Marpunsl By +
V_(z). YunrsBas, uro lim det(Exy +V_(z)) = 1u lm Qjx(z) = Jjx (Jx —
r——00 T——00

cuMBoJI Kponekepa), 1ojydum, 910

(3.12) lim ¢, (z)e " =m; .

r—r—00
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B cuny nmmeitnoit 3aBucumoctn QyHKIuit @j u g, , u3 (3.11) u (3.12) creayer cupa-

BEJIJIMBOCTD CJIEJIYIOINIETO YTBEPXKJIEHUS.

Ilpennoxkenue 3.1. B cayuae 6e30mpasicamesvrozo nOMeHUuaNs HOPMUPOBALHHHLE

cobemeentvie PyHKUUL cp;t YO0BALTNEOPAIOM HEPAGEHCTNEAM
(3.13) |cp;t(x)| gcje_“f‘””‘7 reR, j=1,...,N.

Kpome mozo cnpasedauen, pasercmea (3.11), (3.12).

Samerum TaKzKe, 9TO 6630Tpa)KaTeJIbeI€ IOTEHINAJIBI JOIIYCKaIOT IIPOCTOE OIINCa~

uue (cM. [8]-[11]), a umerno
2

d2

Ipu 7+ = 0 u N = 0, norermman v = 0. ITo 9Toii MpUYHHE MBI HyJI€BOIl TTOTEHIAAI

v(z) = Indet (Eny + Vi(z)).

Tak>Ke Oy/IeM CINTATh DE30TPAKATETHHBIM.

4. OIIEPATOPBHI IPEOBPA3BOBAHNMS B BECOBBIX ITPOCTPAHCTBAX

C nomompio menpepsiBaoil Ha Ry (R_) dyukuum ¢ u yosiaersopsiorieii Tam Hepa-
BercTBy |o(x)] < ce #*, x € Ry (|o(z)| < ceM®, x € R_), rue p U ¢ HOJOKUTEIHBIE
IIOCTOsIHHBIE, TIOCTPOUM OI'DAHUYEHHBIE OIIEPATOPHI N¢ 1 N+ : L,(Ry) — Ly(Ry),

Ngi Nyo i Lp(Ro) — Ly(R-) neficrsyromue no dopmyiam

(i) @) = / dowlo)do,  (Niyw) @)= / H(o)y(0) do
( ¢71y /¢ ( ¢2y /¢

U3 dopmyu (3.6) caemyer, aro B cirydae 6e30TparKaTeIbHOIO HOTEHIIUAJIA, OIIEPATOP

IIpeodpa30oBaHus NefICTBYIOT 110 (DopMyIaMm

N
+ +
(4.1) I+5<i:1fzm(<pk)Nw?1
k=1
Omeparopst I —T'y : L,(Ry = L,(R4)), 1 < p < 0o onpenennm 1mo GopmyIam
N
(4.2) [-Ty=1-) m(¢f) N%
k=1
Omeparop I — I'y meiicTByromnmit B mpocrpascTse Lg(Ry) (% + % = 1) aBusiercst co-
npsiKeHHBIM K oneparopy 1+X 4 neticrytomemy B Ly, (Ry). Ilycrs w € A,(R), a ome-
paroper T : Ly(Ry,w) — Ly(R,w), 74 : L,(R,w) = Ly(Ry,w), tae L,(Ry,w) :=
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L, (Ri, w|Ri), JIEHCTBYIOT 110 POPMYJIaM

E@={ ") TR @={ 0 TER

(ra)(@) = y(x), € Re.

Ompenemum Takxke omeparopsl I+ K, I —T' : L,(R) — L,(R), 1 < p < oo,
neiicreytompue 1o dopmynam: 14+ K = 79 (I + K )my + 721+ K_)a_, [ - T =
o (I-Ty)my +72(I—-T_)m_.

Omneparopst I4+K 4, I-T' 1, o6parumer 8 L, (R4 ), a oneparopst I4+-K, I-T" o6paTumbr
B L,(R). O6parHble 9THX 0IEpaToOpoB HOCTPOEHHI B [3].

ITpexkie 9eM yCTAHOBUTH aHAJIOIMYHBIE CBOMCTBA STUX OIEPATOPOB B IIPOCTPAH-
crBax L,(R4,w), Ly(R, w), mpu w € Ay(R), mpusemeMm 0mHO IpocTOe CBOHCTBO BECO-
Boit dyukmun w € A,(R).

IMycrs Sk : La(R) — Lo(R) npeobpazosanue 'ninbepra, T.€. CHHIYISPHBIA UHTe-

rpajbHBIN omepaTop ¢ aapoM Komm na ocu:

Kax n3sectro oneparop Sg orpanude B Lo (R). Kpome roro (cm. [12, 13]) w € A, (R),
1 < p < o0, Torma u Tonbko Torma, Korma Lo(R) N Ly(R,w) mwrotao B L, (R, w)
u cymecrsyer xoncranta Cp,, Taxast, 910 [|Sryll, ., < Cpwlyll,, W Beex y €
Ly(R)N Ly (R, w) onHOBpeMeHHO. AHATIOIUYHO [ist equHUIHOM okpyzkuoct T = {2 €
C;lz| = 1} qepes A,(T) obozmadumM MHOXKECTBO BecOBBIX (ynxuumii p : T — [0, o0]
Y/IOBJIETBOPSIOIUX YCIOBHUIO
1/p 1/q
1 » 1 —q
s [ [otrplart | (oo [ otr)lan
r ] I
T T

rae I npoGeraer Bee myru T, a |I| — aymua ayru 1. Tlo 3anannoit na R Becosoit dynk-
nueit w, MoCTPoOuM, 33/ IaHHYI0 Ha T, BECOBYIO (DYHKITHIO p:

p(t):w(l(ll—'_tt)) 1—¢%",  teT.

Kax m3sectno (cm. [13]) w € A,(R), 1 < p < 00, TOrma U TOJIBKO TOLIA, KOTIA
p € A,(T). s yenosust p € Ap(T), 1 < p < oo, cenyer, uto p € L,(T) u p=* € L,(T)

(é + 1 =1). Bamena nepemennoit z = i(o + 1)/(1 — o) mosBosseT ycaosue

()
T
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T+
re. w(r)—— € L,(R).

1
§/wp(33)
R
x+1

Amnanornuno, uz ycnosust p~ 1 € Ly(T) caenyer, aro w1 (z) € Ly(R). Takum

1
T+
00pa3oM, MMeeT MECTO CJIeyIoNuil hakT.

IIpengoxkenne 4.1. Ecau w € Ap(R), mo

w () 1 1

L,(R -+ -=1
—Hen®, o+

w(x)
T+

€eL,R) u

CupaBeJIMBO CJIeJIYIONIEEe YTBEPIK IEHNUE.

JIemma 4.1. IIycmo v — 6esompasicamenvuuti nomenyus u w € Ap(R), 1 < p <
00. Tozda onepamopwt I+ Ky, I —T'1 oepanuvenv. 6 npocmpancmeexr L,(Ry, w), a
onepamopos 1 + K, I —T' oepanuuens 6 npocmpancmeaxr Ly(R, w). Kpome mozo amu

OMeEPAMOPBL 006PAMUMDL U CNPABEOAUBHL PABEHCTNEA

N
(4.3) (I+Ke) =T+ Ly =14+ m()f) N:kivl
k=1
N
(4.4) I-Ty) " =1+Q, ::I+Zm(g0f)Ni})2
k=1
(4.5) I+%) ' =70+ Ky) g + 72 T+ X)Ly
(4.6) I-0) "' =ad—-T) oy + 721 -T_) 'y

Jokasamesvemeo. Tloab3ysick orpanndeHHOCTBIO Ha Ry dyHKImn e **|z + | npn
p > 0, zerko BumeTsb, uT0o dynkims ¢ = e M* (u > 0) npunanzexur L,(Ry,w).

HeiicTBUTETbHO, B CHIIy TIpeioKeHus 4.1

oo P 1/1)
_ —ppx 1w [(wx) d <
ol = | [ iorir (H2) @) <]
2 P
B wactHocTn @i,wz € L,(Ry,w), k =1,...,N. INonssysice npemiozkenneM 3.1 u
HepaBeHCTBOM ['ésibepa, mosryIum
o0
[(m( IV, a0) ()] < it @) [ eyt ar <
xr
[e's) 1/q 1
+ e (1)) 77 B +
<t | [ T ) Wl < o] Wl v @)

x
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To ecTnb
-1
w
I () Ny vl < e 18 | 25 || Wl
q
AHaJIOTUYHO JJOKA3BIBAETCS OIPAHMIEHHOCTD OITEPATOPOB 171 (w;) N ;, m (1&?) N;Ei
k> k

m (cpf) lei pm (1/),::) Nji . Orcrofa cireyer, orpaHndeHHoCTh oepatopos [+K 4
ko ko
I-T4, I+L4, T4+Q+.
B [3] mist y € Ly(Ry, w) N La(R4) mokasanbl TOXKIECTBA

I+Xe) I+ L)y =y, I+Ly)(I+Xp)y=y
I-Ty)I+Q+)y =y, I+Qe)(I-TH)y=y

W3 serony mnornoct Ly(Ry, w) N Ly(Ry) B Ly(Ry,w) u OrpaHUMeHHOCTH COOTBET-
crBytomux omeparopoB B L,(Ri,w) coenyior pasemcrsa (4.3), (4.4). Orpannten-
nocthb onepaTopoB I + K, I — I aBisiercs ciiecTBueM OrpaHUYeHHOCTH OIEPaTOPOR

I+ Xy, I-T4, a bopmynsr (4.5), (4.6) oueBuunbl. Jlemma gokazana. O

5. ONIEPATOPHI £-BUHEPA-XOII®A. U-MYJIbTUIIINKATOPHI

ITycThb v — 6e30TparkKaTeIbHbIH NOTEHIAN TOPOXK ICHHBIH TPABBIME JAHHBIMA Pac-
CesTHUS {O,i/,ak,m;l' :k =1,...,N} (COOTBETCTBEHHO JIEBBIMU JIAHHBIMH DACCESHUS
{0,ipp,my; + k =1,...,N}), w € Ay,(R), a oneparop U mnocrpoer 1o dopmyiam
(2.6)-(2.8), (3.1), (3.10). B pabore [3], m1s1 omeparopa U 1oy <IeHbl SsBHBIE IPEICTAB-
JICHUSI.

Oyuxmuio a € Lo (R) 6ymem maspBars U-mynsrummukaropoM B Ly(R,w) |, ecan
orobpaxenue f — U*m(a)Uf orobpaxkaer La(R) N L,(R,w) B ceba u cymectByer
nocTostHHast ¢ > 0 Takasi, 9T0 omHOBpeMeHHO mist Beex f € Lo(R) N Ly(R, w) umeer

MECTO HEPaBEHCTBO
1T m(@)U fly oy < €l fllp 00

IMockonbky Lo(R) N Ly(R, w) mmorso B Ly(R, w), To ckazaHHOE 03HAYAET, ITO OIEPa-
top U*m(a)U momyckaeT HelpepbIBHOE IPONOJIZKEHEE 0 meiicTByiomero Ha Ly (R, w)
OrPaHUYEHHOTO OllepaTopa, KOTOPbIl Mbl Gyj1eM obosHadath depes W2 (a) u Gymem
Ha3bIBATH omepaTopoM L-ceepTku Ha L, (R, w) ¢ cumBomoM a.

MHoxkecTBo U-MyJbTHINIHIKATOPOB OyseM obosHauarh uepes M, ., . Oneparop
We(a) == m4W2(a)ml : Ly(Ry,w) = Lp,(Ry,w), 1 < p < oo, GyaeM HasbBaTh
oneparopoMm L-Bunepa-Xomnda ¢ cumBosiom a. [lockosbky npu v = 0, omeparop U

coBrasiaeT ¢ npeobpazosanneM Dypwre F, TO omepaTopbl Wg(a) u Wg(a) B 3TOM
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CJTydae COBMAJIAIOT COOTBETCTBEHHO OIPEJIEIEHHBIMA B BECOBBIX MTPOCTPAHCTBAX OTe-
paTopoMm cBepTKH u oneparopom Burepa-Xomda (cm. [13]). ITo sToii npuunsae nasee
B oboznadenusx M, .z, W2(a), Ws(a) B ciyuae v = 0, Mbl omyckaem umjexc £
u GyjeM nosb3oBarhest obosnadenuamu M, ,, WO(a), W(a) coorsercrsenno. Knace

MyJbIuIKaTopoB Pypre M, ., (cM. [13]) sBisiercs Ganaxosoii anreGpoii ¢ HOpMOit

HCLHMP,W = HWO(a)HB(Lp(]R,w))'

Yepes PC := PC (R) o0o3Ha4UM ajredpy BCeX KYyCOYHO-HEIIPEPBIBHBIX (DyHKIU
maR:=RU {o0}. dpyrumu ciosamu, dynkuus a nputapiekur PC Torga u TOJIBKO
TOrIA, KOIJA JUIs J060ro 2o € R CymmecTByOT mpeiessl a(zg —0) := lim Oa(az:)7

Tr—xo—
a(lxg+0):= lim a(x e
(20 +0) = Tim_a(e), mpren

a(oo —0) :=a(4+o00) = lim a(x), a(co 4+ 0) :=a(—o0) = lim a(z).

r—r+o0 T—r—00
Oyuxnuu u3 PC uMeromue orpaHudeHHyo Bapuanuio V(a) upunagexar ajredpe

My, (em.17.1 [13]). CoenerBueM 9TOro (hakTa ABIIETCS CIELYIONEe YTBEPIK ICHHE

IIpennoxenue 5.1. Onpedeaennas dopmyrot (3.1) xoadduyuernm npoxoscdenus

t(\) u ee conpasicennan t(\) = t(—\) = t~1(\) npunadaesrcam M, .

Joxasameavcmeso. Pacemorpum dbyukuun by, (A) := (A —ip) ™' (p € R\ {0}). Oynk-
nnn Re hy,(A) = A(A2 + p2) 71, Im A, (A) = (A2 + %)~ umeror orpanndemiyio Bapu-
anmo u nosromy V(hy,) < V(Reh,)+V(Imh,) < co. JlokasaTerbCTBO HPe/JIOKEHNST

cJleyeT Tellepb U3 PaBEHCTB

, N N
A+ ) _
f,u()‘) = )\—i# _1+2ZM)\—i,u, t()‘):Hf#k()‘)v t()‘):Hf—Hk(/\)
k=1 k=1
u Toro dakxra, 9T0 M, 4, ABIsIeTCs anrebpoil. Ilpeyioxkenne goKa3aHo. O

JlokarkeM Telepb CJIeIYIONIee YTBEPXK ICHUE.

Teopema 5.1. ITycmo w € Ap(R), a € My, . Toeda a € My, c u 6 npocmpancmee
L,(Ry,w) cnpasedauso mooicdecmeo
(5.1) We(a) = (L+ K )W (a)(T - T).

Jokasamesvemeo. Hust a € Loo(R) B mpocrpancre Lo(R) (cMm. [3]) cupaseymso

TOXKJIECTBO

52 W(a) = 1+ ) mc)m0) oy Yoty ) (mir) )@=
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B cuiy mpeapyiymero npegjioxkenus, uz a € M, ,, creayer, 4ro ta u ta Takxke
npunajexar M, ,, U [0 9TOH IpPHYIHMHE IIpaBas 4acTh ToxkaecTBa (5.2) mepeBoguT
L,(R,w) N Ly(R) B cebst 1 qomycKaeT IPOSOJIZKEHNS O OTPAHITIEHHOTO OLEPATOPA B
npocrpaucrse Ly, (R, w). Takum obpasom a € M, 4, ¢ 1 TOKIECTBO (5.2) CIpaBeInBo
u B mpocrpascTse L, (R, w).

Vanrssas roxaecrsa (I-T)7l = 74 (I-T'), mp (I4+K) = (I4+K )7y, mom(xy) =

my, mpm(x—) =0, m(x4 )7} = 7% nomyunm roxaecrso (5.1). O

6. OPEJIOJIBMOBOCTh OINEPATOPA L-BUHEPA-XOII®A

O6osmaumm wepes PC, ., (Cp o (R)) sambikanue Beex bymnkimuit PC' (C(R)) mve-
IONIUX OTPAHMYEHHYIO BapHaIuio, B Ganaxopoil airebpe M, ,, u myctb C ,(R) =
PC, ., NC(R), rie R = RU{+00) asyxroueunas kommaktuduxarmus R. Teopema 5.1
[O3BOJITET U3ydaThb (PPEIroILMOBLI CBOHCTBa omeparopa Wy (a) B mpocTpaHcTBax
L,(Ry,w) Ha OCHOBe M3BECTHBIX COOTBETCTBYIOIINX CBOMCTB omeparopa W (a) B Tex
’Ke npocrpascTBax (cm.17.2 [13]).

Huzke mbl canraeM, 910 w € A, (R), a moreHnuas v aBisieTcs 6e30TpaskaTe/IbHbIM.

Teopema 6.1. IIycmv a € PC, ,,. Ecau onepamop Wy (a) dpedeonvmos ¢ LR, w)

u Ind We(a) =0, mo onepamop Wy (a) obpamum e npocmpancmee L,(Ry, w).

ITycrs v € (0,1), 21, 22 € C. MHO)KecTBO
27 (x4iv)
zZ9€ — 21
.A(Z]72527V) = {6277(17“1"“’)_1 S R} U {21722} .
SABJISIETCST JIyTOil OKPY?KHOCTHU COEJMHSIIONIECH TOYKHM 21 U 2o W COJAEpIKAINas KOHIIE-
BBIE TOUKH 2] U 2. MHOX)ecTBO A(2, 2, V) BBIpOXKIAaeTcs B Touky {z}. MHoxkecTBO
A(z1, 22,1/2) coBrasaer ¢ OTPE3KOM COEAMHSIOMNUI TOUKY 21 U 2. B ciyuae v > 1/2
u3 Touek A(z1, 22, V) OTJIMIHBIX OT 21 U 22, OTPE3OK [21, 23] BUmeH oz yrioM 27 (1—v)
U IIPU [IEPEXOJIe OT TOYKHU 21 K TOUYKE Zy OTPE30K ocTaercs crpasa. B ciyuae v < 1/2,
U3 OTJIMYHBIX OT 21 U 29 TO4eK A(z1,29,V) OTPE30K BUJEH [OJ yIJIOM 27TV W IIpU
IIEPEXOe OT TOUKHU 21 K Zp OTPE30K OCTAETCS CJIEBA.

Hns 0 < v < vy < 1 MHOXKECTBO
H(z1, 22501, 12) = U A(z1,22,v)
IZSIZ0 2]

HA3BIBAETCS POTOM MEXKJLY 21 U Z2 ONPeJesIsieMoe Iucjaamu vy, ve (em. [13]).
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Kaxnoe n3 muoxecrs (cm. [13], reopema 16.17)

Io(p,w) := {/\ eR:

6 A
RERGE ApaR)},

Lo (p, w) = {)\ ER:|E+i| M w(e) e A,,(R)}

ABJIACTCA OTKPBITBIM NHTEPBAJIOM JJIMHON He IIPEBBIIIAIONIeH e IMHUILY U COePKAIIN

0:L(p,w) = (—vg (p,w);1 —vi(p,w)) c0< v, <vi<lnz=0mboz= .

Teopema 6.2. IIycmov a € PC, ,,. Tozda cywecmsernoui cnexmp onepamopa W (a)
6 Ly(R4,w) cosnadaem ¢ muosicecmeom

G 1= | H (alx — 0, ale + 0); w2 (p, w), v (p, 00))
a€ER

% (a(+00), a(—00); vy (p, w), v (p,w))
Ecau 0 &€ Gy, mo undexc onepamopa We(a) 6 Ly(Ry,w) cosnadaem ¢ xoauve-
CMGEOM 060POTNOG GOKDPY2 HYAA TOYKU NPU ee 00T0de eCecmeertvm 06pasom opu-
enmuposarHHoli Kpuesol

Yo = |J A (al = 0),a(z +0); (v (p, w) + v (p,w)) /2)
a€ER

UHA (a+00), al=00); (5 (0 w) + 5 (0, )) /2)

Teopema cranoBuTcst 60s€e IPO3PATHON B CJIydae, KOIJ@ KOJIMIECTBO Pa3PHIBOB
byHKIINN ¢ KOHEYHO. MBI OCTAHOBUMCS Ha, CJIydae, KOTIa ¢ HelrpepbiBHA Ha R 1 MoxKeT
IMeTh Pa3phIB TOJIBKO B Geckomeunoctu. Ilox arg a oTiamdHoil Bcioay Ha R or myns
nenpepbisaoit bynkiuu a € C(R) Gygem moHMMATh TPOU3BOIBLHYIO HEPEPBIBHYIO

dbyukimio na R yI0B/IeTBOPAIONIYIO PABEHCTBY a = |a|e’ '8 .

Teopema 6.3. ITycmv a € C(R). Tozda caedyrougue ymeepotcoerus sK6UCANCHMHDL:

(1) We(a) asasemesa dpedzoavmosvim onepamopom 6 Ly(Ry, w);
(i) a(x) # 0 dan 6cex x € R, a wucao v+ 5= arg(a™'(+00)a(—00)) He acasemcs
yenvim Hu mpu Kaxom v € vy vy |;
(iii) a(x) # 0 dasa 6cex x € R u a™(+00)a(—00) e npunadaestcum mmodstcecmey
{re?™@:r € (0,00, € 1 — v, 1 -1y}
B cayuae, xoeda Wi (a) asasemces gpedzonvmosvim 6 Ly(Ry, w), eeo undexc eviuc-

AREMCA MO POpMYNe

IndW;(a) = —% (arg a(+o0) — arg a(—o0)) +
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3 06 +4) = {3 (5 +5) + 5= angla™ (+ooa(-o0) }.

20e {x} — dpobras wacmov wucia x.
Ecau a € Cp7w(R), mo onepamop We(a) dpedzoasvmos mozda u moavko moeda
Kkoz0a a(x) # 0 dan ecex © € R u 6 amom cayuae Ind W (a) = +(arg a(—o0) —

arg a(400)).

Abstract. By replacement in the definition of the Convolution operators of
Fourier transform by a spectral transform of a Sturm-Liouville operator £ generation
reflectionless potential the concept £-Wiener-Hopf operator on Lebesque spaces with
Muckenhoupt weights is introduced. In the case of piecewise continuous symbol the

Fredholm criterion and formula for index are obtained.
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Abstract. The problem of minimizing or maximizing the time spent by a controlled
diffusion process in a given interval is known as LQG homing. The optimal control,
when it is possible to obtain an explicit solution to such a problem, is often expressed

as special functions. Here, the inverse problem is considered: we determine, under certain
assumptions, the processes for which the optimal control is a simple power function.

Moreover, the problem is extended to the case of jump-diffusion processes.
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Keywords: stochastic optimal control; first-passage time; Brownian motion; jump-
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1. INTRODUCTION

Let {X,(t),t > 0} be the one-dimensional controlled diffusion process defined
by the stochastic differential equation

(1.1) dXy () = fIXu(B)]dt + 0[ Xy (0)] u[Xu(B)]dt + o[ Xu ()] dB(?),

where b(-) is not identical to zero, o(-) is non-negative and {B(t),t > 0} is a

standard Brownian motion. The random variable
(1.2) T(z) :=inf{t >0: X,(t) € (a,b) | Xu(0) =z € (a,b)}

is called a first-passage time in probability. The problem of finding the control u*(z)

that minimizes the expected value of the cost function
T(x)
13) I = [ Gt ORX0] A} d K@),
0

where ¢(+) is positive in (a, b) and ) is a real parameter, is a particular LQG homing
problem; see Whittle []]. If the parameter A is positive (respectively, negative), then
the optimizer wants the controlled process X, (t) to leave the interval (a,b) as soon
(resp., late) as possible, taking the quadratic control costs and termination cost K (-)
into account. Notice that the optimal control problem considered is time-invariant.
In the general formulation, {X,(¢),t > 0} can be an n-dimensional controlled
diffusion process, and all the functions can depend explicitly on ¢. The cost function

IThis research was supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC).
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can also take the risk-sensitivity of the optimizer into account; see Whittle [9] or
Kuhn [2] and Makasu [7]. Moreover, Lefebvre and Moutassim [6] considered the
case when the uncontrolled process is a Wiener process with random parameters.

In addition to being of theoretical interest, LQG homing problems have many
applications in various areas: financial mathematics, reliability theory, hydrology,
etc. Recently, the author (Lefebvre [3]) has considered this type of problem in the
context of epidemiology. More precisely, he considered a stochastic version of the
classic three-dimensional model for the spread of epidemics due to Kermack and
McKendrick. The aim was to end the epidemic as soon as possible. In practice, no
one knows how long an epidemic will last. Therefore, the final time in this optimal
control problem is indeed a random variable. See also Ionescu et al. [I].

Whittle [8] has shown that, under some conditions, it is sometimes possible to
express the optimal control u*(z) in terms of a mathematical expectation for the
uncontrolled process {Xo(t),t > 0} obtained by setting u[X,(t)] = 0 in Eq. (L.I).
However, solving the purely probabilistic problem is generally quite difficult, especially
in two or more dimensions.

When an explicit solution to an LQG homing problem can be found, the optimal
control is often expressed in terms of special functions or integrals that can only be
evaluated numerically; see, for instance, Lefebvre [4]. Here, we consider the inverse
problem: we will try to determine what are the problems for which the optimal
control u*(z) is a simple power function, namely a constant, a linear function of x
or proportional to 1/x. Moreover, we assume that the functions b(-) and ¢(-) are
also power functions.

To solve an LQG homing problem, we can make use of dynamic programming;:

we define the value function

(1.4) F(z) = E[J(z)].

inf
ul[ Xy (8)], 0<t<T (2)

We can show (see Whittle [§]) that the function F satisfies the dynamic programming

equation

=i 1 z)u?(x ) F'(x z)u(z) F'(z o*(z) "(x
(15) 0= inf {5 a(a)?0) + 3+ 1) F0) 4 ) ulo) ) + T2 F o)}

We deduce from the above equation that the optimal control can be expressed

as follows:

(1.6) u*(z) = ———= F'(z).
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Hence, substituting this expression for u*(z) into Eq. (L.5)), we obtain that we must
solve the non-linear second-order differential equation
1 v%(x)
2 q(x)

This equation is valid for a < & < b and is subject to the boundary conditions

F/@) + A+ f() F'(2) + T (o),

(1.7) 0= >

(1.8) F(a) =K(a) and F(b) = K(b).

Notice that Eq. is a Riccati equation for G(z) := F'(z).

In the next section, we will assume that the optimal control u*(x) is a certain
power function of z and we will try to determine the value of the functions b(-),
q(-) and K(-) for which this power function is indeed the exact solution to the
optimal control problem. Then, in Section 3, the inverse LQG homing problem will

be extended to the case of jump-diffusion processes.

2. INVERSE PROBLEM

The functions b(+) and ¢(-) in LQG homing problems are generally power functions.
Actually, they are often assumed to be respectively a non-zero and a positive

constant. Here, we assume that
(2.1) b(x) =bpz™ and q(z)=qoax",

where by # 0 and g > 0. Moreover, m,n € {0,1,2,...}. If a > 0 in the interval
(a,b), then n can be an odd integer; otherwise, it must be an even integer (including
0). In the case of the function K (-), it is often chosen to be identical to zero. In this

paper, it can be any real function.

Case I. Assume first that the optimal control is a constant: u*(z) = ug. An
important special case is the one when u*(z) = 0. We then deduce from Eq.
that F'(x) = Fy. Therefore, this solution can only be the exact one if A = 0.
Moreover, we must have K (a) = K(b) = Fy. With these assumptions, it is actually
obvious that the optimizer must not use any control, for any functions b(-), ¢(-),
f(-) and o(:).

Next, if u*(x) = ug # 0, we obtain that

’ _ Q(x) U0 qo p_m
(2.2) F(x)——u()m—— Zoox .

Equation (|1.7)) becomes

Uo qo L 02(@ Uo 9o
bo 2 bo
46

1
(2.3) 0:—§u(2)q0x"+)\—f(x)
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In the special case when m = n, F'(z) is a constant and Eq. ([2.3)) is satisfied if and
only if

1 bo
2.4 = —— " .
( ) f(m) 2UQb0.’L‘ +)\qu0

Furthermore, the final cost must be given by

b
_UoBl | g oand K (b) = — 209

(2.5) K(a) = == :

+F03

where Fj is a real constant.

Now, there are some conditions on the functions f(-) and o(-) that must be
satisfied for the uncontrolled process {Xo(t),t > 0} to be a diffusion process. For
the applications, the most important cases are the ones when f(x) = fyaP and
o%(z) = oda", where p € {—1,0,1}, 7 € {0,1,2}, fo is a real constant and oy is a

positive constant.

Proposition 2.1. Assume thatm =n € {0,1,2,...}. If the conditions in Eq.
and Eq. are satisfied, where n is such that the uncontrolled stochastic process
{Xo(t),t > 0} with f(x) defined in Eq. is a diffusion process, then the optimal

control u*(x) is a non-zero constant uy.

Remark. (i) Notice that there is no explicit condition on the function o(x). (ii)
When n = 0, the function f(x) is a constant. Then, if o(x) is also a constant,
{Xo(t),t > 0} is a Wiener process. If n = 1 and o(z) is a constant, then {Xq(¢),¢ >
0} could be an Ornstein-Uhlenbeck process (if ugbg is positive). Finally, if A = 0,
n =1 and o%(z) = o2 2?, then the uncontrolled process is a geometric Brownian
motion. We see that the optimal control is not equal to zero, even if A = 0. This is
due to the fact that K(a) # K(b). (iii) When n = 1, we have ¢(x) = gox. Because
the function ¢(z) is assumed to be positive in the interval (a,b), we must impose
the additional condition a > 0. (iv) The Wiener process (or Brownian motion) is
the basic diffusion process and the Ornstein-Uhlenbeck process is widely used in
physics and biology, in particular. Geometric (or exponential) Brownian motion is

the fundamental diffusion process in financial mathematics.

There are of course many mathematical cases that can be considered. However,
the most frequent ones for the function b(x) (respectively, ¢(z)) are those when
m =0 and m = 1 (resp., n = 0 and n = 2). Since we now assume that m # n,
there are three important cases to examine: (m,n) = (0,2), (1,0) and (1,2).

Firstly, with (m,n) = (0,2), Eq. reduces to

1
(2.6) O:—7u3q0x2+)\_f(x)uo%m2_02(m)UO(I0$
2 bO bo
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Let A = 0. Then, we can choose f(z) = fy and 0%(z) = 02 x, where fq is such that

1
(2.7) f0=—550u0—03~
Moreover, we must have a > 0 and the function K (z) must satisfy the conditions
3 b3
(2.8) K(a)=—220% | g and K(b) = -—202 | R,
3b0 3b0

where Fj is a real constant.
Secondly, if we choose (m,n) = (1,0), Eq. (2.3) simplifies to

1 2
(2.9) 0= —=ulqy+ A — flz) 2090 -1 o*(z) uogo
2 bO 2 bo

The most interesting particular solution is when {Xy(t),t > 0} is a geometric
Brownian motion with f(z) = fox and 0%(z) = 02 #%. Then, the various parameters

must be chosen so that

1 Uoqo | Of Uoqo
2.1 =——u? — -0 .
(2.10) 0 5 U0 g0 +A—fo b > b

This time, A could be any real number. Because the optimally controlled process
{Xu=(t),t > 0} is also a geometric Brownian motion, with infinitesimal mean
(fo + boug)z, and geometric Brownian motions are strictly positive (or strictly
negative), we should assume that a > 0. Moreover, the function K (z) must satisfy
the following conditions:

U090 In(b)
bo

U090 In(a)

(2.11) K(a) = b

—|—F0 and K(b) = +F0,

for a certain constant Fj.
Thirdly, when (m,n) = (1,2), we deduce from Eq. (2.3 that

1 2
(2.12) 0:—*quox2+/\—f(m)u0qox_a (z) uoqo
2 bO 2 bo

There are two interesting particular solutions: as above, if {X¢(¢),t > 0} is a
geometric Brownian motion with f(z) = foz and o?(z) = o322, and if A = 0,

we must have
1
(2.13) f0=—§(bouo+0§)

and @ > 0. Furthermore, {X¢(¢),¢ > 0} could be an Ornstein-Uhlenbeck process
with infinitesimal mean fpz and infinitesimal variance o3, where

bo uo

2)Xbg
2.14 = <0) and o2 = > 0).
(214) fo= -2 (<o) =00
Finally, in both cases the conditions
_upgoa” uo go b

(2.15) K(a) = +F, and K(b)=—

2bg
where Fj is a real constant, must be satisfied.
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Case II. Assume now that the optimal control v*(x) is linear: u*(x) = ugx, where
ug # 0. Equation (1.6 then implies that

(2.16) F'(z) = —upx q(x) _ uoqo gn—mtl

b(l’) - bo ’
so that Eq. (1.7) takes the form
U090 n-m+1_ 9°(%) Uogo
bo 2 b
Here the special case is when m = n+ 1; then, F'(z) is a constant and we find that
Eq. (2.17) is satisfied if and only if (iff) the function f(x) is such that
1 bo
2.18 =——ugbpa" T2+ N ——.
(2.18) f(x) 5 Uobo® + o
As in Case I, the function K (x) must satisfy the conditions in Eq. (2.5).

1
(2.17) O:—iu%qom”“—i—)\—f(a:) (n—m+1)2"™ ™.

Proposition 2.2. Assume that m =n+1 € {1,2,...}. If the function f(x) can be
expressed as in Fq. , where n 1s such that the uncontrolled stochastic process
{Xo(t),t > 0} is a diffusion process, and if the final cost satisfies both conditions
mn Eq. , then the optimal control u*(x) is linear: u*(x) = ugx, where ug # 0.

Remark. Again, we can choose any admissible function o(z). The most interesting

case is when n = 0 and o?%(z) = o 22.

When m = n, Eq. (2.17) becomes

1 2
(219) 0= _*U%QOJJ"+2+)\—f(x) UOCIOx_ o (%) ’U,OqO.
2 bO 2 bO
With n = 0, there are two important solutions: firstly, we can have
Abg ) )
220 f xr) = and o (x) = —b U x”,
(2:20) (@) = o () = ~bouo

provided that byuy < 0. If A = 0, the uncontrolled process is then a geometric

Brownian motion. Secondly, we can also have
2Abg

(2.21) fle) = Uoqo

This time, if byug > 0, {Xo(t),¢ > 0} is an Ornstein-Uhlenbeck process. Furthermore,
in both cases Eq. (2.15) must be satisfied.

To conclude this part, let us consider the case when m =n —1 € {0,1,...}; we
deduce from Eq. (2.17)) that

1
(222) 0= _7“](2) % $n+2 FA— f(x) Uo 4o 56'2 o 0'2(.17) Uo 4o x

2 bo bo
If \ =0 and n = 1, we can take f(x) = fox and o?(x) = o322, provided that
a > 0, the conditions in Eq. (2.8 are satisfied and

1
(223) fg = 7§b0U0 - Ug.
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Case III. Lastly, suppose that a > 0 and that the optimal control u*(z) is inversely
proportional to z: u*(z) = ug/x, where ug # 0. We then deduce from Eq. (1.6 that

(2.24) Fla)= -9 _ U0 nm-

x b(x) bo
It follows that Eq. (1.7) becomes

1 2
(2.25) 0 = _§U(2)CI0$H_2+)\—f(:E) UZQO gn—m=1_ o éw) quO (n—m—l)x”_’”_g,
0 0

The function F'(z) is a constant when n —m = 1. Equation is then satisfied
iff

bo
U o

As in the previous cases, the termination cost function K(z) must satisfy both

conditions in Eq. (2.5).

(2.26) f(z) = —% ugbo ™2 + A

Proposition 2.3. Assume that m = n—1 € {0,1,2,...} and that the function
f(x) can be expressed as in Eq. , where n > 1 is such that the uncontrolled
stochastic process {Xo(t),t > 0} is a diffusion process. If the two conditions in
Eq. , with a > 0, are satisfied, then the optimal control u*(x) is inversely

proportional to x: u*(x) = uo/x, where ug # 0.

Remark. As above, we can choose any admissible function o(z). When n =1 and

A =0, we have
uObo

(2.27) flz)=— 5

Then, if 02(x) = o2, the uncontrolled process could be a Bessel process, which is

another important diffusion process. Moreover, if n = 2,

1 bo
2.2 = fog=—=ugb A .
(2.28) f(z) = fo 2u0 o + w0

If we choose o(z) = 03, then {Xy(t),t > 0} is a Wiener process.

Let us finally consider the particular case when (m,n) = (0,2). The conditions
in Eq. (2.15) must then be satisfied. Moreover, Eq. (2.25) reduces to

U0 9o o”(x) uo go
x — .
bo 2 by
There are two interesting solutions: firstly, we can have f(z) = fo/x and 0?(z) = o,
with

(2:29) 0=~ udao + A~ f(2)

1 bo
2.30 = —= (ugbo +03) + A .
( ) Jo 5 (Uo 0+00)+ w0 o
Hence, {Xo(t),t > 0} could be a Bessel process. Secondly, we can also have
1 o%(x)
(2.31) A= iug qgo and f(z)= 5
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An important case is the one for which o?(z) = 0322, so that f(z) = —odx/2.
The uncontrolled process is then a geometric Brownian motion. If 0(z) = 02, then

{Xo(t),t > 0} could again be a Bessel process.

3. JUMP-DIFFUSION PROCESSES

Let {N(t),t > 0} be a Poisson process with rate «, and {Y;,s = 1,2,...}
be independent and identically distributed (i.i.d.) random variables having the
common probability density function fy(y). In this section, we will extend the
inverse LQG homing problem to the case when {X,,(t),¢ > 0} is a controlled jump-
diffusion process defined by

X, (1) / {FIX ()] + DX (8)] u[Xo(s)]} ds

N(#)

(3.1) + / o[ X, +ZY

The stochastic processes {N(t),t > 0} and {B(t),t > 0} are assumed to be
independent. Jump-diffusion processes are widely used in financial mathematics,
among other fields.

The ordinary differential equation satisfied by the value function F'(z) becomes
an integro-differential equation (see Lefebvre [5]):
1 5(a)
2 g(x)

F@) + A+ 7(@) F'(x) + ) (e

0= —
2

(32) sl [T rernrma- o).

—00

Moreover, because there can now be an overshoot, the boundary conditions become
(3.3) F(z)=K(z) ifx¢ (a,b).

In the case when the jump size is a constant ¢, so that fy (y) becomes the Dirac delta
function §(y —€), the above integro-differential equation is reduced to a differential-
difference equation:
1 62(2)
2 g(a)

Although Eq. ( E is obviously difficult to solve explicitly, by choosing the

(34) 0=

/@ 4 A+ £ P () + TL) P @) o [Fa o+ o) - Fla)].

functions fy and K appropriately, the variety of problems for which the optimal
control u*(z) is a power of x is very large. We will present below various examples
of such problems. The same cases for u*(z) as in the preceding section will be
considered. In financial mathematics, an example of an LQG homing problem might

consist in finding the optimal investment policy when the investor decides to sell
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his/her shares of a given company the first time they reach a certain level, which
is a random time. An optimal solution that is a simple power function is very easy

to implement.

Case I. If u*(x) = 0, so that F(z) = Fo, we saw in Section 2 that we must then have

A =0and K(a) = K(b) = Fp, so that the value of the optimal control was obvious.

However, in the case of jump-diffusion processes, we can have u*(z) = 0 in non-

trivial problems. Indeed, assume that [a,b] = [0,1] and that ¥ ~ U[—2,2]; that is,

Y is uniformly distributed on the interval [—2,2]. Then, we have X[T'(z)] € (—2,0]
r [1,3). Let us define

(3.5) I@)= [ P+ 9) frlo)dy
We may write that
1 1—x 2
= = )d d d
10 = {f, Kernars [ Feinas [ Karna)
(3.6) = 1{/ K(x+y)dy + Fy + i K(z+y)d }
. -2 y Yy 0 - y)ay ¢ .

Let K(0) = K(1) = Fy (as required), but K(z) = Fy if x € (-2,0) or z € (1,3).
We have I(z) = 1 (3F; + Fy). We therefore may state that Eq. (3.2) is satisfied if
and only if

/\

(3.7) At %0‘ (Fi — Fy) = 0.

Thus, when F; # Fy, so that A # 0 as well, the optimal strategy is nevertheless to
use no control at all. This example can obviously be generalized.

Remark. The function K () is not necessarily continuous. In fact, it is natural to

have a possibly different final cost when there is an overshoot.

Next, in the case when u*(x) = ug # 0, the value function must be of the form

xn—m+l
3.8 F =k—— + F
(33) (1) =h =+ P,
where
(3.9) U qo

bo

For the sake of brevity and simplicity, we will assume that n = m, so that F(z) =
kx + Fy. We take again [a,b] = [0,1], and we choose K (z) = F(x), for = ¢ (0,1).
Then, if Y ~ U[-2,2] (as above), we calculate

(3.10) 1@ =7 [ k@+9)+ Rldy = ra+ R,
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so that we return to the case when there are no jumps, that is, a« = 0. Instead, let
us take Y ~ U(0, 1), which implies that there are only positive jumps. With this

choice, we have

! 1
(3.11) I(z) = / [k(x+y)+ Foldy =k (a: + 2) + Fy=F(z) + g
0
It follows that Eq. (3.2) reduces to
1 b2 1
(312) 0=—> 0k 2y f@)h+ 2 o Ntk bouo + fla)+ 2 ).
2 % 2 2 2

Therefore, f(x) must be a constant fy such that the above equation is satisfied,
and we can choose any admissible infinitesimal variance o?(z). In particular, the
continuous part of the process {X,(¢),t > 0} could be a controlled Brownian

motion.

Case II. We make the following assumptions: the optimal control u*(z) is of the
form u*(x) = ugx, where ug # 0, the interval [a, ] is [0,1] and m = n = 0. We have

2
(3.13) Flz) = n% +Fy forze(0,1).

As above, we choose K(z) = F(x) for x ¢ (0,1). With Y ~ U(-2,2), we obtain
that

1 /2 2 2
(3.14) I(z) =~ / |:/€ (Cht)n FO} dy = F(a) + 2.

i), 2 3
Then, Eq. (3.2) becomes

1 2
(3.15) O:—§q0u3x2+)\+f(x)/-@x—|—502(x)+%_

There are numerous important processes for which the above equation holds, including
the cases when the continuous part of {Xo(¢),t > 0} is an Ornstein-Uhlenbeck

process, or a geometric Brownian motion.

Case III. Suppose that [a,b] = [1,2], m = 0, n = 1 and u*(z) = wup/x, where

ug # 0. The value function F(z) becomes
(3.16) F(z) =k + Fp.

With K(z) = F(z) for z ¢ (1,2) and Y ~ U(0, 1), we have

1
(3.17) I(az):/ [m(x+y)+F0]dy:F(x)+g.
0
Hence, Eq. (3.2)) is
2
qoug akK

1 __dou oK

(3.18) 0 5o + A+ f(z)k+ 5

The continuous part of {X¢(t),¢ > 0} could be a Bessel process.
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4. CONCLUSION

In this paper, we obtained various explicit and exact solutions to LQG homing
problems for important one-dimensional diffusion processes by considering the inverse
problem. Instead of trying to find the solution to the appropriate non-linear second-
order differential equation satisfied by the value function, from which the optimal
control follows at once, we looked for problems for which the optimal control u*(z)
was either a constant, a linear function of x or inversely proportional to x. We saw
that there are indeed interesting problems for which the exact solution is simple.

We could have considered other cases, but the aim was to present solutions
to realistic problems involving important diffusion processes, such as the Wiener
process and geometric Brownian motion, rather than purely mathematical examples.
Moreover, we could of course consider other particular forms for the optimal control;
for instance, the case when u*(x) is a quadratic function of x is of interest.

Finally, in Section 3 we presented an extension of the inverse LQG homing
problem to the important case of jump-diffusion processes. Although the equation
satisfied by the value function is much more complicated, we saw that it is possible
to find many interesting examples for which the optimal control v is a constant or
a power of .

As a sequel to this paper, we could consider multidimensional LQG homing
problems, either for diffusion or jump-diffusion processes. There are few such problems
that have been solved explicitly and exactly so far in two or more dimensions,
because the equation satisfied by the value function is then a non-linear partial
differential (or integro-differential) equation. Therefore it would indeed be interesting
to find important problems that actually have simple solutions.
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Abstract. The purpose of this paper is to consider coefficient estimates in a class of functions
My, A(q) consisting of analytic functions f normalized by f(0) = f/(0) —1 = 0 in the open
unit disk A ={z:z2€C and |z] <1} subordinating with nephroid domain, to derive
certain coefficient estimates a2, a3 and Fekete-Szeg inequality for f € .#, x(q). A similar
result have been done for the function f~1. Further application of our results to certain
functions defined by convolution products with a normalized analytic function is given, and in
particular we obtain Fekete-Szego inequalities for certain subclasses of functions defined through

neutrosophic Poisson distribution.

MSC2010 numbers: 30C80; 30C45.

Keywords: analytic function; starlike function; convex function; subordination;
Fekete-Szego inequality; neutrosophic Poisson distribution; Hadamard product.

1. INTRODUCTION

Let <7 denote the class of all functions f(z) of the form

(1.1) f(2) :z—l—Zanz”,
n=2
which are analytic in the open unit disk
A:={z:2€C and |z <1}

and . be the subclass of &7 consisting of univalent functions. A function f € .7 is

said to be starlike in A if and only if
!/
m(zf (Z)) >0, (z€A)

f(z)
and on the other hand,a function f € . is said to be conver in A if and only if
2f"(2)
1 A
3%( 0 ) >0, (z€A)

denoted by .#* and %€ respectively.
Let f1 and fy be functions analytic in A. Then we say that the function f;

is subordinate to fy if there exists a Schwarz function w(z), analytic in A with
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w(0) =0 and |w(z)] <1 (z € A), such that fi(z) = fa(w(z)) (z € A). We

denote this subordination by

fi<fo or fi(2) < fa(2) (2€A).

In particular, if the function f5 is univalent in A, the above subordination is
equivalent to f1(0) = f2(0) and f(A) C fa(A). The function ¢(z) =1+ z — ?
maps A onto the region bounded by the nephroid
4\° 402
<(u—1)2+v2—9> —?207

which is symmetric about the real axis and lies completely inside the right-half
plane u > 0. Geometrically, a nephroid is the locus of a point on the circumference
of a circle of radius p traversing positively the outside of a fixed circle of radius 2p.
It is an algebraic curve of degree six and is an epicycloid having two cusps. The
plane curve nephroid was studied by Huygens and Tschirnhausen around 1679 in
connection with the theory of caustics, a method of deriving a new curve based on
a given curve and a point. In 1692, J. Bernoulli showed that the nephroid is the
catacaustic (envelope of rays emanating from a specified point) of a cardioid for a
luminous cusp. However, the name nephroid, which means kidney shaped, was first
used by the English mathematician Richard A. Proctor in 1878 in his book “The

Geometry of Cycloids”. (For more details see [20] and references cited therein)

Definition 1.1. [20] Let .#*(q) denote the class of analytic functions f in the unit
disc A normalized by f(0) = f'(0) — 1 = 0 and satisfying the condition that

zf'(2) 23
1.2 1 - — = A.
(1.2) 8 <14z 3 q(z), z€
and €(q) if
Zf”(Z) 23
1.3 1 1 - — = A.
(1) (1+50E) <14:- T =g, e
Further they proved by considering, ¢(z) as a holomorphic solution of the differential
equation
E) 1 E e q0)=0, ¢0)=1
q(Z) - 37 I q - ) q - )
i.e.
z Q(Cn_l) -1 zn z2n—1
(1.4) Q,(2) zexp(/o c ¢ Z+n71+2(n71)2+ z €

plays the extremal role of the class .%" as noted by Wani and Swaminathan [20].
Also

B z q(cnfl) -1 B P Zanl
(1.5) Tp(z) =exp (/0 Cd() = Z+n(n — 1)+2(2n 1R oo
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z € A, plays the extremal role of the class €, as noted by Wani and Swaminathan
[20]. Tt may be noted from of DefinitionfI.1] that the set ¢(A) lies in the right
half-plane and it is not a starlike domain with respect to the origin.

Recently, Raina and Sokol [I5] have studied and obtained some coefficient inequalities
for the class .#*(z + v/1 + 22) and these results are further improved by Sokol and
Thomas [19] further the Fekete-Szeg inequality for functions in the class €' (g) were
obtained and in view of the Alexander result between the class .7*(z + v/1 + 22)
and €(z + /1 + 22), the Fekete-Szegd inequality for functions in .%*(z + v/1 + 22)
were also obtained. For a brief history of Fekete-Szegd problem for the class of
starlike, convex and various other subclasses of analytic functions, we refer the
interested reader to [I8]. Let & >0, A > 0and 0 < p <1 and f € o/. We say that
f € M(a, A p) if it satisfies the condition

R{ELE (L)' 1y 2 (50,
fz) \ 2 f'(z) 1) f(2)
The class M(a, A, p) was introduced by Guo and Liu [4].

Motivated essentially by the aforementioned works, (see [I5 [I7] and [I]) in
this paper we define the following class .#,, x(g) given in Deﬁnitio First,we
shall find estimations of first few coefficients of functions f of the form
belonging to .#,, »(q) and we prove the Fekete-Szego inequality f € #, x(q) and

also for f=1 € .4, 1(q). Also we give applications of our results to certain functions
defined through Poisson distribution .
Now, we define the following class .#, 1(q) :

Definition 1.2. For o > 0, A > 0 a function f € 7 is in the class 4, A(q) if
2f'(2) (f(Z))a [ 2f"(z)  2f'(2) (Zf/(z) N )]}
Ui (B2) o g -5 e (-
3

(1.6) < 1—|—z—%:q(z); z=re € A,

Note that by specializing the parameter we get the following subclasses based

on nephroid domain (see [20]).

z2f'(z 23
o ttnoli)= 7@ = {feas T <y 1o Tical

o« o1 (@)=Ca)={feA: (1+55) <az) =142~ 5,2€A}
o Mo(0) = M)

={feAd:(1-X)

3

zf"(2)> < q(2) :1+z—%,z€ A}

2f'(2)
o PG )
o Moola) = #(q) = {f € A FHE (L2) <q(z) = 142-5,2€A) ..
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2. A COEFFICIENT ESTIMATE
To prove our main result, we need the following:
Lemma 2.1. [§] If p1(2) = 14+ c12+ca2® + -+ is a function with positive real part

mn A, then
—4v+2, if v<0,

co —vci| < {2, if 0<wv<1,

dv — 2, if v>1.

1
When v < 0 or v > 1, the equality holds if and only if p1(2) is T Rk or one of
—z

2
its rotations. If 0 < v < 1, then equality holds if and only if p1(2) is % or one
—z
of its rotations. If v =0, the equality holds if and only if
1 1 \1+4=z 1 1 \1-—=2
S - _Z <n<l1
pi1(z) <2+2n> T, " (2 217) 5, Osns<l

or one of its rotations. If v = 1, the equality holds if and only if p1 is the reciprocal

of one of the functions such that the equality holds in the case of v = 0.

Although the above upper bound is sharp, when 0 < v < 1, it can be improved

as follows:
lco —wved| +vlel)? <2 (0<wv<1/2)
and
lco —v |+ (1 —v)|er]* <2 (1/2<wv <)

We also need the following:

Lemma 2.2. [3] If p1(2) = 1+c1z+coz? +- -+ is a function with positive real part
mn A, then

lcn | <2 foralln>1 and |02_i‘§2

Py lal?
z .

2

The class of all such functions with positive real part are denoted by &.

Lemma 2.3. [7] If p1(2) = 14+ c12+co2® +- - is a function with positive real part
in A, then

leo — ve?| < 2max(1, |20 — 1|).
The result is sharp for the functions

p(z) = s ZQ, p(2)

14z
1—=2 o
59
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Lemma 2.4. [6] Let P(z) = 1+ci1z+co22 +c32%+..... be in P then for any complex
number p,

2, 0<p<2;

2
‘1
- - < —_ =
‘02 b ’ < max{2,2)u — 1} { 2|lp— 1], elsewhere.

The result is sharp for the functions defined by P(z) = }fzz or P(z) = ifz

Theorem 2.1. Let o > 0 and A > 0. If f(2) given by (L.1) belongs to Mo, A(q),
then

Wﬂﬁ‘gngﬁ
(1+a)(1+A)
1 a?+a—2(a+3)\
las| - < (a+2)(1+2A)maX{1’ < 21+ a)(1+N)) )’}

Proof. If f € .4, 1(q), then there is a Schwarz function w(z), analytic in A
with w(0) = 0 and |w(z)| < 1 in A such that
z

HS (2) ol T -5 (el
21 =glw() =1+ u() - P

3
Define the function P(z) by

1+ w(z)

P(z) := T—w(

=1l4ciz+cz®+---

it is easy to see that

(2.2) w(z)zmzé {clz—l—(z—i)z +(c3—c1c2+(f>z3+---]

Since w(z) is a Schwarz function, we see that R(p1(z)) > 0 and p;(0) = 1. Let us
define the function p(z) by

o = (F8 () o8 Fe (55
(23) = 1+4biz+b2®+---

In view of the equations (2.1)), (2.2)), (2.3, we have

P(z) -1
2.4 = — .
(2.4) w0 =1 (3 51)
Hence
(2.5)
(w(z))? c1 2 A\ c3  clea 3 ¢ 3
1 B e o7 A Tl 2 _ R i § _ 3.
+ w(z) 3 +2z+ > 1 z° + 5 > +8 z 51 °
2 3
C1 C2 c1 2 C3 C1C2 C1 3
-1+ 4 2_a G_ae, a e D.
+2z+(2 4>z +<2 9 +12)z + , Z€
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Using (2.2)) in (2.4), we get,

blz% and by = — L.

A computation shows that

2TE) 1 4 g + (23— a)2 + (3as + a} — 3 S
ON a2 as — a3)z° + (3ag + a3 — 3agaq)z .
Similarly we have
zf"(z) 2y,2
1+ =14 2asz + (6asz — 4a3)z" + - --
) (00 )

An easy computation shows that

(e () w5 -5 ()l

=14+ (1 +a)(1+Nagz+ (a+2)(1 +2)\)azz?

a?+a
—I—( 5 —(a+3))\—1>a§z2+~--.
In view of the equation (2.3, we see that

(26) b1 = (]. + Oé)(l + )\)&2
o’ +a

(2.7) by (a+2)(1+2N)as + ( —(a+3)A— 1> a3

or equivalently, we have

I

@8 @ = srraara
o = L fe dl ota-2a+r3r-2

_ 1 c—ﬁ a2 +a—-2a+3)A -2
o 2<“+2><1+2A><2 2 [” 2((1+a)(1+1) D

_ 1 9

T 2(a+2)(1+2)) (c2 = vei)
where

ool a?+a—2a+3)A—-2

(2.10) _2<1+ TR )

Therefore, we have

|a2| S ;
I+a)(1+N)

and by using the estimate

lco — ve?| < 2max(1,|2v — 1|)
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given in Lemma 2.3 we have

laz| <

1 1 a?+a—2(a+3))-2
(a+mu+2ﬂnmﬂpr<l+ + (o +3) >—u}

2 2((1+a)(1+N)?
a?+a—-2a+3)A—2 ’}
2((1+ a)(1+ \)?

Remark 2.1. Let o =0 and A > 0. If f(z) given by (1.1]) belongs to .#)(q), then

1
(a+2)(1+2)\)

max{1,

IN

|as|

3A+1|}7 3A+1
21+ A2 T 41+ 20) (1 + N2

Remark 2.2. Let A = 0. If f(2) given by (1.1]) belongs to #*(¢), then

1 1
las| < and  |ag] € —— max{1, | L }.
1+a’ a+2 2(1+4 )

Remark 2.3. (see [20]) Let o = 0 and XA = 0. If f(z) given by (L.1) belongs to
*(q), then

laz| <

1 1

Remark 2.4. (see [20]) Let « = 0 and A = 1. If f(2) given by (1.1]) belongs to
%(q), then

las] <1, and

1 1 1

3 =5

Theorem 2.2. Let 0 < <1, >0 and A > 0. If f(z) given by (L.1) belongs to
Mo, 2(q), then

las| < and

L/ v ,
() ¥ onso
2 1 '
|a3iﬂa2| < ga Zf 01 SMSUZa
1 /v .
— (L >
25 (7_2)7 Zf n = 02,
where, for convenience,
272+ 2(a+3)A—p 272+ 2(a+3)A\—p 2a+3)A—p
01 = ;02 = ;03 = )
2¢ 2¢ 2¢
(2.11) vi=p—2(a+ 3N+ 2u€,
(2.12) pr=a*+a—2
(2.13) &= (a+2)(1+2N),
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and
(2.14) 7:=(14+a)(1+A).
Further, if o1 < u < o3, then

7_2
las — e + (1455 ) laal” <

|

Ifo3 < pu < 09, then

7_2
(a3 — a3 + 5 (1= 573 ool <

These results are sharp.

Proof. Now by making use of (2.8)) and (2.9) , we get
az — pas =
-
(a+2)(1+2))

A a?+a—2=-2(a+3)A+2ula+2)(1+2)) )\ ,
2 4 8((1+a)(1+ )

C_ﬁ ) a?+a—2-2(a+3)+2u(a+2)(1+2))
20a+2)Q+20) \ 7?2 2((1+a)(1+N)?

where

s L 1+a2+a—2—2(a+3)>\+2y(0¢+2)(1+2)\)
' 2((1+a)(1+N)° '
That is simply

U:1<1+p2(a+3)>\+2u§)1( fy>'

(14 L
2 272 2 + 272
The assertion of Theorem [2.2| now follows by an application of Lemma [2:1]

To show that the bounds are sharp, we define the functions the functions F;, and

Gy (0 < < 1), respectively, with F,(0) =0 = F}(0)—1 and G,)(0) = 0 = G, (0) -1

N 2(Fy)'(2) (Fn(z)>a
, /Fn(z) z /
A ST A ) - ().

Ptaye am e Can )] ()

respectively. Clearly the functions K, := ¢(z), F;;, Gy, are members of .#, x(q). If

i < o1 or ji > o9, then the equality holds if and only if f is K, or one of its

rotations. When o1 < p1 < 09, then the equality holds if and only if f is K, = ¢(z?)

or one of its rotations. If 4 = o then the equality holds if and only if f is F}, or
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one of its rotations. If = o then the equality holds if and only if f is G,, or one
of its rotations. O

By making use of Lemma |2.3] we immediately obtain the following:

Theorem 2.3. Let 0 < a <1,and 0 < X < 1. If f € #, 1(q), then for complex p,

we have

|ag — paj|
- 1 max{l a2+a22(a+3))\+2p(a+2)(1+2)\)‘}
= (a+2)(1+2)) ’ 2((1+a)(1+N))2
1 p—2(a+ 3N+ 2u¢
= gmax{l, 972 ’},

where p, &, T are as defined in (2.12), (2.13) and (2.14). The result is sharp.

Remark 2.5. (1) For the choice @« = 0, and A = 1, Theorem coincides
with the result obtained for the class f € €(q) as
1
lag — pad| < Gmax{l,‘ }

3u
(2) For the choices a = 0, and A = 0, Theorem reduces to the result for the

> 1
class f € .7*(q) (see [20]) as

1
lag — pa| < 3 max {1, [2u — 1|} .

(3) For the choice of @ = 0, Theorem reduces the result for the class
—2— 6A+ Ap(1+ 2))

f e (q) as
2(14+N)2 }

(4) For the choice of A = 0, Theorem reduces the result for f € %8%(q)
a?+a—2+2u(a+2)
2(1+ «a)? '

1
lag — pa| < 1+2/\max{1’

2
las — pad] < max{l,
o+ 2

3. COEFFICIENT INEQUALITIES FOR THE FUNCTION f~!

o0
Theorem 3.1. If f € M, \(q) and f~1(w) =w+ > d,w™ is the inverse function

n=2
of f with |w| < ro where ro is greater than the radius of the Koebe domain of the

class f € My (q), then for any complex number p, we have

31 d-pds |< gmas L] S
where p, &, T are as defined in , and .
Proof. As
(3.2) fHw) =w+ i dpw™
n=2
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is the inverse function of f, it can be seen that

(3-3) @) =AY ==
From equations (|1.1)) and (3.3), it can be reduced to

(3.4) Fl+) ans") =z
n=2
From (3.3)) and (3.4)), one can obtain
(35) z+ ((IQ + d2)22 + (a3 + 2a9ds + d3)23 R RTTTION =z.

By comparing the coefficients of z and 22 from relation (3.5)), it can be seen that

(36) d2 = —as, d3 = 2(13 — as.
From relations (2.8)), (2.9)), and (3.6]
C1

3.7 dy=—————
(3.7) T 20+ a)(1+ N
g — 1

57 (e +2)(1+2))
(3.8)

X

. _2((1+a)(1+)\))2+4(a+2)(1+2/\)+a2+a—2(a+3))\—262 _
: 41+ a)(1+ ) )
1 <C2_2T2+4§+p—2(a+3))\02>.

26 272
and p,&, 7 are as defined in (2.12]), (2.13) and (2.14). For any complex number p,
consider
1 272 + p — 2(a + 3)A + (4 + 2p)€
2 _ 2
(3.9) ds — pd; = % <02 — 52 C1)~

Taking modulus on both sides and by applying Lemma [2.3] on the right hand side
of (3.9)), one can obtain the result as in (3.1]). Hence this completes the proof. O

Remark 3.1. Suitably specializing the parameters in Theorem [3.I] one can easily
state above result for the function classes % \(q) = A#x(q); Ma,0(q) = $B(q);
Mo,o(q) = 7"(q) and Ao, 1(q) =€ (q).

4. APPLICATION TO FUNCTIONS DEFINED BY NEUTROSOPHIC POISSON

DISTRIBUTION

By letting pn(z) as the neutrosophic Poisson distribution series we study the
following results (for detaiss see[12, [14]) . As is well known that the classical
probability distributions only deals with specified data and specified parameter
values, while neutrosophic probability distribution gives a more general and clear

65



G. MURUGUSUNDARAMOORTHY

ones. In fact, Neutrosophic Poisson distribution of a discrete variable X is a classical

Poisson distribution of z with the imprecise parameter value. A variable X is

said to have neutrosophic Poisson distribution if its probability with the value

ke N*=NU{0} is

(m)*
k!

where the distribution parameter my is the expected value and the variance, that is

to say, NE(z) = NV (z) = my for the neutrosophic statistical number N = d + I

NP(z=k) = €Nk =0.1,2,3---.

(refer to [5] and also see [I4]|the references cited). Define a power series whose
coefficients are probabilities of neutrosophic Poisson distribution by
0 n—1
m
O(my,2z) =2+ Z ((N))emNz", z € D.

n—1)!
n=2

For f € A, we take the convolution operator * and introduce the linear operator
A : A — A defined by

e ma )1 . N
Af(z) = ®(mn,2)* f(z) = Z—|—Z:2 ((nN_)l)! N,z
(4.1) = z+ Z U(my,n)a,z",
n=m+1
where
,_ _ ()"t
\I’n = \II(mN,n) = me N
Specially
2
(4.2) Uy :=mpye ™V, W3:= (mx) e~ MmN

2
For the application of the results given in the previous section, we define the class

A \(q), in the following way:

M N(q) ={fed and (f*yp)€ Mr(q)}
where

p(2) =2+ D n", (pa>0) (Fro) =2+ pnans"
n=2

n=2

and ., x(q) is given by Definition |1.2{ and * denote the convolution or Hadamard
product of two series. We define the class .., (q) in the following way:

aa@) ={fed and Afe ./ \(q)}
where ., x(q) is given by Definition

In following theorem,we obtain the coefficient estimate for functions in the class

(//lcf’ +(@), from the corresponding estimate for functions in the class .#, A(q).
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Applying Theorem [2.2 for the function (f * ©)(2) = 2z + @2a22 + p3azz> + -+ -, we
get the next Theorems [.1] and [£.2] after an obvious change of parameter .

Theorem 4.1. Let0<a<1l,and0<A<1. If f € ///i)\(q), then for complex p,

we have

a5 2] = 1 max{L a?+a—2-2a+3)\  pla+2)(1+2))es
(a+2)(1+2))p3 2((1+ a)(1 4+ )2 (14 a)(1+ N)p2)?

Theorem 4.2. Let 0 < pu <1, a >0, A>0 and ¢, > 0. If f(z) given by

belongs to M, ,(q), then

b

1 V2 .
2 (). i ssa
1 .
lag — pa3| < tos if o1 <p<oy,
1 72 .
@) 1 en

where, for convenience, vy := p — 2(a + 3)A + 24 %,
2
A 2(@—!—3))\—,0—27'2} %{27’24—2(114—3))\—,0

®3 2¢ ©3 2¢
and p,&, 7 are as defined in(2.12)(2.13) and (2.14).

09 =

g1 =

Now ,we obtain the coefficient estimate for f € .Z7" 1(q), from the corresponding
estimate for f € .#,, 1 (q). Applying Theoremfor the function Af = z+Waas2>+
Usa32® + -+, we get the following Theorems and after an obvious change
of the parameter p as in above theorems.

For ¥, and U3 given by Theorems and reduces to the following:

Theorem 4.3. Let0 <a <1,and 0 <\ < 1. If f € #"\(q), then for complex p,

we have
2

— 2 —
a3 = uas| (a+2)(1+ 2 )ym%e—mw %
o +a—2-2(a+3)\ pla+2)(1+2X)
2((1+ o) (1 +X))? 201+ a)(1+A)2emn | |
Theorem 4.4. Let 0 < u <1, a >0, A >0 and ¥, > 0. If f(z) given by (L.1)

m

belongs to A", (q), then

X max {1,

1 Y2 .
Gz (7). onEo
2
lag — pa3| < — if o1 < <o,
mee_TnN
1 Y2 .
Gz () onze
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where vy := p — 2(a + 3)\ + L for convenience we write

e " MN
o i e 212+ 2(a+3)X—p oy = TN 272 +2(a +3)A —p
2& ’ 2¢

and p,&, T are as defined in (2.12)), (2.13) and (2.14).

A variable X is said to be Poisson distributed if it takes the values 0,1,2,3,- -

with probabilities e~ m%!m, m? ;,m -, m3%lm, ...respectively, where m is called
the parameter. Thus
mie ™
P(X:T) = T, 7’:0,1,2,3,"' .

In [I3], Porwal introduced a power series whose coefficients are probabilities of

Poisson distribution
( ) mn=1
ICmZ——z—I—g ——e " z€A
b ' b )
= (n—1)!

where m > 0. By ratio test the radius of convergence of above series is infinity.
Using the Hadamard product, Porwal[I3] (see also, [I, @, [I0] introduced a new
linear operator Z™(z) : A — A defined by

o0 n—1 o0
I"f =K(m,z)xf(z) = Z+n§::2 (;n_ 1)!e_manz",: Z+n§::2 Y (m)ayz", z €A,
el mn—1
where Since, ™ f = z + Z Yman 2", where b, = e~ ™, we have
= (n—1)!
m2
(4.3) Yo =me” " and P3 = 76_7”.

Remark 4.1. Suitably specializing the parameters in Theorems [4.3] and [£.4] one
can easily state the results for the function classes associated with neutrosophic

Poisson distribution and Poisson distribution as listed below:

which are new and not been studied sofar.

Acknowledgment: I am grateful to the reviewer of this article who gave valuable

suggestions in order to improve and revise the paper in present form.
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Abstract. As is known, the Fourier series of differentiable functions for classical orthonormal
systems (trigonometric, Haar, Walsh, ...) are absolutely convergent. However, for general
orthonormal systems (ONS) this fact does not hold. In the present paper, we consider some
specific properties of special series of Fourier coefficients of differentiable functions with respect
to the general ONS. The obtained results demonstrate that the properties of the general ONS
and of the subsequence of this system are essentially different. Here we have shown that the

received results are best possible.

MSC2020 numbers: 42C10.

Keywords: Fourier coefficients; function of bounded variation; absolutely continuous
function; general orthonormal system.
1. AUXILIARY NOTATIONS AND THEOREMS

Let (¢,) be an ONS on [0; 1]. Suppose that f € Lo, then the Fourier coefficients

of the function f are defined as follows:

1
(1.1) Colf) = | F@hpula)da, n=12....
0
We denote
(1.2) D, (a) = max /0 B, (a,x) dz|,
where

n

B, (a;z) = Zakk"’ /x ok (u) du.

k=1 0
Also,
E.(a,z) = Z arkY or(x)
k=1

and (ay) is some sequence of real numbers.

Assume that (0 <y < 1)

H,(a) = <§:1a§m) %.

The bounded sequence we denote by (ry,), r, = O(1).
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Lemma 1.1. For any (a,) € 2 and for h(z) =1 x € [0, 1] there holds

1
/ E,(a,z)dx
0

where H,(C(h)) = Hy(a) and Cy(h) = fol h(z)pr(x)de = ar (a = (ag) and C =
(Cr(f))-

Proof. According to the Cauchy inequality, we have (see (1.1))

‘/ (a,z)dx| = iakkﬂ /01 h(u)pg(u) du
< (gagm) ’ (;az(h)mf — O(1) Hy(a) H(C(R)
Lemma is proved. O

Lemma 1.2. Let g(z) =z for x € [0,1] and (an) € f2, then

1
‘ / B, (a,z)dx
0

Proof. Integrating by parts we obtain

1 1
/B(aa:dx—/E axdm—Zakk'Y/ xor(x) dx
0 0

k=1

1 n
= / E.(a,z)dx — Z ark?Ci(g)
0 k=1

Hence, using Holder’s inequality, from Lemma [T1.1]it follows

1
/ B, (a,x)dx
0
Lemma is proved. [l

= O(1)Hy(a) (Hn(C(h)) + Hn(C(g)))-

= O()Hy(a)H,(C(h)) + O(1)Hy(a) Hn(C(9g))-

Lemma 1.3. If (ag) € ls, v < 1, then for any i =1,2,...,n

i

/jl | By (a,x)| dz = O(1).

n

Proof. By the Cauchy inequality

‘/ aacdx:’/ Zakkﬂ/ogok u) du |
S (B [ocon))

n

() (L ([ )
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Then, according to the Bessel inequality, we have

([ ) <1

k=1

Since v < 1 and %n"y < 1, we get

‘/n B, (a,x)dx
i—1
Lemma [I.3]is proved. O

1 "N\ 1
< n'y( ai) — =0(1).
v NS n

Theorem 1.1 (see [I]). Let f,F € Ly. Then

(1.3) /1f(x)F(x)dx:n§/i (f(x)—f(ﬁi))dx/o’i Plz)dz
-l—nZ/ /

By V' we denote the class of functions of bounded variation and by V(f) the

(t))dt F(x dm+n/ f(z dx/F

finite variation of function f on [0,1]. Let Cy be a class of functions f for which
fla) =4 fla) e V.
By A we denote the class of absolutely continuous functions. A is a Banach space

with the norm

1
£l = /1l +/O ()] da

2. THE MAIN PROBLEM

Suppose that f € Cy is an arbitrary function and (i,,) is trigonometric [2, Ch.
4], Haar [3, Ch. 1] or Walsh [3, Ch. 1] system, then it is evident that if 0 < v < 1,

i CH kY =0(1) i k2K < +oo.
k=1

k=1
There arises the question: is the series

> CRHK
k=1
convergent for any f € Cy and for arbitrary ONS when 0 < v < 1?7

It is known (see [4]) that if f € Ly is an arbitrary function (f ~ 0) and (ax) € f2

is an arbitrary sequence of numbers, then there exists an ONS (ip,,) such that
Cn(f)=dan, n=1,2,... (d# 0 depends only on f and (ay)).

Assume that g(x) = 1 for z € [0;1] and let
1

Vvnlog(n+1)°
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Then, since (ay,) € {5 as it was noted above, there exists an ONS (¢,,) such that
Cn(g) =dan, n=1,2,....

Hence
o0

- 1
G TILPE) gL S
Pt i klog™(k+1)

though in this case g € Cy.

The similar problems are considered in the papers [5]-[8].

3. THE MAIN RESULTS

Theorem 3.1. Let (py) be an ONS on [0;1] such that H,(C(h)) = O(1) and
H,(C(g9)) = O(1) (see Lemmas[I.1] and[I.9). If for arbitrary (a,) € {2 (see (L.2))

(3.1) Dy(a) = O(1)Hn(a),

then for any f € Cy, 0 <y <1, there holds

> CRAK < +o0.

k=1
where E,,(C,z) = E,(a,z) when Cr(f) =ap, k=1,2,....
In we substitute F(z) = B,(C;x) and f(x) = f'(z):

(3.3) / F'(2)Bn(C, z) dxfnZ/n (f’(m)ff’(x+%))d:r/on B,(C,x) dz
+n2/ / f/(#))dt B,(C,z) dz

1,,

By conditions (3.1)) and f € Cy we get (A;, = [i;’ %])

(34) |P|= nO(%) nz:l sup

=1 TEA;,
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According to Lemma [1.3] (0 < v < 1),
(3.5)

n

|P2|=n0(§) max |f(x |/ A (C,)] dz = OV (')

z,teEN;,

Next, Lemma [I.2] and conditions of Theorem [3.] imply

1
/ B, (a,z)dx
0
Taking into account (3.4), (3.5) and (3.6) in (3.3]) we get

(3.7)

\P3| =

z| = O(1)H,(C) + O(1).

Using (3.2) and integration by parts we have
(3.8)

k:1C m—/ fx sczf(l)/OlEn(C,g;)dm_/Olf/(x)B

It can be easily verified that (see (3.8]), (3.7) and Lemma

ch £EY = O(1)H,(C)H,(C(h)) + O(1)H,(C) + O(1)

(NI

=0(1)+0(1) < > c,f(f)m) .
k=1

So

Finally, for any f € Cy,

DGR < 4oo.
k=1
Theorem is proved.

Theorem 3.2. Let (p,) be an ONS on [0;1]. If for some (by) € {2

(3.9) 117rln_>bolip Hl( ) | Dy, (b)] = +o0,

then there exists a function s € Cy such that
o0
Z C%(s)n” = +o0.
n=1

Proof. First, we suppose that

lim H,(C(h)) =400 or lim H,(C(g)) = +oc.

n—oo n—oo
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Since h(x) = 1 and g(x) = x, when z € [0, 1], we conclude that

v v
nlgrgo kZ:l CE}(h)k" = +o0 or nhrr;o Z C¥(g)k" = +o0.
In such a case Theorem [3.2]is proved.

Now we assume that

(3.10) H,(C(h))=0(1) and H,(C(g))=0().
We have
D, ( —max/Bamdx ‘/ n(a, ) dx|, where 1 <i, <n.
1<i<n

Here we must note that if 4,, = n and

1
hTILILbOl(l)pH o /0 B, (a,x)dz| = o0,
then according to Lemma [T.3]
1
‘/ By (a,z)dz| = 0O(1)
1—1

and

1 n
limsup —— B, (a,x)dx
mow | [ Bl

] /01 B, (a,x)dx

We define the sequence of functions (f,,) as follows:

= lim sup
n—oo

— lim sup

1 1
i B, (a,x)d
paies Ham‘[_; ()i

0 when z € [0, =2=2],
(3.11) falz) =<1 when x € [;" 1],

nr—int2  when g € [n=2 in],
In (3.3) we substitute f' = f,, then

(3.12)

i

/fn ba:d:cfnZ/n fulz fn<x+%))dx/0an(b,x)dz
+nz/ / (Fu(@) — Fu(t))dt Bo(b, 2) dz

1
—I—n/ fn(m)dx/ B, (b,x)dx = S1 + S2 + S3.
1-1 0

By (3.11), since |f,(z) — fn(t)| < 1 when z,t € [0,1] and f,(z) — f»(t) = 0 when
z,t€[0,2=2] or z,t € [ﬁ 1], using Lemma we receive

(3.13) 19| < n%/ " Bu(b,2)] dz = O(1).
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Next, taking into account Lemma and (3.10)), we get

/0 By (b, 2) dz| = O(1)Hyy () Hyy (C(R)) + O(1) Hoy (b) Hoo(C(g)) = O(1) Hin(b).
Hence it follows that
(3.14) EX §n/1_7 \fu(2)| do / Bo(b, 2) dz| = O(1) Hy (1),

Taking into consideration we have

in—2

o [ <fn<w>—fn<m+$>>dx=— [y, L

ip—1

0 [ (s )or= g

in in

O[5 (e e [1 M
n 31 1 "

"4 n 4an’

d) / (fn(:z:)—fn(er%))dx:O when i < in—3 or i> i+ L.

n

Therefore, due to a)fd) we get

1 LnnZ
:n—/ n(b, z) dx bxdx—i——/ n(b, x) dz
dn J,
o 1 1 [+
> / B, (b,x) dx —7/ | B, (b, x)|da:—f/ | B, (b, x)| dz.
0 4 /i 2 Jin—1
Since (see Lemma [1.3)
/" 1B, (b,z)|dx = O(1) and / B, (b, z)| dz = O(1),
we have
(3.15) |S1] > D, (b) — O(1).

Hence from (3.12), because of (3.13), (3.14) and (3.15)), it follows

/ fu(x)Bp(b,x) dz| > D, (b) — O(1).
From here and (3.9)),
(3.16) lim SUp 2 (b, z) dx| = +o0.
n— o0
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It can be easily verified that

Ay( w(b,x)dr, n=1,2,.

is a sequence of linear and bounded functionals on A.
On the other hand,

1
(3.17) fulla = [1fulle + / 1 (2)] da < 2.

Since ((3.16))
limsup |A,(fr)] = +00

n—oo

and (3.17), by virtue of Banach—Steinhaus Theorem there exists a function u € A
such that

= 4-00.

(3.18) limsup ’/ n (b, x) dx
n—oo

We assume that

It can be easily verified (see (3.8])) that
n 1
S Culs) bk :/ Zbkmpk / s(2) En (b, ) d
k=1

/ By (b, 2) d:c—/ (2) B (b, ) da.

From here, since s'(x) = u(z), by virtue of Lemma [1.1] and (3.10) (see (3.18))), we

get

3.19) limsup —— Cr(s)bik7| > limsup —— / w(x)By (b, x) dx
319) tmow g S Cuton| 2 o i [ ute) e
(1)
— limsu = +-o00.
MopH (b)

Now using the Cauchy inequality,

<(Sme) (Sctew) = mn( X cien)
k=1 k=1 -
Finally, due to we get
. 2 ~ 2 T
nh_)n;@ (’; Ci;(s)k ) = lim sup .0

k:“*Ck (8)

n—0o0

Z bkaCk(s) =
k=1

Since s’ € A, Theorem is proved. [
7
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Theorem 3.3. From any ONS one can insolate a subsequence (pn, ) such that for

any function f € Cy,
Z Cr (HEY < 400,

where C,, (f fo ), () dr and 0 < v < 1.

Proof. Let the ONS (¢,,) be a complete system on [0, 1]. Then, by the Parceval
equality, for any z € [0, 1] we have

i(/OIWL(U)du) =z and Z(/ xn(u du>2:;

n=1
According to the Dini Theorem there exists a sequence of natural numbers (ng)
such that

fj (/xgos(u)du>2 < % and i (/legps(u)du>2 < %

S=nyg S=nNyp

2

uniformly with respect to z € [0, 1]. From here, uniformly with respect to = € [0, 1],

we obtain

(3.20) ‘ /Ow ©n, (u) du

In our case let

1
<-, k=1,2,....
k_?

1 1
< — and ’/ Ton, (u) du
k 0

m

Zakkv/ ©on, (t)dt and Hp, Zakk"’ 5.

Next, for arbitrary (a,) € ¢2 and 0 < v < 1 we get (see (3.2) and (3.20))

_ (/01 Bfn(a;x) dm)z
(ZW) (o ([ enwrn))

O(1)H (a).

-

" B,,(a,z)dx

(NI

Il
&
7N
x>
ANk
—_
o
2
~
\_/

Thus
(3.21) Dy, (a) =O(1)H,,(a).

In addition (see (3.20))),

Hy(C(h)) = (iCﬁk(h)W)é _ (im(/()lwnk(x)dx)?)g

k=1
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and

2

H,.(Clg)) = (g}c’%"(g)m); _ (ém(/glwnk(w)dmf)
- (im”); =0(1).

k=1

According to (3.21) and Theorem for any f € Cy the series Y ;o | CZ(f)k7 is

convergent. O

4. PROBLEMS OF EFFICIENCY
Theorem 4.1. Let (¢,) be an ONS and

1
n

/ ") du = O(1)

uniformly with respect to x € [0,1]. Then for arbitrary (a,) € £2,
(4.1) D, (a) = O(1)H,(a).

Proof. In our case

Dy,(a) = max / B, (a,z)dx
<i<n| Jo

= max
1<i<n

kz:akm/oi /Ox o (1) du da
— o(1) 2": %mkw _ 0(1)<i azm) : (Z /f—2+7>é — O(1)H,(a).
k=1 k=1

k=1

So, the trigonometric (v/2 cos 2mna, v/2 sin 2rna) and Walsh systems satisfy condition

E1). O

Theorem 4.2. If (X,,) is the Haar system, then for an arbitrary (a,) € fs,

Proof. The definition of the Haar system implies (see [3, Ch. 1])

2m+1

‘/j > ark? Xy (u) du

k=2m41

<27 % |y )|k (M),

where 2™ < k(m) < 2m+L,

Without loss of generality, we suppose

B, (a;z) = Zakk'y/ i (u) du.
k=2 0
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From here, if n = 27, for an arbitrary (a,) € 2 (0 <y < 1) we have

D, (a) = max

/n B, (a,z)dx
0

1<i<n
=1 . 2mtt T
= 2
max 3 /0 Z /0 Xi(u) du k7 ay, dx
m=0 k=2m41
qg—1
= O(l) 2_7k7(m)|ak(m)\

aik‘")é (ni)z—mzvm); = O0(1)H,(a).

It is easy to prove that when n =29+, 1 <[ < 29, the condition D, (a) = Hy(a)
is valid. g

(1]
(2]
(3]

(4]

[5]

[6]

[7]

(8]
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