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Abstract. Value distribution, particularly the numbers of a-points, weren’t studied for
meromorphic functions in a given domain which are solutions of some complex differential
equations. In fact we have here a “virgin land". A new program of investigations of similar

solutions in a given domain was initiated quite recently. In this program some geometric
methods were offered to study some standard problems as well as some new type problems
related to Gamma-lines and Blaschke characteristic for a-points of the solutions of different
equations. In this paper we apply these methods to get bounds for length of Gamma-lines
and Blaschke characteristic for a-points for solutions of equations w’”’ = gw# considered in

a given domain.

MSC2010 numbers: 30D30; 30D99; 34A26; 34A99; 34M10; 34M99.

Keywords: Schrédinger type equations; solutions of complex equations in a domain;
Gamma-lines.

1. INTRODUCTION

There is a huge number of investigations in complex differential equations (CDE)
when the solutions are meromorphic in the complex plane or in the unit disk. The
main attention was paid to the value distribution type phenomena of the solutions,
particularly to the zeros (more generally to the a-points) of these solutions. Meantime
we have very few studies of meromorphic solutions in a given domain, particularly
zeros of similar solutions weren’t touched at all. In fact our present situation with
the solutions in a given domain is similar to that in the beginning of 20th century
when studies of the growth of solutions in the complex plane were started.

Recently a new program of investigations of CDE-s with solutions in a given
domain was initiated in [4], where different characteristics of solutions were studied
for different CDE-s. In this paper we consider two characteristics for the solutions

in a given domain of equations w” = gw*, where p is a positive integer number.

1The work is supported by the NSF of China (11701111), the NSF of Guangdong Province
(2016A030310257).
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2. ON a-POINTS OF SOLUTIONS OF w" = gw*

Denote D; = {z : |z| < 1}. Let w(z) be a meromorphic function in Dj.
Denote a-points of w by z;(a) € D;. The Blaschke sum of zeros of w, i.e. > (1 —
|z:(0)]), was widely used in the study of meromorphic functions in Dy, particularly
in CDE-s with solutions in the unit disk. For a given analytic function in Dj,
Pommerenke considered in [I0] (1982) the equation w” = gw (one dimensional
complex Schrédinger equation) with solutions w in Dy and proved for the zeros
zi(0) of w: assumption [ [ 19(2)|'/2do < oo implies 3°,(1 — |2;(0)]) < co. A new
stage of studies of this equation related to interrelations of g and Blaschke sum for
D, was started recently by Heittokangas [6] (2005); for further developments see
his survey in the book [g].

As we mentioned above our aim is to study CDE-s with solutions in domains D.

Assume that D is a simply connected domain with smooth boundary 9D of finite
length I(D) and area S(D).

We study the following more general equation
(") w’ = gut,

where 4 is a positive integer number and g(z) is a regular function in D = DUJD.

As a characteristic of a-points we consider the following Blaschke sum of a-
points for a given domain D (considered first in [2, Chapter 1]) which we define
as N(D,a,w) := Y, Dist(z;(a),0D), where Dist(x,y) stands obviously for the
distance between = and y. Notice that in the case when D is the disk D; we have
Dist(z;(0),0D) = 1 — |2(0)|; respectively the Blaschke sum for D becomes usual
Blaschke sum for D;.

For a regular function w in D we denote M (w) := max,cap |w(2)] E|and m(w’) =

min, ¢ p [w'(2)|.

Theorem 2.1. For an arbitrary reqular in D solution w(z) of equation (S*) and

any complez value a # 0 we have
(21) N(D,a,w) S KllM“(w) +K12m(w')+K13,

where K11, K12, K13 are independent of w.

Some comments. Notice that if we know the magnitude w’'(zp) at any point

2o € D we can substitute m(w’) in (2.1) by |w’(20)|. The coefficients depend on the

2Here we may remember that in numerous studies concerning regular functions w in the
disks D(r) := {2z : |z2| < r} (instead of the domains D) the magnitude M (w) plays a role of
a characteristic. The same is true also for entire functions; in this case we deal usually with
In M (w) := Inmax,cpp(r) [w(2)|-
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equation, the value a and the domain D. They are determined in the simple terms:

_ 3m+3pu Tt
K = Al M(g)l(D)S(D), Kiz= la S(D),
and
K 71// I gy T2y
137y g(2) 7 8 '
D

Thus, K11, K12, K13 are finite when the last double integral is finite so that (2.1)
yields, in this case, simply determined bounds for V(D a,w).
Finally, we notice that in the case when g¢(z) is a polynomial of degree n the

upper bounds of the double integral can be easily given by n and S(D).

3. GAMMA-LINES OF SOLUTIONS OF w” = gw"

Gamma-lines, motivation of their studies and the preceding results. Let
w(z) := u + i := Rew + iImw be a meromorphic function in D. Consider level
sets of u — A, —00 < A < +o00, that is solutions u(x,y) = A (or Rew(z) = A). (By
the definition, level sets of real functions u(z,y) are solutions of u(x,y) = 0). In
turn level sets are particular cases of Gamma-lines of w which are those curves in
D whose w-images belong to a given curve. For instance, when I' is the real axis,
Gamma-lines become level sets of function u(x,y), i.e. solutions of u(x,y) = 0,

One can notice a striking similarity between the a-points (which are the solutions
w(z) = a) and the level sets (which are solutions of u(x, y) = A). On the other hand,
level sets of u — A admit a lot of interpretations (streaming line, potential line,
isobar, isoterm) in different applied fields of engineering, physics, environmental
and other problems. Due to the above arguments (similarity with a-points and
applicability), it is pertinent to study largely level sets for different classes of
meromorphic functions particularly for the solutions w of different classes of complex
differential equations.

We denote the length of Gamma-lines of w lying in D by L(D,T’,w). These
lengths were widely studied in [2] for large classes of smooth Jordan curves T
(bounded or unbounded) in the complex plane. The only restriction for I' is that
v(T') = Var,crar(z) < oo, where Var means variation, ar(z) is the angle between
the tangent to I at z € I' and the real axis.

As to Gamma-lines for solutions of equation, they were considered first recently
in [I] for solutions in D of equation w” = gw, where estimates of L(D,T',w) were

given in terms of Ahlfors-Shimizu classical characteristic.
5
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In this section, we give upper bounds of L(D,T',w) for solution w of (S#). The
bounds will be given in terms of M (w), which in application mean often some

important physical concepts.

Theorem 3.1. Let w(z) be a regular function in D which is a solution of equation
(S*) and T' a smooth Jordan curve with v(I') < oo which does not pass through

zero. Then
(31) L(D,F, w) S KglM“(w) + KQQ?TL(’LU’) =+ K23,
where Ko1, Koo, Koz are independent of w.

The coefficients depend on the equation, the curve I' and the domain D. They
are determined in the simple terms:
3T+ 3 2T+ 2p
lar| |ar|

where K(I') = 3(v(I') + 1), ar is the closest to the zero point belonging to T’ E| and

T+ 2
Koz =K //

2
Theorem 3.2. Assuming in Theorem 3.1 that I' is a straight line which does not

Ko = K(I) M(g)UD)S(D), K = K(T) S(D),

do + K(T)

I(D).

pass through zero, we have
(32) L(D, F, w) S KglMﬂ(w) + Kggm(w,) + K33,

where K31, K39, K33 are independent of w.

Assuming that a is the closet to zero point on I' we have

3m+3 +
Ks = "= M()(D)S(D), Kz ="""5(D),
2|al |al
and ‘)
q'(z T+ 2

(D).
o) e

4. PROOFS

Proof of Theorem 3.1. We need the following “basic identity for Gamma-lines”

(see |2], item 1.1.3, identity (1.1.6)]). We state it as

Lemma 4.1. For any regular function w in D we have

/L(D,F(R),w)dR: //|w’|da,
0 D
where T'(R) is the circumference {w : |w| = R}.

3If we have more than one similar point we take arbitrary of them.
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For a given a € C, a # 0, we denote D(|a|/2,3|a|/4) := {z : |a]/2 < |w(z)] <
3|a|/4}. This set consists of some connected components which are simply connected
or multiply connected components. Dividing multiply connected components into
some simply connected ones we can consider D(|a|/2,3]a|/4) as a union of simply
connected domains Dy (|a|/2,3|a|/4), where A is a counting index of these domains.
Applying Lemma 4.1 in each Dy (]a|/2,3|a|/4) and then summing up for all indexes

A we obtain

3Jal/4
/ L(D,T(R),w)dR = // |w'| do.
al/2

o/ D(lal/2,3al/4)
Due to the mean value theorem we conclude that there is R* € (|a|/2, 3|a|/4) such

that

4
(4.1) L(D,I(R*),w) = Tal // |w'| do.

a

D(lal /2,3]al/4)
Denote D(|Jw| > ¢) = {z : |w(z)] > ¢ > 0}. The set D(Jw| > ¢) may consists
of one or more domains D, (Jw| > ¢); clearly they can be as simply connected as
well as multiply connected. By 0D, (Jw| > ¢) we denote the union of all boundary
components of D, (|w| > ¢). Notice that the boundary 0D, (|w| > R*) should have a
(non empty) common part 0D, (|w| > R*)NOD with D. (Indeed, assume contrary,
that 0D, (Jw| > R*) lies fully inside D. Then w should have a pole inside D which
contradicts our assumption that w is regular in D). Observing that the different
common parts (taken for different ) do not overlap we obtain
(4.2) > 10Dy (jw| > R*)) < L(D,T(R*),w) + 1(9D).
n

We need also the following “principle of logarithmic derivatives”, which was established

recently [3] by making use of Gamma-lines technic.

Lemma 4.2. Let d be a bounded domain with piecewise smooth boundary (d can
be also multiply connected); we assume that the intersection of d with any straight
line consists of finite number of intervals. Then for any meromorphic function f in

the closure of d and any integer k > 1 we have
f ()
3 17 J] {7
d d

'(2)
f(2)
Comment 1. In [3] we assumed that the intersection of d with any straight line

do + %rl(ad).

consists of finite number of intervals. This restriction on “intersection” was putted
just for simplicity of the proof. To avoid this it is enough to consider a domain d*
(“very close” to d) which satisfies this restriction. Then we can apply (4.3) to d*

and make limit transfer to d. We will come to the above wording of Lemma 4.1.
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Assume now that f is our regular function w in D and d is one of the domains
D, (|lw| > R*). Notice that the part of the boundary 9D, (jw| > R*) lying in D
consists of piecewise analytic curves with a finite number of possible turning points
where w’ = 0. This implies that the boundary of each 0D, (|w| > R*) is piecewise
smooth so that we can apply (4.3). Applying it for the derivative w’ in a given
domain D, (|w| > R*) with k > 2 we have

(44 (k+1)
woles [l [

Dy (jw]>R*) Dy (Jw|>R*)

do -+ 2 (k= 1)L (0D, ([u] > R")).

‘U}Z

Further, we need the following “tangent variation principle” (see [2, item 1.2.2
inequalities 1.2.8 and 1.2.9]).

Lemma 4.3. For any meromorphic function f(z) in D and any smooth Jordan

curve I’ (bounded or unbounded) with v(T') < oo we have

(4.5) L(D,T,f) < K(T //

where K(I') = 3(v(T") + 1).

//
/ j do +1(0D) %,

Comment 2. In particular case when I' is a straight line, the above formula can

be improved. Due to Theorem 1 in [5] we have in this case

(4.6) L(D,T, f) < % / / ‘J;((ZZ))
D

Applying (4.4) to the regular function w in any of the domains D, (Jw| > R*) and

do + %l((’?D).

combining with (4.4) we obtain: for any smooth Jordan curve I' with v(T") < oo,

L(Dy(jw| > R"), T, w) <

sof ]

do + g (k—1)1(0D,(lw| > R*)) + (D)
Dy (Jw|>R*)

Summing up this inequality by n we get the following formula for D(|w| > R*):

L(D(Jw| > R"),T,w) <

soo [ [

D(|w|>R*)

do + g (k—1)1(@D(lw| > R*)) + (D) §

L(OD(jw| > R)) = 3" 1(0D,(|lw| > R")).

n
8
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Applying (4.2) to the last inequality we obtain

(4.7 L(D(Jw| > R*),T,w) < K(I')x

wk+D) (2
// ‘ w®) (z

D(|w|>R*)

do+ ™=V b rire),w) + (” (k; DI 1) I(D)

2

Comment 3. For a straight line I' we can apply (4.6) instead of (4.5). Respectively
instead of (4.7) we get

) 1 w D (z)
L(D(lw| > R*),T",w) < 5 () do+
D(jw|>R")
(4.8) % (k—1) L(D,T(R*),w) + % <7T(k2_1) + 1) (D).

Now we consider a curve I' in Theorem 3.1 which does not pass through zero.
Assume ar is the point on I' which is the closest to the point 0; if we have more
than one similar points we take arbitrary one of them. With this value ar we define
as above corresponding value R} € (|ar|/2,3lar|/4) and notice that the curve T
(which we consider in w-plane) lies fully in the set D(Jw| > Rj). Respectively
Gamma-lines of this I lie fully in the set D (Jw| > Rf) so that we have L(D(Jw| >
R}y), I w) = L(D,T',w) and (4.7) yields

(4.9) L(D,T,w) < K(T)x

(1) (5
/| e

D(|w|>R})

do + % (k= 1) L(D,T(R}),w) + <7r(k21) B 1> "

Now we apply the last inequality to our solution w(z) of equation (S*) for u = 2,
we have for any z € D

‘w’”(z) _ |9 @)+ pg(z) (w)" ' (2)| _ |g(2) w'(z)

w”(2) 9(2) (w(2))" 9(2) w(z)

Thus, due to definition of R}, for any z € D(Jw| > R}) we have |w(z)| > |ar|/2,

IN

+p

consequently

2
+ o [w'(2)]
jar|

w"(Z)| _ |9(2)
w’(z) |~ | g(2)
and taking into account that D(jw| > R}) C D we get

///
I/ \ &
D(Jw|>R})
(2) (2) 2u ,
[w'(2)| p do < —_— |w'(2)] do.
9(=) | " Jarl F| " arl
D(Jw|>R}) D
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Due to (4.1) we also have

L(D,T'(Ry),w Tar] /|w | do

so that applying the last two inequalities to (4.9) applied for ;1 = 2 we obtain

L(D,T,w) <
9'(z) 21 + 24 / 1
(4.10) ol G é/ ()| do + (5 +1) UD)

Since w and g are regular functions and p is an integer we conclude that gw* is a
regular function so that taking into account that w” = gw* we have for an arbitrary

Zoe_D

z z

W)~ ') = [ w2z = [ o(2) (@) dz.
20 20
Consequently we have |w'(2)| < M (g)M*"(w)lp(z, z0) + |w'(z0)|, where Ip(z, zo) is
the length of a curve, say v, which lies in D and connects z and zy. We always
can connect z with a point z* € 9D and zp with a point z§ € 0D by some curves
with the lengths [(D)/2 and then can connect the points z* and zj§ by a part
of the boundary 9D of the length I(D)/2. Thus we always can take v such that
Ip(z,20) < 3l(D)/2. Also we can take zy such that |w’(zg)| reaches its minimum in

D (that is |w'(20)| := m(w') := min, ¢ p |w'(2)|). With similar notations we obtain
[ W @lde < 5062 @NDIS(D) + m(w)S(D)
D

Consequently (4.10) implies

3+ 3p
|ar|

L(D,T,w) < K(I') M(g)M*(w)l(D)S(D)+
2+ 2p

K(T) far]

m(w")S(

Z

T+ 2

(411) K(F) Z(D) = KglM“(w) + Kggm(w/) + K23,

with Ko, Koo, Koz given after Theorem 3.1. This completes the proof of Theorem

3.1.

Proof of Theorem 3.2. This theorem is a particular case of Theorem 3.1 where

we deal with a straight line I'. Due to Comment 3, we see that the constant K (T")

in (4.7) is replaced by 1/2 for the straight line; respectively we should apply (4.8)

(instead of (4.7)) in the above proofs. Applying (4.8) we obtain (4.9), (4.10) and
10
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(4.11) with K(T') replaced by 1/2. Respectively we get the proof of Theorem 3.2
with the coefficients K31, K32 and K33 given after Theorem 3.2.

Proof of Theorem 2.1. The next inequality giving interrelations between Blaschke
characteristic and Gamma-lines was proved in [2, item 1.5], (see also [4} item 7.1])):
for any regular function w in D and any smooth Jordan curve I' connecting a with
oo we have N(D,a,w) < L(D,T,w). Since any straight line passing through a

contain two parts connecting a with co we have for any straight line I’
1
N(D,a,w) < §L(D,I‘,w).

Due to Theorem 3.2 we have upper bounds L(D,T", w) for any straight line I", which
does not pass through zero. Respectively, Theorem 3.2 and the previous inequality

give the following upper bounds for N (D, a, w):
1 1
N(D,a,w) < iL(D’P’ w) < 3 [K31 M"(w) + Kzam(w') + Ks3) .

Denoting K11 = %Kgl, Ko = %Kgg and K3 = %Kg;g we obtain Theorem 2.1.
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matrices and operators, central limit theorems for tapered Toeplitz type quadratic functionals,
and tapered Fejér-type singular integrals. These are the main tools for obtaining the corres-
ponding results, and also are of interest in themselves. The processes considered will be discrete-

time and continuous-time Gaussian, linear or Lévy-driven linear processes with memory.
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1. INTRODUCTION

Let {X(t), t € U} be a centered real-valued stationary process with spectral
density f(\), A € A, and covariance function r(t), t € U. We consider simultaneously
the

continuous-time (c.t.) case, where U = R := (—o00,00), and the discrete-time
(d.t.) case, where U = Z := {0,£1,42,...}. The domain A of the frequency variable
Ais A =R in the c.t. case, and A := [—7.7] in the d.t. case.

We want to make statistical inferences (parametric and nonparametric estimation)
about the spectrum of X (t). In the classical setting, the inferences are based on an
observed finite realization X of the process X (¢): Xp := {X(¢), t € Dr}, where
Dp :=10,T] in the c.t. case and Dy :={1,...,T} in the d.t. case.

A sufficiently developed inferential theory is now available for stationary models
based on the standard (non-tapered) data Xg. We cite merely the following references
Avram et al. [3], Casas and Gao [8], Dahlhaus [12], Dahlhaus and Wefelmeyer [14],
Dzhaparidze [I5], Dzhaparidze and Yaglom [I6], Fox and Taqqu [17], Gao [I§],
Gao et al. [19], Ginovyan [20, 2], 24, 25], Giraitis et al. [37], Giraitis and Surgailis
[38], Guyon [40], Has’minskii and Ibragimov [41], Heyde and Dai [42], Ibragimov
[43, [44], Ibragimov and Khas’minskii [45], Leonenko and Sakhno [47], Taniguchi

12
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[49], Taniguchi and Kakizawa [50], Tsai and Chan [52], Walker [53], Whittle [54],
where can also be found additional references.

In the statistical analysis of stationary processes, however, the data are frequently
tapered before calculating the statistic of interest, and the statistical inference
procedure, instead of the original data X, is based on the tapered data: X% =
{hr(#)X(t), t € Dr}}, where hrp(t) := h(t/T) with h(t), t € R being a taper
function.

The use of data tapers in nonparametric time series was suggested by Tukey
[I]. The benefits of tapering the data have been widely reported in the literature
(see, e.g., Brillinger [6], Dahlhaus [0, [I1], Dahlhaus and Kiinsch [I3], Guyon [40],
and references therein). For example, data-tapers are introduced to reduce the so-
called ’leakage effects’, that is, to obtain better estimation of the spectrum of the
model in the case where it contains high peaks. Other application of data-tapers is
in situations in which some of the data values are missing. Also, the use of tapers
leads to bias reduction, which is especially important when dealing with spatial
data. In this case, the tapers can be used to fight the so-called ’edge effects’.

In this paper, we survey some recent results on parametric and nonparametric
statistical estimation about the spectrum of stationary models with tapered data,
as well as, a question concerning robustness of inferences, carried out on a linear
stationary process contaminated by a small trend. We also discuss some questions
concerning tapered Toeplitz matrices and operators, central limit theorems for
tapered Toeplitz type quadratic functionals, and tapered Fejér-type kernels and
singular integrals. These are the main tools for obtaining the corresponding results,
and also are of interest in themselves. The processes considered will be discrete-time
and continuous-time Gaussian, linear or Lévy-driven linear processes with memory.

The rest of the paper is structured as follows. In Section [2] we specify the model of
interest - a stationary process, recall some key notions and results from the theory
of stationary processes, and introduce the data tapers and tapered periodogram.
In Section [3] we discuss the nonparametric estimation problem. We analyze the
asymptotic properties, involving asymptotic unbiasedness, bias rate convergence,
consistency, a central limit theorem and asymptotic normality of the empirical
spectral functionals. In Section [d we discuss the parametric estimation problem. We
present sufficient conditions for consistency and asymptotic normality of minimum
contrast estimator based on the Whittle contrast functional for stationary linear
models with tapered data. A question concerning robustness of inferences, carried
out on a linear stationary process contaminated by a small trend is discussed in
Section [5} In Section [ we briefly discuss the methods and tools, used to prove the
results stated in Sections [BHEl
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2. PRELIMINARIES

In this section we specify the model of interest - a stationary process, recall some
key notions and results from the theory of stationary processes, and introduce the

data tapers and tapered periodogram.

2.1. The model. Second-order (wide-sense) stationary process. Let {X (u), u € U}
be a centered real-valued second-order (wide-sense) stationary process defined on
a probability space (2, F, P) with covariance function r(¢), that is, E[X (u)] = 0,
r(u) = E[X(¢t +u)X(t)], u,t € U, where E[-] stands for the expectation operator
with respect to measure P. We consider simultaneously the c.t. case, where U =
R := (—00,00), and the d.t. case, where U = Z := {0,£1,£2,...}. We assume
that X (u) is a non-degenerate process, that is, Var[X (u)] = E|X (u)|?> = r(0) > 0.
(Without loss of generality, we assume that 7(0) = 1). In the c.t. case the process

2 50 as

X (u) is also assumed mean-square continuous, that is, E[X (¢) — X (s)]
t—s.

By the Herglotz theorem in the d.t. case, and the Bochner-Khintchine theorem
in the c.t. case (see, e.g., Cramér and Leadbetter [9]), there is a finite measure p
on (A,B(A)), where A = R in the c.t. case, and A = [—7.7] in the d.t. case, and
B(A) is the Borel o-algebra on A, such that for any u € U the covariance function

r(u) admits the following spectral representation:

(2.1) r(u) = /Aexp{i/\u}du()\), ueU.

The measure p in is called the spectral measure of the process X (u). The
function F(\) := p[—m, A] in the d.t. case and F()\) := p[—o0, A] in the c.t. case,
is called the spectral function of the process X (t). If F()\) is absolutely continuous
(with respect to Lebesgue measure), then the function f(X) := dF(X)/dA is called
the spectral density of the process X (t). Notice that if the spectral density f()\)
exists, then f(\) >0, f(A\) € L'(A), and becomes

(2.2) r(u) = /Aexp{i/\u}f()\)d)\, ueU.

Thus, the covariance function r(u) and the spectral function F'(\) (resp. the spectral
density f(A)) are equivalent specifications of the second order properties for a
stationary process X (u).
Linear processes. Existence of spectral density functions. We consider here stationary
processes possessing spectral densities. For the following results we refer to Ibragimov
and Linnik [46].

(a) The spectral function F'(\) of a d.t. stationary process {X(u), u € Z} is

absolutely continuous (with respect to the Lebesgue measure) if and only
14
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if it can be represented as an infinite moving average:

o0 o0

(23) X(@)= Y a(w—REw), 3l <o,

k=—o0 k=—c0
where {¢(k),k € Z} ~ WN(0,1) is a standard white-noise, that is, a
sequence of orthonormal random variables.
(b) The covariance function r(u) and the spectral density f(\) of X(u) are
given by formulas:

oo

(24) r(w) = Y alwthkak), FO) =5

o0

Z a(k)e—ikk

k=—o00

, A€ [-m,m7].

k=—o0

Similar results hold for c.t. processes. Indeed, the following holds.
(a) The spectral function F'(\) of a c.t. stationary process {X(u), u € R} is
absolutely continuous (with respect to Lebesgue measure) if and only if it

can be represented as an infinite continuous moving average:

(2.5) X = [atw=taco.. [ laPi <o,

where {£(t),t € R} is a process with orthogonal increments and E|d £(t)]? =
dt.
(b) The covariance function r(u) and the spectral density f(\) of X(u) are

given by formulas:

2

1
, AeR.

26)  r(u) = / a(u+ Da(@)de, ) = — / e~ Mq(t)dt
R 27 | Jr

The function a(-) in representations and plays the role of a time-

invariant filter, and the linear processes defined by and can be viewed

as the output of a linear filter a(-) applied to the process £(t), called the innovation

or driving process of X (t).

Processes of the form and appear in many fields of science (economics,
finance, physics, etc.), and cover large classes of popular models in time series
modeling. For instance, the classical autoregressive moving average models and
their continuous counterparts the c.t. autoregressive moving average models are of
the form and , respectively, and play a central role in the representations
of stationary time series (see, e.g., Brockwell and Davis [7]).

Lévy-driven linear process. We first recall that a Lévy process, {£(¢), t € R} is
a process with independent and stationary increments, continuous in probability,
with sample-paths which are right-continuous with left limits (cadlag) and £(0) =
€(0—) = 0. The Wiener process {B(t), t > 0} and the centered Poisson process
{N(t) — EN(t), t > 0} are typical examples of centered Lévy processes. A Lévy-
driven linear process { X (¢), ¢t € R} is a real-valued c.t. stationary process defined by
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([2-5), where £(t) is a Lévy process satisfying the conditions: E£(t) = 0, E€%(1) = 1
and E¢4(1) < oo. In the case where £(¢) = B(t), X(t) is a Gaussian process (see
Bai et al. [4]):

Dependence (memory) structure of the model. In the frequency domain setting,
the statistical and spectral analysis of stationary processes requires two types of
conditions on the spectral density f(A). The first type controls the singularities of
f(A\), and involves the dependence (or memory) structure of the process, while the
second type — controls the smoothness of f(A). The memory structure of a stationary
process is essentially a measure of the dependence between all the variables in
the process, considering the effect of all correlations simultaneously. Traditionally
memory structure has been defined in the time domain in terms of decay rates of
the autocorrelations, or in the frequency domain in terms of rates of explosion of
low frequency spectra (see, e.g., Beran et al. [5], Giraitis et al. [37], Guégan [39]). It
is convenient to characterize the memory structure in terms of the spectral density
function. We will distinguish the following types of stationary models:

(a) short memory (or short-range dependent),

(b) long memory (or long-range dependent),

(¢) intermediate memory (or anti-persistent).

Short-memory models. Much of statistical inference is concerned with short-
memory stationary models, where the spectral density f(A) of the model is bounded
away from zero and infinity, that is, there are constants C; and Cs such that
0<C < f(N) <0y < o0

A typical d.t. short memory model example is the stationary Autoregressive
Moving Average (ARMA)(p, q) process X (t) defined to be a stationary solution of

the difference equation:

where 1, and 6, are polynomials of degrees p and ¢, respectively, B is the backshift
operator defined by BX(t) = X(t — 1), and {e(¢),t € Z} is a d.t. white noise,
that is, a sequence of zero-mean, uncorrelated random variables with variance o2.
The spectral density f(A) of (ARMA)(p, q) process is a rational function (see, e.g.,

Brockwell and Davis [7], Section 3.1):

0,2 |0 (671)\)|2
2.7 fo) = —. 0 2
27 = 2 e
A typical c.t. short-memory model example is the stationary c.t. ARMA(p,q)
processes, denoted by CARMA(p, ¢). The spectral density function f(A) of a
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CARMA(p, q) process X(t) is given by the following formula (see, e.g., Tsai and
Chan [52]):
(2.8) fFO) = 2 Bl
21 |ap(IN)|?

where a,(2) and §,(z) are polynomials of degrees p and ¢, respectively.

Discrete-time long-memory and anti-persistent models. Data in many fields of
science (economics, finance, hydrology, etc.), however, is well modeled by stationary
processes whose spectral densities are unbounded or vanishing at some fixed points
(see, e.g., Beran et al. [B], Guégan [39], and references therein). A long-memory
model is defined to be a stationary process with unbounded spectral density, and an
anti-persistent model — a stationary process with vanishing (at some fixed points)
spectral density.

In the discrete context, a basic model that displays long-memory or is anti-
persistent is the Autoregressive Fractionally Integrated Moving Average (ARFIMA)
(p,d,q)) process X (t) defined to be a stationary solution of the difference equation:

Up(B)(1 — B)!X(t) = 0,(B)e(t), d<1/2,

where B is the backshift operator, ¢(t) is a d.t. white noise, and ¥, and 6, are
polynomials of degrees p and ¢, respectively. The spectral density fx(\) of X (t) is
given by

(2.9) Fx(\) = 1= e 72f(N) = (2sin(A/2)) 2 F (V) d<1/2,

where f(A) is the spectral density of an ARMA(p, ) process, given by . Observe
that for 0 < d < 1/2 the model X (¢) specified by the spectral density displays
long-memory, for d < 0 — intermediate-memory, and for d = 0 — short-memory. For
d > 1/2 the function fx(\) in is not integrable, and thus it cannot represent
a spectral density of a stationary process.

Continuous-time long-memory and anti-persistent models. In the continuous context,
a basic process which has commonly been used to model long-range dependence is
the fractional Brownian motion (fBm) {Bg(t),t € R} with Hurst index H, 0 <
H < 1, defined to be a centered Gaussian H-self-similar process having stationary
increments. The fBm By can be regarded as a Gaussian process having a ’spectral

density’:
(2.10) FO) =¢N~CHH ¢>0, 0<H<1, AeR.

The form can be understood in a generalized sense (see, e.g., Yaglom [55]),
since the fBm By is a nonstationary process.
A proper stationary model in lieu of fBm is the fractional Riesz-Bessel motion
(fRBm), introduced in Anh et al. [I], and defined as a c.t. Gaussian process X (¥)
17
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with spectral density
(2.11) FO) =cI\2*A+ X7 AeR,0<c<oo,0<a<l,>0.

The exponent « determines the long-range dependence, while the exponent [
indicates the second-order intermittency of the process (see, e.g., Anh et al. [2]
and Gao et al. [I9]).

Notice that the process X (t), specified by the spectral density , is stationary
if 0 < @ < 1/2 and is non-stationary with stationary increments if 1/2 < o < 1.

Comparing and (2.11]), we observe that the spectral density of fBm is the
limiting case as 5 — 0 that of fRBm with Hurst index H = o — 1/2.

Another important c.t. long-memory model is the CARFIMA (p, H, q) process.
The spectral density f(\) of a CARFIMA (p, H, q) process is given by formula (see,

e.g., Tsai and Chan [52]):
o AN
2.12 N) = —T(2H + 1) sin(rH)|\|!2H 0
(212) F) = T QI + sin(rH)N 2
where «a, (%) and f5,(z) are polynomials of degrees p and ¢, respectively. Notice that
for H = 1/2, the spectral density given by (2.12)) becomes that of the short-memory

CARMA (p, q) process, given by (2.8).

2.2. Data tapers and tapered periodogram. Our inference procedures will be
based on the tapered data X%:

(2.13) xXh .— {hr(t)X(t), t=1,...,T} in the d.t. case,
' T {hre()X (1), 0<t<T}  inthe ct. case,

where

(2.14) hr(£) = h(t/T)

with A(t), t € R being a taper function.
Throughout the paper, we will assume that the taper function h(-) satisfies the

following assumption.

Assumption 2.1. The taper h : R — R is a continuous nonnegative function of

bounded variation and of bounded support [0, 1], such that Hjy # 0, where
1
(2.15) Hy = / RWH()dt, keN:={1,2,..}.
0

Note. The case h(t) = Ijo 1)(t), where Ijg 1)(-) denotes the indicator of the segment

[0, 1], will be referred to as the non-tapered case.

Remark 2.1. For the d.t. case, an example of a taper function h(t) satisfying
Assumption is the Tukey-Hanning taper function h(t) = 0.5(1 — cos(wt)) for
t € [0,1]. For the c.t. case, a simple example of a taper function h(t) satisfying
Assumption is the function h(t) =1 —t for ¢t € [0, 1].

18
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Denote by Hy,r(X) the tapered Dirichlet type kernel, defined by

ST hE(#)e= ™ in the d.t. case,
(216) Hk,T()\) = T ,
Jo Ph(t)e=*dt  in the c.t. case.
Define the finite Fourier transform of the tapered data (2.13):
23;1 hr(t)X (t)e~™ in the d.t. case,
(2.17) dh(\) ==
fOT hr(t)X (t)e”**dt in the c.t. case.

and the tapered periodogram I’ ()) of the process X (¢):

1
(218) BV = - dh O () =
2
%T Zle hT(t)X(t)e_’)‘t‘ in the d.t. case,
— 4 ,
%T fOT hT(t)X(t)e_“\tdt‘ in the c.t. case.
where
(2.19) Cr := 2mHy 1 (0) # 0.

Notice that for non-tapered case (h(t) = Ijg11(t)), we have Cp = 27T

3. NONPARAMETRIC ESTIMATION PROBLEM

Suppose we observe a finite realization X7 := {X(u),0 <u <T (oru=1,...,T
in the d.t. case)} of a centered stationary process X (u) with an unknown spectral
density function f(A), A € A. We assume that f(\) belongs to a given (infinite-
dimensional) class F C LP := LP(A) (p > 1) of spectral densities possessing some
specified smoothness properties. The problem is to estimate the value J(f) of a given
functional J(-) at an unknown ’'point’ f € F on the basis of an observation Xr,
and investigate the asymptotic (as T — oo) properties of the suggested estimators,
depending on the dependence structure of the model X (u) and the smoothness
structure of the ’parametric’ set F C LP(A) (p > 1).

Linear and non-linear functionals of the periodogram play a key role in the
parametric estimation of the spectrum of stationary processes, when using the
minimum contrast estimation method with various contrast functionals (see, e.g.,
Dzhaparidze [15], Guyon [40], Leonenko and Sakhno [47], Taniguchi and Kakizawa
[50], and references therein). In this section, we review the asymptotic properties,
involving asymptotic unbiasedness, bias rate convergence, consistency, a central
limit theorem and asymptotic normality of the empirical spectral functionals based
on the tapered data. Some of these properties were discussed and proved in Ginovyan
and Sahakyan [34] [35]. For non-tapered case, these properties were established in
the papers Ginovyan [22] 25]. The results stated in this section are used to prove
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consistency and asymptotic normality of the minimum contrast estimator based on
the Whittle contrast functional for stationary linear models with tapered data (see
Section . Here we follow the papers Ginovyan [23] 25| 26], and Ginovyan and
Sahakyan [34], [35].

3.1. Estimation of linear spectral functionals. We are interested in the nonpa-
rametric estimation problem, based on the tapered data (2.13), of the following

linear spectral functional:
(31) 7= 3(£) = [ SN

where g(A\) € LY(A), 1/p+1/q=1.

As an estimator JJ for functional J(f), given by , based on the tapered
data , we consider the averaged tapered periodogram (or a simple ’plug-in’
statistic), defined by

(3.2) o= = [ B,

where I () is the tapered periodogram of the process X (t) given by (2.18)). Denote

23;1 23:1 gt — s)hp(t)hr(s)X ()X (s) in the d.t. case,
(33)  Qp =
fOT Jo 9t = s)hr(t)hr(s)X ()X (s)dtds in the c.t. case,

where g(t) is the Fourier transform of function g(\):

(3.4) g(t) == / eMg(N)dA, teA.
A

In view of (2.18)) and (3.2]) — (3.4) we have

(3.5) Jp = Cr'Qr,

where Cr is as in (2.19). We will refer to g(\) and to its Fourier transform g(¢) as
a generating function and generating kernel for the functional J}, respectively.
Thus, to study the asymptotic properties of the estimator J%, we have to study

the asymptotic distribution (as 7' — o0) of the tapered Toeplitz type quadratic
functional Q% given by (3.3)) (for details see Section .

3.2. Asymptotic unbiasedness. We begin with the following assumption.
Assumption 3.1. The function
(3.6) W(u) = / F0)g(u +v) dv

A

belongs to L'(A) N L%(A) and is continuous at u = 0.
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Theorem 3.1. Let the functionals J := J(f,g) and J} = J(Ik, g) be defined
by and , respectively. Then under Assumptions and the statistic
JI is an asymptotically unbiased estimator for J(f), that is, the following relation
holds:

(3.7) lim [E(JE) —J]=0.

T—00

Remark 3.1. Using Hélder inequality, it can easily be shown that if f € L*(A) N
LP1(A) and g € L*(A) N LP2(A) with 1 < py,pe < 00, 1/p1 + 1/pa < 1, then the
relation (3.7)) is satisfied.

Under additional smoothness conditions on functions f(A\) and g(\) we can
estimate the rate of convergence in . To state the corresponding result, we
first introduce some notation and assumptions.

Given numbers p > 1, 0 < a < 1, r € Ny := NU {0}, where N is the set of
natural numbers, we set 8 = o+ r and denote by H,(S) the LP-Holder class, that
is, the class of those functions ¥(A) € LP(A), which have r-th derivatives in LP(A)

and with some positive constant C' satisfy
19T+ h) =D ()|lp < ORI

Assumption 3.2. We say that a pair of integrable functions (f(A),g(A\)), A € A,
satisfies condition (#), and write (f,g) € (H), if f € H,(51) for 1 >0, p > 1 and
g € Hy(B2) for B2 >0, ¢ > 1 with 1/p+1/g = 1, and one of the conditions a) — d)
is satisfied:

8) B> 1/p, B2 > 1/,

b) 81 <1/p, B2 <1/qand p1 + B2 > 1/2,

c) Br>1/p, 1/q—1/2 < B> <1/q,

d) B2 >1/q, 1/p—1/2<p1 < 1/p.

Remark 3.2. In Ginovian [22] it was proved that if (f,g) € (H), then there exist
numbers p; (p1 > p) and ¢1 (g1 > q), such that H,(81) C L,,, Hy(82) C L, and
/pr+1/q1 <1/2.

Assumption 3.3. The spectral density f and the generating function g are such
that f,g € L'(A) N L?(A) and g is of bounded variation.

The following theorem controls the bias E(.J%)—.J and provides sufficient conditions
assuring the proper rate of convergence of bias to zero, necessary for asymptotic

normality of the estimator J#. Specifically, we have the following result.

Theorem 3.2. Let the functionals J := J(f,g) and J% := J(Ik, g) be defined by

and , respectively. Then under Assumptions and (or , the
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following asymptotic relation holds:
(3.8) TYV2EWJR) —J] -0 as T — .

Remark 3.3. We call an estimator J of J asymptotically unbiased of the order
of TP, B > 0 if limg_,o, TP[E(JR) — J] = 0. Thus, Theorem states that the

statistic J% is an asymptotically unbiased estimator for J of the order of T 1/2,

3.3. Consistency. Recall that an estimator J% of J is said to be (a) consistent if
J& — J in probability as T — oo, (b) mean square consistent if E(J2 — J)? — 0 as
T — o0, (¢) V/T-consistent in the mean square sense if | ([\/T(Jrfw - J)]2> =0(1)
as T — oo,

To state the corresponding results we first introduce the following assumption.

Assumption 3.4. The filter a(-) and the generating kernel g(-) are such that
a(-) € LP(A)N L*(A), g(-) € LY(A) with 1<p,¢<2, 2/p+1/q>5/2.

We begin with a result on the asymptotic behavior of the variance Var(J}) =
E(J} — E(J%))2. The proof of the next theorem can be found in Ginovyan and
Sahakyan [34].

Theorem 3.3. Let the functionals J := J(f,g) and J% := J(IL g) be defined by
and , respectively. Then under Assumptions and the following

asymptotic relation holds:
(3.9) Jim TVar(Jh) = o3 (J),
where
2
(3.10) o (J) = 47re(h)/ FAN) G2 (N)dA + kae(h) U f()\)g(/\)d/\} .
A A

Here k4 is the fourth cumulant of £(1), and

(3.11) e(h) = fé _ /01 hA (1) dt (/01 h2(t)dt)

From Theorems we infer the following result.

-2

Theorem 3.4. The following assertions hold.
a) Under Assumptions [2.1] [3.1] and |3.4] the statistic J is a mean square
(a) T

consistent estimator for J.

(b) Under Assumptions (or and the statistic J& is a /T-

consistent in the mean square sense estimator for J.
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3.4. Asymptotic normality. The next result contains sufficient conditions for
functional J% to obey the central limit theorem (CLT), and was proved in Ginovyan
and Sahakyan [34].

Theorem 3.5 (CLT). Let J := J(f,g) and J& := J(I}, g) be defined by and
, respectively. Then under Assumptions and the functional J% obeys
the central limit theorem. More precisely, we have

(3.12) TV [Jh B Sy as T — oo,

where the symbol % stands for convergence in distribution, and n is a normally
distributed random variable with mean zero and variance o3 (J) given by ([3.10) and
(3.11)).

Taking into account the equality
(3.13) TV [Jp -] =TV [E(IE) - J] + T2 [T~ E(J7)]
as an immediate consequence of Theorems and we obtain the next result

that contains sufficient conditions for a simple 'plug-in’ statistic J (Iqhw) to be an

asymptotically normal estimator for a linear spectral functional J.

Theorem 3.6. Let the functionals J := J(f,g) and J} := J(I%, g) be defined by
and , respectively. Then under Assumptions (07’ and the
statistic J is an asymptotically normal estimator for functional J. More precisely,

we have
(3.14) /2 [J;'« —J] 4 n as 1T — oo,

where 1 is as in Theorem[3.5, that is, n is a normally distributed random variable
with mean zero and variance o (J) given by (3.10) and (3.11)).

Remark 3.4. Notice that if the underlying process X (u) is Gaussian, then in
formula (3.10) we have only the first term. Using the results from Ginovyan [22]

and Ginovyan and Sahakyan [29 [30], it can be shown that in this case Theorem
[3:6) is true under Assumptions [2.3] and [3:4]

4. PARAMETRIC ESTIMATION PROBLEM

We assume here that the spectral density f(\) belongs to a given parametric
family of spectral densities F := {f(),0) : 6 € O}, where 0 := (61,...,0,) is an
unknown parameter and © is a subset in the Euclidean space RP. The problem of
interest is to estimate the unknown parameter € on the basis of the tapered data
(2:13), and investigate the asymptotic (as T — oco) properties of the suggested
estimators, depending on the dependence (memory) structure of the model X ()

and the smoothness of its spectral density f.
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There are different methods of estimation: maximum likelihood, Whittle, minimum

contrast, etc. Here we focus on the Whittle method.

4.1. The Whittle estimation procedure. The Whittle estimation procedure,
originally devised for d.t. short memory stationary processes, is based on the smoothed
periodogram analysis on a frequency domain, involving approximation of the likelihood
function and asymptotic properties of empirical spectral functionals (see Whittle
[54]). The Whittle estimation method since its discovery has played a major role in
the asymptotic theory of parametric estimation in the frequency domain, and was
the focus of interest of many statisticians. Their aim was to weaken the conditions
needed to guarantee the validity of the Whittle approximation for d.t. short memory
models, to find analogues for long and intermediate memory models, to find conditions
under which the Whittle estimator is asymptotically equivalent to the exact maximum
likelihood estimator, and to extend the procedure to the c.t. models and random
fields.

For the d.t. case, it was shown that for Gaussian and linear stationary models the
Whittle approach leads to consistent and asymptotically normal estimators under
short, intermediate and long memory assumptions. Moreover, it was shown that
in the Gaussian case the Whittle estimator is also asymptotically efficient in the
sense of Fisher (see, e. g., Dahlhaus [12], Dzhaparidze [15], Fox and Taqqu [17],
Giraitis and Surgailis [38], Guyon [40], Taniguchi and Kakizawa [50], Walker [53],
and references therein).

For c.t. models, the Whittle estimation procedure has been considered, for example,
in Avram et al. [3], Casas and Gao [§], Dzhaparidze and Yaglom [16], Gao [18], Gao
et al. [19], Leonenko and Sakhno [47], Tsai and Chan [52], where can also be found
additional references. In this case, it was proved that the Whittle estimator is
consistent and asymptotically normal.

The Whittle estimation procedure based on the d.t. tapered data has been
studied in Dahlhaus [10], Dahlhaus and Kiinsch [I3], Guyon [40], Ludefia and
Lavielle [48]. In the case where the underlying model is a Lévy-driven c.t. linear
process with possibly unbounded or vanishing spectral density function, consistency
and asymptotic normality of the Whittle estimator was established in Ginovyan [27].

To explain the idea behind the Whittle estimation procedure, assume for simplicity
that the underlying process X (t) is a d.t. Gaussian process, and we want to estimate
the parameter 6 based on the sample X := {X(¢),t = 1,...,T}. A natural
approach is to find the maximum likelihood estimator (MLE) §T7 MmLE of 0, that
is, to maximize the likelihood function, or to minimize the —1/7 xlog-likelihood
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function Ly (#), which in this case takes the form:

+ o X Br(fo)]” X,

where Br(fy) is the Toeplitz matrix generated by fy. Unfortunately, the above

1 1
LT(G) = 5 In27 + ﬁ In det BT(fg)

function is difficult to handle, and no explicit expression for the estimator §T7 MLE
is known (even in the case of simple models). An approach, suggested by P. Whittle,
called the Whittle estimation procedure, is to approximate the term Indet Br(fp)
by £ [T Infs(A\)dA and the inverse matrix [Br(fs)]™* by the Toeplitz matrix

(1 /fo). This leads to the following approximation of the log-likelihood function
L1 (0), introduced by Whittle [54], and called Whittle functional:

Lrw(6) = - [ ' [lnfe()\)+ Z((i)) ax,

where I (\) is the ordinary periodogram of the process X (t).

Now minimizing the Whittle functional Ly y (0) with respect to 6, we get the
Whittle estimator §T for 6. It can be shown that if

TY*(Lp(0) — Lyw(0) = 0 as n — oo in probability,

then the MLE @\T’ mpe and the Whittle estimator §T are asymptotically equivalent
in the sense that §T also is consistent, asymptotically normal and asymptotically
Fisher-efficient (see, e.g., Dzhaparidze and Yaglom [I6]).

In the continuous context, the Whittle procedure of estimation of a spectral
parameter 6 based on the sample X7 := {X(¢),0 < t < T} is to choose the
estimator §T to minimize the weighted Whittle functional:

(4.1) Ur(0) := 417r / [1 (N 0) + ;(TA(AG)) w(N) dA,
where I7(\) is the continuous periodogram of X (¢), and w(\) is a weight function
(w(=A) = w(N), w(A) > 0, w(\) € L*(R)) for which the integral in is well

defined. An example of common used weight function is w(\) = 1/(1 + \?).

The Whittle procedure of estimation of a spectral parameter 6 based on the
tapered sample (2.13]) is to choose the estimator gT,h to minimize the weighted
tapered Whittle functional:

h
(4.2) Uk9) = %/A [log F(A0) + ;{;)g) ~w(X) dA,

where Iéi()\) is the tapered periodogram of X (t), given by (2.18 -, and w(A) is a
weight function for which the integral in is well defined. Thus, the Whlttle
estimator é\T,h of 6 based on the tapered sample (2.13)) is defined by

(4.3) éT,h := Argmin U}(6).
9€o
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4.2. Asymptotic properties of the Whittle estimator. To state results involving

properties of the Whittle estimator, we first introduce the following set of assumptions.

Assumption 4.1. The true value 0y of the parameter 6 belongs to a compact set
O, which is contained in an open set S in the p-dimensional Euclidean space RP,
and f(\ 01) # f(A,02) whenever 67 # 02 almost everywhere in A with respect to
the Lebesgue measure.
Assumption 4.2. The functions f(\,0), f~*(\,0) and a—gkf_l()\, 0),k=1,...,p,
are continuous in (A, 0).
Assumption 4.3. The functions f := f(\,0) and ¢ := w()\)%fﬂ(}\,e) satisfy
Assumptions [3.3|or 3.4 for all k =1,...,p and 0 € ©.
Assumption 4.4. The functions a := a()\, 0) and b := g, where g is as in Assumption
satisfy Assumption [3.1

. . 2 — 3 —_ .
Assumption 4.5. The functions #{Mjf (X, 0) and W%a@f YN 0), k4,1 =
1,...,p, are continuous in (A,0) for A € A, 8 € N;(6y), where Ns(6p) := {0 :
|6 — o] < 0} is some neighborhood of 6.

Assumption 4.6. The matrices
(4.4) W(0) = [[wi; (O)], AO) := llai; (), B(O) := [[bi; (D), .5 =1,-..,p

are positive definite, where

) 0
567 BT 0) 50 O, 0w\,

J

1[0 0
(16) ayh) = o /A a5, 11 100 35 SO O)u()ar

K4 8 3
A7) by0) = 167T2/A69i1nf()\,9)w(/\)d)\/R%lnf()\,ﬁ)w(/\)d/\,

and k4 is the fourth cumulant of £(1).

The next theorem contains sufficient conditions for Whittle estimator to be

consistent (see Ginovyan [27]).

Theorem 4.1. Let @Tyh be the Whittle estimator defined by (4.3)) and let 6y be the
true value of parameter 0. Then, under Assumptions and[221) the statistic

@\T}h is a consistent estimator for 6, that is, é\T’h — 0y in probability as T — oo.

Having established the consistency of the Whittle estimator §T,h, we can go on to
obtain the limiting distribution of 7*/2 (§T7h - 90> in the usual way by applying the
Taylor’s formula, the mean value theorem, and Slutsky’s arguments. Specifically we
have the following result, showing that under the above assumptions, the Whittle

estimator §T7h is asymptotically normal (see Ginovyan [27]).
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Theorem 4.2. Suppose that Assumptions [{.1H4-0 and [2-1] are satisfied. Then the
Whittle estimator §T7h of an unknown spectral parameter 6 based on the tapered
data (2.13)) is asymptotically normal. More precisely, we have

(4.8) T/ (ﬁm - 90) 4 N, (0,e(M)T(0p)) as T — oo,

where Ny(-,-) denotes the p-dimensional normal law, 2 stands for convergence in
distribution,

(4.9) L'(0o) = W~ (6o) (A(6o) + B(6o)) W (6p),

where the matrices W, A and B are defined in -, and the tapering factor
e(h) is given by formula (3.11)).

Remark 4.1. In the d.t. case as a weight function we take w(A) = 1, and the
matrices A(6p) and W (6y) coincide (see — ([#6)). So, in this case, formula
becomes I'(6p) = W=1(6p) (W (6p) + B(6p)) W~1(6p). If, in addition, the underlying
process is Gaussian (k4 = 0, and hence B(6p) = 0), and the taper h is chosen so
that the tapering factor e(h) is equal to one, then we have I'(6y) = W~1(6,), that
is, the Whittle estimator é\T,h is Fisher-efficient.

5. ROBUSTNESS TO SMALL TRENDS OF ESTIMATION

In time series analysis, much of statistical inferences about unknown spectral
parameters or spectral functionals are concerned with the stationary models, in
which case it is assumed that the models are centered, or have constant means. In
this section, we are concerned with the robustness of inferences, carried out on a
stationary models, possibly exhibiting long memory, contaminated by a small trend.
Specifically, let {X (t), t € U} be a centered stationary process possessing a spectral
density fx (M), A € A. Assuming that either fx is known with the exception of a
vector parameter § € © C RP, or fx is completely unknown and belongs to a given
class F, we want to make inferences about 6 or the value J(fx) of a given functional
J(-) at an unknown point fx € F in the case where the actual observed data are

in the contaminated form:
(5.1) Y(t)=X(#)+ M(t), te€ Dr,

where M (t) is a deterministic trend, and Dy = [0,7] in the c.t. case and Dy =
{1,...,T} in the d.t. case.

The process X (t) is what we believe is being observed but in reality the data are
in the contaminated form Y (¢). In this case standard inferences can be carried on
the basis of the stationary model X (t), and we are interested in question whether

the conclusions are robust against this kind of departure from the stationarity.
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In the non-tapered case, this problem for d.t. models was considered in Heyde
and Dai [42] (see also Taniguchi and Kakizawa [50], Theorems 6.4.1 and 6.4.2). For
c.t. models it was studied in Ginovyan and Sahakyan [33].

The results stated below show that if the trend M (¢) is ’small’, then the asymptotic
properties of estimators of the parameter 6 and the functional J(f), stated in
Sections [3| and [4] for a stationary model X (¢), remain valid for the contaminated
model Y (¢), that is, both the parametric and nonparametric estimating procedures
are robust against replacing the stationary model X (¢) by the non-stationary Y (¢).
To this end, similar to the non-tapered case, we first establish an asymptotic relation
between stationary and contaminated tapered periodograms. For simplicity, the

results that follow we prove in the c.t. case, the proofs in the d.t. case are similar.

5.1. A relation between stationary and contaminated tapered periodo-
grams. The next result shows that a small trend of the form |M(t)| < C|t|=7,
B > 1/4, does not effect the asymptotic properties of the empirical spectral linear
functionals of a tapered periodogram. Note that this result is of general nature, and

do not require from the model X (¢) to be linear.

Theorem 5.1. Let {X (t), t € U} be a stationary mean zero process, {M(t), t € U}
be a deterministic trend, Y (t) = X (t) + M(t), and let I (\) and 1%, (\) be the
tapered periodograms of X (t) and Y (t), respectively. Let g(A), A € A be an even
integrable function. If the trend M(t) and the Fourier transform a(t) := g(t) of
g(\) are such that M(t) is locally integrable on R and

(5.2) |M(t)| < C|t| 7P, la(t)| < C|t|™Y, teA, 2B+v>3/2
with some constants C > 0, v > 0 and 8 > 1/4, then

(5.3) 12 / g [y (N — ] dA B0 as T o0,
A

where 5 stands for convergence in probability, provided that one of the following

conditions holds:

(i) the process X (t) has short or intermediate memory, that is, the covariance
function r(t) :=rx(t) of X(t) satisfies € L*(A), and B+~ > 1,

(ii) the process X (t) has long memory with covariance function r(t) satisfying
(5.4) [r@| < Clt|7%, teA, a+vy>3/2

with some constants C >0, 0< a <1, anda+26>1if <1 <7.
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Proof. In view of (2.18) and we can write

Vi ’X()\
. 2
= | ermoxoa) | [t noyoa
= | e el | [ " gy )]
Cr 0

- C’T/ / A(t—s) hr(t)hr(s) [Y () M(s) + Y (s)M(t) + M(t)M(s)] dtds

and
+oo
| a0 [Fx () = Fy ()] i
= ILT / / Y+ Y (s)M(t) + M(@)M(s)] hr(t)hr(s)a(t — s) dtds
(5.5) < —/ / $)+Y(s)M(t) + M(t)M(s)||a(t — s)| dtds,

since the function h is bounded on R by Assumption 2.1.
Thus, to complete the proof it is enough to observe that under the conditions of
the theorem we have (see Ginovyan and Sahakyan [33], relations (6.11) and (6.12)):

1/2/ / M(t)|M(s)a(t — s)|dtds -0 as T — 0
and

T_1/2/ / t—s)|dtds—>0 as T — oo. O

Remark 5.1. It is easy to check that the statement of Theorem holds, in
particular, if the parameters «, § and -y satisfy the following conditions:

in the case (i): 8 >1/2, v>1/2,

in the case (#): o > 3/4, > 3/8, v > 3/4.

Remark 5.2. In the non-tapered d.t. case, Theorem [5.1] (with additional conditions
v =1 in the case (i), and v > 1, o < 1/2 in the case (ii)), was proved by Heyde
and Dai [42] (see also Taniguchi and Kakizawa [50], Theorems 6.4.1 and 6.4.2).

5.2. Robustness to small trends of nonparametric estimation. The next
result shows that a small trend of the form |M(¢)| < CJt|~” does not effect the
asymptotic properties of the estimator of a linear spectral functional J(f), that is,
the nonparametric estimation procedure is robust to the presence of a small trend
in the model.
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Theorem 5.2. Suppose that the assumptions of Theorems[3.6 and[5.1] are fulfilled.

Then the statistic J(I%y) is consistent and asymptotically normal estimator for

functional J(f) with asymptotic variance o2 (J) given by ([3.10) and [B.11)), that is,
the asymptotic relation is satisfied with I%X()\) replaced by the contaminated

periodogram Iy, (\):
(5.6) TV [J(1y) = J()] S0 as T — oo,
where n is N(0,0%(J)) with o2(J) given by and (3.11).
Proof of Theorem[5.4 In view of and we can write

T2 (3t - 0] =7 | [ oy aiar - [ fjsi]

R R
=12 | [ Ehyair - [ T o
1/2 h _
+T UR I7x (A)g(A)dA /Rf(A)g()\)d/\]

(57) =TV / 9N [Thy (V) — T (V] dA+ TV2 [T(Iy) — T()]
R

By Theorem the first term on the right-hand side of (5.7) goes to zero in
probability as T — oo, while by Theorem [3.6] the second term on the right-hand
side of (5.7) goes in distribution to 7, and the result follows. O

5.3. Robustness to small trends of parametric estimation. The next result
shows that a small trend of the form |M ()| < C|t|™", B > 1/4, does not effect the
asymptotic properties of the Whittle estimator of an unknown spectral parameter 6,
that is, the Whittle parametric estimation procedure based on the tapered sample
is robust to the presence of a small trend in the model.

Theorem 5.3. Suppose that the assumptions of Theorem with g = f~1(\,0) -
w() are satisfied. Then under the conditions of Theorems the Whittle estimator
é\Ty’h, constructed on the basis of the contaminated tapered periodogram I%Y()\), 18
consistent and asymptotically normal estimator for an unknown spectral parameter
0, that is, the asymptotic relation @ is satisfied with I%X()\) replaced by the

contaminated periodogram I, (\):

(5.8) T1/2 (éTy,h - 90) 4 N, (0,e(R)D(0p)) as T — oo,

where the matriz T'(6y) is defined in ({.9).

Proof of Theorem[5.3 By Taylor’s formula for %UI’EX (ng,h), where U%X() is

the tapered Whittle functional defined by 1' and 07 x,n is the Whittle estimator
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constructed on the basis of observation X7 = {X(¢), 0 <t < T}, for |§i} — 6| <
\§T x,n — 6o| and for sufficiently large T', we can write

82
0606’

vheon] [ 2 vk +onr).

(5.9) T2 [(%xyh - 90} — T2 {
Next, by Theorem [5.1} we have
(5.10) Uty (0) = Urx (0r) + op(1).

Again using Taylor’s formula for 2 Uk, (§Ty,h), where now Ul (-) and 07y, are
respectively the Whittle functional and the Whittle estimator, constructed on the

basis of the contaminated observation Yr = {Y'(¢), 0 < ¢ < T}, and taking into
account the relations (5.9) and (5.10]), we can infer that

T1/? [é\TY,h - 90} =712 {é\TX,h - 90} +op(1),

showing that the estimator §Ty7h possesses the same asymptotic properties as §T X,h-
Hence the result follows from Theorems 2] O

Remark 5.3. In the non-tapered case, Theorems[5.1]-[5.3] were proved in Ginovyan
and Sahakyan [33].

6. METHODS AND TOOLS

In this section we briefly discuss the methods and tools, used to prove the results
stated in Sections BHAl

6.1. Approximation of traces of products of Toeplitz matrices and operators.
The trace approximation problem for truncated Toeplitz operators and matrices has
been discussed in detail in the survey paper Ginovyan et al. [36] in the non-tapered
case. Here we present some important results in the tapered case, which were used
to prove the results stated in Sections [3H5]

Let ¥(\) be an integrable real symmetric function defined on [—m, 7], and let
h(t), t € [0,1] be a taper function. For T'= 1,2, ..., the (T x T)-truncated tapered
Toeplitz matriz generated by 1 and h, denoted by B (1)), is defined by the following

equation:
(6.1) B(v) = [0t = $)hr () (s)||1,=1,2... 7
where 9(t) (¢ € Z) are the Fourier coefficients of .

Given a real number T > 0 and an integrable real symmetric function t(\)
defined on R, the T-truncated tapered Toeplitz operator (also called tapered Wiener-
Hopf operator) generated by 1 and a taper function h, denoted by W2 (v)) is defined

as follows:

(62)  [Wh@)ul(t) = / Ot - syu(s)hr(s)ds, u(s) € L2([0,T); hr),
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where 1(-) is the Fourier transform of (-), and L2([0, T]; hy) denotes the weighted
L?-space with respect to the measure hr(t)dt.

Let h be a taper function satisfying Assumption and let A% (1) be either the
T x T tapered Toeplitz matrix Béﬁ (1), or the T-truncated tapered Toeplitz operator
Wh(1)) generated by a function 1 (see and (6.2)).

Observe that, in view of , , and , we have

T
(6.3) %tr [AL ()] = % -1(0) - /0 h2.(t)dt = 2w Hy /A W(N)dA.

What happens to the relation when A%(zﬁ) is replaced by a product of Toeplitz
matrices (or operators)? Observe that the product of Toeplitz matrices (resp. operators)
is not a Toeplitz matrix (resp. operator).

The idea is to approximate the trace of the product of Toeplitz matrices (resp.
operators) by the trace of a Toeplitz matrix (resp. operator) generated by the
product of the generating functions. More precisely, let {11, %o, ..., %, } be a collection
of integrable real symmetric functions defined on A. Let A%(3;) be either the
T xT tapered Toeplitz matrix Béﬁ (14), or the T-truncated tapered Toeplitz operator
Wh(1);) generated by a function v; and a taper function h. Define

HA’}JI"(%[%)‘| ) MA,H,h = (27r)m71Hm/A [H wz(A)] d)\,
i=1 =1

where H,, is as in (2.15)), and let

(64) A(T) = AA7A,';.[7;L(T) = |SA,7-L,h(T) - MA,’H,h|~

Sann(T) = Ttr

Proposition 6.1. Let A(T) be as in . Each of the following conditions is
sufficient for

(6.5) A(T)=o0(1) as T — oo.

(C1) ¢ € LX(A)NLPi(A), p; >1,i=1,2,....,m, with 1/p1 + -+ 1/py < 1.
(C2) The function p(u) defined by

(66)  p(u):= / Gr (A — 1) (A — 142) -+ (A — 1) dA,

where u = (uy,Uz,...,Un-1) € A7, belongs to L™ 2(A™~ 1) and is

continuous at 0 = (0,0,...,0) € A™~ 1.

Remark 6.1. In the non-tapered case, Proposition [6.1| was proved in Ginovyan et
al. [36], while in the tapered case, it was proved in Ginovyan [28]. Proposition
was used to prove Theorems [3.5 3.6] and [£:2] More results concerning the trace
approximation problem for truncated Toeplitz operators and matrices can be found
in Ginovyan and Sahakyan [31], [32], and in Ginovyan et al. [36].
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6.2. Central limit theorems for tapered quadratic functionals. In this sub-
section we state central limit theorems for tapered quadratic functional Q% given
by , which were used to prove the results stated in Sections

Let A%(f) be either the T'x T tapered Toeplitz matrix B2 (f), or the T-truncated
tapered Toeplitz operator W% (f) generated by the spectral density f and taper h,
and let A% (g) denote either the T'x T tapered Toeplitz matrix, or the T-truncated
tapered Toeplitz operator generated by the functions g and h (for definitions see
formulas and ) Similar to the non-tapered case, we have the following
results (cf. Ginovyan et al. [36], Ibragimov [43]).

1. The quadratic functional Q% in (3.3)) has the same distribution as the sum
Z;’il )\j,Tsz, where {¢;,j > 1} are independent N(0,1) Gaussian random
variables and {\; r,j > 1} are the eigenvalues of the operator A%(f) AL(g).

2. The characteristic function ¢(t) of Q% is given by formula: p(t) = H;’;l [1—
2t |2

3. The k-th order cumulant xx(Q%) of Q% is given by formula:

(6.7) xx(QF) =2""1(k—1)! Z Nz =287 (k= Dlr [AR(f) AR (9)]".

Thus, to describe the asymptotic distribution of the quadratic functional Q%, we
have to control the traces and eigenvalues of the products of truncated tapered
Toeplitz operators and matrices.

CLT for Gaussian models. We assume that the model process X (t) is Gaussian,
and with no loss of generality, that g > 0. We will use the following notation. By

@}} we denote the standard normalized quadratic functional:
(6.8) Qr =T7'2 (QF —E[Q}) .
Also, we set

(6.9) oF = 1677 H, /A P0G dx,
where Hy is as in . The notation

(6.10) Qh 4~ N(0,07) as T — oo

will mean that the distribution of the random variable @% tends (as T — o0) to
the centered normal distribution with variance o;.

The following theorems were proved in Ginovyan and Sahakyan [35].

Theorem 6.1. Each of the following conditions is sufficient for the quadratic form
Q% to obey the CLT, that is, for Q}% 4 n~ N(0,02) as T — oo with o7 is as in

(6.9)-
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(T1) f-g € LY(A) N L2(A), the taper function h satisfies Assumption 2.1, and

for T — oo
(6.11) xo@) = St AL () Al(9)) — oF.
(T2) The function
(6.12) ploraa,as) = [ flugl =) a(u - as) du

belongs to L?(A3) and is continuous at (0,0,0), and the taper function h
satisfies Assumption [2-1]
(T3) f(A) € IP(A) (p > 1) and g(\) € L4(A) (g > 1) with 1/p+1/q < 1/2, and

the taper function h satisfies Assumption[2.1]

To state the next theorem, we recall the class SVy(R) of slowly varying functions
at zero u(A), A € R, satisfying the following conditions: for some a > 0, u(}) is
bounded on [—a,a], limyx_,ou(A) = 0, u(A) = u(—=X) and 0 < u(A) < wu(p) for
0<A<pu<a.

Theorem 6.2. Assume that the functions f and g are integrable on R and bounded

outside any neighborhood of the origin, and satisfy for some a > 0
(6.13) FO) ST L), g < INTPL2(N), A€ [—a,a],

for some a < 1, <1 with o+ < 1/2, where Ly(z) and La(x) are slowly varying

functions at zero satisfying
(6.14) L; € SVo(R), AL, (\) € L*[—a,a], i=1,2.

Also, let the taper function h satisfy Assumption . Then é}% A n~ N(0,0%) as
T — o0.

The condition o < 1, # < 1 in Theorem [6.2] ensure that the Fourier transforms
of f and g are well defined. For a@ > 0 the process X(¢) may exhibit long-range
dependence. We also allow here a+ to assume the critical value 1/2. The assumptions
f g€ LYA), f,g € L®(A\ [~a,a]) and (6.14) imply that f-g € L*(A), so that
the variance oi in is finite.

CLT for Lévy-driven stationary linear models. Now we assume that the underlying
model X (t) is a Lévy-driven stationary linear process defined by (2.5, where a(-) is
a filter from L2(R), and £(t) is a Lévy process satisfying the conditions: E£(¢) = 0,
E&2(1) = 1 and E£4(1) < cc.

The central limit theorem that follows was proved in Ginovyan and Sahakyan
[34].
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Theorem 6.3. Assume that the filter a(-) and the generating kernel g(-) are such
that

(6.15) a(-) € LP(R)NL*(R), §(-) € LI(R), 1<pq<2 2/p+1/q>5/2

and the taper h satisfies Assumption . Then Qv'} 4 n ~ N(0,0’ih) as T — oo,

where
2
(6.16) o7, =167Hy / 2N G2 (N + kadm? Hy { / f()\)g(A)dA] ,
R R
where Hy is as in (2.15)).

Remark 6.2. Notice that if the underlying process X (t) is Gaussian, then in
formula we have only the first term and so 07 ;, = o7, (see (6.9)), because in
this case k4 = 0. On the other hand, the condition is more restrictive than
the conditions in Theorems|[6.1] and [6.2] Thus, for Gaussian processes Theorems
and [6.2]improve Theorem [6.3] For non-tapered case Theorem [6.3] was proved in Bai
et al. [M].

6.3. Fejér-type kernels and singular integrals. We define Fejér-type tapered
kernels and singular integrals, and state some of their properties.
For a number k (k= 2,3,...) and a taper function h satisfying Assumption

consider the following Fejér-type tapered kernel function:
Hr(u)

(6.17) Flp(u) = ) Hy 2 (0) u=(uy,...,up_1) € RF 71
where

k—1
(6.18) Hrp(u) := Hyr(w)- - Hyr(ug—1)Hyr u;j

j=1

and the function Hy, 7 (-) is defined by (2.16) with Hy 7(0) = T- Hy, # 0 (see (2.15)).
The next result shows that, similar to the classical Fejér kernel, the tapered kernel

F ﬁT(u) is an approximation identity (see Ginovyan and Sahakyan [34], Lemma 3.4).

Proposition 6.2. Forany k = 2,3, ... and a taper function h satisfying Assumption
the kernel F,fT(u), u=(uy,...,up_1) € RE71 possesses the following properties:

a) Suprsq fpro F/c r(u )‘ du = Cy < o0;

b) ka 1 kT( u)du=1

¢) limre f]E‘ Fk r(u)

d) Ifk > 2 for any 6 > 0 there exists a constant Ms > 0 such that HFI?T‘

du =0 for any § > 0;

M;s for T >0, wherepk:mfork>3,p3=oo, ]Egz]Rk I\ Es, and

Es ={u=(up,...,up_1) ERF1: || <6, i=1,....k—1}.
35
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e) If the function Q € LYRFUDNLF2(R*Y) and is continuous at v =

(v1,...,vk_1) (LY is the space of measurable functions), then
(6.19) Tlim Q(u+ v)FﬁT(u)du =Q(v).
—0 JRE-1
Denote
0200 Abr= [ fOa+ 0 Fhr(iaddn = [ F0)g)an

where FJ' (1) is given by and .

The next two propositions give information on the rate of convergence to zero

of A} as T — oo (see Ginovyan and Sahakyan [34], Lemmas 4.1 and 4.2).

Proposition 6.3. Assume that Assumptions and [3.3 are satisfied. Then the

following asymptotic relation holds:

(6.21) AQT =o0 (T_1/2> as T — oo.

Proposition 6.4. Assume that Assumptions and [3-9 are satisfied. Then the
following inequality holds:

T-BtB2) - if By 4+ By < 1
(6.22) AL SCL T InT,  if Bi+Br=1 T >0,
T, if B1+B2>1,

where C, is a constant depending on h.

Notice that for non-tapered case (h(t) = Ijg 1)(t)), Propositions and [6.4] were
proved in Ginovyan and Sahakyan [30] (see also Ginovyan and Sahakyan [31], [32]).
In the d.t. tapered case, Proposition [6.3| under different conditions was proved in
Dahlhaus [10].
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MULTIPLICITY OF SOLUTIONS FOR A FRACTIONAL
LAPLACIAN EQUATION INVOLVING A PERTURBATION

7. GUO, Y. DENG

Liaoning Normal University, Dalian, Chin&ﬂ
E-mails: guozy@163.com; dengyanab@163.com

Abstract. A fractional Laplacian equation involving a perturbation is investigated.

Under certain conditions, we obtain at least two solutions to this equation.

MSC2010 numbers: 35R11; 47J30.

Keywords: Nehari manifold; fractional Laplacian; multiple solutions.

1. INTRODUCTION

Fractional Laplacian equations have been applied to many subjects, such as,
anomalous diffusion, elliptic problems with measure data, gradient potential theory,
minimal surfaces, non-uniformly elliptic problems, optimization, phase transitions,
quasigeostrophic flows, singular set of minima of variational functionals, and water
waves (see [2]-[I1] and the references therein). Fractional Brezis-Nirenberg problems

had been investigated by many researchers (such as [2, [10]).

(=A)*u + Au = |[u|*2u inQ,
u=20 in RN . Q,

where 0 < s < 1,N > 2s, 2% := Nziv% is the fractional Sobolev critical exponent,

Q is an open bounded domain in RY with Lipschitz boundary, and the fractional

Laplacian is defined by

Cn.s u(x w(x —y) — 2u(x
~(~A)ule) = = /RN ( +y)+|y|(N+25y) (z)

-1
(1.1) Ons = (/RN mdg) .

Define Hilbert space D*(2) as the completion of C'2°(€2) with respect to the norm

dy, zeRY,

I - || ps induced by the following scalar product

CN,S/ (u(z) — u(y)) (v(z) — v(y))
R2N

2 |$—y|N+2S

(u,v)ps 1= dzdy.

ISupported by NSFC(11701248) and NSFLN(2021-MS-275).
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If Q is an open bounded Lipschitz domain, then D*() coincides with the Sobolev

space
Xo:={feX:f=0ae in Q°Y,

where X is a linear space of Lebesgue measurable functions from RY to R such
that the restriction to Q of any function f in X belongs to L?(2) and the map
(z,y) — (f(z) —f(y))|m—y|*%+5 isin L? (R*N < (Q° x Q°), dady), and Q° is the
complement of © in RY. Consider fractional Sobolev space
HG(RN) = = LQ(RN) . |U(Z‘) B j\f(y” c LQ(R2N) ;
[z —ylz "
equiped the Gagliardo seminorm
Cn s |u(@) — u(y)®
2 — )
[l vy = =5~ /Rw T — Vs 4oy
The fractional Laplacian operator can be defined by
u(z) — u(y)
—A)°® = CnsP.V. ——="d
(-8 utw) = O P. [ Ay

u(z) — u(y)

=Cp,s lim WIEE

+ c (1 -
e—0 Be(z) |.’,E

1CN,S /N u(z+y) +ulx—y) — 2u(ac)dy7

~— 5 y[VF2s

where Cn s is given by (L.1)) and P.V. is the principle value defined by the latter

formula. Define the fractional Sobolev space

H*(Q):={z € HS(RN):u =0 ae.in Q°},

equipped with the seminorm

1
Cn.s |u(z) — uy)l? i
o i= (A [ upde+ S5 ) = S ey )
“ o 2 Jrev (gexqey | —y[NT2E
which was introduced in [10]. From v = 0 a.e. in Q°, it is easy to see that
lu|3 = / |u|?dz = / lul?dw,
Q RN
— 2 _ 2
/ M) g, [ MU
R2N < (Q¢ xQ¢) |z —yl r2N [T — Y
Hence, we just denote |[u||zs(q) by

1
Cns lu(z) — u(y)|? 2
si= (A 24 — —2——7 dzd .
[l e ( /RN [ul*dz + 5 /Rw |z — y|[N+2s rdy

It follows from Lemma 7 in [§] that (H*(Q),| - ||#-) is a Hilbert space.
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In present paper, we study the following fractional Laplacian equation involving

a perturbation

(1.2)

(=AY u+ = |uP2u+h(z) in Q,
w=0 in 0

where 0 < s < 1, A is a real parameter, p € (2,2%), h € L?(Q), and Q C R is
an open bounded Lipschitz domain. Via classic methods (see [I] for example), we
obtain multiplicity of solutions for fractional Laplacian equation . The solutions
of equation coincide with the critical points of the following energy functional

1 u 2
J(U)ZZ/RzN| |(x)— |Ni25| dzdy + 5 /|“| dx—*/ \U|pd$—/hUd$

1
= 5”“”%{ - 5|u|£ — /Q hudz, Yue H®(9Q).
If h =0, then equation (1.2]) becomes

(1.3) (—A) + M= ul2u i Q,
' u=0 in °.

Define the energy functional of equation (1.3) and corresponding Nehari manifold

as follows:
I0) = gl = Sl Vue H (),
and
N={ueH*(Q):u#0,I'(uu=0}={ueH* Q) :u0,ulj =|u?}.
Our main result reads as follows.

Theorem 1.1. There exists € > 0 such that for every h € L? () with |h|z < e,
equation (1.2) has at least two solutions.

2. THE PROOF OF THEOREM [[.1]

We need the following fractional Sobolev embedding results, which was proved
in [§].

Lemma 2.1. Let Q C RY be an open bounded Lipschitz domain. Then H® () —
L1 (Q) for every q € [1,2%], and H® () —— L1(Q) for every q € [1,2%).
From Lemma 2.1 we can define a constant S,,.
Sy :=inf {C > 0: |u], < C|lu||gs,Yu € H* (Q)}.
Next, we give some numbers which will be used in the proof.

1 = 1,\7 1. as
al = m , A2 = 5011 ,agzimln (Zhsfp .

It is easy to find that ag < a;.
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Lemma 2.2. There exists e > 0 such that for every h € L? (Q) with |h|2 < €1 and
for every uw € H® (Q), if
(2.1) llull%. = / |ulP dx —|—/ hudz = [ulh +/ hudz,

Q Q Q

then either ||ul|gs > a1 and |ulp, > ag or ||u|lgs < as .

Proof. It follows from (2.1)) that
lullfe < SHllull? + |hl2|ul2.
By Lemma 2.1} we get |uly < Cilullss. Then, |jul3. < SE||ullP + Culhls|ul g If
u# 0in H*(Q), then
lull = = S|P~ = Cilhl2 < 0.
For calculation convenience, we define function ¢: [0, +00) — R by
¢ (t) =t — SEtP~! — Cy|ha.
Since ¢’ (t) = 1 — (p—1)ShtP~2, we get the maxinmum point of ¢ as a; =
1
((p -1) S;j) »=2 It is easy to see that ¢ is strictly increasing on (0,a;), strictly
decreasing on (a1, +00) and ¢ (0) < 0, . ligl @ (t) = —o0.
—+o0
In order to observe the characteristics of the function ¢, we calculate the maximum

value of ¢,

_1_ p—1

o= (i) () e

1 \72 7 1 \'"T7z 1\
(p—1> () _(p—l) <S£’> ~ Clal:
1
p—1
1

1 1
Sp
1 \7»2 1
_ — 1-— ) —-C|h
) ()" (1-75) -ome
1
1\72p-—2
(p—]_) (Sp) —_— — C‘h|2 =. 01 — C‘h|2,
and if we take |hlo < &, then
:a1—7:7>0,

p—1
> _ =L
¢(a1) > = C5n 2 2
which means the function ¢ has two zeros ¢, t3 and t; < a1 < to. Then ¢ (¢) > 0
for all ¢t € (t1,t2), while ¢ (¢t) < 0 for all ¢ € [0,¢1) U (t2, +00). Substituting ¢; into
the function ¢, we get that

Clhla =ty = SpE" =1 (1= 5072,

p—2
_1_
p—2
1
p—2

aq aq aq

Since t; < a1, we have

1 -2
C|h|2 >t1 (1755&11)72) :tl (1 > :tlp
p
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ie., t1 < ;%C”L‘g. If we take

p—1las
hla < ———,
[hl2 p—1C
then
p—1p—2ag
<——"—" " =aqs.
! p—2p—1C a3
In summary, for
. p—2a3 (6731
h < T T AN oy )
[l mm{p1c 20}

we get ¢ < 0 implies ¢t < ag or t > a;. If hold and |ju||gs > a1, we get
Julp = JullF- — /Q hudz > af — |hlz|ulz > af — alh|s|ul,,
where a = |Q|% Namely
(2.2) |u\g + alh|z|ulp, — a% > 0.
Regarding |ul, as a variable, we get a function 7 : [0, +00) — R, defined by
v (t) = t* + alh|st — a3.

Since v/ (t) = ptP~! + alh|y > 0, for all t > 0, v is strictly increasing. Therefore, if

2
a
hly < ——,
[hl2 2aas
then
p 21, 2
fy(a?) = ay + a|h‘2a2 —ay = §CL1 + a|h|2a2 —aj
1 a? 1
= a|h‘2a2 - 503 < a2a22 as — 5(1% =0.

We see that y(t) < 0 for ¢ € [0, az]. By (2.2) we derive that |u|, > as.

Summing up, if we choose

. p—2a3 a%
€L =mins —-—, —
! p—1C"2C 2aas |’

then Lemma [2.2] holds. O
In the sequel, we always assume |h|s < €;. Now define
Ny ={ue H(Q): J (u)u =0, |u||g: > a1}

~{ue e @ty =g+ [ mde e > o},
Q

and my, = ir}\f} J (u). Notice that N}, is a subset of Nehari mainfold and for v € N},
ueNp

T (u) = (; - ;) [l — (1 _ ;) /Qhuda:.

Now, we prove that N} is not empty.

we have

Lemma 2.3. There exists ez € (0, €1] such that for every h € L? () with |h|z < e,
there results Ny, # 0.
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Proof. Consider function

s J(tu) tu =t2||ul|%. —tp/ |u|pdx—t/ hudz
Q Q

=t [t||u||2 — tp71|u|£ - /Q hudz] ,

where u € H* (Q) \ {0}, t € (0,400). Since ¢t > 0, we only consider the following

function
V(ﬂZZtHUH%«‘—tp_”uﬁi—t/’hudx,
Q
since p € (2,2%), the function « has a global maximum. Solving
v (1) = llullfe — (= 1) 2[ulf =0,

we have the function ~ has a global maximum at

_1
T
DI,

and
2p-1) 2e—1)
2 1 2
v () :”uHHL T _/ hudz =: %a—/hudx
lulg (p—-1)72 Je Julp™ °
2(1)721)
|| e
> Lo [ hude > fullae—a — Clhlslu
[ S5
(6%
= |[ufl - (s —C|h|2>.
p
Thus, if
(6%
|hlo < ———,
2087~

there results « (¢') > 0. Moreover, ~ () is strictly increasing in (0,t’), strictly

decreasing in (¢, +00) and . 1i$1 v (t) = —oo. Then the function v has at least
—+o0

one zero t; € (t',400). Then there exists v = tyu satisfies (2.1]). Next, we verify

that v satisfies ||v||g= > a1, we get v € Nj. Since

U 2 p—2
ol = levade = alule > ¢l = (0 )

(0 — 1) [ul}
P (LT (N
=i (;25) " (ap)
P 1 1 p=2 1 p=2
> (5) (1) ()
1 \72/1\72
-(5) () =
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MULTIPLICITY OF SOLUTIONS FOR A FRACTIONAL ...

the proof is completed with €3 = min < ey, —%— » . O
208p?
We now show that m;, are uniformly bounded from above and below by three

Lemmas below.

Lemma 2.4. Let e3 = min{1,e3}. Then there exists C > 0 such that for every

|hl2 < €3, there results mp < C.

Proof. Denote ug and mg as the solution and the level of the solution of equation

(1.2)), that is, ug € N, I (ug) = mij{lf] (u) = mp. Due to Lemma letting |h|2 < €3,
ue
there exists t;, > 0 such that tjug € NV},. Then

(2.3) ltnuo |3 :/ |thu0\pdx+/ hudz.
Q Q
Noticing ug € N, i.e., [|uol|F. = |uol% , ([2.3) is equivalent to
(t7 — ) |luol }e = th/ﬂhuodx,

namely,

(00— 271 Nuol%e = / huodz,
Q

which implies that

(tn = 57) luolF > —Calhalluo -,

that is
_ Cilh C
(24) th_tz}i 12_ 1| |2 > 1 .
l[wol| = l[wol| 2
Consider function ¢ : ¢t — t — tP~!. Since . li+m ¢ (t) = —oo, there exists Cy > 0
—+00

there t;, < Cs, and then

1 1 1
mp S J(thuo) = (2 — p) ||thu0||%ls - (1 — p) / hudx
Q

1 1 1
<|l=—- 02U025+<1—>0201h2u0 Hs
(3-3) Bl + (1-3) CaCulnlalul

1 1 1
< <2 - p) C3lluolF- + (1 - p> C2Chluo| s =: C.
Il

To prove that my, are uniform bound from below, we need a related Lemma.

Lemma 2.5. For h that satisfies the condition in Lemma[2.]}, there exists a normal
number Cs and a minimizing sequence {uy}, for my such that ||ug|| s < Cs, and
luklp < SpCs for all k .
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Proof. Let {v;}, be a minimizing sequence for my, i.e., vy € N} and J (v) —
my, since my, < C, there exists k' such that for every k > k', J (v;) < 2C. Then

1 1 1
Q

1 1 1
> ( - p) ol — (1 - p) Cullolloel e = alloZe — bllow e

2
We get
b+ Vb7 +8ac _
% =: (3,
and |vg|p < Spllvkllgs = SpCs, where ug = vgryp. O

The preparation work has been completed. Now we prove the boundness from

below.

Lemma 2.6. There exists 4 € (0, €3] such that if |h|s < €4, then my, > 2mgy > 0.

Proof. We consider {uk}k obtained in Lemma Let t3, be such that tpuy € N,

which is equivalent to
HtkukH%{s = / \tkuk|pdx7
Q
namely,

2 sl = £ / juglPda,

1
lullFe\ 72
tk» == 7? .
|uklp

larllZe = fuel? + /Q hugda.

ie.,

Since ux € Ny, we have

Then

_1 _1
= (I et ()

kb |uklp ’
and

1 1
mo < I (truy) = (2 - p) tillug| %

11 1 1
25 =(=—2)|u 25—<1—>t2/hudx+<1—>t2/hudm
@) =(5-2) @ty - (1-1) 2 [ ma )it [
1
tiJ(uk)+(l)ti/hukdz.
p Q

By Lemma P.2] and Lemma, we have

_1_ _1 _1_
te = <1 L o h“kdf”> e (1 L Cilhla]luni ) < (1 + 0103|h|2> "

|urlp |urlp aj
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If
p 3 1)2;2
a
hly < =2 = -11,
s < g (4) ]
then

p
tr < (Clpcg 2
[£5) 0103

B 7-0)"

1 3 1
< (1 - ) 2{h1sC lulle < IRl (1 - 0103) .
p 4 D

Now we consider ([2.5)

1
’(1 — )t | hupde
p Q

If we take
4
bl < ——=3
9(1-1)cucy
then
‘(1 — )ty | hugdx| < Mo,
Q 3

Then we can write mo < ¢7J (ug) + 32, ie., t2.J (ux) = 2mg. Since

we get that Zmg < 627 (ur) < 3J (ug) , ie.,
1

(2.6) mo < J (ug),as k — oo,

2
which implies that %mo < my,. If we choose
- a? <4) = X mo
€ =minq ez, ——— || -1,
0103 3 a (1 - %) 0103
then Lemma [2.6] holds. O

The next thing to prove is an important part of the theorem, namely the minimum

of J on NV}, is attained.

Lemma 2.7. There exists €5 € (0, 4] such that for every |h|a < €5, my, is attained

by some u € Np,.

Proof. We consider {u;}, obtained in Lemma and |h|2 < €4. Since Q is
bounded, there exists u € H*(Q2) such that ury — u in H* (Q). By Lemma we
have ux — u in LP () and in L? (Q2). Then we derive that

(2.7) J(u) < limkian (ug) = mp,
and
(2.8) llull?. < \u|g+/ﬂhudx.
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Consider the case of equal sign in (2.8). From the Lemma[2.1] we have if hold,
then either ||ullgs > a1 or ||ullgs < as. If |jul|g= > a1, then u € N}, and
implies that u is the minimum we are looking for. If ||u||gs < a3, then

ag
Sp
which is a controdiction with |u|, > a2 from Lemma Next consider the case of

strict inequality in (2.8]), namly,
(2.9) llul|%. < \u|§+/9hudx.

If we can show that (2.9) dose not hold, then (2.8]) only holds when the equal sign

is taken. At this time, according to the previous proof, u is the minimum we are

lulp < Spllullas < Spas < Spo= = az,

looking for, and the proof of Lemma is completed. So we only need to show that
(2.9) can not hold. By (2.9), there exists t* > 0 such that t*u € N, and t* > t/
according to (2.8)), we have
1 1
v < <u|g—|—fQ hudx)P2 _ < 1 N Jq hudz >P2
(p— 1) [ulp p—1 (p—1)ulp

1 e, 2\ 2 1 hlyCiCs \ 72
<< +| |2 1||U||I;) << + | ‘2 1 :;,)) .
p—1  (p—1)[ulp p—1 (p—1)a;

If we choose

) -2 (p—1db
65:m1n{(p Q)CS?Cg ) 2,64}7

then ¢/ < 1.
For the function « in Lemma since t*u € Ny, we have v (t*) = 0 and the
ineqality (2.9) is equivalent to v (1) < 0. Since ¢’ < 1 and ¢’ < t*, we see that t* < 1.

According to the definition of my, we derive that

1 1 1
méJt*ut*2<>u25t*(1>/hudx
nsJ () =) 5 , l[ullz o),
< (t*)? lim inf 1.1 llwn|/2e — ¢ lim (1 1 hud
< iminf { 5 ’ U || s im o)/ udx
1 1 1
< () Uminf | = = = ) [Jugl|%. — (1—)/hudm]
(e timnt | (5 =) bl o
=t* limkian (ug) =t myp < myp,.

Observing the first and last two terms of the above inequality, we obtain that
my, < my, which is impossible, so the inequality (2.9) does not hold. a

Now we prove that u is the critical point of the functional J.

Lemma 2.8. There exists ¢ € (0,€5) such that if |hla < €, then u satisfies
J (w)v =0 for allv € H* ().
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Proof. Fix v € H® () and consider function ¢ : R x (0, +00) — R defined by
¢ (s,t) == t2|lu+ sv||%. —tP|u + sv|P — t/ﬂ h(u+ sv)dx.
Since u € Ny, we have ¢ (0,1) = 0. So ¢ is a first-order continuous function and
B (0.0) =2l — pluly ~ [ hude = @) JulP + (1) [ huds
Letting % (0,1) =0, then

2 p—1 p—1
s = —F hudxr < ——1h|2C s,
||u||H 2/ udx 2| |2 1||u||H

ie.,
p—1
s < ——|h|2Ch.
- < E=5mlacy
If we take
p—2
hlo < =——ay,
1l G -0
then
p—1 p—2
s < ——————0a10C1 = ay,
s < P s =

which contradicts u € Ap,. So for such choices of h, there must be % (0,1) # 0.
By the Implicit Function Theorem, there exist a number § > 0 and a C* function
t(s):(—d,0) — Rsuch that ¢ (s,t(s)) = 0 for every s € (—6,0) and ¢ (0) = 1. Since
||| s > a1, we can also take § small enough such that ¢ (s) (u + sv) > a;. We now
study the behaivior of the function v (s) = J (¢ (s) (u+ sv)). It can be obtained

that ~y is differentiable and has a local minimum at s = 0. Since u € N}, we have

0=~"00)=J (u)[t' (0)u+t(0)v] =t (0)J (w)u+J (u)v=J (u)v,

which implies that when €5 < min {65, g’l z;lall) } , the minimum v satisfies J' (u) v =

0 for all v € H® (2). O
So far, we have found a solution to equation (|1.2]). Next, we show that equation
(L.2) has other solution.

Lemma 2.9. For every € > 0, there exists § > 0 such that if |h|a < 0, equation
(1.2) admits a solution up, satisfying ||up||ms < €.

Proof. Recalling I (u) = 3|ul|%. — %|u|g, since

S, =inf {C > 0: |ul, < Cllulle,Yu € H* (@)},

we have
P

1 S
I(w) > 5 lullf - fIIUIlp

The function

.7]‘2 SZZ;;D
¢@yf§t—5¢
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is continuous, strictly increasing in a right neighborhood of 0, and ¢ (0) = 0. There

exists € < e such that for all ¢ € (0,€'), we have ¢ (¢t) > 0. Then for any n € (0, €),

we have I (u) > ¢ (n) > 0 for ||ul| g« = n. We also have

J(w) = T (u) - /Qhudx > 6 (n) — |hl2Cin.

Choosing § = 2. and |hl2 < &, we derive that J (u) > 20) > 0 for [l grs = m.
Define

and n, = infuep, J (u). Obviously, —oco < n, < J(0

201’)7 2

Bn = {u € H® (Q) : HUHHS < 77}7
)

= 0. Then we may proved

that n, is achieved by some w, € B,. Since J (up) = n, < 0, it can not be

|lun||zrs = m, which means wuy, lies in the interior of the ball B, and uj is a local

minimum for J, moreover, uy, is a solution of equation (L.2)). (Il
Proof of Theorem[I.]l By Lemma choosing € = a;, we can fix § > 0 such that
for every |h|a < d there exists a solution uy, of equation with [Jup||gs < ai.
If we take |h|es < ¢ := min {eg,d}, then, by Lemma we obtain a different
solution u to equation (1.2), satisfying ||u|m- > a;. O

(1]
2]
3]
[4]
[5]
[6]
(7]
18]
1]
[10]

(11]

CI1COK JIMTEPATYPHI

M. Badiale and E. Serra, Semilinear elliptic equations for beginners, Universitext. Springer,
London, (2011). Existence results via the variational approach.

B. Barrios, E. Colorado, A. de Pablo and U. Sanchez, “On some critical problems for the
fractional Laplacian operator”, J. Differential Equations, 252 (11), 6133 — 6162 (2012).

K. Bogdan, “The boundary Harnack principle for the fractional Laplacian”, Studia Math.,
123 (1), 43 — 80 (1997).

L. A. Caffarelli, J.-M. Roquejoffre and Y. Sire, “Variational problems with free boundaries
for the fractional Laplacian”, J. Eur. Math. Soc. (JEMS), 12 (5), 1151 — 1179 (2010).

E. Di Nezza, G. Palatucci and E. Valdinoci, “Hitchhiker’s guide to the fractional Sobolev
spaces”, Bull. Sci. Math., 136 (5), 521 — 573 (2012).

X. Ros-Oton and J. Serra, “The Dirichlet problem for the fractional Laplacian: regularity
up to the boundary”, J. Math. Pures Appl., (9), 101(3), 275 — 302 (2014).

X. Ros-Oton and J. Serra, “The Pohozaev identity for the fractional Laplacian”, Arch.
Ration. Mech. Anal., 213 (2), 587 — 628 (2014).

R. Servadei and E. Valdinoci, “Mountain pass solutions for non-local elliptic operators”, J.
Math. Anal. Appl., 389 (2), 887 — 898 (2012).

R. Servadei and E. Valdinoci, “Weak and viscosity solutions of the fractional Laplace
equation”, Publ. Mat., 58 (1), 133 — 154 (2014).

R. Servadei and E. Valdinoci, “The Brezis-Nirenberg result for the fractional Laplacian”,
Trans. Amer. Math. Soc., 367 (1), 67 — 102 (2015).

L. Silvestre, “Regularity of the obstacle problem for a fractional power of the Laplace
operator”, Comm. Pure Appl. Math., 60 (1), 67 — 112 (2007).

IToctynuna 07 asrycra 2020
ITocne mopaborku 07 asrycra 2020
IIpunsara k nybaukanuu 04 nexabpst 2020

50



Uszsecrust HAH Apmenuu, Maremaruka, Tom 56, u. 6, 2021, crp. 51 — 69

OB OAHOM KJIACCE MHOTOYIEHOB, THNITEPBOJINMYECKHNX
C BECOM

B. H. MAPTAPAH, I'. T. KASAPAAH

Poccniicko - ApmsHcknii Yaupepcurert

Hucruryr Maremarukn HAH Apmennn
E-mails: wvachagan.margaryan@yahoo.com; haikghazaryan@mail.ru

Annotanus. okaseiBaercsd, uto ecau A € R 1 < Ap < A1 < o < A,
R:={reR,(N\v) <1}, M= {v € R",Z?;ll)\j vi+ Ap—ivn < 1} m
muorowrten P(§) = P(&1,...,&n) aBaserca R- runepboMIecKUM OTHOCHTEJILHO
BekTOpa 1 = (N1, ...y NMn) € R™, Ny # 0, To 0H M-THIIEPGONIYIEH OTHOCHTEIBHO 7).

MSC2010 number: 12E10; 12D05; 26D05; 35A23.

KuroueBble ciioBa: MHOrorpanHuk HeioToHa; (€1a60) rumnepGoanyecKuii MHOrOUIeH
(omeparop); Bec runepbOIMIHOCTH.

1. BBEAEHUE. ITOCTAHOBKA BOIIPOCA

Bymem moap30BaThCS CIEMYIONMUME CTAHJAPTHBIMA O0O3HAMEHUSIMHI: N— MHOXKe-
crBo Harypasibubix umces, Ng = NU {0}, Nj = Ny x -+ x Ng— MHOKecTBO BCex
N—MepHBIX MYJBTUHHIEKCOB, Te. BEKTOPOB & = (Q1,...,04), IIe a; € Ng (j =
1,..,n), R*(E")— n—MepHOe BeIIECTBEHHOE €BKJIMJIOBO NPOCTPAHCTBO TOYEK & =
(&15.-,&n) ( coorBercTBeHHO TOUEK (T = (T1,...,2y,)). R} :={{ € R", & >0 (5 =
L..,n)}, Rp:={CcR"&..& #0 }.

Hna &,n e R", o € N, v € Rt n t € R obosnauum (§,1) = &im1 + ... + Enin,
tE= (&, t&n) El=VE+E+ +& [Vl =vitr v, =860,
D* =Dyt --- Dy, wae D = 0/0&; (5 =1,---,n), [€] =[&|".[&]™, G(v) =
{0# neRg, p# v, pj =wv; mdo p; =0, (1<j<mn)}

ITycts P(€) = Y 74 £ MHOrOUJIEH C IOCTOSHHBIME KO3 durpentamu, rjie cyMma
«

pacupocTpaHseTcs o KaHedHoMy Habopy mysbruuaekcos (P) := {a € Nf, v, # 0}.

lpaGora BomoMIEHA B pamvkax IIporpammer Pazsutus PAY no HUP
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ObozHaunmM m = max ,¢(p) || m mpencraBum MuOrOWIEH P B BUje CyMMBI OJHOPOI-

HbIX MHOI'OYJICHOB

(1) LGEDMGED ) RN

Jj=0 =0 |al=j
Omnpepenenune 1.1. (cm. [1] uau [2] onpedeserue 12.3.8) ITycmov 0 £ n € R™ € €
R™. Mmnozounen P naswvieaemcs sunepboiuneckum no ITopdunay omuocumeivho 6ex-
mopa 1, ecau Pp(n) # 0 u cyweemsyem wucao 9 > 0, makoe, wmo P(E+itn) #0
oas ecex £ € R™, 7 € C, |Rer| > 19.

Onpenenienne 1.2, (cm [8] wau [4]) dPynxuuo g, onpedeaennyio na R™, nazosem

BECOM 2UNEPOOAUMHOCTIU, ECAU l)gin]Rf g9(&) >0, 2) cywecmeyrom wucaa a € [0,1) u
cRn

¢ > 0 maxue, wmo g(§ +n) < c[g(§) + |n]?] V& n € R™. Ouesudno, wmo das eeca

eunepbosuwrocmuy g, lime oo g(€)/1€] = 0.

Ounpenenenne 1.3. (em [3] uau [4]) Hyems dynryua g aeasemesn ecom eunepbo-
auunocmu u 0 £ n € R™. Ckaotcem, wmo muozounen P asanemes g— eunepbosuieckum
ommocumenavro sexmopa 1, ecau Pp(n) # 0 u cywecmeyem wucao ¢ > 0 maxkoe,
wmo P(&+itn) # 0 das wmobot napw (§,7): £ €R™, 7€ C, |Rer| > cg(§).

[ycts A = {v¥ € R = 1,2,..., M} (xomeunbiii) nHabop Touek. HaumeHn-
IYIO BBIIYKJIYI0 060/104Ky Habopa A (KoTopasi sBJIsieTCsi MHOIOIDAHHUKOM ) HA30BEM
MmuororpanHukoM Hetorona (mamee M.H ) muoxkecrBa A (cM., nanpumep, [5] - [7])
u obosnaunm depes R(A). Muororpannuk R C R’} HasbBaeTCs BIOJIHE MDABUIIb-
HbIM, ecin 1) R umeer Beprmuay B Havasze koopauHar R}, 2) oTimumyio oT Hadasa
KOOD/JIMHAT BEPIINHY Ha KaxKj0ii ocu koopauuar R, u 3) BCe KOODAMHATBI BHEII-
HbIX (oTHOCHTEIbHO ) HOpMaeil (n — 1) -MepHBIX HEKOOP/IMHATHBIX IPaHeil (1asee
R—uopmMasib) nosoxkuTeabHbl. g B.11. MHororpannuka i BBezeM 0603HaUEHUS

R0~ MHOXKECTBO €ro BEpIIHH,

?ﬁ? ={v=1,.vn) EROv; £0} j=1,...,n,

A(R)—muoxkecrBo R—HopMmateii (n — 1) -MepHBIX HEKOODIMHATHBIX IpaHeil, HOp-

MUPOBaHHBIX TaK, 4To sup(A,v) =1,

veR
R) = =
p(R) := max|v| = max |v],

d;(R) := ArenAa(g)(l/Aj) (G=1..n); dR):= lrgjagndj(%),
OR— MHOXKECTBO TOYeK v € R 11 KOTOPBIX cymnecTByeT BekTop A € A(R) Taxoii,

gro (A, v) =1,
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ke (v) = )\g}\l&)(l/(}\,y)),

§*— muororpanunk Heorona HaGopa touek {(0, ...,0,d;(R),0,...,0) (j =1,...,n)}.

Jlerko ybenurbcs, 4ro Jyisi JIIOOOr0 BIOJIHE [PABUJILHOIO MHOrOrpanHuka f 1)
MHOroOrpaHHuK R* siBisieTcss BrosiHe npaswibHbM U card A(R) = 1, 2) ® C ®*, 3)
R = R*, Torma u rosbko rorua, korga cardA(R) =1 u 4) p(R*) = d(R*) = d(R).

U3 onpenenenus gucia kg (), muokecrsa G(v) u muororpannuka R* Henocpe-

CTBEHHO cJielyeT

IIpengioxxenne 1.1. ITycmo R(A) 6.n mnozoeparnuk. Tozda
1) p/kp(v) € R das wmobwz v e IR u pe G(v)
2) {v e R}, (\,v) <1} CR* daa moboeo X € A(R).

Yepes B, 0603HATMM MHOKECTBO 7—MEDPHBIX BIIOJIHE IPABUJIBHBIX MHOIOIDAHHH-
koB R C R% s xoroperx d(R) < 1, a 1uist BIOIHE MPABUIBHOIO MHOIOIDAHHHKA
R € B, monoxum hy(§) := Y, cqo [§7|. hg—rumepboIIIecKnii MHOrOUICH HA30BEM
R —runepbommaeckum. Ipu s > 1 u R = {v € R} : [v| < 1/s} R—runepbonudeckuit
MHOTOWJIeH Ha3blBaeTCsl s—runepbomamaeckum (em [8] - [9] u [10]).

Mssectno 1) (em [2], Crencrue 12.5.7), aro eciu muorodaeH P rumepbonmden
o Topaunry oTHOCHTENILHO BEKTOpA 7], TO [l NPOM3BOIbHEIX [ € C®(H) u ¢; €

C*®(0H) j=0,...,m — 1 pemenue cieayonieit 3agaun Korn

P(D)yu=f; <D,n>"ulog=¢; j=0,...m—1
npunajexur C°(H), tne H := {x € R", (x,n) > 0},

2) (cm [3] mim [4]) HIycrs M € B,,_; mHOrorpaHsHuk Takoif, uro M € {v' €
R™1(0,0)) € R}, GM— mynsruanusorponnoe npocrpanctso AKespe, M— MHoro-
rpamiuk Heiorona maGopa {(0,2/), v/ € MO} U{(d(M),0)}, GM := GMNC. Ecm
muOrowieH P sBasiercss R—runepbosmaeckum orHocuTebHO BekTopa i = (1,0, ..., 0),

TO [JIs IPOU3BOJIBHBIX () € GM 7 =0,...,m—1 crexyromas 3amaia Komu
P(D)u= 0,21 > 0; DIt |py—0=; j=0,...m—1

UMeeT eJIMHCTBEHHOE DEIeHne U € G,
Amnajsioruyuable pe3yJIbTaThl JJId S—UIEePOOJINIECKUX OIIEPATOPOB IIOJIyYeHbI B [8].
MsBectHo, (cM., Hanpumep, [8], [4], [9]), uro noBenenne kopusi t = t(£) runep6o-
Jaeckoro MHorouwiena P(§+tn) upu Bospacranuu |€|, HEIIOCPEICTBEHHO BJIUSIET HA
KOPPEKTHOCTHU MOCTaHOBKHU 3aja4un Komm B mpocrpanctBax zKespe. Ilpu sTom, oka-

3BIBAETCsI, IYTO UeM MeHBINEe CKOPOCTh Bo3pacTanus t(£) mpu Bo3pactanuu ||, Tem B
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Gouiee mupokux npocrpancreax 2Kespe 3amaua Komm 11t cOOTBETCTBYIOMIMX OIIE€pa-
topoe P(D) nocrassena KoppekTHO. I10/106HO0€ siBIEHNE TIPOUCXOUT U IIPU U3y I€HUH
BOIIPOCA O CYIIECTBOBaHUS (DYHIAMEHTAJBHBIX DelleHul B (DYHKIMOHAJLHBIX [PO-
CTPAHCTBAX, IIOPOXKJEHHBIX COOTBETCTBYIOMIMME IIpocTpaHcTBaMu 2KeBpe, T.e. 4eM
MEHbIIIe CKOPOCTh Bo3pacranus t(£) upu Bospacranuu €|, Tem B Gojiee IVIaJKUX IO
ZKespe npocrpancrsax s onepatopos P (D) umeercs hyHIaMEHTAILHOE DEIeHHE.

B wnacrosimeit pabore, mnpennosaras OIpeIeIeHHOE AIPUOPHOE II0BEJIEHE KODHSI
t = t(§) runepbonmaeckoro muorounena P(§ + tn) mpu Bospacranun |{|, HOKa3bI-
BAETCsl, 9TO B HEKOTOPBIX CJIydasdxX 3Ta (DYHKIHUSA MOXKET UMETh MEHDBILYIO0 CKOPOCTh

BO3PACTAHUS.

2. HEKOTOPBIE CBOMCTBA MHOTI'OI'PAHHUKOB HBIOTOHA

JIemma 2.1. IIyemov R € B, Tozda dan npouseosvror v € OR u 1 € G(v) cywe-
cmeyem eekmop A € A(R) maxot, wmo
() (N ) > 1 mee. 20— ) ¢ R\ OR.

rg(p)—1 rp(p)—1

Joxazameavemeo. U3 onpenenienus MuokecTBa OR, U B CUILy YCJIOBHS JIEMMBI CJie-

0

qyer, uro cymectyer Bektop A’ € A(R) s koroporo (A\°,v) = 1. Tak xak

K (1) — max 1
rp(p) =1 2eam® 1 — (A p)’
Ky 1 )\O,l/f
To Zfiftr (0w —w) = [max =gl (Vv =) 2 5505 2 1 =

Jlemma 2.2. IIycmv R € B,,. Tozda n;?f(ﬁal (v—p) € R* daa npouseoavror v € OR
up € Gv).

Hoxazameavcmeo. B cuiy nynkra 2) Ipengoxkenus: 1.1 mocraTodno nokasars, 4ro

cymectsyer sektop A’ € A(R) Taxoit, uTo H;?T(ﬁ‘ll (A%, v—p) < 1. Tak kax H;?T(ﬁ‘zl =

)\renAa()g(?) m, to cymectsyer BekTop A\’ € A(R) ma xoroporo 5;?”()“21 = 1—(/{“,;0'
Orcrona, B cuity onpezesenus Muoxkecrsa A(R) umeem
/\() _
KZ§R(,LL) (AO, _u) — ( v - ,LL) < 1.
Ii%(/},)—l 1_()‘ 7:“1)

O

JIemma 2.3. IIyemv R € By, 1 <j<n ul(j):=(0,..1;0,..,0) sepwuna R

aestcawan ma ocu ;. Ecau (A 1(1)) =1 daa aobozo X € A(R), mo R\ {1(1)} = 0.
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Loxazameavcmeo. Ilycrsb, nanipumep, 7 = 1. [Ipenmosoxum obpaTHOe, ITO IPH YCII0-
pusx jgemmbl R\ {I1(1)} # 0 u p € R\ {i(1)}. Iycrs, pagsr onpeenentocTH (6bITH
MOZKET IOCJIe [IepeHyMepanuu uHaekcoB j : 2 < j < n), pu = (1, o, -y thr, 0, ..., 0),
2<r<n, tae p...0 7 0.

Jlast marypasbroro uncia k : k < n u roukn & € R™ obosmaumm £F) 1= (£1,..., &)
u mycrs 9 C R M.H. nma6opa {v") € R v = (v(M,0,...,0) € RO}, Tak xax
MHOTOTpaHHuK R ABjIfeTcs BrIomHe npasmibabM, To I = {1 € Ry (A (M) <
1 YAe AR)}.

Tax xax (") Bepmmza MEOTOrpasHIKa O, TO CYIIECTBYIOT 7 IITYK JIHHEHHO He3a-
sucnmeix Bektopos {A (1)} (A(j) € AR) j = 1,...,7) takue, aro (A7) (5), ") =

1(j=1,..,7). C Apyroii CTOPOHBI, B CHJILY YCJIOBHUS JIEMMBI

AP, 10 (1) = (A UD)) =1 (= 1,7).

Tak kax MHOMKecTBO BeKTOpoB { A7) (j)} JIUHEHHO HE3ABHCHMBI, TO OTCIO/A TIOTyHaeM,
aro p(" = 1 (1), cremosarensuo (B cumy onpenenenns (1) u p) p = I(1), uro

IPOTHBOPEIUT yeaoBUaM f1j # 0 (j =1,...,7, r > 2) U TOKA3BIBAET JIEMMY. g

Bameuanne 2.1. Jlezxo ybedumocs, wmo 0an 106020 6NOAHE NPABUALHO20 MHO20-

epannuxa R 1(5) = (0,...,0, mi(n)%,(),...,()) sepwuna mrozozpannura R aedica-
AEA(R) N

waa wa ocu & (5 =1,...,n).

JIemma 2.4. ITycmo R € B,, 1 <j<n ul(j) = (0,..1;0,..,0) sepuuna R
aeorcawan na ocu &. Tozda R\ {I(j)} # 0 6 mom u moavko 6 mom cayuae, Ko2da
d;(R) > l;, uau, wmo mo aice camoe,

1

2.1 in — —.
@1) RV Wy

Loxazameavcmeo. Pagu ymobcrBa 3ammcu, J0Ka3aTeIbCTBO IPOBENEM, HAIPHUMED,
ans j = 1.

Hocrarounocts. Ilycrs, maobopor, RY \ {I(1)} # 0§, o min -+ = max -

ACAR) A xeA(m) M
Tax xak (A%, (1)) = 1 st nexoroporo A’ € A(R) ul(1) = (I1,0,...,0), o (N, [(1)) = 1
quist moboro A € A(R). Orcrona, B cuty Jlemmbr 2.3 nosygaem, aro R\ {I(1)} = 0.
IMosyunin npoTHBOPEYNEe, KOTOPOE JTOKA3BIBAET JHOCTATOYHOCTb.
Heo6xomumocTb. Ilycrs somommsercsa (2.1). IMokaxem, uro %Y\ {I(1)} # 0.
Boibepem Bextopbl A0 u Al mz A(R) Tax, uro6er A = min A\ u A = max \;.
AEA(R) AEA(R)
Torza (\°,1(1)) = A0 1, < ALI(1) = (AL, 1(1)).
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Tax xak \° HOPMaJIb K HEKOTOpOil (n — 1)—MepHoii HekoopauHATHOl rpanu R, TO
cymecrsyer Beprmna e € RO Takas, uto e; # 0 u (A%, e) = 1. Tak xak (\°,1(1)) < 1,

TO oTciozia crenyet, uro e £ [(1), re. e ¢ RI\ {I(1)}. ]

IIpennoxkenune 2.1. ITycmwv das R € B, (nocae 603M0xcHOT NEPEHYMEPAUUL UH-
dexcos) cywecmesyrom nomep r > 2 u eepwuna € = (e,...,e.,0,...,0) € R, daa
romopwx ei...e, # 0. Tozda d;(R) > l;, j = 1,...,r, 2de () := (0,...,1;,0,...,0)

sepwuna RN nescawan na ocu &, j =1,...,r.

Hoxazameavcmeo. Tlpennonoxum obparnoe, yro, naupumep, di(R) = l;. B cury
Jlemmbr 2.4 uveem RY \ {I(1)} = 0. Tak kax e # [(1), TO 3TO NIPOTUBOPEUUT YCJIOBHIO

e € RV u mokasBIBAET IIpe/IoYKeHNe. O

JIemma 2.5. ITyemo R € B,, 1 <j<n ul(j):=(0,..,1;0,..,0) sepwuna R se-

orcawyan ma ocu €. Ecau W;\{l(])} # ) mo cywecmeyem sepwuna e € %?\{l(])} ma-
KaaA, 4Mo €; (tfiil) = d](%) (: )\Ienl\a(,)élff) )%)7 ede t] = t](e) = K/%(ela "'?ej*170’ej+la "'7en)

- min — L
T eatr) e-(y )

Jloxasamenvcmeo. N3 yenosust R\ {I(j)} # 0 macrosimeeii revmbr, 13 Jlemnnr 2.4 u

— 1 ; 1 _
Bameuanusg 2.1 nmeem d;(N) = max - > min 5 =l

ACAR) AT AEA®R)
Bribepem BekTop A0 € A(R) Ta 0661 & = max <. Torma d;(R) = &
pIOEpEM BEKTOP (R) Tak, 4ToOLI X0 }\IenA()ge) N roa d;(R) o o

> min % Tak xak [; < dj(R), To (A\°,1(j)) < 1. C npyroii cTopoHBI, Tak Kak
A% Hopmasth K HeKoTopoit (n — 1)—MepHoit HeKoOpMHATHOMN Ipanu R, TO CyMeCTByeT
BEpIINHA € € 5)‘62 ns xkoropoit (A, e) = 1. Crenosarensmo e # [(j). Tlokazkem, 910

1
Aren/%n I—(Ne)+XAe

(2:2) a;(R) = e,

_ 1
B camom meite, Tak kak d;(R) = 30 TO B CHULY OIPEZeIeH I A(R) nmeem

1 1 _ej

e
d;(R) = ejij)\? =€ xeA(n) T— (he) + Ajej =€ XEA(R) Nej Alej =R,
OTKy/Ia IOJIydaeM paBeHCTBO (2.2).
Tak Kak (tfiil) = AglAa%E : m, TO U3 paseHcTBa (2.2) HENOCPEICTBEHHO
HOJIy9aeM yTBEPKICHUE JIEMMBI. O

Cﬂeﬂylomee IpeJIozKeHne HEeITOCPEJICTBEHHO IIOJIyJaeTCd C IPUMEHEHUEeM HepaBeH-

crBa Temgepa (cMm. Takzxke [6] wrm [7])
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IIpenmoxkenne 2.2. ITycmv R € B, 6.n mnozoezpannuk, p € R, u dynryus
hg(€) == >, cqo 67| onpedensiemes xax evawe. Toeda [ < chp(§) V& € R™ ¢

Hnexomopol nocmoanrot ¢ > 0.

Teopema 2.1. Jlaa npoussosvrozo R € B, cyuecmsyem nocmosannas c; > 0 ma-

KaA, 4MO

hn(§+n) < ci [hn(§) + hp-(n)] ¥ &,n € R™

Joxasameavcmeo. Tax kax kgp(p) > 1 s mobbix g € G(v) mw v € R, T0 B ety

HepaBeHCTBa ['ébjiepa nMeeM ¢ HEKOTOPOU TTOCTOSTHHOU ¢y > 0 s Beex &, € R™

n

[+l =118 +ml < e [TU&1 + Ins)

J=1 J=1

<ol +m)+ D 1€ < e (1) + nlY)
HEG(v)

|£M|H§R(M) "Wk(,u) -1 )
+ + N TR rRGI=T
2 Dt " waty T

neG(v
Orcrona, B cuiny nyskra 1) Ipenyoxenust 1.1, Jlemmbr 2.2 u Ipemioxkenus 2.2, ¢

HEKOTOPOII MTOCTOSAHHON cg > 0 mmeem i Beex &,n € R”

(€ +m)"| < s [ (§) + hn(n) + ha- ()]

Tak kak R C R* 10O OTCIOIA C HEKOTOPOI MOCTOAHHOI ¢4 > 0 nMeeM

[(€+n)"| < ca [hn(€) + hpx ()] VE,n € R™.

Orkyza, B CHIy ompejeneHns BbyHKINN hy ¥ KOHEYHOCTH MHOxkKectBa R, morydaem

yrBepxkenne Teopembr 2.1. 0

Teopema 2.2. Ilycmov R € By, a snoane npasusvhoii mrozoeparnnur M C RY
maxot, wmo R* ¢ M. Toeda
hp (€ +m)

sup ————~+————— = &0
emern h (&) + hae(n)

Zoxasameavcmeo. Vcxons u3 onpejesienns Muororpannuka R* u yemopuss R* ¢ M
TEOPEMBbI, JIEIKO yOeauThes, 9To cymecrByer uuzgekc j : 1 < j < n (uycrs s
onpesesierHoctr j = 1) Takoi, uro I3 (M) < di(R*), tme 1(1,M) := (I;(M),0...,0),
d(1,R%*) == (d1(R*),0,...,0) = (d1(R), 0, ..., 0) BepuIHBI JeXKaIIHE Ha OCU &1 COOTBET-
crBenno muaororpanaukos M u R*. Tak kax di () > 11 (R), To Bo3MOKHBI cireytomye

gsa caydas: 1) di(R) > H(R) u 2) di(R) = 11(R).
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B ciyuae 1) B cuity semm 2.5 u 2.4 cymectsyer sepimuna e € R\ {I(1,R)} Takas,

HTO €1 ¢ (le()) =di(R), rue ti(e) = kg(0,e2,...,€,) = )\énAl(éR) m

Buibepem sextop A’ € A(R) Tak, aTobw t(€) = m Torma B cuiy Jlemmbr
2.5 (cMm. jiokaszaresberso droit emmbl) (A e) =1 u A) di (R) = 1.
Paccmorpum ciiejyioniue BO3MOXKHDIe Hojcaydan ciaydas 1): 1.1) 11 (1, M) > I3 (R)
u 1.2) {1 (1, M) < 1 (R).
Tax kak R BIOJIHE NPABUILHBIN MHOTOrPaHHUK, To U3 yciosust e € RY \ {I(1,R)}
umeeM, 910 e < [ (R). CrenosarensHo B mogcaydae 1.1) e; < I31(M) n
L _XjeNe (&

< =

e)) — A ey 1-XNe
ll(M) ll(M) —e1 ll(M) — €1 o ll(M) — 61

Myers a € (1/L(M), (1-AY 1))/ (L) —e1), € = (0,5, M), 7 i= (57,0, ..,0)
(s =1,2,...). Torma umeem ¢ HEKOTOPOIi mOCTOAHHOI ¢5 > 0 mpu Beex s = 1,2, ...

ha(€" +1°) = [(€° +n°)°] = Inf]* |&5]°2 . [gon = st 1 TEima N s = goerti=dien,

=21 = Y s <es hw(r) = [0 = 51100,
vERO vERO 11 #£0
Tak Kaxk, 110 OIpeIe/IeHIIO YUCTIA A, Aeq —i—l—)\(l) e1 > a l1(M) > 1, To oTcyna mosydaem
yTBEpXKJEeHNe TeopeMbl B mojciaydae 1.1).

B noxcaygae 1.2) mogoxum £° = 0, n° = (s,0,...,0) s = 1,2,...- Torma hg(£® +
n°) = ha(n®) = 1+ s he(e) =1, hy(n®) =14+ 540 s = 1,2, ...- Orciona
cJlelyeT yTBepXKIeHUe TeOpeMbl U B mojciaydae 1.2).

YTBepK/IeHIe TeOpeMbl B Cilydae 2) JI0Ka3bIBAETCsl AHAJIOTUYHO Hojciydan 1.2).

Hano ToipKo uMeTh B BUY, 9TO, TaK Kak B aToM ciayuae 1 (M) < di(R)(= 11 (M),
TO ll(M) <l (%) O

N3 Teopewmbl 2.2 HEMOCPEICTBEHHO CJIETyET

Caencrsue 2.1. Iyemv R € B, I3 < di(R), 2de I(1) = (14,0, ...,0) sepwuna R

hg(£+(1,0,.

aesrcaulas nwa ocu &1. FEeau sup NGEE 20) « 50 dan nexomopozo | > 0 u das

teR
scev £ € R™, mo | > di(R).

Teopema 2.3. Ilycmv R C R enoane npasuvnvidi mnozozparnus. Pynxyua hy

ABAACTNCA BECOM 2UNEPOOAUNHOCTNU 0204 U MOAbKO Mmo2da, kozda R € B,,.
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JHoxazameavemeo. docrarognocts. [lycrs R € B,, BHoJHE TPABUILHBIA MHOTO-
rpannuk. Tax ka 0 € RO, 1o hg(£) > 1 V€ € R™. U3 yemosus R € B, cueny-
€T CyIIECTBOBaHME IOCTAHHOM cg > 0 Takoit, uro hy(€ +n) < cg [hnr(€) + hp-(n)]
VE, n e R™.

Tak kak p(R*) = d(R), To orcioga n u3 Ipeoxkenus 2.2 morydaem, 9T0 ¢ HEKOTO-
poii mocTsEHoi ¢ > 0 crpasesusa onenka hy (E41) < cg [hn(€)+|n|*™] Ve, n € R™.

Tak kak d(R) < 1 B cuny oupeseienus: B,,, TO OTCIONA HEIIOCPEICTBEHHO CJIEJLYET,
qro hyHKIUS Ay SBIISETCS BECOM THIIEPOOJTAIHOCTH.

HeobxomumocTts. [lycth dyuknus hy sBiasgeTcs BeCcOM TUIEPOOJTUIHOCTH, T.€. C

HEKOTOPbIME T1ocTosHEBIME @ € [0,1) u ¢7 > 0

(2.3) hp(§ +n) < e7 [hn(§) + [n]*] V& n € R

IMokaxkewm, uro u3 ouenku (2.3) caemyer, uro d(R) < 1, r.e. R € B,,. [Ipeauosnokum
obparnoe, uro d(R) > 1. Ilycrs 6 > d(R), M := R = {u : dp € R}. Ouenngpo
d(M) =d(R)/6 < 1. Crenosaresnsio M € B, u ¢ HEKOTOPOIl OCTOAHHOI cg > 0

(2.4) g RS (€) < hn(€) < g hy(€) VE € R™

PaceMoTpuM crierytonme BO3MOXKHBIE CJIyTan

1) pa mekoroporo ungekca j : 1 < j < n (mycTb, pajy ONPEJEIEHHOCTH I j =
1) (M) < di (M)

2) (M) = d;(M) mpm Beex j : 1 < j < n, tme I(j,M) := (0,...,0,;,0,...,0)
Bepmmna M, sexkamas Ha ocu &5 (j =1,...,n).

ITycrs B cayqae 1) 1 € (I3(M), dy (M)) Hekoropoe gucio. Cormacno Crepcrsus 2.1

Jytst Jioboro s = 1,2, ... cymecrByer Touka £° € R™ u wucio tg Takue, 910
(2.5) P (€% 4 (5,0, ...,0)) > s [hpe (€] + |ts]' (s =1,2,...)-

U3 onenku (2.4), Ha ocHoBaruu Teopemsl 2.1 umeem, uto ts — 0o 1pu 8§ — 00. Torga
3 Toii e orenku (2.4) u Jteoit wacTn onenku (2.3) momydaem cg ' [s (hae (%) +|ts|H)]°
< hg(&® + (¢5,0,...,0)) s = 1,2,.... Orcrona, B cuiny onesku (2.3), ¢ HEKOTOPO
nocrogHHOM cg > 0 mmeem rs Beex s = 1,2, ... 80 [h3:(€%) + [ts]'°] < cg [hn(€®) +
|ts|?]. Orkyna, B CBOIO OYepej, B CHJY IpaBoil YacTu HepaseHCTBa (2.4), mosydaem,

qT0

(2.6) cg [0 h(€%) + |ts|'0] < o [hn(€%) + |ts]*] s =1,2, ...
59



B. H. MAPT'APAH, I T. KABAPAAH

3 5Toit OLEHKHU CIIeyeT, 4To Jyis A0cTaTodHo Gombimux s 80 [t,|'0 < cg [ts|® u Tak
Kak ty — 0O IpU S — 00, TO OTCIOJA HojtydaeM, 4ro (4 < a. OTciona, B CHILy LIPO-
u3BosbHOCTH dncia | € (I3(M), d; (M), momxyaaem, aro § d; (M) < a, cieroBaTesbHO
di(R) < a. Tak kak a € [0,1), To 5TUM HeEOOXOAMMAasI YACTh TEOPEMbI B ciydae 1)
JIOKa3aHa.

Pacemorpum ciyqait 2). B arom ciryuae B cuiy Jlemmbr 2.4 mojiydaeM, 9TO MHO-
xkectBo A(R) cocromt m3 ommoro smementa A(R) = {(ﬁ, e m)} U HOITOMY
hp(§) =1+ 2?21 €19 ). Torna, npumensia onenky (2.3) npu & = 0,7 € R",

IIOJIy IUM

1+ |4 = hg(0+n) < e7 [hr(0) + 9] = e7 (1 + [n|*) ¥y € R™.

Jj=1
Orcrona memocpencTBeHHO mosydaeM, uto d(R) = maxi<j<nd;(R) < a. Tax xax
a € [0,1), To a10 O3Hauaer, uro N € B,. DTUM YACTH TEOPEMBI, OTHOCSINEHCS K

HEeOOXOMMMOCTH B CiIydae 2) Takxke JMoKasaHa. Teopema 2.3 j0Ka3aHa. O

Sameuanne 2.2. Ouesudno wmo, ecau R C RY enoane npasuavroil muozo2panmu,

0as KOTOPo20 vinoansemcs ouenka (2.3), mo a > 0.

JIemma 2.6. ITycmov R € B, al(n) :=(0,...,0,1,) sepwuna R, sescawan na ocu
&n. Ecaul(n) > d(M), 2de M mnozozpannur Hotomona nabopa {v' := (v1,...,Vn_1) €
R’_ﬁ‘l,(u',O) € RO}, mo ¢ nexomopoti nocmoannoti cig € (0,1) w dan ecex n =

(771>~~~>77n),77n 7é0 umeem

c10 b (€ — %ﬂ') = c10 hp(§ - 7%77) < ftfgﬂghm(f —tn)
En | ;o En n
(2.7) < h(€— T ) = hoc(€ — 2 1.0) Ve € B

ZHoxasameavcmeo. Tak kak £ — fT: n= (- % 7’,0) npu £ € R™, 10 B cuity onpeje-

neHust MHOrorpanuuka M umveem hg (€ — :’;—: n) = hp(& — 2—: 7',0) = hy (¢ — :’;—: n)
V¢ € R™, oTKy/1a HEIIOCPEICTBEHHO II0JIyYaeM [PaByIO 4acThb oueHKu (2.7).

JaxazkeM JieByro dacThb onesku (2.7). B cusy Teopembt 2.1 ¢ HEKOTOPO# HOCTOSIH-

HOI ¢11 > 0 u gyst aoboro t € R mmeem

/

hd (€ = S 0f) = hoe(€ — £ + (E1m — €0) L)

n Tn

)]

< cun [hae (& —tn') 4+ hoes ((E0n — &n)
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Tak kak p(M*) = d(M), To ayst Beex £ € R™ u ¢t € R nomyugaem

b

n

hae (€= 1) < exn [have (€' =t ) +|€n—t 1" ] = 11 [havt (€'t 1) +|En—t 1 |7V,

B cuny yenosus aemmst 1, > d(M) n {(¢/,0) : v/ € M} C R, nosromy, Ha OCHOBAHUK
IIpemyioxkenust 2.2, ¢ HEKOTOPOIT TOCTOSTHHOIL ¢12 > 0 1151 Bcex £ € R™ u t € R orcrona
HOJTy daeM

&

n

hoe (& — 22 0) < cra[hoe (€ —t0)) + & — tna|™] < cra hn (€ —tn),

OTKYZIa, B CHJIy TIPOU3BOJILHOCTH dncia ¢ € R, mosydaem JeByio 4acThb oueHku (2.7).

Jlemma 2.6 mokazaHa. O

3ameuanmne 2.3. Jleexo ybedumoca, wmo daa abozo R € B, un € R" pynrxyua

ha p = minger hn(§ — tn) makorce aeasemea 6ecom 2unepbOAULHOCTIU.

CuencrBue 2.2. Ilyems 0 < I3 <y < ... <1, <1 a R mnozoepannur Horomona
naéopa {l(j) = (0,...,1;,0,...,0)}7_,. Toeda das aoboi mouxu n € R", n, # 0 c

Hexomopotl nocmoarnol ¢y € (0,1) u daa ecex & € R™
& 19
0121+§ |£J_777J| ] < s p(8) 1+§ |65 — 2= m;l" ]
n

Zloxaszameavcmeo. HeMeIeHHO cyeayeT u3d JleMMbr 2.6, TaK KaK IPU YCJOBUIX CJIE]I-

crBusa R € B,. O
Huzke MbI OyieM 1OJIb30BaThCS TAKYKE CJIELYIONMM OUYEBUIHBIM IPEJJIOKEHIEM

ITpengioxxenne 2.3. I[Tyemva £ b ud > 0. Tozda ¢ nexomopoti nocmosnmnotls c1z > 0

u npu ecex t, € R
cig ([t +19°) < [t = a9’ + [t = 00| < ca (|t° + 9]°)-

Jdemma 2.7. IIycmv npu yeaosuax Jdemmo, 2.6 7 € R™, nl # 0(j = 1,...,n)
Aunelino nezasucumoie eexmopo.. Tozda ¢ wexomopotl nocmoannot c1g > 0 u npu
ecer £ € R”

n n—1
(2.8) e [1+ Z 1651 + [&nl"] Z i (§) < cra[1+ Z 1€ + |€n 1]

Jj=1 Jj=1 Jj=1
Joxazamenvcmeo. Tak Kak BekTops {n’ }?:1 JIMHEIHO HE3aBUCHUMBI, TO IJIsI JIIOOOTO

k:1<k<n-—1 cymecrByloT UHIEKCH j1,j2 : j1 #* J2, 1 < j1,72 < m Takwue,
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qT0 nil /it nf /ni2, To B cuity IpeiozKeHus 2.3 ¢ HEKOTOPO#t TTOCTOAHHOI ¢14 > 0
uMeeM
cia (&l + 1€al™) < 16k — (0 /m3) €nl™ + 16k — (2 /m2) €nl™
< cra (€] + 1€nl™) VEk,&n € R,
Tak kak max [; = l,_1, TO OTCIOJa HENOCPEJICTBEHHO IOJIy4YaeTcs: oleHKa (2.8),

1<j<n—1
49TO JOKa3bIBaeT JIeMl\/Iy. D

Jlemma 2.8. Ilyemv R € B,, n € R™, n, #0, a RC R? mnozoepanrur Hvtomona
nabopa {v = (v1,....,vn—1,0) € ROFU{(0/,d(M))}, 2de M C R} mnozoeparmux
Hviomona nabopa {v' = (v1,...,Vn-1) € Ri_l, (v/,0) € R°}. Toeda ¢ nexomopumvl

NOAOHCUMEANDHUMDL MOCTNOAHHUMDL C15 U C1g BBINOAHANOMCA HEPAGEHCMBA

(2.9) hr(€ — S 0) < e15 ha(€) VE € RY,
(2.10) I (€ — f]—m < 16 i, (€) VE R,

Joxazamenscmeo. Tak kak (€ — (1/1n) €n) = (€ — (11 /1) €n, 0), T B ety Teopenb

2.1 ¢ HEKOTOPOH MOCTOSIHHOM )5 > 0 nMeem

(5—%"77)—%(«5’ 5"77 0) = he(€' — &

< e1s [hac(€) + hoe- <§"

1)

)] VE € R™.

n

C npyroii croponsl, Tak kaK p(M*) = d(M), To B cuity onpejesieHrst MHOIOIDAHHUKA
R u ma ocHosanun IIpejyroxkenusi 2.2, ¢ HEKOTOPOW MOCTOSIHHOM cf5 > 0, orciomna

IoJIy4yaemM

hn(€ — f}—%) < e16 hae(€) + [62]900] < 16 hi(€) VE € R™.

n

Orum onerka (2.9) mokazana. JJokaxkem onerky (2.10).
Tak kak (0’,d(M)) BepinHa MHOrOrpaHHUKA R nexamas Ha ocu &, U, OUEBHIHO,

aro i € B, To B cuity Jlemmbr 2.6 ¢ HEKOTOPOIT TOCTOSTHHOI ¢17 > 0 mpu Beex £ € R™

uMeeM
n én
cir (€ = =2 1') < hg , (€) < err ha (€ — 7777/)-
Tax kax hg(€— @ 77) = hy (&' — 5” 7') upu Bcex £ € R™, T0 0TCIOJa HEIIOCPEICTBEHHO
HOJIy YaeM oueHKy (2.10). ﬂemlMa 2.8 JIoKa3aHa. O

U3 Jlemmer 1 paBorsr [6] cenyer coemyromee
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IIpennoxenne 2.4. IIycmo R, M C R} (svinyravie) mrzoeparnuru. Tozda T C M

6 oM U MOALKO 6 mom caysae, Ko2da hy(€) < ha(§) daa scex & € R™.

Jlemma 2.9. ITyemv R € B,, n € R*7Y n, #0, a M C Rf__l MHO202PAHHUK
Huvtomona nabopa {v' = (v1,...,vn—1) € RT, (/,0) € R°}. Toeda
1) ecau daa enoane npasuavrozo mrozozparnura R C R evnosnaemea wepa-
senemeo (muoce D:={j:1<j<mn—-1,n; #0.})
13 /
(2.11) h(§ — TT: n) < 17 hg(§) V€ eR”

’
¢ nexomopotli nocmoannot ¢y >0, mo

{v=(,0) e R} U{(0, LR, vj)} C R
’ jED

2) ITyemwv § € R. Jlas mozo, 4mobos ¢ Hexomopot nocmosntol c1g > 0 8unoinAN0CH

HEePaseHCcmMaeo

(2.12) h(E — S ) < cas [ () + € ]°) VE € RY,

n

ede & = (&1, ...,&n—1), neobrodumo u docmamouno ycaosue 0 > maxjep d;j(M) npu
n #0.

3ameuanue 2.4. OmMemum, wmo Ycaosue AEMMbL 03HAHAEM, “IMO MUHUMAAD-
HOU 8NOAHE npaewwﬂmﬁ MHO202PDAHHUK R s KOMmopoz20 6bINOAHAEMCA HEPABEH-

cmeo (2.11) asasemcs mmozoepannuk Hovromona nabopa {v = (vq,...,vp-1,0) €

RO} U (0, maxjen dj(M))}

Hoxazameavecmeo semmo.. Tak Kak, B CHILy OIpeesieHus MHOrOrpaHHuka M,

hi(§ = £2 ) = hp(§' = 529/,0) = h(§

nMeeM

’

— 7‘57—" 7n'), To Ha ocHOBaHUsA oueHKH (2.11)

(2.11) hac(€ — S ) < ¢ip hal€) VE € R™.

n
Orcrona, B cuity Ilpenoxenns 2.4 n onpenenenns byHKIun hg, mHorydaeMm, 9To
MC{V = (Ui, vp1) € RTTL (V,0) € R}. Crenosaressio {v = (v/,0) € M°}
c{v=(v,..;vn_1,0) e R} C R.

Tax kax {v = (/,0) € M°} = {v = (+/,0) € R}, 1o orciona nomyuaem, aro
{v=(,0)e RO} C R.

Tenepn nmokaxkem, aro (0, max, cyo ZjeD Vi) e R mpu n’ # 0. Hycrs & =0

npu j €D, G =1upuj¢ D ug, € R!. Torma ¢ HEKOTOPUMBI IIOJIOKUTETHHIMBI
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,
IIOCTOSTHHUMBI Cig U C1g UMeeM JJIsI BCEeX § e R"”

L SRS H\*m

MIn v eMO 77” v EMO jED
max, Z J’
>y 3l B > e[+ [P 87
v’ eMO

Tak Kak R BIOIHE IPABHJIBHLI MHOTOIPAHHIK, TO ¢ HEKOTOPOH HOCTOSHHOMN o9 > 0
ué=0npuj€eD, &=1upuj €D, 1<j<n-—1, umoboro &, €R' umeem
ha(€) < ca0 (14 |§,L|["), rae l(n) := (0, ...,0,1,) Bepmmua R nexamas va ocu &,
U3 nocieiHbIX ABYX OLEHOK, B cuily HepaseHcTBa (2.117) mosydaem, dro
max,s et (D jen J) < I, cregosarensno (0, max, cgpo djen Vi) € R, uro mOKA3BI-
BAeT yTBEPXK/EHNE IIyHKTA 1) JIeMMBIL.
Hocrarounocts myHKTa 2). Ilycrs 0 € R uro6oe npun’ = 0u d > max;ecp d;j(M)
upu 1)’ # 0. Eciin ' = 0, 1o Beinosnenue ouenku (2.12) mig moboro § € R nenocpes-

CTBEHHO CJIe/IyeT U3 TOr0, 4TO Ipu JJisd Bcex & € R™

B — 2 0) = h(€ — 5 o) = hn(€,0) = hac(€).

TL n

Hycrs 7' # 0. Torma, B cuiy Teopembr 2.1 u oupenesennst Muororpanauka M*, ¢

HEKOTOPOII MOCTOSHHOMN co1 > 0 u upu Bcex £ € R™ umeem

&n ') < car [hoe (&) + [have= (10 /1) €n)] = c21 [ha (€])

n

hov (€ —

14 Y (6 /ma) 1P OV] = 21 [hne(€) + 14 Y [(6n/ma) ] OV,
= JED

Tak kak hyp(§ — v% n) = hn(§ — % n') mias Beex £ € R™, To oTCioga HOLydaeM
omenky (2.12) mpu § > max;ep d;(M).

Heob6xoaumocTb myHKTa 2). [IpeanooKuM, /i onpeleJeHHocTd, 910 D =
{7}j=1 1 <r < n—1.lokaxem, 9TO IPN BHITOTHERNH OTIEHKH (2.12) 0 > max;jen d;(M).
Cravasia mokakeM, 94To § > maxi< <, I;(M), rme (5, M) := (0, ..., 0,1;(M),0, ..., 0)

Beprmna M, mexkarmmas Ha ocn §;.

W3 onenku (2.12) npu &' =0, &, € R umeem

1+ Z |(§n /1) 77j|lj(M) = hav((€n/Mn) 77/) = hM(gl = (&n/mm) 77/)

= hp(§ - fn 1) < c1s [hae(€) + [€nl’] = e1s [ne (07) + [€n]°] = e1s (1 + [al°),

n
OTKYZIa HEIIOCPEeICTBEHHO MOIydaeM, I9To § > maxi<j<r I (M).
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Temepp mokazkeM, uro § > maxi<;<, d;(M). IIpexnonoxum obparmoe, ato § <

maxi<j<, d;(M). Torma, 10 yKe JOKA3aHHON YACTH MOJIY UM, 4TO

(2.13) max [;(M) < < max d;(M).

1<j<r 1<j<r

ITycrs, ms onpenenennocrn, di(M) = maxi<;<, d;j(M). Tak kak u3 (2.13) cie-
nyer, uro l1(M) < di(M), TO HpOBOIS PACCYKIEHMsI, AHAJOTUIHBIE PACCYKICH-
sIM, TIPOBOJIUMBIM TIpH jioKazarenberse Teopembr 1.2, gt A% = (XY .. A0 ) rie
A= (A, A A0) € AR), A = minyea) A1 momyunm, aro Ay dy (M) = 1,
N < 1, )\? (M) < 1(j = 2,..,r), OIPH 3TOM CYIIECTBYeT BEKTOp ' =
(K15 e n—1) € M\ {I(1, M)} raxoit, wro (A1, ') = 1wy t1(1')/ (01 (p') — 1)
dy (M) (oupenemrenne ancia ti(p) cm. B Jlemme 2.5).

ITycre 1 € (6, d;(M)) sro6oe durcupopannoe yucsio. Ormernm, 4To Tak Kak 1)l —
11(M) > py, 2) muororpamnuk M asasiercs srosse npasmibibiv u 3) A 1 < AYdy (M),
r0 1/1 < (1A ) /(1 u2)). Tomomant € = 0, € = (sgn(ng/m)) ™ (G =2,....7),
=N (j=r+l,n—1), n&=s" (s=12.) meae 1/ (1-\ )/~
pi1))-

B cuity onpenesnienns nocienosareabHocT {€5} ¢ HEKOTOPBIMU MOJIOKUTETLHBIMHA
HOCTOSIHHBIMU C22, C23 UMEEM

hac((€)° — (f]— 7)) > 14](€) — (o

)"

n

T s n—1

=1+lg IT1g - e T 161
j=2 Tn j=r+1

T n—1

> e L+l [T w1 ) T 1&1]

j=2 j=r+1

n—1 "=t )
ap1+ 22 )\j Hj

> e [L+G 1 TG = sl +s 5=
j=2
= oy (1 + s@mti=Mmy g— 12 .
Orcrosa n u3 HepaseHeTBa (2.12) nMeeM ¢ HEKOTOPOH TIOCTOSTHHOM o4 > 0 1 J1IsT Beex
s =12, ...
L s N < gy [hae(€)°) + IE1°)-

Tax kak ((A°),2') <1 ansa mo6oro v/ € M, To OTCIOfa U U3 ONpPe/IeIeHUs TT0CIe/I0-
BaresbHOCTH {£°}, € HEKOTOPOIi MOCTOSIHHOMN Co5 > 0 mostydaem

14 stmtl=Mm < oo (14s+5") s=1,2,..
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IMosy4yenHoe HEPABEHCTBO IPOTUBOPEYUT TOMY, 9TO U3 yciaosuii [ € (4, d1(M)), a €
(1/1,(1 = XY 1) /(I = 1)) cnenyer, aro apy +1— Ay py > aé > 1. Takum obpasom
HEOOXOUMOCTD IIYHKTA 2) JIEMMBI M, T€M caMbIM, Jlemma 2.9 J0Ka3aHbI. g

Huxe Mmbl Oymem paccMmarpbiBar ciaydaii n = 3. [leqo B ToM, 9TO B Tpexmep-
HOM CJIydac MHOTOIDAHHHK R HMeeT yIoOHBIE Juisi u3ydeHus cTpyKTypy. Vmen-
HO, U3BECTHO, YTO B JBYMEPHOM ciiydae f— runepboMIecKuii MHOTOUIEH SIBJISIETCSI
s—TuTepboIMIecKIM, a B TpexMepHoM cayuae, ecin (1 = (11,0,0), 12 = (0,ls,0),
I3 = (0,0,l3), BEPIIUHBI MHOTOTPAHHIKA, §)EE, npu 3toM [y = I3, To R— runepbosiu-

YeCKUii MHOTOWIEH siBjisieTcst S—runepbosmaeckum npu s = 1/15 (em. [14]).

JIemma 2.10. ITycmo M € Ba, I3 € (0,1), R— wmnozoeparnux Hvromona Habopa
{(v,0),v € M°} U {(0,0,13)}, (1) := (11,0) u U(2) := (0,l2) (I1 < l2) eepwumnw
mrozozpanruka M, aescaugue Ha Koopounamuur ocar &1 u 3 COOMEEMCPEEHHO.
Toz0a

1) ecauls < la, mo daa moboti mouku n = (n1,m2,n3) € R3; (n2 #0) cnpasedauso

HEPABEHCIMBO
e [1+ 161 — (m/m2) &|" + &5 — (n3/m2) &2]*] < hpy(E)

< coe [1+ €0 — (mu/me) &l + &5 — (13/m2) &2|®] VE € RP.

¢ nexomopoti nocmoanHoti cog > 0
2) ecau 7 = (nl,m5,m3), mh #0 (j =1,2,3) aunetino nesasucumvie 6exmopoi,
mo das ecex € € R? cnpasedaiuco nepaserncmeo
3

cor [LH 160" + 162l + 1&1°] <D hys (€) < ear [L+ €] + €2l + |€5]"]

j=1

¢ nexomopoti nocmoarmnot cor > 0.

0), (0,13)}. Tax kax d(M) =

maz{l,l3} = p(M), 10 B cusy ycaoBus jemmbl Iy > d(M). CrenoBaresnbHo, B CuLy

,ZZO'K;aSamEJ“)CmSO. lly(:lb M = vV = Vl,l/3 (S % B l/l,“,l/?) S f" . ()qu[/” HO
+
)

M saBaseres MHOTOrpanHEuKoM Hbrorona maGopa {(li,

Jlemmbl 2.6, ¢ HEKOTOPOH MOCTOSIHHOM cog € (0,1) nmeem

cag (&1 — (m/m2) &2, &3 — (n3/m2) &2) < hy y(€)

hoe (&1 — (m1/n2) €2, & — (n3/n2) &2) VE € RP.

Orcroza, B cuty onpeie/ieHnsi MHOrOrpaHHrKa M, HEOCPEICTBEHHO MTOJIy9aeM yTBep-

JKJIeHne TIepBOro IIyHKTa JIEMMBI.
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JlokazaTesIbcTBO BTOPOTO MMYHKTa IMPOBOJUTCSA aHAJOTUIHO JIOKA3aTETHCTBY Jlem-

MBI 2.7 ¢ IPUMEHEHUEM [I€PBOIO IIYHKTa HACTOAIIEH JIEMMBI. ]

3. OCHOBHBIE PE3YJ/IbTATHI

Teopema 3.1. ITycmv A = (A1, ), 1 < Ay < A1 < o <A, R={v €
RY,(A\v) <1} u M:={ve R’i,zy;ll Ajvj+ A1 vp < 1} u mnoeounen P R—
aunepboauner OmHocumensho eexmopa 1 = (11, ...,M0n) € R™ n, #0, mo P maxoice

M—-zunepboruver OmHOCUMENDLHO 7).

Joxazameavcmeo. U3 onpenenenns R— runepbosmanocru P coenyer, uro P, (n) #

0 u cymecTByeT nmocrtogHHas c; > 0 Takas, 9TO
(3.1) P(+in) #0 VE e R, 7 € C,|Rer| > ¢1 hg(§),

e hp(€) =14 Y07 [
B cuity Teopembr 2.2 paGorsl [14] coorromienue (3.1) 9KBUBAIEHTHO CJIEIYIOMIEMY:

CYIIIECTBYET IIOCTOAHHAs cy > () Takas, 9TO
(3.2) P+itn) #0 VEeR", 7 €C,|Ret| > ¢ hp 5 (£),

rae hg,(€) := infier hr(€—tn). Tax xax B cuiry Jlemmer 2.7 hg ,(§) < c3 hv(§) V€ €
R™ ¢ HEKOTODPO# mocToaHHOU c¢3 > 0, TO oTCiona U u3 HepaBeHCTBa (3.2) umeeM ¢

HEKOTOPOM IOCTOSTHHOM ¢4 > 0,
(3.3) PE+iTn) #0 VE € R™, 7 € C,|ReT| > ¢4 hove (§).

Tak kak Pp,(n) # 0, 10 u3 coorHomenust (1.3) momydaem, arro P M— runepbosn-

YeH OTHOCUTEJLHO BekTopa 7). Teopema 3.1 jgoka3ana. (|

Teopema 3.2. Ilycmv 001opodnoiti muozouaer P, eunepbosuvern ommuocumenvro
sexmopa 1= (N1, ..;7n), M #0 u Q <"1 P ordQ < m, 20e R mmnozoeparmux
uz Teopemwr 3.1. Tozda cywecmeyem oxpecmuocms U(n) mouku 1 makas, 4mo

muozouner P, +Q M— zunepbosuven omnocumenavno arobozo sexmopa us U(n).

Joxasamenvcmeo. Tak kak B cuity Jlemmsr 2.7, hy ,(§) < cshy(§) V€ € R™, 10 B
cumy Jlemmnr 3.1 pa6orsr [13] Q <" P,,. C npyroif cTOPOHBI, TaK KaK MHOTOUJICH
P,, runep6osmdyeH OTHOCUTENBHO JIF0O0r0 BEKTOpa 3 HEKOTOPOH okpecTHOCTH U (1)
roukn 7 ( cm.[2], Teopema 12.4.4), To orcioma B cury Teopemsr 3.3 pabGorsr [13]
nosygaeM, 9to P, +@Q M- runepbosmden 0OTHOCUTENHHO J1060r0 BekTopa u3 U (7)),

9TO JIOKA3BIBAET TEOPEMY. O

67



B. H. MAPT'APAH, I T. KABAPAAH

Teopema 3.3. IIycmv R € B,, M == {v/ = (v1,..,vp_1) € R, (V/,0) € R}
u I, > d(M), 2de l(n) := (0,...,0,1,) sepwuna R, aexcawas na ocu &,. Ecau
mhuozounen P R— eunepboauuen ommocumenvrno eexmopa 1 = (N1,.osMn)y n 7
0, mo P maxoce R— zunepboruven omnocumessno mozo sice sexmopa, 1, 20e R—

mnozoeparmux Hovromona naéopa {(v',0) : v/ € M°} U {0,d(M)}.

Hoxasamensvemeo. Tak Kax, IpU yCIOBUAX TeopeMbl, B cuity JlemMbr 2.8 hg € <
¢s hg V€ € R™ ¢ mekoropoit mocTosHHOM c5 > 0, TO JOKA3aTeIbCTBO TEOPEMBI IPO-

BOJUTCA 6yKBaJII)HI)IM IIOBTOpEHUEM J/I0Ka3aTeJIbCTBa TEOPEMbI 3.1. O

Teopema 3.4. ITyemv R € B, I3 € (0,1), R mmnoeoepannux Horomona nabopa
{(v,0) : v € MY} U{(0,0,13)},1(1) = (11,0),1(2) = (0,12) 6epwunv, MnozozpanruKa
M, aesrcawue Ha ocaxr &1 u € coomsememsenno, ls < ly. Fcau mmozousen P
R— eunepboauuen ommnocumenvho sexkmopa 1 = (11,M2,M3), N2 # 0, mo P maxoice

Ri={v:¥2 +2 4+ J1}— 2unepbosuiern OMHOCUMEABHO MO0 JHCE BEKMOPG 1).
l1 ls I3

Jokasamenvcmeo. Tak Kak npu yciousix TeopeMsl, B cuity Jlemmer 2.10 hg ,(§) <
~ n Y3 o
ce hq; V§ € R™ c mekoropoit mocTosHHOM cg > 0, TO JOKA3aTeIbCTBO TEOPeMbl IPO-

BOIUTCS OYKBAJBbHBIM [TOBTOPEHUEM JIOKA3ATEIHCTBA TeopeMbl 3.1. g

Teopema 3.5. ITycmo, npu ycaosuazr Teopemwvr 3.4, 00nopodnwiii mmozouaer Py,
eunepboaunern ommocumenvno eexmopa 1 = (1M1,M2,M3), N2 # 0 u Q <"*n P,
ord @ < m. Toeda cywecmsyem okpecmmocms U(n) mowku 1 makxas, 4mo MHoz20-

wnen P +Q  hg— eunepboauven ommnocumenvro aobozo eexmopa uz U(n).

Zloxasamenvcmeo. TPOBOAUTCs OYKBAJIBLHBIM IIOBTOPEHNEM JI0KA3aTETHCTBA TEOPEMBbI
3.2, ymm ¢ Toit pasuwmrieit, YTo BMecTo JleMMBI 2.7, 371ech HaJ0 moJzoBaTca Jlemmoit

2.10. ]

Abstract. It is proved that if A€ R", 1 < X, < A1 < .. <\, Ri={rve
R%, (\v) <1}, M:={v e Ri,zy;ll AjVj + Ap—1 vy < 1} and the polynomial
P(&) = P(&,...,&n) is n—hyperbolic with respect to the vector n € R™, 7, # 0,
then it is also M—hyperbolic and iﬁfhyperbolic with respect to 7.
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CAMPANATO SPACES

T. MA, J. ZHOU

College of Mathematics and System Sciences
Xinjiang University, Urumgqi, People’s Republic of C’hineﬂ
E-mails: matengshuzue@163.com; zhoujiang@zju.edu.cn

Abstract. In this paper, we introduce the weighted central Campanato spaces CP** (w) and
characterize C?**(w) by the boundedness of the commutators [b, H] and [b, H*] from weighted
central Morrey spaces to weighted central Morrey spaces for w € A;, where the commutators are
generated by n-dimensional Hardy operators and symbol b. In particular, the Weighted Lipschitz

estimates for the Commutators of Hardy operators are obtained if 0 < A < 1/n.

MSC2010 numbers: 42B35; 47TB38; 47B47.

Keywords: weighted central Campanato spaces; Hardy operators; commutator;
Morrey spaces.

1. INTRODUCTION

In 1963, Campanato space CP*(R™) was first introduced by Campanato [I] in
order to study elliptic regularity in the context of the heat equation. Let —1/p <
A< 1/nand 1 <p < oo, a locally integrable function f is said to belong to the
Campanato space CP*(R™), if

1

1 P
B L — fplPd ,
IFllons ey =00 (i [ 1960) = ) < oc

where the supremum is taken over all balls B C R", fp = ‘—él I f(y)dy, where |B|
is the Lebesgue measure of B. If the supremum is taken over all balls B(0,r), it
is the central Campanato space C.'I”)‘(R”). The excellent structures of Campanato
spaces render them useful in the studies of the regularity theory of PDEs, which
allows us to give an integral characterization of the spaces of Holder continuous
functions. This leads to a generalization of the classical Sobolev embedding theorem
[2, 13, [4, 5L [6]. Tt is well known that b is the dual space of the Hardy space
H? when 0 < p < 1 [7]. Especially, C1:* = BMO(R™).

Many authors have focused on the researches of commutators for which the

symbol functions belong to BMO spaces and Lipschitz spaces which are the special

IThe research was supported by the National Natural Science Foundation of China (12061069).
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cases of Campanato spaces. More precisely,
BMO(R"™ =
CPA(R") = { Lipg?lé")) ())\< g,< 1/n.

Recently, there are lots of studies concerning Campanato spaces and central
Campanato spaces. In 2013, Shi and Lu [§ @] characterized the space CP* via
the boundedness of fractional integral and Calderén-Zygmund singular integral
operator on Morrey spaces. In [10], Zhao and Lu gave some creative characterizations
of central Campanato spaces via the boundedness of commutators associated with
the Hardy operators for A > 0. In 2015, Shi got another characterization via the
boundedness of commutators associated with the Hardy operators for —1/p < A < 0
[L1].

As is well known, Lipschitz spaces and Campanato spaces have equivalent norms
if 1 < p < oco. In 2018, Wang and Zhou [12] proved that they are still equivalent
to 0 < p < 1. In the weighted setting, J. Garcia-Cuerva [I3] proved the equivalence
of weighted Lipschitz spaces and weighted Campanato spaces, which is stated as

follows:

. ~ 1 L _ P 1-p »
lins. = p o (g 1) — Falrote ae)

~ SSPW/QJC(I) — foldx
ifl1<p<oo,0<pf<1andwe A;. Moreover, Hu and Zhou [14] extended its
equivalence to 0 < p < 1.

Inspired by the above works, in this paper, we introduce the weighted central
Campanato spaces and characterize the weighted central Campanato spaces via the
boundedness of commutators associated with the Hardy operators. In particular,
we obtain characterizations of weighted central BMO spaces if A = 0, the weighted
Lipschitz estimates for the commutators of Hardy operators are derived according

to the equivalence of weighted Lipschitz spaces and weighted Campanato spaces if
0<A<1/n.

2. SOME PRELIMINARIES AND NOTATIONS

Most the notations we use are standard. B(x,r) denotes the ball centered at x
with radius r. For any a > 0, aB(x,r) = B(z,ar). For a locally integrable function
[ = ﬁ J f(x)dz, the Lebesgue measure of B by |B|. Also, w is a nonnegative
locally integrable function i.e. w(E) = [, pw(x)dr, p' is the conjugate of p satisfying
1/p+1/p’ = 1. C always stands for a constant independent of the main parameters

and not necessarily the same at each occurrence.
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In 1995, Christ and Grafakos [15] gave the definitions of the n-dimensional Hardy
operator and its adjoint operator,
1 . fly n
m@ = [ mye = [ Wy sern oy
1™ Jiyi<a) yi>lal 1]
H and H* satisfy

| s@tf@is= [ g
n RTL
Let b be a measurable locally integrable function and 7T be a linear operator.

Then the commutator [b, T is defined by
b, T|f =bTf =T(bf).

In [I6], R. Coifman, R. Rochberg and G. Weiss proved that the commutator [b, T
is bounded on LP(R™) if b € BMO(R"™) and 1 < p < oo, where T is a Calderén-
Zygmund singular integral operator.

In this article, the commutators of H and H* are defined by
Hyf =[b,H]f =bHf - H(bf), Hyf=[bH"|f=0bH"f—H"(bf).

This article will prove that Hy f and H} f are bounded from weighted central Morrey
spaces to weighted central Morrey spaces if and only if b belongs to the weighted
central Campanato spaces.

In the following, we give the definitions of weighted central Campanato spaces
and weighted Morrey spaces.
Definition 2.1 Let w be a nonnegative locally integrable function, a function f €
i,

for —1/p<A<1/nand 1 <p<oo,if

(R") is said to belong to the weighted central Campanato space C*(w)(R™)

1

||f||c'*p,x<w) = iglg <w(B(071,r))1+Ap /B(o}r) |f(z) — fB(O,r)|pw(:17)1pdx> ' < 00.

If w =1, CP*(w)(R") = CP*(R™). If the supremum is taken over all balls B ¢ R™
and w = 1, CPMw)(R") = CPAR"), if A = 0, it is the weighted central BMO
space CMOP(w).

Definition 2.2 Let 1 < p < o0, w is a nonnegative locally integrable function,
a function f € LI (R™) is said to belong to the weighted central BMO space
CMOP(w) if

1
I lemorc = (i oo 1) = FotonPata) )" <o
Obviously, CMOP(w) C CMO%w) if 1 < g < p < co. When w =1, CMOP(w) =
CMOP(R™). In particular, BMO(R™) C CMOP(R™) if 1 < p < 0o, CMOP(R™) C
CMOIR"™)(1 < g < p < 00). There is no analysis of the famous John-Nirenberg
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inequality of BMO(R™) for CMOP(R™), so CMOP?(R™) and CMO(R"™) are not
equivalent.

Definition 2.3 [17] Let 1 < p < 0o, —1/p < A < 0, w1, w2 are nonnegative locally
integrable functions, a function f € LfOCMQ (R™) is said to belong to the weighted

Morrey space MP(wy,ws) if

1 1/p
||f||MPv>\(w1,w2) = Slép <u_)1(B)1+>\p/B |f($)pW2($)de'> < 00.

If wi = wy = 1, MPMwy,wy)(R™) is the classical Morrey space MP*(R™). In
particular, Sakamoto and Yabuta [I8] pointed out that CP*(R™) is equivalent to
MPAR™) when 1 < p < oo and —1/p < A < 0. But Lin [I9] gave a counterexample
to verify that MP*(R") C CP*(R") when 1 < p < oo and —1/p < A < 0.

In order to characterize the weighted central Campanato spaces, we give the

following definition of the weighted central Morrey space MP*(wy,ws).

Definition 2.4 Let 1 < p < o0, —1/p < A < 0, wy,ws are nonnegative locally
integrable functions, a function f € Lf’oc’m (R™) is said to belong to the weighted
central Morrey space Mp’)‘(wl, wo) if
1 1/p
||fHMPv*(w1,wz) = BS(%% (wl(B(07r))1+>\p /B(O,r) |f(a?)|pw2($)dx) < 00.
If wy = wy =1, it is the central Morrey space Mp”\(R").
Definition 2.5 Let 1 < p < oo, we say w € A, if

sup (|;|/Bw(x)dx> <|;|/Bw(x)p]1dx>p_l < 0.

For the case p = 1, we say w € Ay if

1
B /Bw(w)dx < Cessrueljfgw(x)

for every ball B C R". A weight function w € Ay if it satisfies the A4, condition
for some 1 < p < oo.
Lemma 2.6 [20]. Let w € A, then there are constants Cy, Cy and 0 < 6 < 1 for
any measurable subset £ C B,

E| _w(E E|\°
(21) e < 2 <)
Lemma 2.7 [21]. Let w € Ay, then for 1 < p < oo,

(2.2) / w(z)' " dz < C|BIP w(B)'*,
B

where 1/p+1/p’ = 1.
Proof: Since A; C A,, w satisfies the condition of the weight A,,. The above lemma
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can be obtained by simple calculation.
Lemma 2.8 [22]. The function class is called the reverse Holder class if a function

f satisfies the following condition
c
(2.3) sup [f(z) — f| < — | [f(z) = fBldz.
z€B |B| B

Reverse Holder class contains many kinds of functions, such as polynomial functions

[23]. For more theories about reverse Holder class, see [24].

3. A CHARACTERIZATION OF WEIGHTED CENTRAL CAMPANATO SPACES

The main theorems are as follows.
Theorem 3.1. Let w € A;(R™), 1 <p <oo, —1/p< A <0, =1/p; < X; <0(i =
1,2), A=A+ X, 1/p =1/p1+1/ps, b satisfies (2.3), then the following statements
are equivalent:
(i) b € CPr (w);
(ii)[b, H] and [b, H*] are bounded from M?2*2(w,w) to MP* (w,w!'~P).
Theorem 3.2. Let w € A;(R"),1 < p < o0, 1/p+1/p’ =1, —min{1/(2p),1/(2p')} <
A < 0, then the following statements are equivalent:
(i) b € CmaxPp)A ()
(i) [b, H] and [b, H*] are bounded from M?*(w,w) to M??*(w,w'~?). In addition,
[b, H] and [b, H*] are bounded from M? *(w,w) to M? 2 (w,w! "),
Theorem 3.3. Let w € 4;(R"),1 <p < o0,1/p+1/p' =1, —min{1/(p),1/(p")} <
A < 0, then the following statements are equivalent:
(i) b € CMO™x@:p") (),
(i) [b, H] and [b, H*] are bounded from M?*(w,w) to M??*(w,w'~?). In addition,
[b, H] and [b, H*] are bounded from M? *(w,w) to M? 2 (w,w! "),
Proof of Theorem 3.1:
(i) = (i4), for simplicity, we write By, = {z € R" : |2| < 2¥}, Cy = By \By_; for
k € Z. For a fixed ball B = B(0,7) C R, let B(0,r) = By, with ko € Z, we just

need to prove that

| N
60 (o [ @R ) < i
0 ko

and

(¢

1
(3.2) (Mﬁﬂwwé%mwmwmmkwﬂ < Ol flltma.na o)
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On the one hand,

ko
<c /
k:z Ch
ko
+C Y /
k=—

Applying Holder’s inequality, (2.1) and (2.2), we have the following estimates,
ko 1k P

I1=C / — /bx—bkfydyw

_z_: . le”._z C‘I() Bl ()] (

<022’w"/ (z) — bp, [Pw(z) Pdz Z/|f |dy

1
|z

|Hy f (2) o) Pde = /

B

./|<| | (b(z) — b(y)) f(y)dy| w(z)' Pdz

ko
1

[

P
w(z) Pdx

/B 10(e) ~ b, |17y

P
w(z)"Pde =T+ I1.

e, )~ b5l

) Pde

k=—o0 i=—00

ko —kpn (lfm)p e s p
—c Y 2 [ bla) = b P() T wta) | 3 L 15wl e Fay

k=—o00 k 1=—00

P

ko H p
<C Z 2’%(/ Ib(z) — b, plw(x)lpldx> W(By)
B

(/ |F)IP2w( dy) - (/Ciw(y)l"’;dyfé '

ko
<Oy o 1 sy S 27 "(Bi) A7
k=—oc0

ko
< O Iy S BT

k=—o0

1=—00

k P
> |Bilw(B)*

1=—00

k P
Z 9(i=k)n(1+X2)

1=—00

ko
< C||b||’épM1 w)\|f||Mp2 N () w(By ) TP Z o(k—ko)n3(14+Ap)

k=—o0

< CIbZ, 0, oy 1 W oy @(Bio) 7

Due to 1/p = 1/py + 1/p2, using Hélder’s inequality, (2.1) and (2.2), we can get

II=C ko 1 k , , . p g < ¢ ko s on
- kzoo/(fk Wz_ZmL| %) = s, |If (W)ldy| wlz) ~Pdr < k;m
k . »
X/ck. i__oo</31. ('b(y)‘kalf<y>l)’°w<y)1"’dy) w(B)7 | w(z)'Pdx
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(/ b(y) — b [P ()’ pldy)ll

P
w(z) Pdx

ko
<C Z 27k:pn/

k=—oc0 k

x (/B If(y)p"W(y)dy) Ew(Bi)i

k +-2
< C||bHCp1 )\1 ||fHMp2 >\2 w Lz.)) Z 2 npw p 1 P1
k=—o00
k Loy, L p
></ w(z)"Pdx Z w(B;)rz T2t
By,
S C“ngpl,Al (w)”fH MP2:A2 (w, w) Z 1+/\p
ko

(Bk0)1+>\17 Z 2(k7k0)’n5(1+)\p)

k=—o00

w(Bp, ).

1=—00

< C|lbll

CP1:21 (W) ||fHMp2 A2 (w w)
< I oy 1 s
Based on I and I, we obtain (3.1). For (3.2),

/B B Pa) e = /B ) /M F(y)dy

ly|™
</
BkO

/ |<|y|<2koe Mf(y)dy ’
o,

ly|™
I +1Ir.

w(z)"Pdx

w(z)"Pdx

w(z)"Pdx

ly|™

L., S|

For I’, using the same discussion as (3.1), we omit the details. The analysis of IT’

is different.

I g/
BkO

ko
<C Z 2—knp/

k=—00 By

1

p
W W(I)lipdx
T

/| |<2koa |b(x) — b(y)[f(y)ldy

Z/w b))y

i=—00

w(a)!Pde

< C|lollz

1+X
CP1 A1 (w)”f”Mpz A2 (w, w)w( ko) P,

For the term II’, we proceed to show that

oo b - p
H’S/ Z/ le(y)\dy w(x)! "Pdx
Bko k:ko Clc |y|
oo b p
e O =S50l 1| ey =re = 117 + 115
Bko k=Fkq Chr |y|
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Employing Holder’s inequality, (2.1) and (2.2),

oo

I S/ |b(z) — b, [Pw() VY Pdy
B

ko

~ Iy\" ‘

§< [ ) =, dx) w(By,)

5;02-@"( IR >dy) (e pzdy)z

oo

> w(B)™

k=ko

(Bko)1+>\p Z 2(k—k0)n(5>\2
k=ko
w(BkO)H)‘p.

p

p

< Clbli, w(Bry) M

e o ns

< p
= CHb” Cp1s Al(w)HfHMpg Ag(w w)

< CHb”gznwkl (w) Hf”]\/[p2 22 (w,w)

To complete the proof, we divide IT} into two parts:
e [ [Pt
ko ;

ooyt
- bp, — bp,, | P
[ [ e
For II},, we have

) P

w(z) "Pdx = ITh, + I15,.

ko | k=ko Y O

> b(y) — b, T N L
s [ ([ (PUE ) v ) wm? | et
Bro | =k N/ Ck Y]
[eS) ﬁ P2 ,% p
< S (L = o, Potran) ™ ([ 20 wtity) ™|t v
Big | gy \/Ck Cy [yl
e p
<C||b\|cp1 M (w ||fHMp2 A (i) w(B, )P ZQ(ko—k)nw(Bk)1+>\
k=ko
< OB oy 1 r oy (B 7] 3 2k
k=Fko
< OB s o 1 s (Br) .
A . o 5 . . (—d(Bk )1+)\1
pplying Hélder’s inequality, (2.1), (2.2) and |bp, —bp, | < C(k*kO)Hb”cpml(w)ugoik\v
0

we can get estimate of I15,. Indeed,

‘ka - ka0| < |ka,0 - kao'H‘ +oo |ka—1 - ka|7
7
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‘kao kao+1| = ‘ By | b(z) — kaoﬂdx

Brg+1

< b))
|Bk0| By +1

So, we get the following inequalities,

k—1
w(B,J’_l)l-‘r)\l
b5, = b5 | < Wl ey 2 — 5T
Jj=ko | ]|
k—1
w(Bjt1)
< N0l r s @ (Bror)™ Y ﬁ
i=ko J
W(Bk +1)1+>\1
< (k= ko)IBllgor s ) e )
CP12 (w) |Bk0|
w (B, )T

< Ok = ko) 16l ¢orna () | Br, |
0

In the next step,

(Bk )1+/\1 p 1
115, < C|bl” W\Bko) "~ w(x) "Pdx
22 = CP1AM (W) | B, | B
= Lp
P2 7 P
i) [ 1) ™ ([ e ria)
Ck Ck
1 A = A ?
< CUBIE s oy 1 sy @B TP | S (B — o)
k=kq
00 P
S O||b||§¥p1,)\1(w)||f||Mp2 /\Q(UJ UJ) 1+Ap Z k ko n6>\2 k k )
k=kq
< Oy s o 1 (B ) 7.
Summarizing, one has
14+
1 < cp?,, a1 () [ I 3z ()@ (Bro)

Combining I’ with II’, we proved (3.2).
Next we prove (i) = (i). For a fixed ball B = B(0,r), we assume b satisfies

reverse Holder condion (2.3), we just need to prove

1 _
(3.3) w(B) I /B b(z) = bp[Prw(z)! Pdz < C.
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Indeed,
1 .
e [, ) = bl () P

< w(B)"17Mm /Bw(x)l_pl da( sgg b(z) — bp|)"
x

P1
< Cw(B)~Pr—Mip1 g (1/ |b(:r,)—bB|d:c>
1Bl Jp
p1

< CW(B))\IPIT</ |b(x) —bB|pw(x)1_pdx> "
B
Next we estimate [ [b(z) — bp|Pw(x)'~Pdz,
1
b(x) — bp|Pw(x)*Pd <—/
[ o) = balrota)trae < o |
<o [l [ ) - bxat)d
= R ey x) —0(y))xB(Y)ay
1Bl Jp 2™ Jyyi<lal N
1

1 n (0@) =bw)xe®) , [F 1py
i |B|p/B /|y|>|x v dy’ (z)"d

ly|™
=I+1II

P
w(z) Pdx

/B (b(x) — b(y))dy

p
w(z)Pda

Considering I and I, respectively

I's / |Hyxp(z)[Pw(z) "Pdz = w(B) P | Hyxp )"
B

MP:A (w,wl—P)

< Cw(B)lJr)\p”XBHP < Cw(B)l*'r)\lp'

MP2»>\2 (w7w) -

Similarly,

11 < [ Hxa(@)Pula)7de = o(B) | Hi e,
B

< Cw(B)||xall; < Cw(B)HHP,

MP2:X2 (w,w) —

(w,wl=P)

Hence,
Pl
1 - —A1l 1_1)71 ?
S [ ) balrete) e < cupy e (cumyo) <o
Combining (3.1), (3.2) and (3.3), the proof of Theorem 3.1 is completed.
Proof of Theorem 3.2:

(¢) = (i1). For a fixed ball B(0,r) = By, with kg € Z, we just need to prove that

1 v
(3.4) (W/B Hbf(x)|1’w(x)1pdx> < COllfllare )

and

1 ;
85 (s [ P! ) < Ol
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The Holder’s inequality and 1/p 4+ 1/p’ = 1 show that

/ VBt e = /

<CZ/

1

|z["

[, ()~ b) Sy )i

P
w(z) Pdx

o s, 6@ bl iy

p
w(z)'"Pde =T+ I1.

/ Iby) — bs, |1 (4)|dy

For I, we show that

ko
r<cy z—k"p/ 1b(z) — by, [P(z) Pz

k=—o00 B

R oo/ £y |dy
,Z ( /B | |f<y>|pw<y>dy)”< /Bi”(w”"dy)”l'

Z 2 k)n(1+X) b

1=—00

P

ko
<Ol .y S 2B
k=—oc0 )

< O o 1 or Z (By) 1+

k=—o0

(Bk0)1+2/\p'

< OBl o W

To get the boundedness for the term I1, we require the following decomposition

ko
m<c y o7t / Z / (o) — b £ @l (o) Pz
k=—c i=—00
ko p
<oy i f 3 1) = b )|t
k=— By, i=—00
ko
so Yz [ 3 /b~ b5y Nd| w(z)~7da
k=—o00 Brli=—oo
=1II' +1I".

Discussing IT’ and II"”, respectively, if p > p’, then

r<c ij 2*’“"”/ (/ |b(y) — b, |7 ()”dy)

k=—00 By,
w(z) "Pda

_zk:m ( /B 1b(y) — b, [Pw(y) P dy)i

1
P’

1=—00
1

p d b
< ( / 1Pt y)
ko
S Ol o) k;mﬂnp /B k

w(z) Pda
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P
Z 2(1 IS (1+2X)

1=—00

S CHngp/\(w)Hf”Mp AMw w) Z Bk 1+2)\p

< C”bH O, )\(w)”f”Mp Mw w) (Bk0)1+2/\p'

On the other hand, applying (2.1), (2.2) and [bs, —bp,| < C(k—a)|[bl| s () <

|Bi|
we show
oc 3 e / / s, — b 17y >|dy\ o) P
k=—oc0 By, i=—00
ko k
< C|b||2 Q*k"p/ k— / Pw(y)d
< ||cp,x(w) k; B l;m( i) |B| ( |f(v)|Pw(y)dy
X </ w(y)t™ pdy) w(z)"Pdx
B;
ko k P
< Ol ) 1y S (BT S (= iJeo(B)
k=—oc0 1=—00

ko

Z W(Bk)1+2>\p < CHpr

< C”b”p Cp,x(w)||f||5)\‘4p,x(w’w)

CPA( )||f||Mp Aw,w) W(Bko)1+2/\p'

k=—o0
If p’ > p, we can obtain that [b, H] are bounded from Mp/”\(w, w) to P2 (w, wl_p/).
By slightly modifying Theorem 3.1, we can obtain the proof of [H*,b]. Here, we
omit its proof for the similarity.

(i7) = (4), case 1: p > p/, we want to get
1 .
(3.6) e /B 1b(z) — b |Pw(z)~Pdz < C.

Indeed,

W /B b(x) = bp|Pw(w)' Pda
! L np| 1 2 —
= W@/BW B /|y<z|(b( ) = b(y))xs(y)dy

1 . (b(z) — (1))
T B Bl /B

lyl> |l ly[™
Considering K and L, respectively

w(B)1+2/\p
K = WHHZ)XBH;?\ZP,QA(W,wl—P) < CUJ( )XPHXB”Mp AMw,w) < C.

p
w(z)' "Pdx

p
xB(y)dy| w(x)'"Pdr = K + L.

Also,
(B
L< W"HbXBH?Wp,QA(w’Wl—p) < Cw(B)||xsll%,, Mow) = C
Case 2: p’ > p, with the (Mp/”\(w,w),Mp,’”(w,wl_p/) boundedness of H; and

Hy, the similar arguments of case 1 can be applied to this and show that
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1 ’ e

So, combining(3.4), (3.5), (3.6) and (3.7), The proof of Theorem 3.2 is completed.
The Proof of Theorem 3.3 is similar to that of Theorem 3.2.

4. WEIGHTED LIPSCHITZ ESTIMATES

Definition 4.1 [13]. Let 1 < p < 00,0 < 8 < 1, and w € A, a locally integrable
function f is said to belong to the weighted Lipschitz space Lipg’w if

Aza:u;L T)— w;z:lfz%oo
i, =00 e iy [ W) fobateytrae) < e

Modulo constants, the Banach space of such functions is denoted by Lipgyw. Put
Lipg,. = Lip};,w, obviously, if w = 1, then the Lipg , is the classical Lipschitz space
Lipg, if w € Ay, J. Garcia-Cuerva [I3] proved that the spaces Lipg’w coincide, and
the norm of Lip’éw are equivalent with respect to different values of provided that
1 < p < 0. That is Lipg’w ~ Lipg, ., where 1 < p < oo.

Theorem 4.1. Let w € 4;(R"), 1 < p < o0, —% <A< AN <0,0<pB<1,and
A = A+ 8/n, b € Lipg,, then commutators [b, H| and [b, H*] are bounded from
MP M w,w) to MPA (w,wP).

Proof of Theorem 4.1. For a fixed ball B(0,r) = By, with kg € Z, applying
(2.1), (2.2) and Holder’s inequality,

/| V@)t e = /| )
<C Z /
+C Z /

We ﬁrstly prove I,

ko
1<c >’ 2*’“"1’/ b(z) — b, |Pw(z) ~Pdx

By

P

S ) ) S| el
yl<|z|

[

P
w(z) Pdx

o L 1@ = bl )iy

p
w(z)'™Pde =T+ I1.

e L 1) = b1y

Z/If Idy

1=—00

( [ ety dy) ([ iw(y)l—P’dy);'

Z 2(1 k)n(1+)\)

i=—00

k=—o00

p

k
< Clblff,, Z 27 kP (By) 't

k=—o00

i=—00

A
< I I s Z (B

< Ol 11 r By
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Breaking 17 into two parts:

ko
m<c y ok / Z / (o) — b £l (o) Pdz
k=—o0 Br | i=—oo
ko p
<c > 2"“"”/ Z / [b(y) (y)ldy’ w(z)! Pdx
k=—o00 Bili=— o
ko P
voy vt f / b, = b1 (0)\dy| () P = 11"+ TT".
k=—o0 Brli=—oo

By Holder’s inequality,

ko
Ir<c Z z—k"p/

k=—o0 B

([ | |f<y>%<y>dy)’l7

ko
< Ol M Wi Z - /B w(z)'~Pdz
k

R

> (bt )’

P
w(z)"Pdx

1=—00

k

> w(B)tM ’

1=—00

< UM I s Z (B2 < Clblly, 1 oy @(Bra) 7.

On the other hand, applying |bp, (k= )|1b]| Lipy (Bk)§ I(BI)’
P
mec Y x ) > / b5 — b, |1 0 dy| ()' P
By,

k=—o0 i=—

k

> (k-

i=—00

52 |f<y>|pw<y>dy)’l’

ko
ko p
<ClblL,,. > 2 Mrem [

k=—o00 B
1

(J,wea)’

Bp
< C”b”LlpBwaHMp)\ (w,w) Z Bk 1 TP

k=—o00

P
w(z) Pdx

k

> (k= iw(B)'

1=—00

< OBl ip, Mo, o Z (Br) P < Cllbllt,, NIFI%,, o w(Bry ).

By slightly modifying Theorem 3.1, we can get the proof of [H*,b]. Here, we omit
its proof.

Remark 4.1. Since [|bl|¢pa () < blleraw) and [[blleraw) ~ 10l zip,,., when w €
Ay and 0 < A < 1/n,be Lipg,, is a sufficient condition for the boundedness of the
[b, H] and [b, H*] rather than a necessary condition. However, if b € CP*(w), it is

still a necessary and sufficient condition.
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