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Abstract. In this article, we deal with the solutions of the difference analogue of Fermat-type
equation of the form f3(z) 4 [c1f(z 4 ¢) + cof(2)]® = e**1F and prove a result generalizing a
result of Han and Lii [J. Contm. Math. Anal. 2019] and Ma et al. [J. Func. Spaces, Vol. 2020,
Article ID 3205357|. Furthermore, we explore the class of functions satisfying the Fermat-type
difference equation. A considerable number of examples have been exhibited throughout the
paper pertinent with the different issues. We characterized all possible non-constant solutions
of the Fermat-type difference equation f2(z) 4+ f2(z + ¢) = e**15,
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1. INTRODUCTION

The so called Fermat’s Last Theorem, which was proved by Wiles [30], Taylor and
Wiles [29] in 1995, states that there do not exist non-zero rational numbers x and y
and an integer n > 3, for which 2™ + y™ = 1. There is a close relationship between
Fermat’s Last Theorem and family of solutions (f,g) of the following functional

equation
(1.1) M+g9" =1

For n = 1, finding the solution is effortless, and for n = 2, it is easy to see that the

pairs (sin(a), cos(«)) and

1. 1.
(\/E[sm(a) + cos(a)], E[SID(O{) F cos(a)])

always solves the equation for an entire function «. For n > 2, Gross [8] proved

that all the meromorphic solutions are of the form

25(z) 1-5%(2)

z)= ———— and ¢g(z) = ———=.

MO =m0 =9 =)
For n > 3, it has no transcendental entire solutions proved in [Gauthier-Villars,
Paris, (1927), 135—136] but meromorphic solutions exists which is confirmed by
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Gross in [8] and one such solution is
f(z) = 4—1/6(p/)—1 (1 1g-1/2 -41/3p>
g(z) = 470(p) 7 (1372 41,

where p is a Weierstrass p-function. For n > 4, it has no transcendental meromorphic
solutions confirmed in [8]. No other solutions of the equation (I.1) exist which is
confirmed by Gross in [9].

It has been determined for which positive integers n, the equation has
non-constant solutions f and ¢ in each of the following four function classes (i)
meromorphic functions, (ii) rational functions, (iii) entire functions, and (iv) polynomials;
(see [111, 12]. The study of the functions analogous to the Fermat-type diophantine
equations " + y™ = 1 was initiated by Gross [8] and Baker [2]. They actually
proved that the equation

(1.2) ff+g" =1

does not admit any non-constant meromorphic solutions in the complex plane C
if n > 3, and does not admit any entire solutions if n > 2. For the possible non-
constant meromorphic solutions of , they also characterized it in the case of
when n = 2,3. In fact, for the case n = 3, Gross [8] and Baker [2] proved that the
following pair (f, g), where

(13) 10 =5+ 22 sote)

and

(1.9) 92 = (5 - 2 1ot

are meromorphic solution of equation (|1.2), where p is Weierstrass p-function.

It is worth to observe that the equation 23+ y? = 1 defines an algebraic function
whose Reimann surface has genus 1, and there is accordingly a uniformization by
Weierstrass elliptic function. Weierstrass elliptic function p(z) := P(z, w1, ws) is a
doubly periodic meromorphic function with periods w; and ws, and this function is
defined by

( ) 1 n Z 1 1

Z,Wi,Wwe) = — - .

v D2 z? et (z + pw1 +vwe)?  (pwi + vws)?
P42 #0

which is even and satisfies, after appropriate choosing w; and ws,

(L5) (¢)2 = 4¢° — 1.
4
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In the same paper, Gross conjectured that every meromorphic solutions of f3 4
g> = 1 are necessarily elliptic function of entire functions. Later, Baker [2] confirmed

the conjecture and established the following result.

Theorem A. [2] Fach pair of meromorphic solutions f and g to the following

equation
(16) P2 +6°(z) = 1

over C must be of the form f = fi(h(z)) and g(z) = wgi(h(z)) = wfi(—h(z)),

where h is an entire function in C and w is a cube root of unity.

In this paper, a meromorphic function will always be non-constant and meromorphic
in the complex plane C, unless specifically stated otherwise. In what follows, we
assume that the reader is familiar with the elementary Nevanlinna theory (see
[7, B3, 135]). In particular, for a meromorphic function f, we denote S(f) the family
of all meromorphic function w for which T'(r,w) = S(r, f) = o(T(r, f)), where
r — oo outside of a possible set of finite logarithmic measure. For convenience, we
agree that S(f) includes all constant functions and S(f) := S(f) U {oc}. Here, the
order p(f) of a meromorphic function is defined by

p(f) = limsup M.
00 logr

In 2016, Lii and Han [20] proved that the equation f(z) 4+ f'(z) = 1 has the
general solution f(z) = 1—ae™= for a € C and f2(z) 4 (f'(2))> = 1 has the general
solution f(z) = % sin(z +b) for some b € C. Nevertheless, f™(z)+ (f/(z))" = 1 can
not have any non-constant meromorphic solution when n > 2.

Below, we recall a well-known facts about the order of composite meromorphic

functions which have been established by Edrei and Fuchs [0], and by Bergweiler [4].

Theorem B. Let f be a meromorphic functions and h be an entire function in

C. When 0 < p(f),p(h) < oo, then p(f o h) < oo, and h is transcendental, then
p(f) = 0.

In the recent years, Nevanlinna characteristic of f(z+¢) (¢ € C\ {0}), the value
distribution theory of difference polynomials, Nevanlinna theory of the difference
operator and the difference analogue of the lemma of the logarithmic derivative has
been established (see 5] [14],[15]). Due to this development of theories, there has been
a recent study on whether the derivative f’ of f can be replaced by the shift f(z+c)
or difference operator A.f. The difference analogues of the Fermat type functional
equations have been investigated in a number of papers (see [19, 24}, 26|, 27, BT [34] ).
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For a meromorphic function f, we define its difference operators by

Acf = flz+¢c) = f(2)
A"f = A"V (Acf), neN, n> 2.

In 2016, Lii and Han [20] described a property of meromorphic solutions to the
equation (1.6) with g(z) := f(z + ¢), for ¢ € C\ {0} as the following.

Theorem C. [20] The difference equation f3(z) + f3(z +¢) = 1 does not have

meromorphic solutions of finite order.

For n > 4 and v # 0, if we consider the meromorphic solution of the equations
™ (2)+(f)" =~", then by the Proposition 1.1 in [16] we see that both the functions
f/vand f’/v must be constants. Therefore, if we assume f = ¢;y and f/ = ¢y, then
a simple computation shows that ¢} +c§ = 1. Observe that ¢; # 0, otherwise f = 0,
hence v = 0. Similarly, co # 0, otherwise, f and ~ will be constants. Therefore,
when c¢jco # 0, then v cannot have any zeros and poles. Hence 7"(z) = e®*+8

where o = nea/c;.

Motivated by the above observations, Han and Lii [16] have investigated the
above equation with f(z + ¢) in the place of f’(z) for the case n = 3 and proved

the following interesting result.

Theorem D. [16] The difference equation f3(2)+ f2(z+c) = e**T8, where o, B €

C, does not have meromorphic solutions of finite order.

Regarding existence of solutions of the difference equation f™(z) + [A.f]" =1 for

a positive integer n, we have the following note.

Remark 1.1. A simple computation shows that the difference equation f(z) +
A.f = 1 has no non-constant meromorphic solutions. Following the proof of Theorem
1.5 of Liu et al. in [I8, Theorem 1.5], one can observe that there does not exist any

non-constant meromorphic solutions of the difference equation f2(z) + [A.f]? = 1.
Therefore, a natural question arises as the following.

Question 1.1. Does there exist any non-constant meromorphic solutions of the
difference equation f3(2) + [A.f]> =17

Recently, Ma et al. [2I] have investigated Theorem B by considering the difference

operator A.f and proved the following result which answers Question [1.1

Theorem E. [21] The difference equation f3(z) + [A.f(2)]® = 1 does not have

meromorphic solutions of finite order.



ON THE FERMAT-TYPE DIFFERENCE EQUATION ...

In the same paper, Han and Lii [I6] proved the next result by producing a

complete characterization of the solutions.

Theorem F. [I6] The meromorphic solutions f of the following differential equation

(1.7) FH(2) + ()" = e=H?
must be entire functions and the following assertions hold.

(i) For n = 1, the general solution of (L.7) are f(z) = e®**t8 /(a4 1), when
a# —1, and f(2) = ze *TF 4 ae =

(ii) For n = 2, either a = 0, and the general solution of (1.7) are f(z) =
eP/2sin(z 4+ b), or f(z) = delo=tP)/2,

(iii) For n > 3, the general solution of (L.7) is f(z) = del®*+8)/n
where a,b,d, o, 8 € C with d* (1 + (a/n)") = 1, for n > 2.

The paper is organized as follows. In Section 2, we prove a result generalizing the
Theorem D and Theorem E. In Subsection 2.1, the characterization of the solutions
of f2(2) + f2(z + ¢) = e***# is discussed and a result is proved. In Section 3,
the claim of Han and Lii in [I6 page 102] is disproved exhibiting several counter
examples. Section 4 is devoted mainly to prove the main results of this paper. Future

course of work on the results of this paper has been discussed in Section 5.

2. MAIN RESULT

Motivating from Remark[I.1] we are interested to investigate for the non-constant
meromorphic solutions of general difference equations. Henceforth, we recall here
L.(f) defined by the present author in [I] as L.(f) := c1f(z + ¢) + cof(2), c1(#
0), ¢ € C. It is easy to see that the shift f(z + ¢) and difference operator A.f
are the particular cases of L.(f). With this setting, in this paper, our aim is to
investigate Theorems D and E further to establish a combined result. Before state

the main result of this paper, we have the following remark.

Remark 2.1. The equation f™(2)4[L.(f)]" = e**T8, may consists of non-constant
entire as well as meromorphic solutions for n = 1 and n = 2, from the following

examples we ensure this fact.

Example 2.1. Let

z/c
f(z) = <C° * 1) h(z) + 6e®* 1P,
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where h is c-periodic finite order entire functions like h(z) = sin (27wz/c) or cos (27z/c)

2miz/c

ore ete. and their linear combinations and ¢ be such that e*® = (1 — §(co +1))/c16.

It is easy to verify that f(z) solves the equation f(z) + L.(f(2)) = e®**5.

Example 2.2. Let
z/c
co+ 1) g(z)+1 8
z)= |- + 6e** TP,
7@ ( €1 g9(2) =1

where g is c-periodic finite order entire or meromorphic functions like in Example
and ¢ be such that e®® = (1 — 0(co +1))/c16. It is easy to see that f(z) solves
the equation f(z) + L.(f(2)) = e***A.

Example 2.3. Let f(z) = (1/2)e(@=+8)/3 (elo=+8)/3 1 1) We choose ¢ € C such
that e*</3 £ 1. Let
2 Qe +1
Lc(f)zwf(z+c)+(7c)f(z).
es (e 35— 1)
Clearly, f(z) solves the equation f2(z) + [Lc(f(2))]? = e**+P.

Example 2.4. Let
1 2 (1=7)(az+B) 1
f(z) = 3 (67(0‘”5) sin (m) + ezm) where v € C\ {2}

c sin (7)

92 i (e(l—'y)ac 4 evac)
Lc(f) = i (e(lfw)ac _ e'yac) f(Z + C) + (e(lf'y)ozc _ e'yac) (Z)

It is easy to verify that f(z) solves the equation f?(2) + [L.(f(2))]? = e 5.

Let

The observations from the above examples motivate us to establish a single result
combining the results of Lii and Han [16], and Ma et al. [2I] (i.e., for the case

n = 3). Therefore, the following question is inevitable.

Question 2.1. Does there exist any non-constant meromorphic solution of the
equation of f3(2) + [Le(f(2))]? = e** 182

In this paper, with the help of some ideas of [I6], we establish Theorem Which
answers Question 2.1] completely.

Theorem 2.1. The difference equation
(2.1) PP(2) + [Le(f(2)]P = e2**F

does not have infinite order meromorphic solutions.

Remark 2.2. In case of meromorphic function of infinite order, the next example

evidents that (2.1) may admit solution.
8
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Example 2.5. Let f(z) be given by (4.2) with h(z) = e*. Therefore, we have
p(f) = 0o and for ¢ = i, each a with e“*/? = {1, w, w?} where w is a non-real
cube root of unity. It is easy to see that f3(z) + [Le(f(2))]? = e* 15,

Our aim is to generalize Theorem F for general setting of the equation. In order
to generalize Theorem F, we would like to explore the meromorphic solutions of the
following Fermat-type differential equation

n
(2.2) (z)+ (f(k)(z)> =P for keN.

Henceforth, to this end, we denote 6 by 6 = cos (37/k) + isin (37/k) where k is a
positive integer such that ¥ = —1.

Theorem 2.2. Let k be any positive integer. Then the meromorphic solutions f of

the differential equation

(23) (@) + [0 )] = et
must be entire functions. Furthermore,

(i) When n =1, the general solution of (2.3)) is

Zeocz+5

Za] 67z T for a #6,0%,...,6" "

69 ze®* o 2 k-1
Zaje Z+T1)’ for a€{0,0°,...,0" "}
() = s
Za] 'z 4 , for aa=—1 and k is odd,
—z+B

, for aa=—1 and k is even,

Z aze’
(ii) When n = 2, one of the following holds: FEither
(a) a@ = 0, and the general solution of are f(z) = e/?sin(z + b),
only when k is odd but when k is even, then f must be constant, e?/?,
or
(b) f(2) = del=+0)/2.
(iii) When n > 3, the general solution of is f(z) = del@=+h)/n,
where a,b,d,a, 8 € C are such that d™ (1 + (a/n)nk) =1, forn > 2.
2.1. Characterization of the solutions of f2(z)+f2(z+c) = e***A. In contrast

to Theorem 2.1 in [16], Han and Lii have shown that even though the existence of

finite or infinite order meromorphic solutions of the difference equation

(2.4) P&) + (24 ¢) = et
9
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can be described but they could not prove a result finding the general solution of
. Therefore, it is interesting to seek the possible general meromorphic solutions
of the difference equation . In this paper, we take this opportunity to find
out the possible general meromorphic solutions of the above Fermat-type difference
equation. Consequently, we prove the following result which may give a complete

characterization of the solutions of the difference equation (2.4).

Theorem 2.3. The general meromorphic solutions of the Fermat-type difference
equation f2(z) + f2(z + ¢) = e***8 are the following:
(i) If f is a non-constant entire function, then
deaz;ﬂ, where d # +1, d? = ﬁ with e*¢ # —1, when order of f is finite.

f(z) = e sin (W —+ 77) , when order of fis finite,

az+f8

ez sin (W + H(z)) , when order of f is infinite.

(ii) If f is a non—constant meromorphic function, then

e;ll(az"l‘ﬂ)( ( ) eé(az+6)>
—— 9+ ——=—).
2 9(z)
f(z) = e%(o‘z"'ﬁ)

G CE )t

where g is a meromorphic function, H is a c-periodic entire function, 1 is a complex

number and e“¢ =1.

Remark 2.3. If g is a constant or an exponential function, then the solution

becomes transcendental entire.

Example 2.6. Let

az+B

0) fi() = e with e =8, p(f) < 1,

(i) fa(=) = e"F cos (T- 4+ 1), p(f) <1,

2¢c
(i) fa() = e*Fsin (- — 1), p(f) < 1,

l(ozz—&-ﬁ) 1
“T (3 n 3eé(az+ﬁ>>, with e*“ =1, p(f) <1,

(iv) fa(z) =

1 E iz iz
(V) f5(z) = 2<ei(az+3)+2c +ei(az+,@)—2c ); with e = 1, p(f) <1,

(vi) fe(z) = e“2 sin (e%ciz + ;Lz + 1) , with e* =1, p(f) = oo,
¢
It is easy to verify that ff(z) + ff(z +c)=e***8 forallj=1,2, ...,6.

10
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3. REMARKS ON THE GENERAL SOLUTION OF FERMAT-TYPE DIFFERENCE

EQUATIONS

In their paper, Han and Li [16] have discussed briefly about the meromorphic

solutions of the difference equation
(3.1) F(2) + f(z+c) = P,

In [16, page 102], Han and Lii claimed that the general solution of the difference
equation (3.1) is either of the form f(z) = §(2)+de®**P or f(2) = §(2)—(z/c)e** 5,

where 0(z) is a meromorphic function satisfying §(z + ¢) = —d(z).

In this paper, after a careful investigation on the functional equation (3.1), we
found the following list of counter examples confirming that f(z) = §(z) + de®**+7
or f(z) = 6(2) — (z/c)e***P are not the general solution rather some particular

solutions of the difference equation f(z) + f(z + ¢) = e®**+5.

Example 3.1. Let

e c T2
)= — 4 TP g (—) ,
1) sin (2%2) -1 2c

where ¢ be so chosen that e*¢ = 1. We verify that f(z) solves the equation f(z) +
f(z+c) =e***P and f is neither in the specific forms suggested by Li and Han.

Example 3.2. Let

1= HEE et (5
where ¢ be such that e*® =1, and g is any c-periodic finite order entire or meromorphic
functions like g(z) = sin(2mz/c) or cos(2nz/c) or tan(nz/c) or cot(mz/c) etc.
Evidently, f(2) + f(z+c) = e**™8 and f is neither in the specific forms claimed
by Li and Han.

Remark 3.1. In connection with the existence of solutions, we see that, in page
148, Liu et al. |[I8] have investigated to find non-constant solutions of the difference
equation
[+ Mz +e) =1

for different range of values of m and n, where m, n € N. But in particular, when
m =1 =mn, Liu et al. have claimed that the general entire solutions are of the form
f(z) = 1/2 + e™#/¢h(z), where h is a c-periodic entire function. In the following,
we construct examples to show that the general solution is not always of that form.

Therefore, we consider the function g(z) = sinz or cos z.
11



M. B. AHAMED

Example 3.3. Let f(z) = g% (w2/2¢) + ™*/°h(z), where h is a c-periodic entire
function. We see that although f(z) solves the equation f(z)+ f(z+¢) =1 but not

in the said form.

Example 3.4. Let f(2) = (3/5)g? (mz/2c) +1/5. Clearly, f(z) solves the equation
f(2)+ f(z + ¢) = 1 without being of the said form.

4. PROOF OF THE MAIN RESULT

Proof of Theorem 2.3l The difference equation f3(z) + [L.(f)]? = e**T# of the

theorem, can be expressed as

(2] - ()

By the Proposition 1.1 in [I6], it is known that the only non-constant meromorphic
solutions of F3(2) + G3(z) = 1 are

F@%%<H;ﬁm0mmm@iﬁm@%ﬁw»

where h is an entire function, w is a cube root of unity and g denotes the Weierstrass

p-function. Therefore, in view of the Proposition 1.1, we obtain

(11) 1) = o (14 50/ 0)) 5
and
(12) L) = g (1= el ) 5

From (4.2)), we obtain

w — Co w+c ,

- =¥
. 2 2\/§ e 670‘2;5
(4.3) flz+¢) = rolh(2) .

A routine computation using (4.1)) and (4.3) shows that

B o TSN OO/ (JCE5)
» - St o (1 HE0ER)
p(h(z)) p(h(z +c))
Equation can be written as
o (h(z) _ _
(4.5) 73 =2p(h(2))f(2) — L.

Assuming p(f) < oo, then in view of (|1.5)) and (4.5), we obtain
3f2(2)p*(h(2)) _ 3f(2)p(h(2))
e3(az+8) ex(az+p)
We recall here the estimate (2.7) of Bank and Langley [3] which states that

7T’I”'2
(4.7) T(r,0) = T (1+ o(1)) and p(p) = 2,

12

(4.6) +1 = p*(h(2)).
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where A is the area of the parallelogram B with the vertices 0, wy, ws and w; +ws.

Therefore, taking into account that T (r,e**) = (ar/7)(1+ O(1)), combining (4.5)
and (4.7), we obtain

(4.8) T(r, o(h)) < 2T(r, f) + %T (r,¢*) + O(1),

and hence p(p(h)) < co as well.

By Corollary 1.2 of Edrei and Fuchs [6] (see also Theorem of Bergweiler [4]), h

must be a polynomial.

Actually, we have T(r,p(h)) = O (rzq), for ¢ > 1. It is easy to see that if
p(z0) = 0, then from , we obtain (p/(z0))® = —1 which shows that o/(zo) =
+i. We now denote {z,}nen by all the zeros of p(z) that satisfy z, — oo when
n — oo and assume that h(a, k) = 2y, for k = 1, 2,...,deg(h). Thus we have
(9)? (h(an k) = (¢/)? (2n) = —1. Suppose there is a sub-sequence {a,  }nen With
respect to n such that p(h(an i + ¢)) = 0. We denote this sub-sequence still by
{@n,k nen and fixed the index k below. Therefore, we have (p’)2 (h(anix+c)) =—1.

Differentiating both sides of (4.4), we obtain

(1.9) ( —— p'/<h<z>>h’<z>> olh(z + )

w+c

a, (h(z))) o (h(z + O (= +¢)

= (S50 thts + DG+ 0 Jothe +ar (14 TEEED) i e

+ <(w —co) —

Substituting a,  (for sufficiently large n) into the equation (4.9) and by using
p(h(ank +¢)) =0 and p(h(an,r)) = 0, we obtain

- p’(h(an,k») & (s + DA (s + )

—Cl(l+ /3 )p(h( nk))A (an)e s .

(4.10) (w—co) —

Noting that ©'(h(ank)) = £i and @' (h(ank + ¢)) = =i, without any loss
of generality, together with (4.4)), we assume that there exists a sub-sequence
{@n,k nen (here we still denote it by {as, k }nen ) such that the following four possible

cases may occur.

Case 1. If ¢/ (h(an,k)) =4 and @' (h(ank +¢)) = 4, then in view of (4.10)), we obtain

w +c . Z ac
(4.11) (w —cg— Oz) R (ank +c¢)=c <1 + \/g) B (ank)es .
13
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Case 2. If ©'(h(an,k)) = —i and ©'(h(anx + ¢)) =4, then we get from (4.10),

w + Cy 'L ac
0 ) B (any +c¢) = <1 + \/5) b (ank)e™ .
Case 3. If o' (h(ank)) =i and @' (h(an,k + ¢)) = —i, then we obtain from (4.10),
w+ co , ( 7 ) , ac
4.13 w—cy — W (ank +c —c1 (1= —= ) h'(ap, 3
(1.13) 0= N W et 0) = a1 (1= =) Wlana)e
Case 4. If o' (h(ank)) =t and @' (h(ank + ¢)) = i, then (4.10) yields

(4.14) ( 4 Yt z) B (ang +¢) = c1 (1 . Z) W (an ) s

(4.12) w— co +

V3 V3
Since h(z) and h(z+c) are polynomials of same degree with same leading coefficient

and there are infinitely many a, j (with |a, x| — 00), we would have to conclude

(w—co_w\%@o )h’( to)=c (1+\;§) W (2o

W(z+c)=—a (1 + \;§> W(2)e¥

)
(wcow:;;o)h’(zqtc) (1\;§>h’(z)e"§
)

W(z+c)=cr (1 — \/§> W (2)e

This is possible only when

2c0+1 V3. 2c+1 V3. 24c  V3c.
— —1 - —1, — — 1
201 261 ’ 201 201 ’ 2C1 201
e 260+1+£_’1—200+£i7 00+1_\/§(Co+1)i’
3 2cq 2c1 2cq 2cq 2cq1 2cq
(& =
co+1 V3(1l—-co). co+1 co+1 V3.
+ 1, — , — - —1,
2cq1 2cq c1 2cq 2c;
Co+1_\/§(00—1)2_ Co+1+\/§(00+1)z 1—260_@,
261 201 ’ 201 201 ’ 201 201 ’
1
sincew=1,w=—=-=+ ﬁz
2 2

Therefore, there exists a positive integer mg satisfying P(h(a, + ¢)) # 0 for
n >mg.
When this is true, one has uniformly following the above set of equations (which are
in terms of A/(z + ¢) and h'(z)) that h(z) = az + b for ac # 0. Again we know that
the function p(z) has two distinct zeros in 3, and hence in each associated lattice,
we see that all the zeros {z, }nen of p(z) are transferred to each other through (an
integral multiple) of ac. Therefore, for the simplicity, we can consider two cases:

either ac = wi, wa, wi + we oOr ac # wy, ws, w1 + we and ac € P. It is worth
14
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noticing that the former cannot occur in view of (4.4) and the periodicity of p(2)
and p'(z), and the later cannot occur either p(z) has a unique double pole in each
lattice. We now substitute zo, = —(b/a) into (4.4), and obtain the following

w+eco , o' (ac)
OO:(w—co)— 7 p(0)61(1+ \/§>€a§<oo
©(0) p(ac)

which leads to a contradiction.

It is easy to see that p(h(an k+c)) = 0 may occur only for finitely a,, ,’s. Without
loss of generality, we assume that p(h(a, r+c)) # 0for k=1, 2, ...,deg(h) and all
n > N, with N being a sufficiently large positive integer. Again since p(h(an ) =0
and (p')?(h(ank)) = —1, hence by we must have p(h(an,x)) = oo for n > N.
This implies that the zeros of p(h(z)) are the poles of p(h(z+c)) except for finitely
many points. We observe that O(logr) = S(r, p(h)), and hence we can write

1 = 1
@ ¥ (roaey) <8 (rpaey) v ()
< N (1. 0{h(z + ) + 2T(r,1'(2)) + Oog)
N (roo(h(z + €))) + 5 (. p{h(2))).

In view of equation (4.1) and the estimate in (4.27)), we obtain
1
(4.16) T(r, f) < T( p(h)) +T(r, ' (W) + 3T (r,e**) + O(1)
Hence in view of (4.8) and the estimate T(r,p(h)) = O (r*?), we have p(f) =

p(p(h)) and also S(r, f) = S(r,p(h)). So we have T (r,e®*) = S(r, f). From the

equation

LD = P () = (1)~ F) (1)~ we™) (1(2) — w2652,

we deduce that all the zeros of each of the following functions

az+

(f(Z)—G%M>7(f(Z)—UJ€ 3 ) and (f(z)—wzem;ﬁ)

are of multiplicities at least 3.
15
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By Yamanoi’s Second Fundamental Theorem (see [32]), we obtain

1 1
+ZN|r o | TN )+ S f)
3 ( (£(2) - w2e™s ))
< T(r, ) + T (%) + N, f) + S0, )

<T(r, ) ++N(@r, f) + S, f)

which implies that T'(r, f) = N(r, f) + S(r, f). It leads to m(r, f) = S(r, f) =
S(r,p(h)). On the other hand, the form of the function f in (4.1)) shows that

L _ et - )
2p(h(2)) 2vV3p(h(2))
Therefore, by the lemma of the logarithmic derivative, it is easy to see that
1 1
() w(r ) = (7 e ) oW
_ W (z)e' (h(z) 1
< mf(r, )+m(r,e >+m( M)+m<,w>+0(1)
ST(r,e +)+T( ! )+S (h(2)))
<T(re )+T(Th())+5(7" p(h(2))) < S(r, p(h(2)))

Combining equations (4.15) and (4.17) and observing that each pole of p(z) is of
multiplicity is exactly 2 (so that each pole P(h) has multiplicity 2k for some integer
k > 1), by applying Theorem 2.1 of Chiang and Feng [5], we obtain

T(r,o(h(2) = T (1 —ds ) + 0
1 1
= (v i)+ () +ow
< (g ) + S £ Nl oAz + ) + (5 9(A())
< IN(olh(z + ) + S0 0(h(2) < ST( plh(z + ) + S0, 0(h(2)
< ST p(h() + S(r,p(h(z))) + O (o) -14)
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which yields that T(r, p(h)) < S(r, p(h(2)))+0 (rP®(M)=1+€)  Therefore, we arrive

at a contradiction. The proof of the theorem is complete. (]

Proof of Theorem [2.2] For the details of proof of Theorem we discuss here
the case n = 1 only because the cases n > 2 will follow from Theorem F of Han
and Lii [I6]. For n = 1, equation ([2.3]) becomes

(4.18) F(2) + [0 (z) = e+,

The general solution of the differential equation (4.18) consist of two parts: one
is complementary function f.(z) and the other is particular solution f,(z). The
auxiliary equation here is mF + 1 = 0 which implies m = 6,602, ...,0%"1. It is easy

to see that m can take value —1 also for the case when k is odd. Therefore, we

have f.(z) = Z?:l ajeojz, where a;’s are complex constants. Let us denote the
differential operator D as D = d/dz. Then equation (4.18) can be expressed as
(D¥ +1) f(2) = e**7. Therefore, we have
1
_ +8
fo(2) = meaz :
If « ¢ {6,6%,...,051}, then a simple computations shows that the particular

solution in this case is f,(z) = e***#/(ak + 1). Hence the general solution is

i, ze¥*th
f(2) = fe(2) + fo(2) Z%e T
If € {0,0%,...,0 1}, then we see that o = —1. Therefore, we have
1 az+p az+f 1
= —_— — e 1
o) = prpe T orar Y
1
= k z k @)
Dk Dk—l Dk—l 2 D k—1
+(1> a+(2> a” +...+ b1 o
-1
1 1 k
= e th 1+ DL (Y)DF 241 (1)
k k-1 k k-1 1
Da Q
kE—1 k—1
az+f
_ paztB 1 l _ ze '
k w1 D kak-1
@
kE—1
Hence, the general solution is
zeaz+ﬁ

f(2) = fe(2) + fp(2 Zay o= kak Toh—1

When in particular « = —1, this case can be handled easily considering k as odd

or even separately. [
17
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Proof of Theorem [2:3l We split the whole proof into the follows two cases.

Case 1. Let the solution f be a transcendental entire function. Let us first consider
the exponential case i.e., f(z) = de’(*), where P(z) is a polynomial in z. Then we

have
(419) d2 <62P(z)—(az+3) + eQP(z+c)—(az+5)> - 1.

A simple computations shows that both the functions 2P(z) — (az + ) and
2P(z 4+ ¢) — (az + B) must be constants, say, ¢; and ¢, respectively. Then an

elementary calculation shows that
(4.20) ac=cy—c1 =2(P(z+c¢)— P(z)).

By the assumption, f is a finite order entire function and in view of (4.20)), deg(P)
must be equal to 1. Hence we can show that P(z) takes the form P(z) = (az + 3)/2.
Thus it follows from that d?> = 1/e®¢ with d # +1 and «, ¢ be such that
e* #£ —1.

Let f(2) is not of the form f(z) = de”(*). We know from the result of Gross
that any entire solution of f2(z) 4+ ¢g2(z) = 1 is of the form f(z) = sin(h(z)) and
g(z) = cos(h(z)), where h is a an entire function.

The difference equation f(2)? + f2(z + ¢) = e***# can be written as

fG N (fETroN
< az+p3 + az+f8 = 1
e 2 e 2
Therefore, by the result of Gross [§], it is easy to see that the general solution of

f(2)?+ f2(z + ¢) = e***P must be

az+p

f(z) = e

for an entire function h. Therefore, we obtain h(z + ¢) = h(z) + 2kn + 7/2 and
e®“/2 = 1, where k is an integer. Writing h(z) = (4k 4+ 1)7z/2c +H(2), it is easy to

sin (h(2)) and f(z +¢) = e* 2" cos (h(z2))

verify that #(z) is a c-periodic entire function. Therefore, the general non-constant

entire solution can be written as

£(2) = ™27 sin ((4“1)“ + H(z)) .

2¢c
In particular, if f is a finite order transcendental entire function, then by Pdlya’s
theorem [25], the function H(z) must be constant, say, . Hence, the general non-

constant transcendental entire solution becomes

f(z)= ¢“=" sin <(4k J;CI)WZ + 77> .

Case 2. Let f be a meromorphic function.
18
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The difference equation f(2)? + f2(z + ¢) = e***# can be written as
(4.21) [f(2) +if(z+ Of(2) —if(z + )] = e***F.
From ([4.21)), it is easy to see that the functions [f(2)+if(z+c)] and [f(2)—if(z+c)]

may have zeros and poles. Therefore, there exists a meromorphic function g and a
complex number ¢ such that [f(z)+if(z+c)] and [f(z) —if(z+c)] can be expressed

as
(4.22) f2)+if(z+c) = @D g(z)
and

i _ =0 (aztp) L
(4.23) f(z) —if(z4c) =€t +h el

Solving equations (4.22)) and (4.23)) for f(z) and f(z + ¢), we obtain

1 senin) (1=8)(az+5)
(4.24) f(z) = 5 (e Hg(z) + )
and

_ l 5ozt B) B e(1=8)(az+p)
(4.25) flz+c¢) = 5% <e Hg(z) BT —

Combining (4.24) and (4.25), it is easy to see that

6(175)(az+ﬂ)6a(175)c

4.96 6(az+pB) ,adc +e)+
(4.20) st Do 4.+ S
(1=8)(az+p)
_ i Statsy € )
=—ile 2z
(e mat) -5

Clearly, (4.26)) shows that the functions g(z) and g(z + ¢) have the same set of
zeros and poles with the same multiplicities, otherwise, comparing the zeros and

poles of g(z) and g(z+c¢) from both sides of (4.26)), we can arrive at a contradiction.
Therefore, there exists a polynomial Q(z) in z such that

(4.27) 9C+9) _ 0w,

9(2)
If e2(2) = 1, then g becomes a c-periodic function. Now equating the coefficients in

(4.26]), we obtain,

ie’*® =1 and ie

(I=d)ac _ 1.
Therefore, we have e*¢ = 1 and e’®¢ = —i, which shows that § = 1/4 or 3/4. Hence
the possible forms of the function f is one of the following:
12) eilaz+p) ( ) e%(az—kﬂ))
2)=—F7—9(2)+ ———
2 9(2)

ei(az“rﬁ)

1) = 5 (He g + ).
19
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If €2(*) £ 1, then substituting g(z + ¢) = e2(*)g(2) in (4.26), we obtain that
ie(l—&)ac + eQ(z)

2 (26—1)(az+B) _
(4.28) g-(z)e = 0 (et — 1)

Clearly, the function g in (4.28) cannot have any poles, hence g must be a
transcendental entire function. But note that, all the zeros of ie(t=9)ac 4 ¢2(2)
are the zeros of g(z) are of multiplicities at least 2, which leads to a contradiction.

This completes the proof. (I

5. FUTURE STUDY

To continue the study, one can turn attention to the solutions of more general
Fermat-type equations. For example, Ramanujan observed that x =9, y = 10 and
z = —12 is a solution of z" + y™ + 2™ = 1 for the case n = 3. Therefore, looking
for the solutions of equation z" + y™ + 2™ = 1 for n > 4 will of great interests, and
the study will become more effective if z, y and z be non-constant functions. Since
the problem of finding solutions of have been settled for the classes (i)-(iv)

mentioned above, it is therefore natural to turn attention to the functional equation
(5.1) fMf+g"+hr" =1,

where n is a positive integer and f, g and h are functions in any one of the above

four function classes.

Finding non-constant entire as well as meromorphic solutions are effortless for

n = 1. For example, for n = 2, one can verify that

(f9,h) = (sin(¢) cos(t)), sin(¢) sin(¢), cos(¢))

is an immediate entire solution and

(f,9,h) = (isin(¢) tan(e), i cos(¢) tan(¢), sec(¢))

is a meromorphic solution of the equation , where ¢ and 1 are two entire
functions. For n > 3, looking for non-constant entire as well as meromorphic
solutions will be of utmost interest. For future course of work and to study Fermat-
type functional equations, we refer the reader to go through the article of Gundersen

[13] and references there in.

Acknowledgment: The author thanks the referee(s) for their careful reading and
insightful comments, which greatly helpful to improve the clarity of the exposition
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AnHOTALMS. B crarbe paccmarpuBaercs ypasuenue Of (w)/0w = u(w) B Bepx-
Heit mosyrtockoctn I . st dbyskmmit u kmacca CF (k= 1,2,3,...,00) u3 Beco-
BbIx LP npocrpancts (1 < p < 00) ¢ Becosoit dynkimii tuna (Imw)® - |w+14|~7,
w € Il4, crpouTcst ceMelcTBO pelreHuit fﬁ, 3aBHUCSIIEEe OT KOMIIJIEKCHOI'O I1apa-
merpa [.

MSC2010 number: 32W05; 30H20; 30C40; 30E20.

KiroueBbie ciioBa: J-ypaBHeHHUE; BECOBbIE MPOCTPAHCTBA TIAJIKUX (DyHKIIAH.

1. BBEJIEHUE

B paGore [1] npuBosuTest 06061eHne HHTErPabHON hopmysl Kormm st riia kux
byHrImit. A uMeHHO, eciin §2 SBJIETCS OIPAHUYEHHON 00JIACTBIO ¢ KyCOYHO-IJIAIKOM

rpamnmeit n f € C1(Q), To cnpaseammBa caemyiomas GopMyIa:

(1.1) f(z) = QLM Cf(_oz // Cag dm((), zeQ,
o

rIe m - aBymMepHasi Mepa Jlebera B KOMILIEKCHO# 0bOJacTH, a

0 1/0 0
1.2 — == =—+i— =x+i
(12) -5 (mrig) C-orin
npejcraBiser coboil m3BecTHbIl oneparop Komu-Pumana, obparmatomuiicss B 0 Ha
rosiomopdubix dyukiuax. [Tockoabky nepsoe ciaraemoe B (1.1) rosiomopduo B (2,
MBI MOYKEM 3aK/IIOUHTh, UTO PEIIeHHe O-ypPABHEHUS

dg(2)

(1.3) 5

=u(z), z€,
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rie dyukiua v € CH(Q) zanana, a dyukiua g € CH(Q) uckomast, MoxKeT GbITH

npeacTaB/JI€eHO KaK

(1.4) 9(2) = f%// g’(f)zdm(g), zeq.
Q

VYpasuenue (1.3) urpaer BaKHyI0 pOJib BO MHOI'MX 33Jla9aX KOMIIJIEKCHOTO aHAJIM3a

(0coGeHHO B Ciiydae MHOI'MX KOMILIEKCHBIX [IEPEMEHHBIX ).
B caienytomeit reopeme (cM. [2, Teopema 1.2.2]) paccmarpuBaeTcs BayKHBII cirydaii,

korya dopmyna (1.4) geiicTBATENBHO JaéT permrenne O-ypaBHEHHS.

Teopema 1.1. [Tycmo Q- omxpoimoe oepanuvenrnoe mmuoocecmeo e C, k=1,2,3, ..., 00
uv € CFQ), m.e. dymxyus v € C*(Q) u umeem KoMNAKMHBIG HOCUMEND, UEAUKOM
naxodsuwutica 6 Q. Tozda Pynryua g, onpedeasemasn Popmyaoti (1.4), npunadaesrcum

C*(Q) u ydosaemesopaem ypasneruro (1.3).

Sameuanmne. B [3, [Ipemoxenue 16.3.2], [4, Teopema 1.1.3] paccmorpen ciyuaii,
korma v € CF(Q) N L (Q) wm v € C*(Q) N LY(Q).

B pa6orax [5], [6] ormeqaercs cremyiomee o6obuienne dopmysnst (1.1) mia enp-
uuanoro kpyra D = {¢ : |¢| < 1} (ReB > —1):

(1.5) (2) ﬁJrl//f 17|C|)dm(é)

1 _ZC 2+B

1 Taz , 1—<|2)B“
w/D/Cz (1z< dm(¢), zeD,

rJie mepBoe caaraemoe rojoMopdHno 10 z € D u Bruepsble mosiBUIIOCH B padorax [7],

[8], rme pacemorpensl Kiacehl rosoMopdubix B D hyHKIuUiT U3 BECOBBIX IPOCTPAHCTB

L2 (D), mopoxK IEHHBIX HOPMOI

(1.6) /]

vo = | [[ 11RO~ fcdm(©)
D

Ecrecrsenno, no anasorun ¢ (1.4), Bropoe ciaraemoe B (1.5) MoxKeT GbITH HCIIOIB30-

BaHO B KadecTBe (POPMY/ILHOrO pemnienus ypasaenus (1.3):

(1.7) () = -+ [[ 2L (11__|§|;>ﬂ+ldm(§), .eD.
D

Ha camowm fese cripaBeiuBo CJaeIyIOIIEe YTBEPKICHHE:
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Teopema 1.2. IIyemo 1 < p < 400, a > —1 u Ref3 > a. Ecauv € CY(D)NLY (D),
mo dynxyus gg, onpedeasemasn no gopmyae (1.7), npunadaescum C*(D) N LE(D) u

ydosaemeopsem ypasnernuto (1.3). Boaee moeo,
(1.8) lgsllp.o < const(a,B) - [[vllp,at-

OTa TeopeMa SIBJISIETCS CJIEJICTBAEM COOTBETCTBYIOIINX MHOTOMEPHBIX PE3YIbTATOB
paborsl [5], rae paccMaTpuBaloTCs cirydan eauaungaoro mapa B, C C™ u equrudnoro
nosmaucka U™ C C™.

Ormerum, 9TO pa3IMIHble MHOrOMEPHbBIE aHAIOrU (HhopMyIIbl (1.5) ObLIN MOJIYYeHbI
B [9], [10].

Hasnbueiitue o606menust dhopmysst (1.5) auis enuangaoro kpyra D) 6pumn mosryde-
uer B [11], [12], [13], [14] (npu pasmuanbx yenosmsax, namaraemsx za f(¢) u 0f(¢)/0C)

7 MOTYT OBITH 3aIIMCAHBI CJIEIYIONTIM 0Opa30M:

(19) f(2) = / (OS5 (2:0) - (1= [C2)P - ¢ dm(C)
D

Q)
. L
o7 4/ % “Qppp(2:Q)dm(C),  z€D,

rue gapa S u () 3anucbiBaioTcs B siBHON dopMme (B BUJe MHTErPAJIOB WU PSAIOB).
B paborax [12], [13], [15] 610 ycTaHOBIEHO, YTO (DOPMYyJIA BTOPOIO CJIAraeMOro B
(1.9) (c 3amenoit %%C) Ha v(()) mopoxIaer cemeiicTBO perrennii ypasaenns (1.3)
B D.

@opmysbr tana (1.1), (1.5) mpeacTaBIsSIOT WHTEpEC TaK ¥Ke B CJIyuae HEOTPaHU-
4YeHHBIX OOsacTeil. B caydae Bepxmeil mosymiockocTr I, cipaBemjmBa, CeIyomas
dopMyia, ABISIOMAsCS CJIEJCTBIEM COOTBETCTBYIONIEr0 MHOTOMEPHOI'O Pe3yJbTaTa,

[16, Teopema 2.2
L1 f) = 2D // I’”demm)

A // /877 (Imn)?+!

[i(7 — w)]P+!

dm(n)7 w e HJra

rae f(n) u af (") MIPUHAJIIEXKAT OIPEJIEIEHHBIM BeCOBBIM LP-TIpocTpaHCcTBaM B BEpXHEH
HO.HyH.HOCKOCTI/I.
B caydae rostomopdabIx QyHKIWHIT, KOIIa BTOPOE CJIAaraeMoe OTCyTCTBYeT, (pOpMy-

na (1.10) momyuena B [17], [18].
25



@. B. AUPATIETSAH, A. O. KAPATIETAH, A. A. KAPATIETAH

B nacroseit pabore 6ymer mokazano, uro dhopmysa Broporo ciaaraemoro B (1.10)
JAET ceMelcTBO pernernii ypasaeHus (1.3) Ipu ONpe1eJ8HHBIX YCIOBHSIX, HAJIATAEMbIX
HA TIPABYIO IaCTh.

Ormernm, uro B [19] npusopsitest pemennst ypasuenusi (1.3) B I, B mpemosozxke-
HUM, 9TO IPaBast 9aCTh CYTh KOMILIEKCHAA Mepa KapJiecoHa, pemenust MOHNMAIOTCS
B CMBbICJe OGOOMEHHBIX (PYHKIUI, TP 3TOM PeleHusl 3alluCBIBAIOTCS B BUJE HEJIN-
HEWHBIX MHTErPAJBbHBIX OIIEPATOPOB.

B [20], [21] B MHOTOMEPHOM CIydae TPHBOIATCS PEINeHUs O-yPABHEHHS ¢ PABHO-
MEpHBIMH OIeHKaMU B Tpybe Oy/ryriero (MHOroMepHOM aHajore 11} ), HO mpu TOM

00sI3aTeSIbHO TIPEIIOIATAETCs, 9TO IPaBasi YaCTh UMeeT OTPDAHUYEHHBI HOCUTEb.

2. IIPEABAPUTE/ILHLIE PE3YJIBTATHI
Ha‘{HéM C IIPOCTBIX yTBep)K;I,eHI/II‘/'I7 JI0Ka3aTeJIbCTBO KOTOPBIX HE IIpEJICTAaBJIAET pr,]la.

IIpengmoxenue 2.1. IHyemov Q CC, Q; CC, ¢ : Q = Q, f: Q1 = C uep(() €
H(Q), f(n) € C* (). Tozda
A0 20| g
ITpengioxxenue 2.2. IIycmo n,w € 111, moeda:
(a) Reli(T] — w)] = Imn + Imw > 0.

(6) |i( — w)|* > (Imn+Imw)? > 4-Imn- Imw, npuuém pasencmeo docmuzaemcs

moavkKo npu 1 = w.

Hamomamm, aro 6urosomopdubiit m3omopdusm eauaunanoro kpyra ) u Bepxneit

nostyttockocets I ocyImecTBisieTcs: ocpe/ICTBOM U3BECTHBIX ITpeobpazoBanuii Kau:

(21) ¢(<)_7’ 17<7 CED7 P (77)—77+Z, nEH+.

B cnenyiomnem yTBepKIeHIN IPUBOISITCS OCHOBHBIE CBOMCTBA Tpeobpa3oBannii Ken,

HEeOOXOINMbIE TS JaJbHEHIIero.

ITpengioxxenue 2.3. Ilycmo ¢ € D un € 11, moeda:

o Pee L 1 r_ L
(2.2) 1°. @'(¢) = =02 (45 (77)) CFTiEh
o _ 4 —1 _ 4
23) 2 dm@(Q) = g adm(Q),  dm(@ ) = ).
3°. Ecmm n = &((), 10
(2.4) 4Imn 12

1-[¢)? =

= I
e

L=
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4°. Ecmm w,n € 14, 10

(2.5) [ Jum)
=0 ) ) = e
1 _ 4Imny
(2:6) L= lo ) =
(.1 27 w) 97 ) = )

(w+i)(n+i)
Hoka3zaresnbcrBo. CoorTHommenus (2.2), (2.3) u (2.5), (2.6) crenyror u3 [22, Jlemma

1.1], a (2.4) u (2.7) HpOBEPAIOTCA HEOCPEICTBEHHO.

IIpengnoxenue 2.4. IIycmo wg € Iy durcuposaro u Im(wy) > r1 > ro > 0.
Ionoorcum G(wo;m) = {w : Jw—wo| <71} u Glwe;re) = {w : Jw—wo| < re}. Toeda

npun € I \G(wo;m1) u w € G(wo; 2) umeem

[ = w] < B < +o0.

2.8 n—w|x<|n+il, me. 0<AL
2. =l = I+l T

HokazaresnbcrBo. Bossmém R > 0 tak, ato G(wo;r1) C {w : |w| < R} u upn

1 1 T ——
STOM | | < 5 | —| < o mpH In] > Ru w € G(wo; r2). Torma nmveem:
n
o w
M—UJ:’m |m‘ QQZB
N+ mog i T 1/2
In -+ ‘W+MI /
u
N ow
M—M:‘w mﬂ>£3:}
n+i moy il 3/20 3
] Y
In—w
Ecim xe |n| < R, TO paccMOTPUM OTHOIIEHUE P Kak (DyHKIMIO JIBYX IIepe-
n+i

MEHHBIX 1) ¥ W, KOTOpasi HENPEPBIBHA M IIOJOKATEIbHA HA KOMIIAKTHOM MHOXKECTBE
{(n,w) € C? :n € TLL\G(wo;71),|n] < Ruw € G(wp;2)}. Crenosarenbho, Ha 3TOM
MHOKECTBE PACCMATPUBAEMOE OTHOIICHNE HAXOJUTCS MEKTy JBYMsl (DPHKCHPOBAHHBI-

MU IOJIO2KUTCJIBbHBIMHA YHCJIaAMH. yTBCp)K,HCHI/IC JTOKa3aHO.

Omnpegenenne 2.1. Jaa npouseosvnux gynruut g(¢), ¢ €D, u f(n), n € I, u
oan B € C bydem nucamo

g f wm Ry
ecau

P
(2.9 90 =7"85, cen.
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UAU, 4IMOo Mo IHce Camoe,

.\ 248
(2.10) s=g@ - (;5;) . wem.

OueBuHO, 9TO ecyu g £ f, To ycnosue g € C*(D) sxBuBasientHo yciopuio f €
Ck(ILy) (k= 1,2,3,...,00). Kpome Toro, ecm g L fing 2 fo,to fi=fosIllyn
Ha0bOPOT: eciiu g1 L fugs L f, 10 g1 = g2 BD.

Omnpepenenune 2.2. Jan npouseoavror dynruutd v(€), ¢ € D, u u(n), n € M4, u
dan B € C bydem nucams
v £ u WM U £ v

ecau

(2.11) v(Q) =

UAU, 4IMOo Mo HcCe CaMoe,

(2.12) u(n) = o(@ () - (

WB(Q) -2
-0 (1-02

¢eD,

.\ 248 .
21 —21

. — . )
n+i (m—i)?
4 k
OueBuyno, 9To eciam v = u, T0 ycaosue v € C*(D) IKBUBAJIEHTHO YCJIOBUIO U €
B B
Ck(ILy) (k=1,2,3,...,00). Kpome Toro, ecim v ~ uy u v & ug, To Uy = ug B Il u

B B
HA00OPOT: ecii V1 X U U Vy & U, TO v1 = vy B .

IMpeanoxenue 2.5. Ilyemv g € C¥(D), f € C¥(y), k =1,2,3,...,00c u g L f
(8 € C). Tozda dasn pynruut v(¢),¢ € D, u u(n),n € I, cnpasedausws caedyrousue

ymeepotcoenua:
(a) Ecau v(¢) = 8%20 uu(n) = 81;5;7), mo v & u
I3 _ 99(Q) _
(6) Ecau v = u, moeda pasercmeo v(() = 9 IKBUBAAEHMHO PaseHcmey u(n) =
9f(n)
am

HokaszaresnbcrBo. OunBnano, 410 (6) ABISETCA CIIEACTBHEM (a).
st nokazarenberBa (a) Bocrmosb3yeMcst cooTHommerusmu (2.9) u (2.10). Torga BBuy

IIpemmoxkenns 2.1

af@’

U(O:@g(é‘): o ly=a(q) =2
e Q=02 (1-0*
_ 21 :( 2i )ﬁag@

nti a¢ ’g_qﬁl(n) (i)
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B
Yr06bl yCTAHOBUTH COOTHOIIECHUE U A2 U, JOCTATOYHO OKa3aTh, B cuiry (2.11), uro

u(@(¢)) —2

v(¢) = T—02PF (1-02

JeiicTBUTENBHO,

uw(@(C) 2

(1—()2tP (1— 2)2

2+

_ 1 =2 2i 0g9(¢) —2i _99€) _ v(C)

(mQPP =02 Nie i) 00 gyt &

1-¢

IIpu RefB > —1 BBeAéM JiBa MHTErPAJIBHBIX OIIEPATOPA.
Just koMiutekcHO3HAYHO n3Mepumoii dyukimu v((), ¢ € D, dopmasbHO 10s102KUM

(2.13) Ty(v)(2) = —% //;’(_OZ (E‘_if)ﬁﬂ dm(¢), zeD.
D

s koMmniekcHo3HauHoit uamepumoii dbyuxiyu u(n),n € I, dopmaabHO 10I02KUM

\ 2h+1 u(n)  (Imn)P*t!
(2.14) 75 (u)(w) = —— — T —w dm(n), well;.
™ H// n—w (i — )P

SameruM, uro (2.13) u (2.14) BrOJIHE COOTBETCTBYIOT CTPYKTYDPE BTOPBIX CJIANAEMBIX

B UTErpaJbHbIX npejcrasienusx (1.5) u (1.10).

Teopema 2.1. Ecau v £ u, mo Tp(v) L 15 (u) npu yeaosuu, wmo das 3a0aHHbLT
Pynryui v u u coomeememeyrougue unmeepaass 6 (2.13) u (2.14) abcomommno cxo-

dames.

HoxkaszarenbcTBo. [lo xomy mokazarenbcrBa OyAeT MOKA3aHO, 9TO MPHU YCJIOBUAX
TeOpeMbl abCONIOTHAS CXOAUMOCTb OJHOrO U3 MHTerpasoB B (2.13) u (2.14) Breuér
abCOJTIOTHYIO CXOAUMOCTD JIPYTOro.

B cuy (2.10) HY>KHO JIOKa3aTh, 4TO

.\
Tyw) = T W) () welL.

HedicrBurensHo, B cuiy (2.3) - (2.7)

rwew)- ()

() S
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120\ v(@( 77) (1= [~ ()} dm (2~ ()
' <w+z) // ) =@ (w) (1@ 1(w) - & 1())F+L

L2z ()™
- (wiz} // 2i(p—w) QL?;_Zz) BHL Tjiz(zr@
e w i +i) ((wﬂ)(n—))

2i \**’ 4542
<w+z> 7 28+1 // n—w (Wi +19)

(Im )B"rl (w + Z)B"!‘l( —_ Z)ﬁ-‘rl
n+0“&n*®W3' Gy

_ 1 28 9842, . Imn)*
=y @72 // w7 —w)Ph

1 —21 1
o oo

B+1 ) B+
- //77 w (i(g . n)))ﬁﬂdm(n)ETé(u)(w), w € T,

3. BECOBBIE PEIIEHUS O-YPABHEHUS

Hauném ¢ obmmx paccysxaennit. ycrs v € CF(ILL), (k = 1,2,3...,00), Torya,
B .
KaK y»Ke OTMedasoch, CyMeCTBYeT eIMHCTBeHHAsS (bYHKIAA U, TaK 9TO U & U, IPUIEM

v € C*(D). Tonoxum

9(z) =Ts(v)(2), z€D,
1 mycTh u3BecTHO, uto g € CF(D) n
9g(z) _
5 = v(z), z€D

3aTeM oJIOKIM
f(w) = Ty w), well,.
Beuay Teopembr 2.1 mosyuaem, aro f L g, u ipu atom f € C*(I1,). Boxee Toro, B
cuny Ipemmoxenust 2.5 (6) nveem
9f(w)
Er

Cite1oBaTEILHO OIIEPATOP T'5 pemaer O- ypasnenns B I, .

u(w) = w e Il

BaxkubiM citeicTBreM TPUBEIEHHBIX PACCYKICHUN SABJISIETCS CJIEIYIONIEE YTBEP-

2KJIEHHE.
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Teopema 3.1. Ilycmv u € CH(IIL), k = 1,2,3,...,00, Re > —1. Ionosicum
fa(w) = T3 (u)(w), w € I}, moeda

0
(3.1) fre CF(Il) m % =u(w), well,.
HoxkazaresnberBo. Boibepem v((), ¢ € D rak, yro v £ u. OueBuzHO, MMeeM

v € CH(D). Tomoxum
g9(z) =Ts(v)(z), ze€D.

Torna g € C*(D) u 8%—(;) = v(2),z € D (310 caenyer u3 [5], korma k = 1, u us
[15], korma k& > 1). B cuiy npusei@HHBIX B Hauaje maparpada paccyKIeHmi Mbl

HEIOCPECTBEHHO mosrydaeM (3.1).

Teopema 3.2. [Tycmo u € CF(I1y), k=1,2,3,...,00, Ref > —1 u

[u(n)] - (Zma) o

3.2
2 PR

€ LYI1y).

Honooicum fg(w) =T (u)(w), w € I, mozda umeem mecmo (3.1).

HokazaresbeTrBo. OUeBUIHO, YTO JAOCTATOYHO yCTaHOBUTH (3.1) JIOKAIbHO, TO
€CTh B OKPECTHOCTH ITPOU3BOILHOI TOYKK U3 BEPXHEH MOJIYIIOCKOCTH. 3aduKcupyeM
mpousBoibHoe wo € I} umyers Imwy > r1 > ro > 0. Homoxum Gy = {w : Jlw—wp| <
r1}, Go = {w : lw—wp| < ro}. MbI mokazkem, uro (3.1) umeer mecto B Gy. OveBuHO,

gro cymecrByer dyukiwms 1 € C°(C) rakast, 910

(33) ¢|Gz = 17
(3.4) Yleve, =0,
(3.5) ¢|Gl\G2 S [0, 1].
CrenoBaresibHO,

B+1 " mn)B+1
fo(w) = 2 . // 5;7)_1#57) ' (z((r.; _7711)]))[3+1dm(77)
Iy

28! // u(n)(L—=9(n)  ([Ima)Pt!

dm(n) = fi(w) + fo(w).

@ n—w (i - w))
oy
k Ofi(w) _ —
B cuy Teopemsr 3.1 umeem, uro f1 € C*(I4) u = u(w) - Pw) = u(w),

w € Go. Ecam Mbl IoKaxkeM, uto fy rosomopdna B Ga, To odeBnmabM o6pasom (3.1)
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Oy/leT yCTAHOBJIEHO. 3aMEeTUM, UTO

B+1 U _ mn)B+1
=22 [ SOt e,

M \G2

ITockosbKy TOMHTErpaJIbHOE BhIpakenue B (hopmyiie fa rostoMopdHo 10 w € G miist
moboro dukcnposannoro 1 € 11 \Ga, mocratouno naiitu F(n) € L'(I14\G2) rax,

q9TO

u(m)(L =)  ([Imap)*
(n—w) (i(7 — w)) !

Jutst oboro 1) € T1 \ G paBaoMepHO o w € Gy = {w : |[w—wp| < 3}, THE 73 € (0, 72)

< F(n),

npousBoJibHO. [Ipesk e Bcero 3amerum, uto cornacuo Ilpermoxennio 2.4
In—w|=<|n+i, nellf\G2, w € Gs.

Kpowme Toro, ouesusHo, uro |77 — w| > |n — w|. CienoarenbHo

um)(L =)  ([Imp)*
(n—w) (i(7 — w))?+1

U3 ycnosust Teopembr osrydaem F € LY(T1\Ga).

(Irna)feert
< const(wo, 12,75, 0) - [u(N)| -~ s = F )

IIycts 1 < p < oo,a > —1 u v € R. JIj1s1 KOMILUIEKCHO3ZHAYHON U3MEPUMOH DyHK-

nnu u, 3a7anHoit B 11, mojoxxum

|u(n)[P (Lmn)*
3.6 a~y = ———d
36) fulls / e dm(
CoOTBETCTBEHHO,
(3.7) L8 (L) = A{w: [[ullpay < 400}

OrMernM, 9TO TPOCTPAHCTBA TOJAOOHOTO TUIA B BEPXHEH MOJIYIIJIOCKOCTH YK€ DPac-

CMaTPHUBAINCH B [23].

Teopema 3.3. ITycmo dynxuua u € CH(I1L) (k=1,2,3,...,00) u ydosaemsopaem
O0HOMY U3 CAEIYOUWUT YCAOBUTL:

(a) u(n) - Imn € L, (I14), a > —1,7 <2+ a,Ref > a,

(6) u(n)-Imn € LE, _(I14), 1 <p <oo,a>—1,7<2+a, Reff > “Tfl—l. Honroocum

f(w) = T5(u)(w), w € I}, moeda umeem mecmo (3.1).
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Hoxka3zareabcrBo. Beuiy Teopembl 3.2 10CTATOYHO 1I0KA3aTh, YTO yCIOBUA (&)
win (6) 06ecreunBaoT BBIIOJIHEHNE yCIIOBUSL

u(n) - Imn - (Imn) 7P
[+ i fer+2

c L'(I1,).

Homozum u(n) - Immn = g(n), n € IL;.. Ecam nveer mecto (a), To ects g € Ly, (I1),

TO
’g(n) (Im) P g(n)| - (Zm)® (Tmag)eP—e 1
[ + i fed+2 In+ il [+ i fefme fn il
(] o
< lg(m)] - (Tmn) e L(IL,),
I+l

4TO U TPeHGOBANIOCH JIOKasaTh. e e umeer mecto (6), To ects g € LE  (I11), To B

CUJIy MHTErpaJIbHOTO HepaseHCTBO Lémbaepa (1/p+1/¢ =1)

// - (Imn) Reﬁ // Imn . (Imn)Re'B_% dm(n)
VRl m+ils e
1

a

Imn (REIB*Q)Q
< ol // g )

,ZLHH CXOJUMOCTH ITIOCJICAHErO MHTEerpaJia HeO6XO,HI/IMO BBITIOJTHEHUE CJICIYIONTUX YCJI0-

Buit (cM., HanpuMmep, [22, Jlemma 3.1]):

<Re,8—a>q>—1 u (Reﬁ—7+2>q> (Reﬁ—a>q+2,
p p p

KOTOPBIE COOTBETCTBEHHO KBUBAJEHTHBI YCJIOBUSIM TeopeMbl : Ref > "T'fl —1mu

v < a4 2. Teopema joxa3aHa.

4. BECOBBIE LP-OIIEHK!U PEIIEHUI O-YPBHEHUS

IIpengnoxenue 4.1. ITycmo das Komnaexcnodnauror usmepumux gynryut v(C), €
B
D, uu(n),n € Iy, umeem v = u. Ecau 1 < p < +o00, a > —1, v € R, moeda npu

ycaosuu
(4.1) dp +pRef+~v—-4—-2a> 0
CNPABEOAUBA OUEHKA

(4.2) [0llp.aptpReptr—a—a < const(p, B, @, ) - [ullp,a.-
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Hoxka3zareabcrBo. OTMernM, 9T0 HOPMBL B (4.2) IIOHUMAIOTCA COOTBETCTBEHHO B

cmpicsie (1.6) u (3.6). B cumy (2.11), mockonbky 8 dbukcuposano, nmeeMm

®(C))|P
pop = AL cen

Canemosaresnbho, ¢ yuérom nepasenctsa 1 — [¢[2 < 2-[1 — (|, ¢ € D, u ycnosus (4.1),

IIPUXOJIUM K CJIETYIOIEH IeroYKe HePaBEeHCTB:

u(® %)a 4
n=2(¢) |1 q
= / / = mim()

" const(s / [u(@(O)P - (1~ [¢[*)*dm(C)

R

p. — <2 ad C
> const(p, 57 7)/ IU:(l z| <-|4(+2a_|ﬂy|_4)p_p7’1;2(5)
D

> const(p, §,,7) / / (Q)IP - (1= [¢2)* (1 — [¢ ) P HPRes+y=4=20 gy )

= const(p, B, a,7) - ||va 4dp+pRef+y—4—a’

Takum obpasoM, yrBepxkieHue JokazaHo. I1o xomy ormerum, aro (4.1) obecrieunBaer

BBINIOJTHEHNE ycyioBust 4p + pRef +v —4 — a > —1.

Teopema 4.1. Ilycmov 1 < p < 00, a > —1, v € R. IIpednonoostcum maxotce 6bimon-

nenue yeaosus (4.1) u, kpome moeo,
(4.3) Ref > 4p+pRef+~v—5—a > —1.

Tozda das npouscoavroti dynxyuu u € CF(I1) N Lg77(H+), k=1,2,3,...,00, un-
mezpanvroid onepamop Tj pewaem coomeememeyrouee J-ypasnenue 6 Iy, m.e. das
Pynryuu fg(w) =Tj(u)(w), w € I, umeem mecmo (3.1). Boaee mozo, cnpasedau-

6a Ouemm
(4.4) 1 £8llp, 4p+pRep+v—5-a, 6p+pRef+2y—6-20 < const(p, B, ,7) - [[ullp,a,y-

HoxkazareabcTBo. Vcxona us dyukiun u, 3anannoit B I1, mocrpoum dyHKmo

B
v, 3aganuyio B D, Tak 94TO v A w U UpHU ITOM cupaseyuBa oneHka (4.2). Tlomoxum
9s(2) = Ts(v)(2),z € D, Torma gz € C*¥(D) (cm. [5], [15]). Bosee Toro, B cumty

Teopewmst 1.2, ycnosuit (4.3) u onenku (4.2) nmeem:

(4.5) 198 lp, 4pt+pReprr—5-a < const(p,B,a,7) - [0|lp, 4ptpRepir—a-a

< const(p, B, a,7) - HUHp,ow-
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Ocraércst cBsA3aTh IpYyT € ApyroM HOpMEL f3 u gg. Ilockosbky f3 L 9, 1 B dux-
cupoBaHo, B cuiy (2.10)

l95(@~ ()"

p ~
ol = 1 sy

n € H+.
CiietoBaTeIbHO, TIMEEM:

19515, apspres -5 = / 95O (1 2745 )

(="' (n) lgs(® ( NIP - (4Imm)*p+pRep+y—5—a i
1) + i|2(4p+pRef+y—5-a) : PETL m(n)
J9(@~ () - (L) pReA 750
= COnSt(pa ﬁa ;'Y / |T] + Z|2(4p+pR6,3+”y—3 @) dm(n)
[fa(n P (Imn)*ptpRefty—b-a
> const(p, B, a, ) // \77+z|6p+pR65+2v e dm(n)
(4.6) = const(p, B, o, 7) - ||f6||p, 4p+pRef+y—5—a, 6p+pRef+27—6—2a-

Kom6unnpys (4.6) u (4.5), monygaem (4.4).
Sameuanune 4.1. O6uiue yciaoBuit Ha mapamerpot p, 5, «,y (cm (4.1) u (4.3)) na
caMoM Jiesie JIaéT BO3MOYKHOCTH (Bapbupysl UX) IOJYYaTh Pa3HOOODA3HBIE OIEHKH.

Hanpumep, nosaras p = 1,y = 0, coryiacuo (4.4) nosygaem:

1/8ll1, Rep-a-1, Rep—20 < const(B, ) - [lull1,a
npu ycjaoBusx Ref > a > —1, Ref > 2a.

Abstract. The paper considers the equation Jf(w)/0w = u(w) in the upper
semiplane I1 . For a function u belonging to the class C* (k =1,2,3,...,00) and the
weighted space LP, 1 < p < oo with a weight of type (Imw)® - |w 4|7, w € I, a

family of solutions fg depending on the complex parameter g is constructed.
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Abstract. Let a set of nodes X in the plane be n-independent, i.e., each node has a fundamental
polynomial of degree n. Assume that #X =d(n,k—3)+3=(n+1)+n+---+(n—k+5)+3
and 4 < kK < n — 1. In this paper we prove that there are at most seven linearly independent curves
of degree less than or equal to k that pass through all the nodes of X'. We provide a characterization
of the case when there are exactly seven such curves. Namely, we prove that then the set X has a
very special construction: all its nodes but three belong to a (maximal) curve of degree k — 3. Let us
mention that in a series of such results this is the third one. At the end an important application to
the bivariate polynomial interpolation is provided, which is essential also for the study of the Gasca-

Maeztu conjecture.

MSC2010 numbers: 14H50; 41A05; 41A63.

Keywords: algebraic curves; maximal curves; bivariate polynomial interpolation;
fundamental polynomial; n-independent nodes.

1. INTRODUCTION

Denote the space of all bivariate polynomials of total degree not exceeding n by

Hn = Z aijxiyj

i+j<n
We have that
N := N, :=dimIl, = (1/2)(n + 1)(n + 2).
Denote by II the space of all bivariate polynomials.
Consider a set of s distinct nodes X = X, = {(x1,v1), (T2, ¥2), ..., (Xs,ys)}. The

problem of finding a polynomial p € II,,, which satisfies the conditions
(1.1) p(xi,yi)=c¢, i=1,...,s,

is called interpolation problem.
A polynomial p € II,, is called a fundamental polynomial for a node A € X if
p(A) =1 and p|X\{A} = 0, where p|X means the restriction of p on X'. We denote

this n-fundamental polynomial by p} := p} ».
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Definition 1.1. The interpolation problem with a set of nodes X5 is called n-
poised if for any data (cq, ..., cs) there is a unique polynomial p € 11, satisfying the
interpolation conditions (|1.1)).

A necessary condition of poisedness is #X; = s = N.

Next, let us consider the concept of n-independence (see [2] 4]).

Definition 1.2. A set of nodes X is called n-independent, if all its nodes have

n-fundamental polynomials. Otherwise, it is called n-dependent.

Fundamental polynomials are linearly independent. Therefore a necessary condition

of n-independence for X is s < N.
1.1. Some properties of n-independent nodes. Let us start with the following

Lemma 1.1 (Lemma 2.2, [6]). Suppose that a set of nodes X is n-independent and
the nodes of another set Y have n-fundamental polynomials with respect to the set
Z=XU)Y. Then the set Z is n-independent too.

Denote the distance between the points A and B by p(A, B). Let us recall the
following (see [3])

Lemma 1.2. Suppose that X5 = {A;}5_, is an n-independent set. Then there is a
number € > 0 such that any set X! = {A;}:_,, with the property that p(A;, A}) <

=1

€, 1 =1,...,8, is n-independent too.
Next result concerns the extensions of n-independent sets.

Lemma 1.3 (Lemma 2.1, [4]). Any n-independent set X with #X < N can be

enlarged to an n-poised set.

Denote the linear space of polynomials of total degree at most n vanishing on X by
Prx = {pGHn :p|X:0}.

The following two propositions are well-known (see, e.g.,[4]).
Proposition 1.1. For any node set X we have that
dim P, x = N — #Y,
where Y is a mazximal n-independent subset of X .
Proposition 1.2. If a polynomial p € 11,, vanishes at n+ 1 points of a line £, then

we have that p‘e =0 and p = fr, where r € I1,,_.
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A plane algebraic curve is the zero set of some bivariate polynomial of degree >
1. To simplify notation, we shall use the same letter, say p, to denote the polynomial
p and the curve given by the equation p(z,y) = 0.

In the sequel we will need the following

Proposition 1.3 (Prop. 1.10, [6]). Let X be a set of nodes. Then Py x = {0} if

and only if X has an n-poised subset.

Set d(n, k) := Np, — Np—, = (1/2)k(2n+ 3 — k). The following is a generalization
of Proposition [1.2

Proposition 1.4 (Prop. 3.1, [9]). Let g be an algebraic curve of degree k < n with
no multiple components. Then the following hold:

i) any subset of q containing more than d(n,k) nodes is n-dependent;

1) any subset X of q containing exactly d(n, k) nodes is n-independent if and

only if the following condition holds:

(1.2) pell, and plx =0 = p=qr, wherer € I,,_.

Thus, according to Proposition [I.4] ), at most d(n, k) n-independent nodes can

lie in a curve g of degree k < n. This motivates the following

Definition 1.3 (Def. 3.1, [9]). Given an n-independent set of nodes X with #X >
d(n,k). A curve of degree k < n passing through d(n,k) points of X is called

mazimal.
Let us bring a characterization of maximal curves:

Proposition 1.5 (Prop. 3.3, [9]). Given an n-independent set of nodes X with
#X > d(n,k). Then a curve p of degree k, k < n, is a mazimal curve if and only
if p€lly, plan, =0 = p=ps, s €l

Next result concerns maximal independent sets in curves.

Proposition 1.6 (Prop. 3.5, [8]). Assume that o is an algebraic curve of degree
k with no multiple components and Xs C o is any n-independent node set of
cardinality s, s < d(n,k). Then the set Xs can be enlarged to a mazimal n-

independent set Xq C o of cardinality d = d(n, k).

Below a replacement of a node in an n-independent set is described such that

the set remains n-independent.
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Lemma 1.4 (Lemma 6, [5]). Assume that X is an n-independent node set and a
node A € X has an n-fundamental polynomial p* such that p*(A’) # 0. Then we
can replace the node A with A’ such that the resulted set X' := X U {A'}\ {4} is
n-independent too. In particular, such replacement can be done in the following two
cases:

i) if a node A € X belongs to several components of o, then we can replace it
with a node A’, which belongs to only one (desired) component,

i1) if a curve q is not a component of an n-fundamental polynomial p* then we

can replace the node A with a node A’ lying in q.
Next result from Algebraic Geometry will be used in the sequel:

Theorem 1.1 (Th. 2.2, [I0]). IfC is a curve of degree n with no multiple components,
then through any point O not in C there pass lines which intersect C in n distinct

poInts.

Let us mention also that, as it follows from the proof, if a line ¢ through a point O
intersects C in n distinct points then any line through O, sufficiently close to ¢, has

the same property. Finally, let us present a well-known

Lemma 1.5. Suppose that m linearly independent polynomials vanish at the set
X. Then for any node A ¢ X there are m — 1 linearly independent polynomials, in

their linear span, vanishing at A and the set X.

2. MAIN RESULTS AND A SERIES OF RESULTS
Let us start with the first result of a series of results:

Theorem 2.1 (Th. 1, [7]). Assume that X is an n-independent set of d(n,k—1)+2
nodes lying in a curve of degree k with k < n. Then the curve is determined uniquely

by these nodes.
The second result in this series is the following

Theorem 2.2 (Th. 4.2, [§]). Assume that X is an n-independent set of d(n, k—1)+1
nodes with 2 < k < n — 1. Then at most two different curves of degree < k may
pass through all the nodes of X. Moreover, there are such two curves for the set X

if and only if all the nodes of X but one lie in a maximal curve of degree k — 1.
Next result is the following

Theorem 2.3 (Th. 3, [5]). Assume that X is an n-independent set of d(n,k—2)+2
nodes with 3 < k <n — 1. Then at most four linearly independent curves of degree
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< k may pass through all the nodes of X. Moreover, there are such four curves for
the set X if and only if all the nodes of X but two lie in a mazimal curve of degree
k—2.

Now let us present the main result of this paper:

Theorem 2.4. Assume that X is an n-independent set of d(n,k — 3) + 3 nodes
with 4 < k < n —1. Then at most seven linearly independent curves of degree < k
may pass through all the nodes of X. Moreover, there are such seven curves for the
set X if and only if all the nodes of X but three lie in a mazximal curve of degree
k— 3.

Let us mention that the inverse implication in the “Moreover” part is straightforward.
Indeed, assume that d(n, k — 3) nodes of X are located in a curve p of degree k — 3.
Therefore, the curve p is maximal and the remaining three nodes of X', denoted by
A, B and C, are outside of it: A, B,C ¢ u. Hence, in view of Proposition 1.5} we
have that

Prx ={p:p €, pxr =0} ={qu:q € l3,9(A) = q(B) = q(C) = 0}.

Thus we get readily that dim Py » = dim{g € II3: ¢(A) = ¢(B) = ¢(C) =0} =
dimP3 14,,c; = 10 — 3 = 7. Note that in the last equality we use Proposition
and the fact that any three nodes are 3-independent.

We get also that it is enough to prove only the “Moreover” part. Indeed, assume
that the “Moreover” part is proved. Assume also that there are > 7 linearly independent
curves satisfying the hypothesis of Theorem [2:4] Then, as we showed above, we have
that dim Py » =7, i.e., there are exactly 7 such curves, Q.E.D.

It is worth mentioning that to prove of Theorem [2.4] we establish an interesting
version of Theorem [2.3] where we increase the number of nodes by one and decrease

the number of linearly independent curves by one:

Theorem 2.5. Assume that X is an n-independent set of d(n,k — 2) + 3 nodes
with 3 < k < mn — 2. Then at most three linearly independent curves of degree < k
may pass through all the nodes of X. Moreover, there are such three curves for the
set X if and only if all the nodes of X lie in a curve of degree k— 1, or all the nodes

of X but three lie in a (mazimal) curve of degree k — 2.

3. SOME PRELIMINARIES

We will start the proof of Theorem [2.4] in Section [ Since then we need to do

considerable amount of preliminary work.
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Lemma 3.1. Assume that the hypotheses of Theorem|[2.] hold and assume additionally
that there is a curve oy € li_o passing through all the nodes of X. Then all the

nodes of X but three (collinear) lie in a mazimal curve u of degree k — 3.

Proof. First note that the curve oy is of exact degree k — 2, since it passes through
more than d(n, k—3) n-independent nodes. This implies also that o has no multiple

components. Therefore, in view of Proposition [1.6] we can enlarge the set X to a

maximal n-independent set Z C og, by adding d(n, k—2)—d(n,k—3)—3 =n—k+1
nodes, i.e., Z =X U A, where A={Aq,...,An_}.

In view of Lemma i), we may suppose that the nodes from 4 are not
intersection points of the components of oy.

Next, we are going to prove that these n — k + 1 nodes are collinear together
with m > 3 nodes from X'. To this end denote the line through the nodes Ay and
Ay by £y1. Then for each i = 2...,n — k, choose a line ¢; passing through the node
A;, which is not a component of gg. We require also that ¢; does not pass through
other nodes of A and therefore the lines are distinct.

Now suppose that o* € Il vanishes on X. Consider the polynomial p = 6*0y1 0y - - - £, .
We have that p € II,, and p vanishes on the node set Z, which is a maximal n-

independent set in the curve og. Therefore, we obtain that
p=0c"lp1ly - lp_j = ogr, where r € I,,_p1o.

The lines ¢;, i = 2,...,n — k, are not components of og. Therefore, they are

components of the polynomial r. Hence we obtain that
o*lo1 = 097y, where v € Il3.

Now let us verify that £y; is a component of oy. Indeed, otherwise it is a component

of the cubic v and we get that
o* eI, 0'*|X =0 = 0" =0f3, where 8 €Il,.

Therefore, we obtain that dim Py x < 6, which contradicts the hypothesis.
Thus we have that

(31) og = 6010']@,3, where op_3 € Il _3.

Now let us show that all the nodes of A belong to £y;. Suppose conversely that
a node from A, say A,, does not belong to the line £y;. Then in the same way as in
the case of the line 431 we get that £yo is a component of og. Therefore the node Ag
is an intersection point of two components of oy, i.e., 91 and £yo, which contradicts

our assumption.
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Thus we get that A C £y1. Note that £p; is not a component of o;_3 since then
it will be a multiple component of og.

Next, let us verify that when enlarging the set X C o9 to an n-maximal set
one has to locate the added nodes outside the component o;_3. Indeed, what was
proved already implies that the only possible location of such a node in op_3 is
an intersection point with £y;. But in the latter case, by using Lemma [1.4] we
can replace the node, say A;, with one belonging only to the component oj_s3,
say A}, which is a contradiction. Indeed, again Ag is the intersection point of two
components of og, the line through Ag, A; and the line through Ay, Aj.

Hence, in view of Proposition we get that y = oj_3 is a maximal curve for
X. Therefore, it vanishes at exactly d(n,k — 3) nodes of X. The remaining three
nodes, according to , belong to the line £y;. ([

The next result we prove with tools of mathematical analysis.

Proposition 3.1. Assume that p1,p2 € II, degps < degpi + 1, and p1 has no
multiple factors. Then, for sufficiently small €, the polynomial py + €ps has no
multiple factors either.
Proof. Assume by way of contradiction that there is a sequence €, such that
(3.2) p1 + €npo = qur2, where q,,7, € II, degr, > 1,and €, — 0.
We have that deg(p1 + €,p2) < max(deg p1, degps), and hence
(3.3) deg qn + 2degr, < max(degpi,degps) < degp; + 1.
We deduce from here that there is a subsequence ny such that
deg qp,, = my = const. and degr,, = mg = const.
Without loss of generality assume that
(3.4) {en} = {en -
Thus we have that
- Y P = Yy
i+j<my i+j<ma
In view of (3.2)), by a normalization of r,, i.e., by multiplying it by a constant ¢

and dividing ¢,, by c?, we may assume that
(3.5) max o] = 1 ¥n.

Now, let us denote M,, :== max |a |
Case 1. Assume that (a subsequence of) M, is bounded: M,, < M. Note that in

the case of the subsequence we may use again a replacement (3.4) and have that
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the whole sequence M, is bounded. In this case, by using the Bolzano—Weierstrass

theorem, we have for a subsequence {n;} that

o™ a?j and bg”“)

0 ..
ij — bys, Vi, 7.

ij0
Here, we use the fact that the number of the coefficients is finite.

By setting n = ny in and tending k — co we obtain that p; = gor, where

qo = Z a?jmiyj, Ty = Z bgjxiyj.
i+j<m i+j<ma

This contradicts the hypothesis for p; if degrg > 1.

Let us verify the latter inequality. Since degr, > 1, we get from that
deg q, < degp; — 1. Therefore m; < degp; — 1 and hence degry > 1.

Case 2. By taking into account a replacement it remains to consider the
case M,, — +oo.

There are numbers g, jo, i1, j1 and a subsequence n = {ny}, such that

(3.6) |a§:f('))| = max |a1(-;”“)| and \bl(-?fl) = max \bl(-?’“)\ =1 Vk.

Here, again we use the fact that the number of the coefficients is finite. In the last

equality we use ([3.5)).
Now, let us set n = ny, in (3.2) and divide both sides by M, to get
1 € 1
(3.7) 1+ —py = (q )7‘2 .
M, M, M,, ") ™

Evidently, the left hand side here tends to zero. For the right hand side we have

that the coefficients of the polynomials ﬁan and r,, are bounded by 1. As
e

above by using the Bolzano—Weierstrass theorem and passing to a new subsequence

{n}.} C {ny} we obtain that

1 ’n' TL/ . .
Y agj (N a;; and bgjk) — by, Vi, j.
k
In view of (3.6)) we have that
(3.8) |af0j0| =1 and |b;‘1j1| =1.

Now, by setting n = n}, in (3.2)) and tending k — oo we get that 0 = g.r?, where
Gx = Z afjmiyj, Ty = Z bfjxiyj.
i+j<m; i+j<ma

In view of (3.8]) this is a contradiction. O

Remark 3.1. In the same way one can prove the following statement: Assume that
p1,p2 € 11, degps < degpi, and p1 is not reducible. Then, for sufficiently small e,

the polynomial p1 + eps is not reducible either.
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Note that, as the example of po = zp; shows, the condition degps < degp; is
essential here.

Next result will help to make the hypotheses of Theorem more precise.

Proposition 3.2. Suppose that there are seven linearly independent polynomials
from I vanishing on a set X. Then, there are seven linearly independent polynomials
vanishing on a set X, each of which is of exact degree k and has mo multiple
factors, or, alternatively there are three linearly independent polynomials from ITj_q

vanishing on X.

Proof. Let o; € TI;,0 < i < 6, be the given polynomials. We may assume that
a polynomial, say o, is of exact degree k. Indeed, if the degree of each of seven
polynomials is less than & then the conclusion of Proposition holds.

Therefore we may assume that all the polynomials ¢;,0 < i < 6 are of exact
degree k. Indeed, it suffices to replace these polynomials with the seven polynomials
o and og + €0;,1 < i < 6, for some € # 0.

Next, let us prove that a polynomial, say o, has no multiple factors. Indeed
assume conversely that each of the seven polynomials has a multiple factor. In view
of Lemma the multiple factors are lines with multiplicity two. Thus, we have
that

(39) g; = g?qu 0<1<6, where /; € 114, qi € 1Ty _s.

Then we replace these polynomials with the seven polynomials &; = £;q; € I_1, 0 <
1 < 6, which clearly vanish at the node set X. Let us verify that among these latter
seven polynomials there are at least three linearly independent ones. Conversely
assume that the seven polynomials are linear combinations of two of them, say
G;, 1 = 0,1. Then we get readily that the seven linearly independent polynomials
in (3.9) are linear combinations of the following six polynomials:
(31'71’5'2', yé’i, 1= O, 1,

which is a contradiction. Indeed, assume that ¢; = A,z + By + C;, i = 0,...,6.
Then for ¢ = 0,1, we have that

o; = é?ql = (AZLB + By + Ci)(ﬁ'i = Axd; + Biyg; + C;o;.
Now, assume that &; = a;0¢ + b;01, for i = 2,...,6. Then we have that

o; =L;q; = (Aiz + By + Ci)&; = (Aiz + Biy + C;)(a;50 + bion)
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Finally, by assuming that oy, has no multiple factors, let us again replace the
seven polynomials ¢;,0 < ¢ < 6, with the seven polynomials g and o¢ + €0;,1 <
1 < 6, for a sufficiently small € > 0. This, in view of Proposition [3.1} completes the

proof. O

Proposition 3.3. Suppose thato;, i =0, ...,6, are linearly independent polynomials
of exact degree k and have no multiple factors. Then there is a polynomial in the
linear span of o;, i = 1,...,6, which has no multiple factors and differs from o

with a factor of degree at least three.

Lemma 3.2. Let o, s1, 82, be linearly independent polynomials of exact degree k,
with no multiple factors. Suppose also that any linear combination of s;, i = 1,2,

differs from oo with a factor from Ils. Then we have that
(3.10) o0 =00Po, s1=0001, S2=00P2, where Gy € lj_1, B; € Ila.

Moreover, 6o is uniquely determined from the first two relations here, if By and (1
are relatively prime.
Furthermore, if By has a common factor with 81 and a common factor with B then
the following alternative takes place: Either,

(i) B; = bl;, i =0,1,2, i.e., they have a common linear factor, or

(1) Bo and By + €B2 are relatively prime Ve > 0.

Proof. Consider the polynomials g, s; and s3. In view of the hypotheses and

Proposition [3.1] for sufficiently small ¢ > 0 we have that
(3.11) (s1+ cs2)B(c) = 00f(c),

where §(c), B(c) € Il are relatively prime.

Then we have that S(c) is a linear or conic component of og. Suppose that oy
has k such components. By considering k£ + 1 sufficiently small values of ¢ we get
that there are constants ¢; and ¢z such that 5(c1) = S(c2) =: Bo.

Then we readily obtain from that

(3.12) 816() = 0'0,81 and 5250 = 0'062, where ﬁl,ﬁg c Hg.

In the case when [ is relatively prime with 81 or s then it clearly divides (. By
denoting 69 = 0¢/Bo € Ilx_1, we get from .
It remains to consider the case when By is a reducible conic and has a common
linear component with 57 as well as with (2. Below everywhere the letter £ denotes
a linear polynomial. Thus suppose that Sy = £yf[,. After a cancellation with a linear
polynomial in two cases are possible:
Case 1. s10y = ool and s2f = ople;  Case 2. s1g = ool and saly = opla.
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In Case 1 By = £ol;, again divides o and we get . In Case 2 5y = £y divides
oo and we get 7 where By therefore 81 and By are linear. Thus is proved.

Note that if 8y and B, are relatively prime then &g is uniquely determined from
the first two relations in as the greatest common divisor of oy and s;.

Now, consider the “Furthermore” statement. Assume that the pairs Sy, 81, and
Bo, B2, have a common factor. Set 89 = ¢lg and 1 = ¢¢1. Then we have that either
B2 = Ly, or Pa = Lyls. The first case reduces to the item (i). Let us consider the
second case. It is easily seen that the polynomials 8y = ¢y and 8 +€B; = €01 +€lyls
have no common factor.

Indeed, conversely suppose that £ is a common factor. Then the last equality
implies that £ = £y, or £ = {5. In the first case we get that Sy and hence, in view of
, oo has a double component ¢, while in the second case we get that 5y = [2
and hence o9 = 0.

Now conversely suppose that £ is a common factor. In this case the same equality
implies that ¢y = ¢, or ¢, = ¢1. The first case was considered already, while the
second case implies that 5y = 1 and hence og = o;. O

Proof of Proposition[3.3 Assume by way of contradiction that any polynomial
from S := Linear span{oy,...,06}, differs from o with a factor of degree at most
two. By Lemma for the polynomial o¢ and any two polynomials from S, the
relation holds.

Case 1. Assume that there is a polynomial s; € S, say it is s; = o1, for which
the relation holds with B; being relatively prime with (3. Note that this
evidently takes place if 5y is linear.

Then, according to Lemma [3.2] 7 is determined uniquely.

Now, let us apply Lemmal[3.2]successively with the triples of polynomials o9, 01, 0, i =
2,...,6. Then we get that

g; = 5’0&1‘, 1= 07...,67 where ﬂz € H2.

Clearly the seven polynomials §; here, and consequently the seven polynomials
o; are linearly dependent, which contradicts our assumption.

Case 2. Assume that for any triple of polynomials og,s1 := 04,52 := 0; the
relation holds with $p having a common factor with 3; as well as with (;.
Hence all three are of degree two.

Now, if for some triple the alternative (ii) holds then we have Case 1 with s; :=
0; + €0;j. Note that, in view of Proposition E s1 has no multiple factors if € is
sufficiently small.

Next, suppose that the alternative (i) holds: 8y = €4y, 5; = U4;, B; = ¢¢;.
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This reduces to Case 1 since here (3.10]) holds also with linear 3’s:

g — Eogo, g; = 50&', 05 = EOEja where 7 = 6/. O

4. THE EXISTENCE OF THREE CURVES OF DEGREE k — 1

Proposition 4.1. Assume that the hypotheses of Theorem [2.4 hold. Then, there
are three linearly independent curves of degree k — 1 passing through all the nodes
of the set X.

Proof. Let og,..., 06, be the seven curves of degree < k that pass through all the
nodes of the n-independent set X with #X = d(n,k —3) + 3.

In view of Proposition [3.2] assume, without loss of generality, that each of these
polynomials is of exact degree k and has no multiple factors.

Step 1. Here we will prove that there is at least one curve of degree < k — 1
passing through all the nodes of the set X.

We start by choosing two nodes By, By ¢ X such that the following two conditions
are satisfied:

i) the set X U {By, B2} is n-independent;
i) the line £y through B; and B does not pass through any node from X.

Let us verify that one can find such nodes. Indeed, in view of Lemma [T.3] we
can start by choosing some nodes B; = B, i = 1,2, satisfying the condition 7).
Then, according to Lemma for some positive € all the nodes B;, ¢ = 1,2, in
e neighborhoods of B}, i = 1,2, respectively, satisfy the condition ). Finally, from
these neighborhoods we can choose the nodes B;, i = 1, 2, satisfying the condition
i1) too.

Next we find one more node Bz € {; such that the set X U {Bj, Bs, B3} is

n-independent. Indeed, if there is no such node then we obtain that

p € Uy, plyugs,,B.y = 0= ple, = 0.

Therefore p = foq, where q € 1I;,_; and, in view of the condition ii), ¢g|» = 0. Hence,
if there is no B3 then, according to Lemma there are five linearly independent
polynomials p € Il satisfying the condition p|xu(s,,B,} = 0. Therefore, there are
five linearly independent ¢ € IT;_; satisfying the condition ¢|x = 0.

Next, we find successively two more nodes By, Bs € ¢y such that the set X U Bj
is n-independent, where Bs := { By, By, B3, By, By }. Indeed, if one cannot find the
node B4 or Bs then, in the same way as above, we obtain that there are four or
three linearly independent polynomials ¢ € II;_; satisfying the condition ¢|x = 0,

respectively.
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Then, in view of Lemma [I.5] there are two curves of degree < k, which pass
through all the nodes of X U Bs. Denote one of them by op. We may assume that
it is of exact degree k£ and has no multiple factors. We may assume also that ¢ is
not a component of oy. Otherwise as above, we find a desired polynomial q.

Now, in view of Proposition [1.6] we enlarge the set X U Bs to a maximal n-
independent set Z C o0g, by adding d(n, k) — (d(n,k —3)+3)—5=3(n—k)+1

nodes, i.e.,
Z=XUBsUA, where #A=3(n—k)+1=[3(n—k—1)— 1] +5.

Let us start with the description of the choice of 3(n — k — 1) — 1 nodes of A.
By using Proposition 3:3] we find a curve o in the linear span of o;, i = 1,...,6,
which has no multiple factors and differs from oy with a factor of degree at least
three: o = yr, o9 = yor, with d := degy = degyy > 3 and r € II;_4. We have that
Yo and o are relatively prime.

Below we are using Theorem [I.I]with respect to the curve C := 9. Choose a point
O ¢ v Uo. Since O ¢ og no line through the point O will be a component of oy.
Consider a line ¢; through O which intersects C at distinct points not belonging to
lyUo. Let A1, Ay and As, be three of those intersection points. By using a continuity
argument we may assume that the lines ¢;, i =2,...,n—k—1, pass through O and
are enough close to £ so that each of them intersects C at distinct points, which do
not belong to £oUc. We assume also that £;N(XUBs) =0, i=1,...,n—k—1. Asin
the case of the line ¢1 let A3;_o, A3;_1 and As;, be three of those intersection points
belonging to voN¥;, ¢ = 2,...,n—k+1. Finally, let us dismiss an intersection point,
say Ap, and denote the desired set of the remaining 3(n — k — 1) — 1 intersection
nodes {A;} by A(-1).

Let us prove that the set J := X U By U A(—1) is n-independent.

We have that the set A(—1) is a subset of Berzolari-Radon construction of degree
n — k — 1. Hence it is (n — k — 1)-independent. Now suppose that pj*47A(_1) is a
fundamental polynomial of a node A € A(—1) of degree n — k — 1. Then the
polynomial O'eopf47 A(=1) is an n-fundamental polynomial of the node A for the set
Y. Here we use the fact that no node from A(—1) belongs to £y or o. Thus, according
to Lemma the set ) is n-independent.

Finally, in view of Proposition [I.6] we enlarge the set Y C o with a set Aj
of the last 5 nodes to a maximal n-independent set Z C oy. Thus we have that
Z:=)YUAs; and A= A(—-1)U A4s.

Now suppose that o* € IIj; vanishes on X and Aj. According to Lemma[L.5]there

are 2 = 7 — 5 such polynomials. Hence we may assume that ¢* # ¢g. Then consider
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the polynomial p = 0*¢yly - - - £,,_j—1. We have that p € II,, vanishes on the maximal
n-independent set Z C 0. Therefore, we have that p = o*0ply -l 1 =
ooS, where s € 11, _g.

The lines ¢;, ¢ = 1,...,n — k — 1, are not components of o since they pass
through O ¢ oy. Therefore, they are components of the polynomial s. Thus we
obtain

o*ly = oo, where £ € 1.
Since o* # og therefore £y # £. Whence /g is a component of g : 09 = £yq9, where g
II;_1. As above we get that ¢y vanishes on X.

Step 2. Here we will prove that there are three linearly independent curves of
degree < k — 1 passing through all the nodes of the set X.

We find a line ¢y and collinear nodes Bi,..., By € {y, in the same way as in
the Step 1, such that o N X = @ and the set X U By is n-independent, where
By :={By, By, B3, By}.

Next, in view of Proposition there are three linearly independent curves
of degree at most k, which pass through all the nodes of the set X U B,. Denote
these curves by og,0(,0(. If a curve here, say op, is of degree < k — 1 and has
no multiple components then instead of given triple of curves we consider the
curves {100, 200,300, where the lines ¢; are chosen such that these three curves
are linearly independent and have no multiple factors.

Next, if a curve og,0(,0(, has a multiple factor then by throwing away the
excessed factor we are in the situation considered in the previous paragraph. Hence,
we may consider only the case when each of theses three polynomials is of exact
degree k and has no multiple components.

Now consider the curve og. In view of Proposition [I.6] we enlarge the set X' U By
to a maximal n-independent set Z C oy, by adding d(n, k) — (d(n,k—3)+3) —4 =
3(n — k) + 2 nodes, i.e.,

Z=XUByUA, where #4=3(n—k)+2=[3(n—k—-1)—1]+1+5.

We find the set of 3(n — k — 1) — 1 points from A in the same way as in Step 1
and denote it again by A(—1). Then, in the same way as in Step 1, we prove the
independence of the set Y := X U By U A(-1).

Next, in view of Theorem we choose a node A; € ¢ such that A; € oy \ qo,
where qq is the polynomial of degree < k — 1 vanishing on X', found in Step 1. Note
that the line #; is not a component of gq since £ N X = ).

Then consider the case when A; € A(—1), i.e., A; coincides with one of the
nodes Ay, Az € A(—1) N4y, say A} = A,. In this case instead of A(—1) we would
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start with the set A(—1)" = A(—1) U {A;1}\ {42} and we will have already that
Ay ¢ A(-1).

Since {y is not a component of o therefore the set F' := £y N ogg is a finite set
and we could suppose beforehand that ¢, N F = (. This will ensure that A, ¢ L.
Also we have that A; # O since O ¢ 0.

Now let us prove the independence of the set Y :=)U {fh} For this end, in
view of Lemma it suffices to find a fundamental polynomial of the node A;
o = qololy - Lp_p_ 100",

y
where ¢/ and ¢ are lines different from ¢; and pass through the nodes A, and As,

with respect to the set J. We readily verify that p}
1,

respectively.

Finally, according to Proposition let us enlarge the set ) C o with the
set of last 5 nodes, denoted by As, to a maximal n-independent set. Thus the set
Z := Y U Aj; is a maximal n-independent set in oo.

Now suppose that o* € IIj, vanishes on X and the 5 nodes of As. According to
Lemma [I.5] there are at least two such polynomials. Hence we may assume that
0* # 0. Then consider the polynomial p = 6*0ply - - - £,__1. We have that p € I,
and p vanishes on the node set Z, which is a maximal n-independent set in the
curve og. Therefore, we have that

p=0c*loly--Ll,__1 = 00S, where s € IL,, .

The lines ¢;, i =1,...,n—k — 1, are not components of og. Therefore, they are

components of the polynomial s. Thus we get that o*fy = o¢f, where ¢ € II;. Since

o* # oq therefore ¢y # (. Hence {; is a component of oy :
oo = Loqx—1, where qx—1 € Il ;.

In the same way for the curves o(, and of we get o, = foq,_,, where qj,_, € IT;_1,
and of = {loq)/_,, where ¢;/_; € 1.

Obviously the curves gx—1,4)._;,qp_,, are linearly independent. |

5. PROOFS OF THEOREMS [2.4] AND

Proof of Theorem[2.5. Assume by way of contradiction that there are four curves
passing through all the nodes of the set X'. Then, according to Theorem [2.3] all the
nodes of X but three belong to a maximal curve p of degree k — 2. The curve p is
maximal and the remaining three nodes of X', denoted by A, B and C, are outside

of it: A, B,C ¢ u. Hence we have that

Prx ={p:p €Iy, plx =0} = {qu: q € la,q(A) = q(B) = q(C) = 0}.
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Thus we get readily that dim Py » = dim{g € IIy : ¢(A) = ¢(B) = ¢(C) =0} =
dim Py 14,5,cy = 6—3 = 3, which contradicts our assumption. Note that in the last
equality we use Proposition[I.I]and the fact that any three nodes are 2-independent.

Now, let us verify the part “if”. By assuming that there is a curve o of degree
k — 1 passing through the nodes of X we find readily three linearly independent
curves of degree < k : o, x0,yo, passing through X. While if we assume that all
the nodes of X but three lie in a curve p of degree k — 2 then above evaluation
shows that dim Py » = 3.

Finally, let us verify the part “only if”. Denote the three curves passing through
all the nodes of X by oy, 0(, 0§ . If one of them is of degree k — 1 then the conclusion
of Theorem is satisfied and we are done. Thus, we may assume that each curve is
of degree k and has no multiple components. Now consider the curve oy.

By using Proposition [I.6] let us enlarge the set X' to a maximal n-independent
set Z C gg. Since #Z = d(n, k), we need to add a set of d(n, k) — (d(n,k—2)+3) =
2(n — k) 4+ 2 nodes, denoted by

.A = {Al, ey AQ(n,k)JrQ}.

Thus we have that Z := X U A. In view of Lemma i), we require that each
node of A may belong only to one component of the curve oy.

Case 1, n=k+2, A:={A,...,A46}.

Consider 5 nodes from A and a conic 5* passing through them. Denote the sixth
node by A*. We have three polynomials from ITj vanishing on X'. By using Lemma
we get two linearly independent curves of degree at most &, that pass through all
the nodes of X and the node A* € A. Thus we may consider a such curve ¢* € Il
by assuming that o* # o0¢. Now, notice that the polynomial ¢* 5* of degree n
vanishes at all the nodes of Z C ogy. Consequently, according to Proposition )

divides this polynomial:
(5.1) o BT =00p, Bell.

We have that 5* # 8 since o* # 0g. Hence if 5* is irreducible then it divides
0p. Now suppose that 8* is reducible: §* = ¢1/5, where ¢; € II;. Then we have
that both lines ¢, {5, cannot divide 3, hence either ¢1/5 or only one of them is a
component of og.

Let us consider the latter case. Suppose that the line ¢; is a component of oy
and /5 is a component of 8. Then we get from that

(52) o El = 0p f’ where £ € Hl.
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Now, we have that o9 = ¢1q, where degq = k — 1. Then we get from that
o* = {q. From the last two equalities we conclude that X C qU{E}, where E = ¢;N/.

Therefore all the nodes of X, except possibly E, belong to the curve ¢q. Here ¢ is
a component of gy of degree k — 1 and E belongs to its line component £1.

We briefly express the above conditions by saying that the line component ¢; of
o9 satisfies (—1)-node condition for X.

At the end we will see that if this property holds for all three given curves
00,00, 0(, then we can readily complete the proof of Theorem.

Therefore, from now on we may assume that the equality implies that
deg 8* = 2 and B* is a component of oy. Thus we obtain also that 8* is determined
uniquely by the 5 nodes from A.

Next, we are going to prove that there is a conic passing through all the six
nodes of A. Assume conversely that there is no such conic. Denote by 3; the conic
passing through the five nodes of A\ {4;}, i =1,2.

We have that these two conics are different components of o¢. First assume that
one of these two conics, say, (1, is irreducible. Then consider a common node of 5,
and (s, say, As. It is easily seen that As belongs to two different components of
00, which contradicts our assumption. Indeed, one is 5; and another is s if it is
irreducible or a line component of (5, if it is reducible.

Now, assume that both 81 and 8; are reducible: 81 = ¢1¢], (2 = £2¢,. Without

loss of generality assume that

(5.3) 0 # b, 1 #0.

We have that ¢; passes through at least one of the common nodes As, ..., Ag, say
As. Then As belongs either to £5 or to £5. In both cases, in view of , we have
that Az belongs to two different line components of og, which is a contradiction.
Thus we proved that A C By, where gy € I,.

Next let us show that 8y divides oy. Consider a polynomial o € II; that vanishes
on X and o # ogy. Notice that the following polynomial o Sy of degree k +2 = n
vanishes at all the d(n, k) nodes of Z C o¢. Consequently, according to Proposition
oo divides this polynomial:

(54) O'ﬂo = 0'05, ﬂ S HQ.

This is a type (5.1)) equality which, as we mentioned above, implies that deg 8y = 2
and Sy is a component of g, i.e., 0 = Byq, ¢ € IIx_5. We conclude also that By is

uniquely determined by any 5 nodes from A.
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Thus to enlarge the set X C 0g to a maximal n-independent set Z = X U A we
have to add all the six nodes of A to the conic fy. Let us verify that the added
nodes cannot belong to the component ¢. Indeed, suppose conversely that a node
belongs to By N g. Then, in view of Lemma we can move the node to ¢\ Sy
such that the resulted set is also n-independent. This is a contradiction, since now
the six nodes do not belong to a conic. Indeed, the five nodes determine a unique
conic and the sixth node is outside of it. Thus the factor ¢ € IIx_o to which one
can not add a new independent node is merely maximal with respect to X'. This
means that ¢ passes through exactly d(n, k) nodes of X.

Case 2, n > k+ 3.

Consider a subset of A of cardinality 4 and denote it by A4. Denote also by
A= A\ Ay. We have that #A4 = 2(n — k) — 2.

There are three linearly independent polynomials o, o{), 0f € IIj, vanishing on
X. Now suppose that ¢* € II; vanishes on X and at an arbitrary node A* €
A, which will be specified below. According to Lemma there are two such
polynomials. Hence we may assume that ¢* # 0. We call the node A* associated
with o*.

We associate another node A’ € A with the set A, and denote by 3’ a conic that
passes through A’ and the four nodes of Aj.

For any line component ¢ of oy denote by r, € II;_; for which
(5.5) gg = é’l“g.

Assume that a line component £ of the curve oy, passes through exactly m nodes
from X, at which r, does not vanish. Then we obtain from that rp € I
vanishes at the all nodes of the set X' except m nodes, which belong to £.

Note that if for a line ¢ we have that m < 1, then the line component £ of og
satisfies the (—1)-node condition for X

Therefore we may suppose that m > 2 for all lines ¢, meaning that the following
condition takes place:

(C) Any line component of the curve oy, passes through at least two nodes from
X, at which r, does not vanish.

Later, in Section by using the condition (C), we divide the set of nodes A
into n — k — 2 pairs such that the lines ¢, ..., ¢,_,_o, through them, respectively,
are not components of og. The remaining two nodes denoted by A* and A’, are
associated with the curve o* and A4, respectively.

Now, let us continue the proof by assuming that the above-described division of
A is established.
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Notice that the following polynomial o* 3 {1 ... £,,_;_o of degree n vanishes at
all the d(n,k) nodes of Z C 0. Consequently, according to Proposition )

divides this polynomial:
(56) o* ﬁlfl coilp_ o =oor, re€ll, k.

The distinct lines ¢1,...,¢,_x_o do not divide the polynomial o € Iy, therefore,
all they have to divide r. Hence, we get from that o* 8’ = 0o B, where 8 € Il,.
Then, we have that 8’ # 8 since 0* # 0p. Now, in the same way as in Case 1 we
obtain that og = 3'q where g € II;_».

Next, we are going to prove that there is a conic passing through all the nodes
of A. Assume by way of contradiction that there is no such conic. Then, in view of
Proposition we have that there is a set of six nodes, say Ag := {A1,..., 46} C
A, that does not lie in a conic.

Now, let us choose three noncollinear nodes in Ag, say A;, As, A3, and consider

the following sets of four nodes:
Ay, Az, Az, Agy A, Az, Az, Ay Ar, Ag, As, As.
Then, consider these three sets with the respective associated nodes:
(5.7) Ay, Ag, Ag, Ay, Ay Ay As Az, As, A Aq, Ao, Az, Ag, AT

We have that the three conics through these sets are components of og. Since Ag
does not lie in a conic we obtain that these three conics cannot coincide. Hence
there are two different conics, say the conics 3’ and 3", passing through the first
two sets in , respectively.

First assume that one of these two conics, say, 8’, is irreducible. Then consider a
common node, say, A;. It is easily seen that A; belongs to two different components
of g, which contradicts our assumption. Indeed, one is 3’ and another is 8", if it
is irreducible too, or a line component of 8", if it is reducible.

Next, assume that both 8’ and 8" are reducible: ' = 014}, " = £3¢,. Without

loss of generality assume that

(5.8) 0 # b, 0 #0

Note that ¢ passes through at least one of the common nodes Aj, Ay, A3, say A;.
Indeed, if ¢, passes through only A’ and A4 then we obtain that ¢} passes through
the three noncolinear nodes Aj, Ay, A3. Now, we have that A; belongs either to /5
or £,. In both cases, in view of , we have that A; belongs to two different line

components of o(, which is a contradiction.
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Thus we proved that A C Sy, where By € Il5. Next, in the same way as in Case
1, we show that Gy divides og : 09 = Boq, ¢ € Ily_o. Also we have that Gy is
uniquely determined by the nodes of A\ {A}, VA € A.

Indeed, assume conversely that £y is not uniquely determined by the nodes from
AN\ {Ap}, where Ay € A. Therefore there are infinitely many conics By passing
through the nodes of A\ {A4p}. Recall that for (any) Ay one can find a curve,
denoted by o*, of degree at most k, that passes through all the nodes of X and is
different from og. Then, as in Case 1, we readily get o* 8y = 0o, where 5 € II5. This
implies that §j is a component of . Therefore o has infinitely many components,
which is a contradiction.

Thus to enlarge the set X C 0¢ to a maximal n-independent set Z = X U A we
have to add all the nodes of A to the conic 3y. Let us verify that the added nodes do
not belong to the component ¢. Suppose conversely that a node Ag € A belongs to
Bo N gq. Then, in view of Lemma let us move Ag to ¢\ By such that the resulted
set A remains n-independent. This is a contradiction, since now the nodes of A do
not belong to a conic. Indeed, the nodes A\ {Ap} determine a unique conic and
the moved node is outside of it. Therfore, the factor r € IIx_o to which one cannot
add a new independent node is merely maximal with respect to X. Hence, r passes
through exactly d(n, k) nodes of X.

At the end, before establishing the division of the set A, it remains to consider
the case when the division may be not possible for all three curves oy, o), 0, i.e., the
case when the condition (C) does not hold. Then, we obtain three curves q,q’,q"”,
which are components of degree k — 1 of the curves oy, o{, o), respectively, passing
through all the nodes of X except possibly one.

Assume that q, ¢, ¢”, pass through all the nodes of X except E, E’, E”, respectively.
First assume that two of these three nodes are different, say £ # E’. We have that ¢
and ¢’ pass through all the nodes of the set Y := XY\ {E, E'}, #Y =d(n,k—3)+1.
If ¢ = ¢’ then we have that F = E’, contradicting our assumption. If ¢ # ¢’ then,
according to Theorem all the nodes of ) except one belong to a (maximal)
curve u of degree k — 2. Thus all the nodes of X except three belong to u.

It remains to consider the case £ = E' = E”. Then we have that q,q’, ¢, pass
through all the nodes of the set YV := X\ {E}, #Y =d(n,k — 2) + 2. We get from
Theorem 2.1 that ¢ = ¢’ = ¢ =: q.

Next, in view of the condition (C), we get that o = £q, o/ = 'q, " = {", where
£,0'¢" € 11;. This contradicts the linear independence of o, 0’0", since we have that
Eecint'ne". O
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Proof of Theorem It is easily seen that Theorem 2.4 follows from Proposition
Theorem and Lemma 3.1 (]

5.1. The division of the set A. Next let us establish the above mentioned
division of the node set A := A \ Ay in the case n > k + 3. Note that this is
the case when we need the division.

Recall that each node of A belongs only to one component of the curve og. By

using induction on m one can prove easily the following

Lemma 5.1 (Proof of Th. 3, [5]). Suppose that a finite set of lines L and 2m nodes
lying in these lines are given. Suppose also that no node is an intersetion point of
two lines. Then one can divide the node set into m pairs such that no pair belongs
to the same line from L if and only if each line from L contains no more than m

nodes.

Thus the above mentioned division of the node set A into n — k — 2 pairs is
possible if and only if no n — k — 1 nodes of Ay := A\ {A*, A’} are located in a
line component of oy, where the nodes A* and A’ are the nodes associated with the
curve ¢* and Ay, respectively. Observe also that we may associate any two nodes
A* and A’ of A with o* and Ay,

Now notice that, in view of #A4 = 2(n — k — 1), there can be at most two
undesirable line components for the set A, i.e., lines containing at least n — k — 1
nodes from it. In this case a node from each line we assign as associated and leave
in the two lines < n — k — 2 nodes.

Then assume that we have one undesirable line component for the set A, containing
< n—Fk nodes from it. In this case two nodes from this line we nominate as associated
and leave in the line < n — k — 2 nodes.

Finally consider the case of one undesirable line component ¢ of oy with m >

n — k + 1 nodes. We have that
oo = fry, where rp € TIj_1.

Now we are going to move m — n + k nodes, one by one, from ¢ to the other
component 7, such that the set Z := A U A remains n-independent. Again, in view
of Lemma i), we require that each moved node belongs only to one component
of the curve og.

To establish each described movement, in view of Lemma ii), it suffices
to prove that during this process each node A € ¢ N A, has no n-fundamental

polynomial for which the curve r; is a component. Suppose conversely that

(5.9) Py =108, $ € p_ki1.
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Now, we have that s vanishes at > n — k nodes in £N A\ {A}. Indeed, the nodes
of the set A in the line £ do not belong to another component. Therefore, r;, does
not vanish at these nodes and hence, in view of , s vanishes. According to the
condition (C) r; does not vanish also at least at two nodes from ¢N X', and hence s
vanishes there too. Thus the number of zeroes of s in the line £ is greater or equal
to n —k+2 and s together with p% vanishes at the whole line ¢, including the node
A, which is a contradiction.

It remains to note that there will be no more undesirable lines, except ¢, in
the resulted set A, after the described movement of the nodes, since we finish by

keeping exactly n — k nodes in £N.A and outside of it there are only n —k — 2 nodes.

6. AN APPLICATION TO BIVARIATE INTERPOLATION

A GC,, set X in the plane is an n-poised set of nodes, where the fundamental
polynomial of each node is a product of n linear factors. The Gasca—Maeztu conjecture
states that any GC),-set possesses a subset of n + 1 collinear nodes.

Recall that a node A € X uses a line £ means that ¢ is a factor of the fundamental
polynomial, i.e., p% = ¢r for some r € II,,_;.

It was proved by Carnicer and Gasca in [I], that any line passing through exactly
2 nodes of a GC), set X can be used at most by one node from X. Next, it was
proved in [8] that any used line passing through exactly 3 nodes of an n-poised set
X can be used either by exactly one or three nodes from X. In [5] was proved that
a line ¢ passing through exactly 4 nodes can be used at most by six nodes from X.
Moreover, if it is used by at least four nodes then it is used by exactly six nodes
from X.

Below we consider the case of lines passing through exactly 5 nodes.

Corollary 6.1. Let X be an n-poised set of nodes and £ be a line which passes
through exactly 5 nodes. Then £ can be used at most by ten nodes from X. Moreover,
if £ is used by at least seven nodes from X then it is used by exvactly ten nodes from
X. Furthermore, if it is used by ten nodes, then they form a 3-poised set. In the
latter case, if X is a GC,, set then the ten nodes form a GCj3 set too.

Proof. Assume that /NAX = {4;,..., A5} =: A. Assume also that the seven nodes
in B:={By,...,Br} € X use the line £ : pj ={q;, i =1,...,7, where ¢; € I,,_;.

The polynomials ¢, . . ., g7, vanish at N — 12 nodes of the set X’ := X'\ (AUB).
Hence through these N —12 = d(n,n—4)+ 3 nodes pass seven linearly independent
curves of degree n — 1. By Theorem there exists a maximal curve p of degree

n—4 passing through N —15 nodes of X’ and the remaining three nodes denoted by
58



ON PLANE ALGEBRAIC CURVES ...

C1, Cy, Cs, are outside of it. Now, according to Proposition[I.5] the nodes Cy, Cs, Cs,
use i pg, = pri, i € Iy, i=1,2,3.

These polynomials r; have to vanish at the five nodes of A C £. Hence r; =
by, i = 1,2,3, with 7; € II3. Therefore, the nodes C1,Cs,C3, use the line ¢ :
pe, = wlvi, © = 1,2,3. Hence if seven nodes in B C X use the line ¢ then there
exist three more nodes C1,Cy,Cs € X using it and all the nodes of Y := X\ (AU
BU{C1,Cs,C3}) lie in a maximal curve p of degree n — 4 :

(6.1) Y Cp.

Next, let us show that there is no eleventh node using ¢. Assume conversely that
except of the ten nodes in S := {By, ..., By,Cy,Cy,Cs}, there is an eleventh node
D using £. Of course we have that D € ).

Then we have that the seven nodes Bi,...,Bg and D are using ¢ therefore,
as was proved above, there exist three more nodes Ej, Fa, F3 € X (which may
coincide or not with By or C,Cs, C3) using it and all the nodes of ' := X'\ (AU
{Bi,...,Bs, D, E1, E2, E3}) lie in a maximal curve u' of degree n — 4.

We have also that
(6.2) pp=u4q, ¢ €My
Now, notice that both the curves p and p’ pass through all the nodes of the set
Z:=X\(AUBU{C,,C2,Cs3,D, Ey, Ey, E5}) with #Z > N — 19.

Then, we get from Theorem 2.1} with k =n — 5, that N — 19 = d(n,n — 5) + 2
nodes determine the curve of degree n — 4 passing through them uniquely. Thus p
and ' coincide.

Therefore, in view of and , p}, vanishes at all the nodes of YV, which is
a contradiction since D € Y.

Now, let us verify the “Moreover” statement. Suppose ten nodes in S C X use
the line £. Then, as we obtained earlier, the nodes ) := X' \ (AU S) are located in
a maximal curve p of degree n — 4. Therefore the fundamental polynomial of each

A € S uses p and hence £ :
py = plqa, where g4 € Il3.

It is easily seen that g4 is a 3-fundamental polynomial of A € S. O
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1. INTRODUCTION

Let D be the unit disk in the complex plane C and H (D) be the class of functions
analytic in ID. The Hardy space H? (0 < p < 00) is the set of all f € H(D) with
(see [4])

1 2m "
| f1%, = sup 2—/ |f(re')|Pdf < oo.
0<r<1 47T Jo
Let H*° be the space of all bounded analytic functions with the supremum norm

[ fll oo = sup,ep | f(2)]-
For 1 < p < oo, the Besov space, denoted by B, is the space of all functions
f € H(D) satisty

IFIE, = 1FO)F + / PP - 227 2dA(2) < oc.

Let 0 < p < o0, —2< ¢g<ooand0<s < oco. The space F(p,q,s) is the space
consisting of all f € H(D) such that

115 sy = 1£€ |”+sup/|f JP(L = 2291 — [pa(2)?) dA() < ox,

where ¢,(z) = {=. This space was first introduced by Zhao in [22]. F(2,0,s)
is the @ space (see [18]). F(2,0,1) is the BMOA space. F(p,«,0) is called the
Dirichlet type space, denoted by DE. In particular, F'(p,p —2,0) is the Besov space

IThe first author was supported by NNSF of China (N0.11801250, No0.11871257), Overseas
Scholarship Program for Elite Young and Middle-aged Teachers of Lingnan Normal University,
Yanling Youqing Program of Lingnan Normal University (No. YL20200202), the Key Program
of Lingnan Normal University (No.LZ1905) and the Innovation and developing School Project of
Guangdong Province (No. 2019KZDXMO032).
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B,. F(p,p,0) is just the classical Bergman space A?. When s > 1, from [22] we see
that F'(p,p — 2, s) is equivalent to the Bloch space, denoted by B, which consisting
of all f € H(D) such that ||f|lz = |f(0)] + sup,ep(1 — [2]?)]f/(2)]| < .

The Volterra integral operator T; was introduced by Pommerenke in [I3]. Pommerenke
showed that T} is bounded on H? if and only if g € BMOA, where

T,f(2) = / Cf(w)g (w)dw, € HD).

The companion operator I, induced by g € H(D) is defined by

LiG) = [ Flgto)te.  f e HD)

The multiplication operator M, is defined by M, f(z) = f(2)g(z). It is easy to see
that M, f(z) = f(0)g(0) + I, f(z) + T, f(z). Recently, much attention has been paid
to the operators T, and I.

See [T, 2], [5]-[9], [I1]-[L6], [20, 2I] and the references therein for more study of
the operators Ty, and I,.

For any arc I C 9D, the boundary of D, let |I| = i fI |d¢| denote the normalized
length of I and S(I) be the Carleson box defined by

SU)={reD:1-|I|<|2|<1, z/|z| €l

Let 0 < s < 00,0 < ¢ < 0o and p be a positive Borel measure on I. Let T2(u) be

the space of all y-measurable functions f such that (see, e.g., [12])
1
sup o [ 15 1du(z) < .
S(I)

rcam |1®
Let 0 < a < 00,0 < s < oo and p be a positive Borel measureon D. We say that

w is a a-logarithmic s-Carleson measure if (see [21])

(log #)*u(S(I))
lullzenm,, . == sup . < oo0.
1CoD 1]

When a = 0, it gives the s-Carleson measure. When o« = 0,s = 1, it gives the
classical Carleson measure. p is said to be a vanishing a-logarithmic s-Carleson

measure if (see [I1])
- log ) w(S(D)

= 0.
I [1]*

The Carleson measure is very useful in the theory of function spaces and operator
theory. The famous embedding theorem say that the inclusion mapping i : HP —
L?(du) is bounded if and only if u is a Carleson measure (see []). See [3] for
the study of Carleson measure for the Besov space B,. In [5], Girela and Peldez
studied the Carleson measure for Dirichlet type spaces. Among others, under the

assumption that 0 < p < g < oo, they showed that the inclusion mapping i : B, —
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L%(dy) is bounded if and only if p is ¢(1 — %)—logarithmic 0-Carleson measure. In
[20], Xiao proved that the inclusion mapping i : Q, — T2(u) is bounded if and
only if p is 2-logarithmic s-Carleson measure. In [I0], Liu and Lou showed that
the inclusion mapping i : £%* — T2(u) is bounded if and only if ;1 is a Carleson
measure, where £2* is the Morrey space. The main ideas and methods used in [10]
more or less are motivated by the three sections 3.2, 4.3, 6.4 of [19]. In [12], Pau
and Zhao showed that the inclusion mapping i : F(p,p — 2,s) — TP (u) is bounded
if and only if p is p-logarithmic s-Carleson measure. In [7], Li, Liu and Yuan proved
that the inclusion mapping i : D) ; — TP(u) is bounded if and only if u is a
(s + 1)-Carleson measure by using the Carleson embedding theorem for Bergman
spaces.

Motivated by [B] [7, 10, 12} [20], in this paper, we study the boundedness and
compactness of the inclusion mapping from B,, into T (). More precisely, we show
that the inclusion mapping ¢ : B, — TJ(u) is bounded (resp. compact) if and
only if u is a ¢(1 — %)—1ogarithmic s-Carleson measure (resp. vanishing ¢(1 — 1%)—
logarithmic s-Carleson measure) under the assumption that 1 < p < ¢ < oo and
0 < s < co. Moreover, we study the boundedness, compactness and essential norm
of the operators T, and I, acting from B, to F(¢,q — 2, s).

In this paper, the symbol f =~ g means that f < g < f. We say that f < g if
there exists a constant C such that f < Cg.

2. EMBEDDING FROM BESOV SPACES B, TO T%(u)

We need the following equivalent description of p-logarithmic s-Carleson measure,

see Lemma 2.2 in [12].

Lemma 2.1. Let 0 < o < 00,0 < s,t < 00 and p be a positive Borel measure on

D. Then u is a a-logarithmic s-Carleson measure if and only if

2\ [ (1 |a2)!
I d < 00.
525(°g1|a2> T azrz) <oe

Moreover,

2 )a (1 —laf)
1(2).

= 1
s, s (1os =) [ B

Using [23, Lemma 3.10], we can easily obtain the following result.

Lemma 2.2. Let1 < p < oo and w € D. Set
1/p
1 2 1 — |w|?
w = —_— 1 5 Fw i — 9 E ]D)
Jul2) <1og 1_|2w2> 1w ) w(l —wz) ?

Then fuw, Fuw € By.
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Lemma 2.3. Let 1 < p<g<o00,0<s <00 and p be a positive Borel measure on
D. Suppose that f € B, and p is a q(1 — 7) logarithmic s-Carleson measure. Then

L r@raue) s [ 17 Gpa -1y tos =) FaAC),

Proof. Suppose that f € B,. For any fixed g, s, let o be big enough such that
ga— s >0 and qa + 2 — g — 2s > 0. From the proof of [I2] Lemma 3.2] we have

| (w)|7(1 — [w]?)2 2 \*
2)|7 < / = wz|qa+2 . log = op2 dA(w).

Since p is a q(1 — 5)—10garithmic s-Carleson measure, combining with Lemma 2.1
and the fact that B, C B, we obtain

2\ qo 2 a
[ e //|f|1wz|qaf§|q) <10g1w|2) AA(w)dp(2)
, ats 2 2\
< [ = o =) <<1°g )

(1 — |UJ|2)S ’ » 2\p—2+s 2 .
X/H)H_Mdﬂ(z)> dA(w)S/DU (w)[P(1 = |w[)P~2+ (1og1_7|w|2) dA(w).

The proof is complete. O

Theorem 2.1. Let 1 <p < g <00, 0<s <00 and p be a positive Borel measure
on D. Then the inclusion mapping i : B, — T3(p) is bounded if and only if p is a

q(1— 7) logarithmic s-Carleson measure.

Proof. First we assume that ¢ : B, — TJ(p) is bounded. For any given arc

I C oD, set a = (1—1I])n and 7 is the center point of I. It is easy to see that

1 —az|=1—|a|*~|I|, z¢€S(I).

1\
o(2) = | —=— 1 .
fa(z) <1og 71_?(1'2 ) 1 a

By Lemma 2.2, we see that f, € B,. From the boundedness of i : B, — TZ(u), we

Let

have

1
Iullsgy = sup oo / a2 l9dp(z) < 0.
By the fact that |f,(2)| = (log %) ~% when z € S(I), we get

1
(log )74~ D u(S(1))

sup < 0.

ICOD 1]

Hence p is a ¢(1 — %)—1ogarithmic s-Carleson measure.
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Conversely, assume that p is a ¢(1 — %)—logarithmic s-Carleson measure. Let
f € B,. For any given arc I C 9D, set w = (1 — |I|)n and 7 is the center point of
I. Then

1 1
I qa <_ - 9 NI
7 [ ) Sy [ 1G) = st + e [ st
—A+B,
where
A= [ e - sw)ldnz), B= o [ fw)du(e).
111° Jsn 171* Jsr)
Since
2 \'"» 2\ 7
)5 (los =) Il < (g 7)1l
we get
(log )72 u(S (1))
B<—1 e A%, S IS, .
By Lemma 2.3, we have
1(2) = fw)|’
A S —|w?)? d
-ty [ R )
) = f)\'| _ 2
<(1 — |w[?)® 1 —|z]2)P—2+5(1 dA(z
( |>/D<(1_wz)2;> (1= 222+ log ) FA()

2s

(1—-wz)e
we deduce that A < Wy + Wy, where
s f/ —2+s 2 <
wi= (1= o) [ O preog ) Faac)
D |1 —wz| « =2
and

a

2 a
= |Z|2)PdA(z).

W2 _ (1 _ |w|2)( |f< ) ( )|p( _ |Z|2)p—2+s(10g

D |1 —wz|2pg+p

2\2s(1—

Since p < ¢q and sup,cp(1 — |2[?) (log P \2)p < 00, we get that

Wi S 1 f1l, -

Let 0 < e < min{%,s,2s(1 — £)}. Combining with the fact that sup,ep(1 —

|2]%)¢ (log ﬁ)% < 00, we obtain

1f(2) = fw)]?

282 4p

Wa = (1—|uwl*)® (1= [2)P=# 7 dA(z).
D |1 —wz| «
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Making the change of variable n = ¢,,(2) and combining with [23 Proposition 4.2],

we have
° V) — (f o) (0)|P —24s5—¢
oy [ W El U 2Oy g 22+
|1—w</J ()| *7
(1= Ju?)?
X mdA( )
_ 2\p—2+4s5—¢
:(1— \w| 2 /‘ Ong —(fogow)(O)V)l(l |nL422s2p525dA(n)
_w’,] q
_ 2\2p—2+s—e
<1 fuwP) (o purmr L dam)
< L — 2o
s_2os Ll ]
S P [ a1 = IS g
D |1 — @ |P2e e

2ps — |ow(z 2\p—2+s—e _ w2 2
S(l_ ‘w|2>257775/ ‘f/<Z)|p(1—|Z|2>p (1 |90 ( )l ) i (1 |7| ) dA(Z)

11— Wy (2)[PH2e— 5 —2¢ |1 —wz]*

Z 2p—2+4s—e
sa-lwpy [ 7Pt L CHIIY

|1 —wzPt e
Therefore,
1
sup / F)du(=) S 1715,
IcaD |1l S(I)
which implies the desired result. The proof is complete. O

We say that the inclusion mapping i : B, — TZ(u) is compact if

1
lim — w(2)]9du(z) =0
/S()If() u(z)

n—o00 ‘IIS

whenever I C 0D and {f,} is a bounded sequence in B, that converges to 0

uniformly on compact subsets of D.

Theorem 2.2. Let 1 < p < g < 00, 0 < s < co. Let u be a nonnegative Borel
measure on D such that point evaluation is a bounded functional on T2 (). Then
the inclusion mapping i : B, — Td(u) is compact if and only if u is a vanishing

q(1— 7) logarithmic s-Carleson measure.

Proof. First we assume that ¢ : B, — TJ(u) is compact. Let {I}} be a sequence

arcs with limg_, o [Ix| = 0. Set ax, = (1 — |Ix|)nk, where 7 is the midpoint of arc

Ik. Take
1/p
1 2
Z)=|——— lo .
fk( ) <10g1_|ik|2> gl—ajz
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We see that fr, € B, and {f} converges to 0 uniformly on compact subsets of D

when k£ — co. Then we get

5 \2(1-3)
(logm) n(SUk)) 1
S | IR o
[T |* k| Js(n

as k — oo, which implies that p is a vanishing ¢(1 —

%)—logarithmic s-Carleson
measure.
Conversely, assume that y is a vanishing ¢(1— %)—logarithmic s-Carleson measure.

From [I2] we see that

| = porll Lo — 0,7 — 1.

a(l—3).s
Here pi,(2) = p(z) for |z| < r and p,(z) = 0 for » < 2] < 1. Let || fx||, < 1 and

{fr} converge to 0 uniformly on compact subsets of D. Then

1 1 1
= [ @) S o [ @)+ [ @ ) )
15 Jsn 15 Jsn s Jsn
1
S o [ AR + = rllon,,_y, 1A,
1] S(I) )
1
S [ R () + = wlion,,
11* Js(r) T

Letting k — oo and then r — 1, we have limy oo || f&[|79(,) = 0. Therefore i : B, —

T9(u) is compact. O

3. THE OPERATORS Ty AND I, FROM B, TO F(q,q —2,s)

In this section, we consider the boundedness, compactness and essential norm of
operators T, and I, from B, to F(q,q — 2,s). Before we state our results in this
section, let us recall some definitions.

Let (X, - ||x) and (Y,]| - |ly) be Banach spaces and T : X — Y be a bounded

linear operator. The essential norm of T : X — Y is defined by

1T

e XY = ir}1{f{||T — K||x>y : K is compact from X to Y'}.

Let @ be a closed subspace of X. Given f € X, the distance from f to ®, denoted
by distx (f, ®), is defined by distx (f, ®) = infyea || f — gl x-

Suppose that 0 < a < 00,0 < ¢g,s < co. The space Fp(¢q,q — 2, s, ) is the space
consisting of all f € H(D) such that

191, =sup (108 =z ) 1710 = P20 = pul)Praac) < .

It is easy to check that Fr,(q,q—2, s, «) is a Banach space under the norm ||f||‘pr(q 4—2,5,0)

= [£(0)|7 + || f]|? when ¢ > 1. When a = 0, F(q,q — 2,s,0) is just the space
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—2,5). Let F?(q,q—2,s,a) denote the space of all f € Fr(q,q—2,s,a) such
L

i (log =) [ 17/~ )20~ a2 dA) =

la]—1

By Lemma 2.1 we easily obtain the following equivalent characterization of the

space Fr(q,q — 2,5, ).

Lemma 3.1. Let 0 < a < 00,0 < ¢q,8 < co. Then f € Fr(q,q — 2,s,a) if and

only if

log %)
sup (os ) [ 1@ -y aa) < o
S(I)

rcon |

Moreover,

/1% 7(1% ﬁ‘) / [/ (2)]7(1 = |2*) T2 dA(z)
_ /A sup z — |z A(z).
Frlaa=2s0) “rcop 11T Jsay

Lemma 3.2. Let 0 < oo < 00,0 < ¢, s < 0. If g € Fr.(q,q — 2,s,a), then

lim sup

i ((10g 1—2II2> Lo - pryeta - |90a(z)|2)sdA(z)> :

~ diStFL(q,q—Q,s,oz) (97 Fg(q, q— 27 S, a)) ~ lim sup ||g - gT”FL(q,q—Z,s,a)-

r—1—

Here g,(2) = g(rz), 0 <r <1,z € D.

Proof. For any given g € Fp(q,q — 2,5, ), then g, € F?(q,q — 2, s, ) and

||gT||FL(q,q—2,S,O¢) S/ ||g||FL(q,q—2,s,oc)'

Let 6 € (0,1). We choose a € (0, 6) Then @, (z) lies in a compact subset of D. So

lim, 1 sup_¢p |9’ (pa (2 )) —1rg'(req(2))| = 0. Making a change of variables, we have
lim sup <10g 2> /Ig )11 =) (1 — [pa(2)*) dA(2)
r—1 I |<5 1 — | ‘

X

i sup (log =) [ 10(0u(2)) — a0~ 42l 21 AC)

T—)ll |<5

2 «
lim sup sup g’ (¢a(2)) — g (pa())]" (logz) x
7’—)1| |<5 2€D ]. — ‘a|

/D (1~ [22)77 2|l () [7dA(2) = 0

By the definition of distance, we obtain

<

. 0 o .
dlStFL(Q»‘I—ZS,Oz) (97 FL(Q? q— 27 S, Oé)) - fEFB(;f}Jf;Q,S,a) ||g - f”FL((Iyq—Q’S»O‘)

}1_}1’1} Hg - g’I‘HFL(q7q—2,57a)
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= lm (@ufa (10g12|a|2)a/ﬂ)|9’(2)—gi(Z)Iq(l—lzIQ)q_z(l—Iwa(2)|2)SdA(z)>
+ lim <.i“£’5 (e 7=2) [ o)~ @i - =7y - |¢a<z>|2>SdA<z>>;
(i‘ﬁfa (ls=2) [ @i -2 - |¢a<z>|2>3dA<z>>
4 lm <|i“§’5 (e =) [l = =220~ feulo) )SdA(z))

Let 9r,4(2) = @rq © 7pq(2). Then ¢, , is an analytic self-map of D and ;. ,(0) = 0.

Q=

Q=

A

Q=

Making a change variable of z = ¢,(z) and applying the Littlewood’s subordination

theorem (see Theorem 1.7 of [4]), we have

<1°g 22> @1 = 1221720~ [ dA)
7)) [ el = a0~ ) 2dAC)

/Ig © Pra © Yra(2)|1(L = [@ra © Yra(2)[*)1(1 — [2[*)*"2dA(2)

190 6 0 a1 = ra 0 ra (I 272 AC)

/ 190 Gra (11— [pra(2)P)I(L - |2)2dA(2)

IN

/Dm( YL~ 22072 (1 pra(2) 2) dA(2).

IN
/\/\/_\/\/\
o
Oq

E
(V]
\/\/v\/\/

Since § is arbitrary, we get

diStFL(q,qfls a) (gv FE(Q’ - 2 S, Oé))

< nmsup((log ) [l @122 - feuts) >SdA<z>)1/q.

|a]—1

On the other hand, for any g € Fr.(q,q — 2, s,q(1 — %))7

. 0 _ 3 _
dlStFL(q,q—Q,s,oc) (ga FL(q7 q— 27 S, O[)) - fGFg(;Eszls,oz) ||g f”FL(q,q—Q,s,oz)

Z hﬁilip((bg ) /Ig )1 |Z|2)q_2(1—Isoa(Z)Iz)“"dA(Z)>1/q,

implies the desired result. O
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Lemma 3.3. Let 1 <p<g<o0,0<s<o0. IfO<r<1andgé€ Fr(qg,q—
2,8,q(1 — %)), then T,, : B, — F(q,q — 2, s) is compact.

Proof. Given {f;} C B, such that {fx} converges to zero uniformly on any
compact subset of D and supy, || fx||B, < 1. For each a € D,

1T, il -2, = S0P / (gL (@I = [2P)72(1 = fpa(2)[2)*dA(2)

g1l

( 2,5,¢(1- 1)) ’

~ L q;;(l_S)q sug/ |fk 1 — \z| )q 2( _ |%0a(2)|2)6d14(z)
(log ’ 2T2) . q @€

||g||FL (¢,9—2 s,tI(I**)

(log 13 Q)q( (1-

lol,

(4:9-2,5,4(1= %)) 2
T /|fk "1 o)A ()
e )

q
”g”FL(q,qu,s,q(lf%))
~ a(1=3)
(log 13r2> (1 —r2)a

By the dominated convergence theorem, we get

/|fk (L — [2)72dA(2)

~

~

I£ells, [ 104C).

1T, Sl ga S Jim [ R0 = )72dA()
< / lim [fi(2)|7(1 — |2)7"2dA(z) = 0
Dk—>oo

as desired. The proof is complete. ([
The following result is very useful to study the essential norm of operators on

some analytic function spaces, see [17].

Lemma 3.4. Let X,Y be two Banach spaces of analytic functions on D. Suppose
that

(1) The point evaluation functionals on'Y are continuous.

(2) The closed unit ball of X is a compact subset of X in the topology of uniform
convergence on compact sets.

(3) T: X =Y is continuous when X and Y are given the topology of uniform

convergence on compact sets.

Then, T is a compact operator if and only if for any bounded sequence {f,} in X
such that {f,} converges to zero uniformly on every compact set of D, then the

sequence {T f,} converges to zero in the norm of Y.
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Theorem 3.1. Let 1 <p<g<o0, 0<s<ooandge HD). Then T, : B, —
F(q,q —2,3s) is bounded if and only if g € Fr,(q,q — 2,s,q(1 — %))

Proof. Suppose that f € B, and g € Fr(¢,¢—2,s, q(l—%)). From Lemma 3.2 we
see that dug(2) = |¢/(2)]%(1 — |2|*)T2T*dA(z) is a q(1 — %)—logarithmic s-Carleson
measure. By Theorem 1, for any I C 0D we deduce that

1 ,
o [ @y - Py dac)
11° Js

1 q| a4 (N9(1 — —2+s+1
=T /S(I)lf(z)l 9" (2)|9(1 = |2*)17* T2 dA(2)

1
=7 oy W) S 1S, Il g2 < 0

which implies that T, : B, — F(q,q — 2, s) is bounded by Lemma 3.1 again.

Conversely, suppose that T, : B, — F'(¢,q — 2, s) is bounded. For any I C 0D,
let a = (1—|I|)¢, where ( is the center of I. Then 1 —|a| = |1 —az| = |I], z € S(I).
Let f, be defined as in Lemma 2.2. We have

(log %)q(l_%)

lzq_ZQq—2+s P
T [, P A

L NG (2)]9(1 = |2]2)2T3dA(2
S o, Fel G = 2

S(

1 / q _ 22 q—2+s 2
ST g 1Tl G = 1224 C)

§||Tgfa||qF’(q7q—2,s) < 00,

which implies that g € F1.(q,q — 2, s,q(1 — %)) by Lemma 3.1. O

Theorem 3.2. Let 1 < p< ¢g<o00,0<s< o0 and g€ HD). Then I, : B, —
F(q,q —2,s) is bounded if and only if g € H™.

Proof. Let f € B, and g € H*. By the fact that B, C B, we get
L= 122 (1= leu()P)” 44
= [P~ 21 (1~ fpu(2)) dAC)

=H9H%w||f\|qsfp/mIf’(Z)\p(l = |21*)P2dA2) S llgllgr 1 11, < oo,

which implies that I, : B, — F(q,q — 2, s) is bounded.
Conversely, assume that I, : B, — F(g,q — 2,s) is bounded. For ¢ € D and
r >0, let D(a,r) = {z € D: f(a,z) < r} denote the Bergman metric disk centered

at a with radius r. Here f(a, z) is the Bergman metric between z and a. For any
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w € D, let F,, be defined as in Lemma 2.2. Using the subharmonic property of |g|?
and the fact that (see [23])

(1—JwP)? _ 1 - 1 1
-zt T (1= [2)? T (1= [wP)? T D)’

z € D(w, ),

where |D(w, )| denotes the area of the Bergman disk D(w, r), we have
o8 >HIngHZIIJ(q,q_27s)
zsup [ |FL@IIgI( - 22)7 (1= [pa()P)" dA)
a€D JD
2 [ 1Pl = P72 (1 = fou:)) dA()
2 [ 1 (1~ ul) aAC)

1 q q
S e / AR Z gl

which implies
o0 > ”IngH%(q,q_z,s) 2 ”9”3{00,

as desired. The proof is complete. ([

Remark. Let 1 <p < ¢<o00,0< s<ooand g € H(D). From the fact that

My f(z) = £(0)9(0) + I, f(2) + Ty f(2),

we see that My : B, — F(q,q — 2, s) is bounded if and only if
1 o0
gEFL<qaq_27S?Q(1_5))mH .

Theorem 3.3. Let 1 < p<g<o00,0<s<ooandg e HD). If T, : B, —
F(q,q—2,s) is bounded, then

. 1
||Tg e,Bp,—F(q,q—2,s) ~ dlStFL(q,q—Q,s,q(l—%))(g7 FE((L q— 27 S, q(l - 5)))

Proof. Let {a;} be a sequence in D such that limg_, o |ax| = 1. For each k, set

1 v 2
0 (2) = | ——— lo —.
Jar(2) <log 1_|?1k|2> gl—akz

Then {fq,} is bounded in B, and {f,,} converges to zero uniformly on every

compact subset of D. For any given compact operator K : B, — F(q,q — 2, s), by
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Lemma 3.4 we have limy_oo || K fa, | P(g,q—2,5) = 0. So

HTQ - K” Z liIICIlSIlp H(Tg - K)fak ”F(q,qu,s)
—00

21im sup (1T, faur lpaq 2.0 = 1K for (a2 )
k—o0

:hinsup 1Ty far I F(q0—2.5)

Q=

- limsup ( [ 1@l @0~ 272 - soak<z>|2>8dA<z>)

k—o0

a(1-2)
s ( (o572 ) 7 [ 0w () A
lag|—1 — |ax|

Hence

Q=

HTg”e,BpHF(q,q*2 s)

-3)
zng;sogp«log — |2) [ @0 = R0 = o (O )SdA(z))

By Lemma 3.2 and the arbitrariness of {ax}, we get that

Q=

1
—F(q,9—2,5) ~ dlStFL(qq 2,5,q(1—% ))(ngg(q7q_27S7q(1_};)))

On the other hand, by Lemma 3.3, T, : B, — F(q,q — 2, s) is compact. Then

1 Tylle. 8, r(a.0-2.9) < 1Ty = T, |l = [ Tg—g, | = 19 = 9rll 7 (g.q-2.5,a01- 1))

Using Lemma 3.2 again, we get

e,Bp—F(q,9—2,s) 5 hmbup ”g gr ||FL(q,q 2 5,q(1—1))
r—1-

) 1
~ dlstFL(qu_zyqu(l_%))(g,Fg(q,q —2,5,q(1 - 5)))

The proof is complete. O
By the well-known result that T : X — Y is compact if and only if ||T||e x>y =
0, we get the following result by Theorem 3.3 directly.

Corollary 3.1. Let 1 <p < g < oo and 0 < s < 0. If g € HD), then T, : B, —
F(q,q—2,s) is compact if and only if

1
g€ F)(q,q—2,8,q(1— 5))'

Theorem 3.4. Let 1 < p < g < 0o and 0 < s < o0. If g € H(D) such that
I, : B, — F(q,q—2,5) is bounded, then

I glle,B,—F(a.qa-2.5) = l9ll7ee-
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Proof. Let {a;} and K be defined as in the proof of Theorem 3.3. Set
1-— |ak\2

— Tkl 2 eD.
w—a2)

Fa, (Z) =

By Lemma 2.2 we see that F,, € B,. By Lemma 3.4 we get limy o0 || K Fy, || p(q,q—2,5) =

0. Hence,
”Ig - KH 2 liin sup H(Ig - K)Fak ||F(q,q—2,5)
— 00
> liin sup ([ g Fu, | F(g,a-2,5) = 1K FallFg,9-2.5))
— 00
= lim sup HIgFak HF(q,q—Q,s)a
k—o0
which implies
”Ig”e,BP—)F(q,q—?,S) Z hin sup HIgFak ||F(q,q—2,s)-
— 00

Similarly to the proof of Theorem 3.2 we get that ||I,Fy,, || r(q,q—2,5) & |9(ax)|, which
implies that

1 glle,B,~F(g.9-2,5) 2 N9l m=.

On the other hand, by Theorem 3.2 we obtain

Hglle,B,—F(aa-2.5) = i [[1g = K| < Ll S gl rr==-

The proof is complete. U
From Theorem 3.4 we get the following result.

Corollary 3.2. Let 1 <p<g<oo and 0 < s < o0. If g € H(D), then I, : B, —
F(q,q —2,5) is compact if and only if g = 0.
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NONHOMOGENEOUS DUAL WAVELET FRAMES WITH THE
p-REFINABLE STRUCTURE IN L?(RY)
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Abstract. In recent years, nonhomogeneous wavelet frames have been widely studied by many
researchers, while the ones in L?(R*) have not. Some practical applications indicate that it is
desirable to have a nonhomogeneous dual wavelet frame in L?(R1) because of the time variable
can not take negative values in signal sampling. In addition, similar to the homogeneous dual
wavelet frames, the nonhomogeneous ones derived from refinable functions have fast wavelet algo-
rithms. In view of this, under the setting of L2(R1), we study the properties of nonhomogeneous
dual wavelet frames, and obtain a construction of nonhomogeneous dual wavelet frames from a

pair of p-refinable functions.

MSC2010 numbers: 42C40; 42C15.

Keywords: Bessel sequence; wavelet frame; nonhomogeneous dual wavelet frame;
Walsh-Fourier transform.

1. INTRODUCTION

The concept of frames was introduced already in 1952 by Duffin and Schaeffer |10
in the study of nonharmonic Fourier series, but the importance of this concept was
not recognized by mathematicians until the ground-breaking work of Daubechies
et al. . In the past three decades, the theory of frames has attracted many
mathematicians and engineers, and has achieved fruitful results (see @
and many references therein).

An important example about frames is wavelet frames, which are generated
by translation and dilation of a finite number of functions. Wavelet frames have
many good properties that make them useful in the study of signal processing,
image restorations, sampling theory, function spaces and so forth.
In order to make the wavelet frames have more applications, several generalized
notions of wavelet frames are proposed and studied, namely tight wavelet frames
[1§], dual wavelet frames [19], (quasi) affine frames and (quasi) affine dual frames
. One of the fundamental methods to construct tight wavelet frames from
refinable functions is the unitary extension principle (UEP) which was proposed

lSupported by the National Natural Science Foundation of China (Grant No. 11961072);

the Natural Science Basic Research Program of Shanxi (Grant No: 2020JM-547); the Doctoral
Research Project of Yan’an University (Grant No. YDBK2017-21).
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by Ron and Shen 28], and then was extended by Daubechies et al. [5] in the
form of the oblique extension principle (OEP). They gave sufficient conditions for
constructing tight affine frames and affine dual frames from any given refinable
functions. From then on, many works along this direction can be found in
. Observe that all above works main focus on homogeneous (dual) wavelet frames.
In applications, fast wavelet transforms are our main concern, and nonhomogeneous
(dual) wavelet frames derived from refinable functions have fast wavelet algorithms.
Han in comprehensive studied nonhomogeneous (dual) wavelet frames and
they connect with homogeneous ones. Similar to the homogeneous dual wavelet
frames, the nonhomogeneous ones derived from refinable functions have fast wavelet
algorithms, which play an important role in wavelet analysis.

Wavelets and frames have been generalized in many different settings. For example,
Lang constructed compactly supported orthogonal wavelets on the locally
compact Cantor dyadic group by following the procedure of Daubechies (or
see Eﬂ) via scaling filters, and these wavelets turn out to be certain lacunary Walsh
series on the real line. Recent works about wavelets and frames on the Cantor
group and Vilenkin groups can be found in . It is worth noting that the first
constructions of wavelet frames on the positive half line with binary addition were
proposed by Farkov , in which wavelets and frames on the half line R related to
the Walsh-Dirichlet kernel and its modification are considered. Shah and Debnath
studied Dyadic wavelet frames on a half-line using the Walsh-Fourier transform.
Shah in give an explicit construction of tight wavelet frames generated by the
Walsh polynomials on positive half-line RT using the extension principles, and
derive the wavelet frames decomposition and reconstruction formulas.

Intuitively, we can obtain L?(R*) wavelet frames by projection from L?(R) ones,
while it is not the case for L?(R*) since the projections do not have complete
affine structure. Furthermore, in many practical problems of nature and physics, the
time variable can not take negative values in signal sampling; and in mathematics,
R* is not closed according to the usual addition “4”. As a result, the classical
Fourier transform method can not be directly applied to the wavelet frames in
L?(R*). However, RT is closed in terms of the operation “@”, and the Walsh-Fourier
transform is defined by .

Inspired by the above observation, in this paper we investigate nonhomogeneous
dual wavelet frames under the setting of L?(R*). In Section 2 we give some preliminaries

and notations. In Section 3 we present some properties of nonhomogeneous dual
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wavelet frames in L?(RT). Section 4 is devoted to constructing nonhomogeneous

dual wavelet frames from a pair of general p-refinable functions.

2. PRELIMINARIES AND NOTATIONS

We first recall some basics of addition “@"and subtraction “©". We denote by Z,
Z7 and N the set of integers, the set of nonnegative integers and the set of positive
integers, respectively; and by N; the set of {0,1,--- ,¢t — 1} for ¢ € N. Let p > 1 be
a fixed integer. For z,y € N, we define the @ and & on N,, respectively by

x -+, r+y<p,

7@y = (o +y)med p):{ T+y—p, T+Y>p,
and

x—Y, x>,
roy=(o-pmod ) ={ 17 T

Given x € R, we denote by [z] its integer part, and by {z} its fraction part. Then

we have
ko o]

(2.1) = w T Y ap = (o] + {a},
j=1 j=1

where k, € Z*,zj,2_; € N, for j € N, and the sequence {xj};";l is required to
have only finitely many nonzero terms when x is rational. For y,w € R™, we define
Y;,Y—; and w;,w_; similarly. Using the above operations on N,, we define the @

and © on RT respectively by

(2.2) z@y=>» (@ o)y '+ (z;0y_;)p
j=1 Jj=1

and

(2.3) roy=> (wjoy)p '+ (z 0y ,)p7
j=1 J=1

for z,y € RT. Note that z = x © y if 2 ® y = z, and it is easy to check that RT is
a group under the operation “® ”. Given z,w € RT, write

. OO0
211

(2.4) x(z,w) = exp 3 Z(%W*j + z_jw;)
=1

For a function f € L'(R*) N L?(R*), its Walsh-Fourier transform is defined by
Fi6) = [ fan
R+

and is extended uniquely to the whole space L?(R*). The details of the Walsh-

Fourier transform and Walsh series can be found in . Similarly to the classical

Fourier transform, the Walsh-Fourier transform is an unitary operator on L?(RT),

and the system {x(k, -) : k € Z*} is an orthonormal basis for L?(T) with T = [0, 1).
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We define the dilation operator D and the translation operator 7;, with k& € Z+
respectively by

Df(-)=p"?f(p-) and T f(-) = f(- © k) for f € L*(RY).
Obviously, they are both unitary operators on L?(R*). And we write
fix=DITyf for j € Z and k € Z7.

Let J € Z,vo € L2(R") and ¥ = {41, 19, -+ ,2b1} with L € N be a finite subset in
L?(R™). We define the homogeneous wavelet system X (¥) and the nonhomogeneous

wavelet system X (1o, ¥) respectively by

(2.5) X(U)={¢yr:j€LkeZT,1<I<L}

and

(2.6) X0, V) ={o sk k€ ZTYU{thy p:5> T keZt, 1<I<L}

And we write Xo(1bo, ¥) = X (o, ¥) for simplicity. Let X (¥) and X (¢, ¥) be
defined similarly. We say X (V) is a homogeneous wavelet frame (HWF) in L2(R")
if there exist two constants 0 < A < B < oo such that

L
(2.7) AIFIP <D0 > [F i) < BIfIIP for f e LX(RT),

I=1j€Z keZ+
where A, B are called frame bounds. It is called a Bessel sequence in L?(R*) if
only the right-hand side of holds, where B is called a Bessel bound. We say
(X (W), X(D)) is a homogeneous dual wavelet frame (HDWF) in L2(RT) if X (¥)
and X (U) are both Bessel sequences in L2(RT), and the identity

L
(2.8) o9y =D D> dhugm) (ks 9)

I=1 jEZ keZ+
holds for f,g € L?(R"). Similarly, we say X (1o, V) is a nonhomogeneous wavelet
frame (NWF) in L?(R") if there exist two constants 0 < A < B < oo such that
(2.9)
L oo
AIFIP< D0 W oumdP+Y-D 0 D0 1 dugwd® < BIIFII? for f € LA(RT),

kezt I=1j=J kez+
where A, B are called frame bounds. It is called a Bessel sequence in L?(RT) if
only the right-hand side of holds, where B is called a Bessel bound. We
say (XJ(¢0; W), X (to; (IV/)> is a nonhomogeneous dual wavelet frame (NDWF) in

L2(RT) if X;(10; ¥) and X (1o; ¥) are both Bessel sequences in L2(R*), and the
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identity

L oo
(210) <fag>: Z<fa wOJk: ’(/)OJk, +ZZ Z fvwl,jk <’(/}l,jk7 >

keZ+t I=1j=J kez+

holds for f,g € L2(R"). It is easy to check that both X ;(¢o; ¥) and X ;(¢o; ¥) are

frames for L2(R™), and reconstruction formula

L oo
f= Z (f, o,sk) 0,7k + Z Z Z (fs Yug )i,

kezZ* I=1j=J kez+
or
L oo
F=Y " Yosmdbork+ >3 D f Yuir) bk
kez+t I=1j=J keZ*

holds for f € L2(R*) if (X'](wo; ), X5 (do; \Tf)) is a NDWF in L2(R").

Nonhomogeneous (dual) wavelet frames play an important role in frame theory
because they are related to filter banks and have a natural relationship with refinable
structures as pointed out in where this type of wavelet frames was introduced
for the first time. It is worth noting that Han named the term ‘nonhomogeneous’
for this type of frames and widely studied them in the distribution space and in
L?(R%) . In particular, Han proved that if (XJO (03 0), X j, (o \Tl)) is a
NDWF in L%(R%) for some Jy € Z, then (X 1 (0 W), X5 (o \I:)) is a NDWF in
L2(R%) for a general J € Z, and (X (¥), X(V)) is a HDWF in L2(R%).

3. SOME PROPERTIES OF NDWFs N L?(R™T)

This section is devoted to some properties of NDWFs in L?(R*). Observe that
the dilation operator and the Walsh-Fourier transforms are unitary operator on
L2(RY). Let {Trabo : k € ZT} and {Tj4)o : k € ZT} be Bessel sequences in L?(RT),
define a quasi-interpolatory operator P; on L?(R") with J € Z by
(3.1) Prf =" (f, dosx)tosx for f € L*(RT).

kezt
It is not difficult to prove that {1 s : k € Z+} and {tpo s\ : k € Z*} are also Bessel
sequences for each J € Z under the Bessel assumptions of integer translation of g
and 1. Therefore, P; is a bounded operator by the Cauchy-Schwarz inequality,

and is well defined. Also we have next result.
Lemma 3.1. Given J € Z, let {Tetho : k € Zt} and {Tio : k € Z} be Bessel
sequences in L*>(RT), then we have
(3.2) Jim Pyf =0 for f e L*(R™).
——00
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Proof. Fix f € L2(R"). For an arbitrary € > 0, let g € L?(R™) with supp(g) C
[0, R] for some R > 0 such that ||f — g|| < e. Then by the above argument, we have

WPsfIl < |IPs(f —9)ll + IPrgll < Ce+ ||Psg|l for some constant C' > 0.

Next, we prove lim Pjg =0 to complete the proof. We estimate

1Psgl? < C S g dosn)l? < Cllgl? Z/ (o, (2) P

keZ+ keZ+
(3.3)
—Cllglr 3 / 200"z © k) Pdz = Cllg|? / o(y)Pdy,
keZ+ Uez+ [0, p/ R+K]

it tends to 0 as J — —oo by Lebesgue’s dominate convergence theorem, and thus
lim Pjyg=0. (]
J——o0
The following theorem shows that the equivalence of NDWFs between different
scale levels, and an NDWF in L?(R") can derive an HDWF.

Theorem 3.1. Given an integer Jy. Let g € L*(RY) and U = {1,492, -+ , ¥}
be a finite subset in L?(RT). Suppose (XJO (Y03 0), Xy, (1/;0; \Tl)) is a NDWF for
L2(RY), then (X 20 W), X J(JJO;CIJ)) is a NDWF for L2(R*) for all integer J.
In particular, (X(\Il), X(@)) is a HDWF for L*(R").

Proof. For any integer J and f,g € L?(R"), we have

(3.9) (fs Do.ak) = (D77 f, o, k)5 (0,05 9) = (0,0, DT g)

and

(35)  (f, Yujk) = (DT F b go—ak)s Wik 9) = Wijsgo—ak, D77 g)

due to D is a unitary operator on L?(R*). And thus, we have

L oo
(3.6) Z<f77/JOJk Y{%o.5k, 9 +ZZ Z f?wl]k<wlgk7 g)
ket =1 j=J keZ+
= Z <DJO_Jf7 wo]o,k><w0,Jo,kH D O_Jg>

kez+
L oo _
3 Y DY gy gk g so-aks D7 g)
I=1 j=J keZ+

= Z (D7~ £, 400,s0.1) (0,01, D77 g)

keZ+
L o ~

Y DT f ) (ks DT g),
I=1 j=Jo keZ+
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it equals to (D7~ f, D70~ ) and then equals to (f, g), since (X s, (¢o; ), X s, (¢o; ¥))
is a NWDF for L(R"). So (XJ(wo; ), X (to; \TJ)) is a NDWF for L2(R") for all
integer J, and thus

L oo
(3.7  (Pif. g ZZ > Vi) Wrgs 9) = (S, g) for f,g € LA(RT).

=J keZt

Letting J — —oo in (3.7) and using Lemma [3.1} we obtain

L
(3.8) SN Af k) Wk g) = (f, g) for f,g € L*(RT).

=1 j€Z kezt

Therefore, ( X (), X(\I!)) is a HDWF for L?(R*). The proof is completed. |

Theory |3.1{tells us that the study of NDWFs of the form (XJD (Y03 0), X j, (zﬁo; \fl))
with general Jy € Z can reduces to the study of NDWFs with Jy = 0. The next

theorem characterizes NDWFs in L?(RT) under the general Bessel assumption.

Theorem 3.2. Let ¢y € L2(RY) and ¥ = {¢1,4,--- ,01} be a finite subset in
L2(RT). Suppose {Tethy : k € Zt,0 <1 < L} and {Tpthy : k € Z+,0 <1 < L} are
Bessel sequences in L*(RT). Then (X(i/im W), X (¢o, \T/)) is a NDWF for L?(R")
if and only if

(3.9) Jim (Pyf, 9) = {f, 9)

and

(3.10) (Praf,9)=(Psf. g +Z > Yak) Wik 9)
=1 kezZ+

for f,g € L>(RT) and J € Z, where Py is defined as in (3.1)).

Proof. “<”: Tt follows from (3.10)) that
L J
(311) <PJ+1f7 > P0f7 +ZZ Z f7 1/)l,37 wl,],kn >
1=1j=0 kezZ+
for f,g € L>(RT) and J € Z. Letting J — oo in (3.11)) and using (3.9), we have

(3.12) (f,9)=(Rof g +ZZ > i) gk 9)

=1 j=0keZ+

for f,g € L3(R*). Therefore, (X(zpo, ), X (4o, @)) is a NDWF for L2(R™).
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“27. Suppose (X(qpo, ), X (4o, xi)) is a NDWF for L2(RT), then (X (o, ¥),
X (do, ¥)) is a NDWF for L2(R™) for all integer J by Theory [3.1] Tt follows that

L 0o

(fo9)=Praafs )+ > D D> Afs Vi) (Wrgins 9)

1 j=J+1kezt

ZZ fvwl,jk ’(/}l,jkh >

1j=J kezZ+

Mm

(3.13) =(Psf, g) +
l

for f,g € L>(R") and J € Z, which leads to (3.10)), and thus

L J
(314) <PJ+1fa > POfa +ZZ Z f> wl,jk <¢l,g k) 9 >

=1 j=0 kez+

for f,g € L*(R*) and J € Z. Also, observe that (X(wo, W), X (4o, \T/)) is a NDWF
for L?(R"). Letting J — oo in (3.14)), we obtain (3.9). The proof is completed. [

4. REFINABLE FUNCTIONS BASED CONSTRUCTION OF NDWFs IN L?(R™)

This section is devoted to constructing NDWFs from a pair of general refinable
functions.

For f,g € L*(R*), we define
(4.1) [f, g]() = Z f(@k)g(-®k) ae onRT,
kez+

then it belongs to L!(T), and is well defined. And we write
(4.2) D:={fec L*R"): Ff e L>*R") and supp(Ff) is bounded},

where supp(Ff) = {£ € RT : Ff(€) # 0} for f € L2(R") and is well defined up to
a set 0. It is not difficult to verify that D is dense in L*(R™T).

Now, let us make some assumptions:

Assumption 1. 1,1, € L*(R") are p-refinable functions with symbols in
L*>(T), i.e., there exist mg, mg € L>°(T) such that

(4'3) ]‘Wo(p') = mo()fwo() and .7:1;0(]7') = 7710()]:’(;0() a.e. on R,

Assumption 2. lim Fyo(p ™7 )Fiho(p~?-) =1 a.e. on RY.
j—o00

Assumption 3. [Fibg, Fibo|, [Ftho, Fiho] € L®(T).
Given L € N, let my, 7y € L®(T) with 1 <[ < L, and define ¢; and 1 by

(4.4) Fihy(p-) = my(-)Fbo(-) and .7:1211(]9') = Tﬁz(')fz/zo(-) a.e. on RT,
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With m; and m;,l =0,1,---, L as the framelet symbols, we write
(4.5)
mo(+) my(:) mr(-)
mo(- & 1/p) ma(- @ 1/p) my(- & 1/p)
M() =

and
(4.6)
() ) ()
0 - mo<§a /) m1<-§a /p) | mL@ /)
o(-® (p—1)/p) u(-®@p—1)/p) - - @p—1)/p)

We will study what m;, m; € L>°(T) with 0 <1 < L are qualified for (X (¢, ¥),
X (4o, ¥)) to be a NDWF in L2(RT). We begin with some lemmas for latter use.

The following lemma shows that Assumption 3 is equivalent to the fact that
{Tkt)o : k € ZT} is a Bessel sequence in L*(RT).

Lemma 4.1. ([33] Theorem 2.1|) Let 19 € L*(RT). Then {Tptpo : k € Z*} is a
Bessel sequence in L?(RT) with Bessel bound B if and only if

[Fibo, Fio](-) < B a.e. on T.

Observe that {x(k,-) : k € Z*} is an orthonormal basis for L?*(T) and the

Walsh-Fourier transform is a unitary operator on L*(RT) .

Lemma 4.2. Let k € Z* and f,¢p € L>(R"). Then, (f, ;1) is the k-th Walsh
Fourier coefficient of [p?/2F f(p’-), Fab(-)] for each j € ZF. In particular, we have

(4.7) PPFFW), FOI€) = > (f vin)x(k, §) ae £ RT,

et
if {Tat: k € ZT} is a Bessel sequence jn L2(RY).
Proof. Since f,1 € L*(R*), we have Ff(p’ ) Fi(-) € L' (R*), and thus
[0 F1 ) FoONON R a2 | F @ Fo e
— / FIHOFOm IO (k. p€)de
(48) = || FHOFTHD 0T = (f. b

so (f, ¥jx) is the k-th Walsh-Fourier coefficient of [p?/2F f(p-), Fy(-)] for each
jETT.
84



NONHOMOGENEOUS DUAL WAVELET FRAMES WITH ...

If {Titp : k € ZT} is a Bessel sequence in L?(RT), then {D/ Ty : k € ZT}, that
is, {¢j x : k € ZT} is a Bessel sequence in L?(R™) for each j € ZT due to D7 being
unitary, it follows that {(f, ¥; : k € Z*)} € £2(Z"), and thus (4.7) holds. O

As an application of Lemma we have the following lemma immediately

Lemma 4.3. Let g, € L2 (R*) satisfy Assumption 3. Then we have
(ot g) =" [ FHG"). FoCNOF v, Falo™ (e

for f,g € L>(RT) and n € Z, where P, is defined as in .

The following two lemmas are necessary for us to prove the main result.
Lemma 4.4. Let 1y, g € L2(R1) satisfy Assumptions 2 and 3. Then

Jim (P f, g) = (f, g) for f.9 €D,

where D is defined as in .

Proof. By Lemma [.3] we have

Buf ) =9 [ FS07), FEQIEF e, Folo™ O

Since p > 1 and supp(Ff) and supp(Fg) are bounded, then there exists N > 0
such that supp(Ff(p™-)), supp(Fg(p"-)) C [0, 1) when n > N, and thus

[FF(p™), Fiho()](€) = Ff(p"E)Feo(€)

and
[Fro (), Fgp™ (&) = Fg(pE) Febo(§)
for a.e. £ € (0, 1) and n > N. So

(Puf. g) =" /[0 IO OF I FR@ Fin(e)as

(4.9) = [ FHOF9&)Fo(p=€)Fbo(p"E)x10,11(p~")dE

R+
when n > N. By Assumption 3 and the Cauchy-Schwarz inequality, we have

[Fho()Fvo()| < 3 |Fio(- & ) Fuo(- @1)|
leZ+
; - 1/2 1/2

< (1790, Fol())  (IFo, Frl())'/* < ©
for some constant C' > 0. Therefore, the integrand in (4.9) is dominated in module
by C|Ff(-)Fg(-)|, which belongs to L'(R*). Applying the Lebesgue dominated
convergence theorem to (4.9), we obtain

Jim (P f, 9) = (f, 9)

by Assumption 2. O
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Lemma 4.5. Let o, € L*(R") satisfy Assumptions 1 and 3. Assume that
my,my € L°(T) with 1 <1< L, are such that

(4.10) M()M*() =1, ae onT,
where M and M are defined as in and . Define wl,wl, 1<I1<Lasin
(4.4). Then

(411) <Pn+1f7 Pf? +ZZ fawlnk wlnkv >

1=1 kez+
for f,g € L>(R") and n € Z.

Proof. First, we claim that (| - is equivalent to

(4.12) (Puf, 9)=(Pof, g +ZZ (f, rom) (Wrok g)

=1 kez+
for f,g € L*(R™). Indeed, if (4.12) holds, we can get (4.11)) by replacing f by D~" f
and g by D™"g in (4.12)), respectively. And, by Lemma (4.12) can be written
as
(4.13)
p [ 1710, FoOIQFb), Falo™ (e = SUFS PRI Fal(€)de
T

Ti=o
for f,g € L*(RT).
Next, we prove to complete the proof. Note that, m;,m;,1 <[ < L are
1-periodic functions. By the definitions of 1;1, 1 <11 < L and Assumption 1, we have

[Ff, Foil€) = > FfE @ k)ymu(p (£ k) Folp~ (§ @ k)

kezZt
S FTEE ) Y FHE®i/pe ol Fho €S if) & k)
1=0 keZ+t
1) =S e T EE TN ), FhOl €S i/p)
1=0

for 0 <[ < L. Similarly, we have

(4.15)  [Feu, Fyl(€ Z mu(p~ (€ @7 /p)[Ftho(), Fap)l(p~ (€ @ i'/p))

=0
for 0 <[ < L. By a simple computation, we obtain

L p—1
(4.16) > [Ff, FOJ©Fr, Fal©) =Y [Ffp-), Fho()(p~ (€ @i/p))x
=0 1=0
< (MM 079)  [Fbo(), Folp (0™ (€@ i'/p)),
/=0 ’
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where (MM*()) ) denotes the (i, i')-entry of MM*(-),O <i4,i < p-1. By

7/7

7 therefz)re follows that
L
| S Fn Fal@ . Faleas

=0

ZAZ[ff(p-), Fho()(p~ (€ ©i/p)[Febo (), Falp))(p~ (£ @ i/p))dE

23 [ FT0 FRONOFRO, Folp (0

(417) =p / F o), Fho()©Fto(), Fae™)|(€)de.

Therefore, (4.13) holds. The proof is completed. O
The following theorem gives a sufficient condition for (X (o, ¥), X (4o, (Ivl)) to
be a NDWF in L?(R*).

Theorem 4.1. Let 1, Y € L?(R™) satisfy Assumptions 1-3. Assume that my,my, €
L°(T) with 1 <1 < L, are such that

(4.18) MM () = I, a.e. on T.

where M and M are defined as in QD and 1D Define iy and ¥;,1 <1< L as
in qp Then (X(%, ), X (do, \Tf)) is a NDWF for L*(R™).

Proof. Since m;,my, € L>®(T) for 1 <1< L, by Lemma and Assumptions 1

and 3, then we have
{Tithy k€ ZT,1<I<L} and {Tpth:keZ ,1<1<L}

are Bessel sequences in L2(RT). Therefore, the conclusion follows directly by Theory
Lemmas [£.4] and The proof is completed. O
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