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Abstract. In this article, we deal with the solutions of the difference analogue of Fermat-type
equation of the form f3(z) + [c1f(z + c) + c0f(z)]3 = eαz+β and prove a result generalizing a
result of Han and Lü [J. Contm. Math. Anal. 2019] and Ma et al. [J. Func. Spaces, Vol. 2020,
Article ID 3205357]. Furthermore, we explore the class of functions satisfying the Fermat-type
difference equation. A considerable number of examples have been exhibited throughout the
paper pertinent with the different issues. We characterized all possible non-constant solutions
of the Fermat-type difference equation f2(z) + f2(z + c) = eαz+β .

MSC2010 numbers: 30D35, 34M05; 39A10; 39B32.
Keywords: Fermat-type complex difference equation; meromorphic solution; Nevanlinna
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1. Introduction

The so called Fermat’s Last Theorem, which was proved by Wiles [30], Taylor and

Wiles [29] in 1995, states that there do not exist non-zero rational numbers x and y

and an integer n ≥ 3, for which xn + yn = 1. There is a close relationship between

Fermat’s Last Theorem and family of solutions (f, g) of the following functional

equation

(1.1) fn + gn = 1.

For n = 1, finding the solution is effortless, and for n = 2, it is easy to see that the

pairs (sin(α), cos(α)) and(
1√
2

[sin(α)± cos(α)],
1√
2

[sin(α)∓ cos(α)]

)
always solves the equation for an entire function α. For n ≥ 2, Gross [8] proved

that all the meromorphic solutions are of the form

f(z) =
2β(z)

1 + β2(z)
and g(z) =

1− β2(z)

1 + β2(z)
.

For n ≥ 3, it has no transcendental entire solutions proved in [Gauthier-Villars,

Paris, (1927), 135—136] but meromorphic solutions exists which is confirmed by
3
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Gross in [8] and one such solution is

f(z) = 4−1/6(℘′)−1
(

1 + 3−1/2 · 41/3℘
)

g(z) = 4−1/6(℘)−1
(

1− 3−1/2 · 41/3℘
)
,

where ℘ is a Weierstrass ℘-function. For n ≥ 4, it has no transcendental meromorphic

solutions confirmed in [8]. No other solutions of the equation (1.1) exist which is

confirmed by Gross in [9].

It has been determined for which positive integers n, the equation (1.1) has

non-constant solutions f and g in each of the following four function classes (i)

meromorphic functions, (ii) rational functions, (iii) entire functions, and (iv) polynomials;

(see [11, 12]. The study of the functions analogous to the Fermat-type diophantine

equations xn + yn = 1 was initiated by Gross [8] and Baker [2]. They actually

proved that the equation

(1.2) fn + gn = 1

does not admit any non-constant meromorphic solutions in the complex plane C
if n > 3, and does not admit any entire solutions if n > 2. For the possible non-

constant meromorphic solutions of (1.2), they also characterized it in the case of

when n = 2, 3. In fact, for the case n = 3, Gross [8] and Baker [2] proved that the

following pair (f, g), where

(1.3) f(z) =

(
1

2
+
℘′(z)

2
√

3

)
/℘(z)

and

(1.4) g(z) =

(
1

2
− ℘′(z)

2
√

3

)
/℘(z),

are meromorphic solution of equation (1.2), where ℘ is Weierstrass ℘-function.

It is worth to observe that the equation x3 +y3 = 1 defines an algebraic function

whose Reimann surface has genus 1, and there is accordingly a uniformization by

Weierstrass elliptic function. Weierstrass elliptic function ℘(z) := P(z, ω1, ω2) is a

doubly periodic meromorphic function with periods ω1 and ω2, and this function is

defined by

℘(z, ω1, ω2) =
1

z2
+

∑
µ,ν∈Z

µ2+ν2 6=0

(
1

(z + µω1 + νω2)2
− 1

(µω1 + νω2)2

)
,

which is even and satisfies, after appropriate choosing ω1 and ω2,

(1.5) (℘′)2 = 4℘3 − 1.
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In the same paper, Gross conjectured that every meromorphic solutions of f3 +

g3 = 1 are necessarily elliptic function of entire functions. Later, Baker [2] confirmed

the conjecture and established the following result.

Theorem A. [2] Each pair of meromorphic solutions f and g to the following

equation

(1.6) f3(z) + g3(z) = 1

over C must be of the form f = f1(h(z)) and g(z) = ωg1(h(z)) = ωf1(−h(z)),

where h is an entire function in C and ω is a cube root of unity.

In this paper, a meromorphic function will always be non-constant and meromorphic

in the complex plane C, unless specifically stated otherwise. In what follows, we

assume that the reader is familiar with the elementary Nevanlinna theory (see

[7, 33, 35]). In particular, for a meromorphic function f , we denote S(f) the family

of all meromorphic function ω for which T (r, ω) = S(r, f) = o(T (r, f)), where

r →∞ outside of a possible set of finite logarithmic measure. For convenience, we

agree that S(f) includes all constant functions and S(f) := S(f) ∪ {∞}. Here, the
order ρ(f) of a meromorphic function is defined by

ρ(f) = lim sup
r→∞

log T (r, f)

log r
.

In 2016, Lü and Han [20] proved that the equation f(z) + f ′(z) = 1 has the

general solution f(z) = 1−ae−z for a ∈ C and f2(z) + (f ′(z))
2

= 1 has the general

solution f(z) = ± sin(z+ b) for some b ∈ C. Nevertheless, fn(z) + (f ′(z))
n

= 1 can

not have any non-constant meromorphic solution when n > 2.

Below, we recall a well-known facts about the order of composite meromorphic

functions which have been established by Edrei and Fuchs [6], and by Bergweiler [4].

Theorem B. Let f be a meromorphic functions and h be an entire function in

C. When 0 < ρ(f), ρ(h) < ∞, then ρ(f ◦ h) < ∞, and h is transcendental, then

ρ(f) = 0.

In the recent years, Nevanlinna characteristic of f(z+ c) (c ∈ C \ {0}), the value
distribution theory of difference polynomials, Nevanlinna theory of the difference

operator and the difference analogue of the lemma of the logarithmic derivative has

been established (see [5, 14, 15]). Due to this development of theories, there has been

a recent study on whether the derivative f ′ of f can be replaced by the shift f(z+c)

or difference operator ∆cf . The difference analogues of the Fermat type functional

equations have been investigated in a number of papers (see [19, 24, 26, 27, 31, 34]).
5
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For a meromorphic function f , we define its difference operators by

∆cf = f(z + c)− f(z)

∆n
c f = ∆n−1

c (∆cf) , n ∈ N, n ≥ 2.

In 2016, Lü and Han [20] described a property of meromorphic solutions to the

equation (1.6) with g(z) := f(z + c), for c ∈ C \ {0} as the following.

Theorem C. [20] The difference equation f3(z) + f3(z + c) = 1 does not have

meromorphic solutions of finite order.

For n ≥ 4 and γ 6≡ 0, if we consider the meromorphic solution of the equations

fn(z)+(f ′)
n

= γn, then by the Proposition 1.1 in [16] we see that both the functions

f/γ and f ′/γ must be constants. Therefore, if we assume f = c1γ and f ′ = c2γ, then

a simple computation shows that cn1 +cn2 = 1. Observe that c1 6= 0, otherwise f ≡ 0,

hence γ = 0. Similarly, c2 6= 0, otherwise, f and γ will be constants. Therefore,

when c1c2 6= 0, then γ cannot have any zeros and poles. Hence γn(z) = eαz+β

where α = nc2/c1.

Motivated by the above observations, Han and Lü [16] have investigated the

above equation with f(z + c) in the place of f ′(z) for the case n = 3 and proved

the following interesting result.

Theorem D. [16] The difference equation f3(z)+f3(z+c) = eαz+β, where α, β ∈
C, does not have meromorphic solutions of finite order.

Regarding existence of solutions of the difference equation fn(z) + [∆cf ]n = 1 for

a positive integer n, we have the following note.

Remark 1.1. A simple computation shows that the difference equation f(z) +

∆cf = 1 has no non-constant meromorphic solutions. Following the proof of Theorem

1.5 of Liu et al. in [18, Theorem 1.5], one can observe that there does not exist any

non-constant meromorphic solutions of the difference equation f2(z) + [∆cf ]2 = 1.

Therefore, a natural question arises as the following.

Question 1.1. Does there exist any non-constant meromorphic solutions of the

difference equation f3(z) + [∆cf ]3 = 1?

Recently, Ma et al. [21] have investigated Theorem B by considering the difference

operator ∆cf and proved the following result which answers Question 1.1.

Theorem E. [21] The difference equation f3(z) + [∆cf(z)]3 = 1 does not have

meromorphic solutions of finite order.
6
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In the same paper, Han and Lü [16] proved the next result by producing a

complete characterization of the solutions.

Theorem F. [16] The meromorphic solutions f of the following differential equation

(1.7) fn(z) + [f ′(z)]n = eαz+β

must be entire functions and the following assertions hold.

(i) For n = 1, the general solution of (1.7) are f(z) = eαz+β/(α+ 1), when

α 6= −1, and f(z) = ze−z+β + ae−z.

(ii) For n = 2, either α = 0, and the general solution of (1.7) are f(z) =

eβ/2 sin(z + b), or f(z) = de(αz+β)/2.

(iii) For n ≥ 3, the general solution of (1.7) is f(z) = de(αz+β)/n,

where a, b, d, α, β ∈ C with dn (1 + (α/n)
n
) = 1, for n ≥ 2.

The paper is organized as follows. In Section 2, we prove a result generalizing the

Theorem D and Theorem E. In Subsection 2.1, the characterization of the solutions

of f2(z) + f2(z + c) = eαz+β is discussed and a result is proved. In Section 3,

the claim of Han and Lü in [16, page 102] is disproved exhibiting several counter

examples. Section 4 is devoted mainly to prove the main results of this paper. Future

course of work on the results of this paper has been discussed in Section 5.

2. Main result

Motivating from Remark 1.1, we are interested to investigate for the non-constant

meromorphic solutions of general difference equations. Henceforth, we recall here

Lc(f) defined by the present author in [1] as Lc(f) := c1f(z + c) + c0f(z), c1( 6=
0), c0 ∈ C. It is easy to see that the shift f(z + c) and difference operator ∆cf

are the particular cases of Lc(f). With this setting, in this paper, our aim is to

investigate Theorems D and E further to establish a combined result. Before state

the main result of this paper, we have the following remark.

Remark 2.1. The equation fn(z)+[Lc(f)]n = eαz+β , may consists of non-constant

entire as well as meromorphic solutions for n = 1 and n = 2, from the following

examples we ensure this fact.

Example 2.1. Let

f(z) =

(
−c0 + 1

c1

)z/c
h(z) + δeαz+β ,

7
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where h is c-periodic finite order entire functions like h(z) = sin (2πz/c) or cos (2πz/c)

or e2πiz/c etc. and their linear combinations and c be such that eαc = (1− δ(c0 + 1))/c1δ.

It is easy to verify that f(z) solves the equation f(z) + Lc(f(z)) = eαz+β.

Example 2.2. Let

f(z) =

(
−c0 + 1

c1

)z/c
g(z) + 1

g(z)− 1
+ δeαz+β .

where g is c-periodic finite order entire or meromorphic functions like in Example

2.1 and c be such that eαc = (1− δ(c0 + 1))/c1δ. It is easy to see that f(z) solves

the equation f(z) + Lc(f(z)) = eαz+β.

Example 2.3. Let f(z) = (1/2)e(αz+β)/3
(
e(αz+β)/3 + 1

)
. We choose c ∈ C such

that eαc/3 6= 1. Let

Lc(f) =
2i

e
αc
3

(
e
αc
3 − 1

)f(z + c) +
i
(
e
αc
3 + 1

)
1− eαc3

f(z).

Clearly, f(z) solves the equation f2(z) + [Lc(f(z))]2 = eαz+β .

Example 2.4. Let

f(z) =
1

2

(
eγ(αz+β) sin

(
2πz

c

)
+
e(1−γ)(αz+β)

sin
(
2πz
c

) )
where γ ∈ C \

{
1

2

}
.

Let

Lc(f) =
2

i
(
e(1−γ)αc − eγαc

)f(z + c) +
i
(
e(1−γ)αc + eγαc

)(
e(1−γ)αc − eγαc

) f(z).

It is easy to verify that f(z) solves the equation f2(z) + [Lc(f(z))]2 = eαz+β .

The observations from the above examples motivate us to establish a single result

combining the results of Lü and Han [16], and Ma et al. [21] (i.e., for the case

n = 3). Therefore, the following question is inevitable.

Question 2.1. Does there exist any non-constant meromorphic solution of the

equation of f3(z) + [Lc(f(z))]3 = eαz+β?

In this paper, with the help of some ideas of [16], we establish Theorem 2.1 which

answers Question 2.1 completely.

Theorem 2.1. The difference equation

(2.1) f3(z) + [Lc(f(z))]3 = eαz+β

does not have infinite order meromorphic solutions.

Remark 2.2. In case of meromorphic function of infinite order, the next example

evidents that (2.1) may admit solution.
8



ON THE FERMAT-TYPE DIFFERENCE EQUATION ...

Example 2.5. Let f(z) be given by (4.2) with h(z) = ez. Therefore, we have

ρ(f) = ∞ and for c = πi, each α with ecα/3 = {1, ω, ω2} where ω is a non-real

cube root of unity. It is easy to see that f3(z) + [Lc(f(z))]3 = eαz+β.

Our aim is to generalize Theorem F for general setting of the equation. In order

to generalize Theorem F, we would like to explore the meromorphic solutions of the

following Fermat-type differential equation

(2.2) fn(z) +
(
f (k)(z)

)n
= eαz+β for k ∈ N.

Henceforth, to this end, we denote θ by θ = cos (3π/k) + i sin (3π/k) where k is a

positive integer such that θk = −1.

Theorem 2.2. Let k be any positive integer. Then the meromorphic solutions f of

the differential equation

(2.3) fn(z) + [f (k)(z)]n = eαz+β

must be entire functions. Furthermore,

(i) When n = 1, the general solution of (2.3) is

f(z) =



k∑
j=1

aje
θjz +

zeαz+β

αk + 1
, for α 6= θ, θ2, . . . , θk−1

k∑
j=1

aje
θjz +

zeαz+β

kα(k−1) , for α ∈ {θ, θ2, . . . , θk−1},

k∑
j=1

aje
θjz +

ze−z+β

k
, for α = −1 and k is odd,

k∑
j=1

aje
θjz − ze−z+β

k
, for α = −1 and k is even,

(ii) When n = 2, one of the following holds: Either

(a) α = 0, and the general solution of (2.3) are f(z) = eβ/2 sin(z + b),

only when k is odd but when k is even, then f must be constant, eβ/2,

or

(b) f(z) = de(αz+β)/2.

(iii) When n ≥ 3, the general solution of (2.3) is f(z) = de(αz+β)/n,

where a, b, d, α, β ∈ C are such that dn
(

1 + (α/n)
nk
)

= 1, for n ≥ 2.

2.1. Characterization of the solutions of f2(z)+f2(z+c) = eαz+β. In contrast

to Theorem 2.1 in [16], Han and Lü have shown that even though the existence of

finite or infinite order meromorphic solutions of the difference equation

(2.4) f2(z) + f2(z + c) = eαz+β

9
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can be described but they could not prove a result finding the general solution of

(2.4). Therefore, it is interesting to seek the possible general meromorphic solutions

of the difference equation (2.4). In this paper, we take this opportunity to find

out the possible general meromorphic solutions of the above Fermat-type difference

equation. Consequently, we prove the following result which may give a complete

characterization of the solutions of the difference equation (2.4).

Theorem 2.3. The general meromorphic solutions of the Fermat-type difference

equation f2(z) + f2(z + c) = eαz+β are the following:

(i) If f is a non-constant entire function, then

f(z) =


de

αz+β
2 , where d 6= ±1, d2 = 1

eαc+1 with eαc 6= −1, when order of f is finite.

e
αz+β

2 sin
(

(4k+1)πz
2c + η

)
, when order of f is finite,

e
αz+β

2 sin
(

(4k+1)πz
2c +H(z)

)
,when order of f is infinite.

(ii) If f is a non–constant meromorphic function, then

f(z) =


e

1
4 (αz+β)

2

(
g(z) +

e
1
2 (αz+β)

g(z)

)
,

e
1
4 (αz+β)

2

(
e

1
2 (αz+β)g(z) +

1

g(z)

)
,

where g is a meromorphic function, H is a c-periodic entire function, η is a complex

number and eαc = 1.

Remark 2.3. If g is a constant or an exponential function, then the solution

becomes transcendental entire.

Example 2.6. Let

(i) f1(z) =
1

9
e
αz+β

2 , with eαc = 8, ρ(f) ≤ 1,

(ii) f2(z) = e
αz+β

2 cos
(πz

2c
+ 1
)
, ρ(f) ≤ 1,

(iii) f3(z) = e
αz+β

2 sin
(πz

2c
− 1
)
, ρ(f) ≤ 1,

(iv) f4(z) =
e

1
4 (αz+β)

2

(
1

3
+ 3e

1
2 (αz+β)

)
, with eαc = 1, ρ(f) ≤ 1,

(v) f5(z) =
1

2

(
e

3
4 (αz+β)+

2πiz
c + e

1
4 (αz+β)−

2πiz
c

)
, with eαc = 1, ρ(f) ≤ 1,

(vi) f6(z) = e
αz+β

2 sin
(
e

2πiz
c +

πz

2c
+ 1
)
, with eαc = 1, ρ(f) =∞,

It is easy to verify that f2j (z) + f2j (z + c) = eαz+β for all j = 1, 2, . . . , 6.

10
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3. Remarks on the general solution of Fermat-type difference

equations

In their paper, Han and Lü [16] have discussed briefly about the meromorphic

solutions of the difference equation

(3.1) f(z) + f(z + c) = eαz+β .

In [16, page 102], Han and Lü claimed that the general solution of the difference

equation (3.1) is either of the form f(z) = δ(z)+deαz+β or f(z) = δ(z)−(z/c)eαz+β ,

where δ(z) is a meromorphic function satisfying δ(z + c) = −δ(z).

In this paper, after a careful investigation on the functional equation (3.1), we

found the following list of counter examples confirming that f(z) = δ(z) + deαz+β

or f(z) = δ(z) − (z/c)eαz+β are not the general solution rather some particular

solutions of the difference equation f(z) + f(z + c) = eαz+β .

Example 3.1. Let

f(z) =
e
πiz
c

sin
(
2πz
c

)
− 1

+ eαz+β cos2
(πz

2c

)
,

where c be so chosen that eαc = 1. We verify that f(z) solves the equation f(z) +

f(z + c) = eαz+β and f is neither in the specific forms suggested by Lü and Han.

Example 3.2. Let

f(z) = e
πiz
c
g(z) + 1

g(z)− 1
+ eαz+β sin2

(πz
2c

)
,

where c be such that eαc = 1, and g is any c-periodic finite order entire or meromorphic

functions like g(z) = sin (2πz/c) or cos (2πz/c) or tan (πz/c) or cot (πz/c) etc.

Evidently, f(z) + f(z + c) = eαz+β and f is neither in the specific forms claimed

by Lü and Han.

Remark 3.1. In connection with the existence of solutions, we see that, in page

148, Liu et al. [18] have investigated to find non-constant solutions of the difference

equation

fn(z) + fm(z + c) = 1

for different range of values of m and n, where m, n ∈ N. But in particular, when

m = 1 = n, Liu et al. have claimed that the general entire solutions are of the form

f(z) = 1/2 + eπiz/ch(z), where h is a c-periodic entire function. In the following,

we construct examples to show that the general solution is not always of that form.

Therefore, we consider the function g(z) = sin z or cos z.
11
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Example 3.3. Let f(z) = g2 (πz/2c) + eπiz/ch(z), where h is a c-periodic entire

function. We see that although f(z) solves the equation f(z) + f(z+ c) = 1 but not

in the said form.

Example 3.4. Let f(z) = (3/5)g2 (πz/2c) + 1/5. Clearly, f(z) solves the equation

f(z) + f(z + c) = 1 without being of the said form.

4. Proof of the main result

Proof of Theorem 2.1. The difference equation f3(z) + [Lc(f)]3 = eαz+β of the

theorem, can be expressed as(
f(z)

e
αz+β

3

)3

+

(
Lc(f)

e
αz+β

3

)3

= 1.

By the Proposition 1.1 in [16], it is known that the only non-constant meromorphic

solutions of F 3(z) +G3(z) = 1 are

F (z) =
1

2℘(h)

(
1 +

1√
3
℘′(h)

)
and G(z) =

ω

2℘(h)

(
1− 1√

3
℘′(h)

)
,

where h is an entire function, ω is a cube root of unity and ℘ denotes the Weierstrass

℘-function. Therefore, in view of the Proposition 1.1, we obtain

(4.1) f(z) =
1

2℘(h)

(
1 +

1√
3
℘′(h)

)
e
αz+β

3

and

(4.2) Lc(f) =
ω

2℘(h)

(
1− 1√

3
℘′(h)

)
e
αz+β

3 .

From (4.2), we obtain

(4.3) f(z + c) =

ω − c0
2
− ω + c0

2
√

3
℘′(z)

c1℘(h(z))
e
αz+β

3 .

A routine computation using (4.1) and (4.3) shows that

(4.4)
(ω − c0)− ω + c0√

3
℘′(h(z))

℘(h(z))
=

c1

(
1 +

℘′(h(z + c))√
3

)
℘(h(z + c))

e
αc
3 .

Equation (4.1) can be written as

(4.5)
℘′(h(z))√

3
= 2℘(h(z))f(z)− 1.

Assuming ρ(f) <∞, then in view of (1.5) and (4.5), we obtain

(4.6)
3f2(z)℘2(h(z))

e
2
3 (αz+β)

− 3f(z)℘(h(z))

e
1
3 (αz+β)

+ 1 = ℘3(h(z)).

We recall here the estimate (2.7) of Bank and Langley [3] which states that

(4.7) T (r, ℘) =
πr2

A
(1 + o(1)) and ρ(℘) = 2,

12
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where A is the area of the parallelogram P with the vertices 0, ω1, ω2 and ω1+ω2.

Therefore, taking into account that T (r, eαz) = (αr/π)(1 +O(1)), combining (4.5)

and (4.7), we obtain

(4.8) T (r, ℘(h)) ≤ 2T (r, f) +
2

3
T (r, eαz) +O(1),

and hence ρ(℘(h)) <∞ as well.

By Corollary 1.2 of Edrei and Fuchs [6] (see also Theorem of Bergweiler [4]), h

must be a polynomial.

Actually, we have T (r, ℘(h)) = O
(
r2q
)
, for q ≥ 1. It is easy to see that if

℘(z0) = 0, then from (1.5), we obtain (℘′(z0))
2

= −1 which shows that ℘′(z0) =

±i. We now denote {zn}n∈N by all the zeros of ℘(z) that satisfy zn → ∞ when

n → ∞ and assume that h(an,k) = zn, for k = 1, 2, . . . ,deg(h). Thus we have

(℘′)
2

(h(an,k)) = (℘′)
2

(zn) = −1. Suppose there is a sub-sequence {an,k}n∈N with

respect to n such that ℘(h(an,k + c)) = 0. We denote this sub-sequence still by

{an,k}n∈N and fixed the index k below. Therefore, we have (℘′)
2

(h(an,k+c)) = −1.

Differentiating both sides of (4.4), we obtain(
− ω + c0√

3
℘′′(h(z))h′(z)

)
℘(h(z + c))(4.9)

+

(
(ω − c0)− ω + c0√

3
℘′(h(z))

)
℘′(h(z + c))h′(z + c)

=

(
c1√

3
℘′′(h(z + c))h′(z + c)

)
℘(h(z))e

αc
3 + c1

(
1 +

℘′(h(z + c))√
3

)
℘′(h(z))h′(z)e

αc
3 .

Substituting an,k (for sufficiently large n) into the equation (4.9) and by using

℘(h(an,k + c)) = 0 and ℘(h(an,k)) = 0, we obtain(
(ω − c0)− ω + c0√

3
℘′(h(an,k))

)
℘′(h(an,k + c))h′(an,k + c)(4.10)

= c1

(
1 +

℘′(h(an,k + c))√
3

)
℘′(h(an,k))h′(an,k)e

αc
3 .

Noting that ℘′(h(an,k)) = ±i and ℘′(h(an,k + c)) = ±i, without any loss

of generality, together with (4.4), we assume that there exists a sub-sequence

{an,k}n∈N (here we still denote it by {an,k}n∈N ) such that the following four possible

cases may occur.

Case 1. If ℘′(h(an,k)) = i and ℘′(h(an,k+c)) = i, then in view of (4.10), we obtain

(4.11)
(
ω − c0 −

ω + c0√
3

i

)
h′(an,k + c) = c1

(
1 +

i√
3

)
h′(an,k)e

αc
3 .

13
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Case 2. If ℘′(h(an,k)) = −i and ℘′(h(an,k + c)) = i, then we get from (4.10),

(4.12)
(
ω − c0 +

ω + c0√
3

i

)
h′(an,k + c) = −c1

(
1 +

i√
3

)
h′(an,k)e

αc
3 .

Case 3. If ℘′(h(an,k)) = i and ℘′(h(an,k + c)) = −i, then we obtain from (4.10),

(4.13)
(
ω − c0 −

ω + c0√
3

i

)
h′(an,k + c) = −c1

(
1− i√

3

)
h′(an,k)e

αc
3 .

Case 4. If ℘′(h(an,k)) = i and ℘′(h(an,k + c)) = i, then (4.10) yields

(4.14)
(
ω − c0 +

ω + c0√
3

i

)
h′(an,k + c) = c1

(
1− i√

3

)
h′(an,k)e

αc
3 .

Since h(z) and h(z+c) are polynomials of same degree with same leading coefficient

and there are infinitely many an,k (with |an,k| → ∞), we would have to conclude

(
ω − c0 −

ω + c0√
3

i

)
h′(z + c) = c1

(
1 +

i√
3

)
h′(z)e

αc
3(

ω − c0 +
ω + c0√

3
i

)
h′(z + c) = −c1

(
1 +

i√
3

)
h′(z)e

αc
3(

ω − c0 −
ω + c0√

3
i

)
h′(z + c) = −c1

(
1− i√

3

)
h′(z)e

αc
3(

ω − c0 +
ω + c0√

3
i

)
h′(z + c) = c1

(
1− i√

3

)
h′(z)e

αc
3

This is possible only when

e

αc

3 =



−2c0 + 1

2c1
+

√
3

2c1
i,

2c0 + 1

2c1
−
√

3

2c1
i, −2 + c0

2c1
−
√

3c0
2c1

i,

2c0 + 1

2c1
+

√
3

2c1
i,

1− 2c0
2c1

+

√
3

2c1
i,
c0 + 1

2c1
−
√

3(c0 + 1)

2c1
i,

c0 + 1

2c1
+

√
3(1− c0)

2c1
i, −c0 + 1

c1
, −c0 + 1

2c1
−
√

3

2c1
i,

c0 + 1

2c1
−
√

3(c0 − 1)

2c1
i,
c0 + 1

2c1
+

√
3(c0 + 1)

2c1
i,

1− 2c0
2c1

−
√

3

2c1
i,

since ω = 1, ω = −1

2
±
√

3

2
i.

Therefore, there exists a positive integer m0 satisfying P (h(an + c)) 6= 0 for

n > m0.

When this is true, one has uniformly following the above set of equations (which are

in terms of h′(z + c) and h′(z)) that h(z) = az + b for ac 6= 0. Again we know that

the function ℘(z) has two distinct zeros in P, and hence in each associated lattice,

we see that all the zeros {zn}n∈N of ℘(z) are transferred to each other through (an

integral multiple) of ac. Therefore, for the simplicity, we can consider two cases:

either ac = ω1, ω2, ω1 + ω2 or ac 6= ω1, ω2, ω1 + ω2 and ac ∈ P. It is worth
14



ON THE FERMAT-TYPE DIFFERENCE EQUATION ...

noticing that the former cannot occur in view of (4.4) and the periodicity of ℘(z)

and ℘′(z), and the later cannot occur either ℘(z) has a unique double pole in each

lattice. We now substitute z∞ = −(b/a) into (4.4), and obtain the following

∞ =

(ω − c0)− ω + c0√
3

℘′(0)

℘(0)
=

c1

(
1 +

℘′(ac)√
3

)
℘(ac)

e
αc
3 <∞

which leads to a contradiction.

It is easy to see that ℘(h(an,k+c)) = 0 may occur only for finitely an,k’s. Without

loss of generality, we assume that ℘(h(an,k+c)) 6= 0 for k = 1, 2, . . . , deg(h) and all

n > N , with N being a sufficiently large positive integer. Again since ℘(h(an,k)) = 0

and (℘′)2(h(an,k)) = −1, hence by (4.4) we must have ℘(h(an,k)) =∞ for n > N.

This implies that the zeros of ℘(h(z)) are the poles of ℘(h(z+c)) except for finitely

many points. We observe that O(log r) = S(r, ℘(h)), and hence we can write

N

(
r,

1

℘(h(z))

)
≤ N̄

(
r,

1

℘(h(z))

)
+ 2N

(
r,

1

h′(z)

)
(4.15)

≤ N̄ (r, ℘(h(z + c))) + 2T (r, h′(z)) +O(log r)

≤ N̄ (r, ℘(h(z + c))) + S (r, ℘(h(z))) .

In view of equation (4.1) and the estimate in (4.27), we obtain

T (r, f) ≤ T (r, ℘(h)) + T (r, ℘′(h)) +
1

3
T (r, eαz) +O(1)(4.16)

≤ O(T (r, ℘(h))).

Hence in view of (4.8) and the estimate T (r, ℘(h)) = O
(
r2q
)
, we have ρ(f) =

ρ(℘(h)) and also S(r, f) = S(r, ℘(h)). So we have T (r, eαz) = S(r, f). From the

equation

−[Lc(f)]3 = f3(z)−
(
e
αz+β

3

)3
=
(
f(z)− e

αz+β
3

)(
f(z)− ωe

αz+β
3

)(
f(z)− ω2e

αz+β
3

)
,

we deduce that all the zeros of each of the following functions

(
f(z)− e

αz+β
3

)
,
(
f(z)− ωe

αz+β
3

)
and

(
f(z)− ω2e

αz+β
3

)
are of multiplicities at least 3.

15
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By Yamanoi’s Second Fundamental Theorem (see [32]), we obtain

2T (r, f) ≤ N̄(r, f) + N̄

r, 1(
f(z)− eαz+β3

)
+ N̄

r, 1(
f(z)− ωeαz+β3

)


+ N̄

r, 1(
f(z)− ω2e

αz+β
3

)
+ S(r, f)

≤ 1

3
N

r, 1(
f(z)− eαz+β3

)
+

1

3
N

r, 1(
f(z)− ωeαz+β3

)


+
1

3
N

r, 1(
f(z)− ω2e

αz+β
3

)
+N(r, f) + S(r, f)

≤ T (r, f) + T (r, eαz) +N(r, f) + S(r, f)

≤ T (r, f) + +N(r, f) + S(r, f)

which implies that T (r, f) = N(r, f) + S(r, f). It leads to m(r, f) = S(r, f) =

S(r, ℘(h)). On the other hand, the form of the function f in (4.1) shows that

1

2℘(h(z))
= f(z)e−

αz+β
3 − ℘′(h(z))

2
√

3℘(h(z))
.

Therefore, by the lemma of the logarithmic derivative, it is easy to see that

m

(
r,

1

℘(h(z))

)
= m

(
r,

1

2℘(h(z))

)
+O(1)(4.17)

≤ m(r, f) +m
(
r, e−

αz+β
3

)
+m

(
r,
h′(z)℘′(h(z))

℘(h(z))

)
+m

(
r,

1

h′(z)

)
+O(1)

≤ T
(
r, e−

αz+β
3

)
+ T

(
r,

1

h′(z)

)
+ S(r, ℘(h(z)))

≤ T (r, eαz) + T (r, h′(z)) + S(r, ℘(h(z))) ≤ S(r, ℘(h(z))).

Combining equations (4.15) and (4.17) and observing that each pole of ℘(z) is of

multiplicity is exactly 2 (so that each pole P (h) has multiplicity 2k for some integer

k ≥ 1), by applying Theorem 2.1 of Chiang and Feng [5], we obtain

T (r, ℘(h(z))) = T

(
r,

1

℘(h(z))

)
+O(1)

= m

(
r,

1

℘(h(z))

)
+N

(
r,

1

℘(h(z))

)
+O(1)

≤ N̄
(
r,

1

℘(h(z))

)
+ S(r, ℘(h(z))) ≤ N̄(r, ℘(h(z + c))) + S(r, ℘(h(z)))

≤ 1

2
N(r, ℘(h(z + c))) + S(r, ℘(h(z))) ≤ 1

2
T (r, ℘(h(z + c))) + S(r, ℘(h(z)))

≤ 1

2
T (r, ℘(h(z))) + S(r, ℘(h(z))) +O

(
rρ(℘(h))−1+ε

)
16
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which yields that T (r, ℘(h)) ≤ S(r, ℘(h(z)))+O
(
rρ(℘(h))−1+ε

)
. Therefore, we arrive

at a contradiction. The proof of the theorem is complete. �

Proof of Theorem 2.2. For the details of proof of Theorem 2.2, we discuss here

the case n = 1 only because the cases n ≥ 2 will follow from Theorem F of Han

and Lü [16]. For n = 1, equation (2.3) becomes

(4.18) f(z) + f (k)(z) = eαz+β .

The general solution of the differential equation (4.18) consist of two parts: one

is complementary function fc(z) and the other is particular solution fp(z). The

auxiliary equation here is mk + 1 = 0 which implies m = θ, θ2, . . . , θk−1. It is easy

to see that m can take value −1 also for the case when k is odd. Therefore, we

have fc(z) =
∑k
j=1 aje

θjz, where aj ’s are complex constants. Let us denote the

differential operator D as D ≡ d/dz. Then equation (4.18) can be expressed as(
Dk + 1

)
f(z) = eαz+β . Therefore, we have

fp(z) =
1

Dk + 1
eαz+β .

If α 6∈ {θ, θ2, . . . , θk−1}, then a simple computations shows that the particular

solution in this case is fp(z) = eαz+β/(αk + 1). Hence the general solution is

f(z) = fc(z) + fp(z) =

k∑
j=1

aje
θjz +

zeαz+β

αk + 1
.

If α ∈ {θ, θ2, . . . , θk−1}, then we see that αk = −1. Therefore, we have

fp(z) =
1

Dk + 1
eαz+β = eαz+β

1

(D + α)k + 1
(1)

= eαz+β
1

Dk +

(
k

1

)
Dk−1α+

(
k

2

)
Dk−1α2 + . . .+

(
k

k − 1

)
Dαk−1

(1)

= eαz+β
1(

k

k − 1

)
Dαk−1

1 +
1(

k

k − 1

)
αk−1

(
Dk−1 +

(
k

1

)
Dk−2 + . . .+ 1

)
−1

(1)

= eαz+β
1(

k

k − 1

)
αk−1

1

D
(1) =

zeαz+β

kαk−1
.

Hence, the general solution is

f(z) = fc(z) + fp(z) =

k∑
j=1

aje
θjz +

zeαz+β

kαk−1
.

When in particular α = −1, this case can be handled easily considering k as odd

or even separately. �

17
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Proof of Theorem 2.3. We split the whole proof into the follows two cases.

Case 1. Let the solution f be a transcendental entire function. Let us first consider

the exponential case i.e., f(z) = deP (z), where P (z) is a polynomial in z. Then we

have

(4.19) d2
(
e2P (z)−(αz+β) + e2P (z+c)−(αz+β)

)
= 1.

A simple computations shows that both the functions 2P (z) − (αz + β) and

2P (z + c) − (αz + β) must be constants, say, c1 and c2, respectively. Then an

elementary calculation shows that

(4.20) αc = c2 − c1 = 2 (P (z + c)− P (z)) .

By the assumption, f is a finite order entire function and in view of (4.20), deg(P )

must be equal to 1. Hence we can show that P (z) takes the form P (z) = (αz + β)/2.

Thus it follows from (4.19) that d2 = 1/eαc with d 6= ±1 and α, c be such that

eαc 6= −1.

Let f(z) is not of the form f(z) = deP (z). We know from the result of Gross

that any entire solution of f2(z) + g2(z) = 1 is of the form f(z) = sin(h(z)) and

g(z) = cos(h(z)), where h is a an entire function.

The difference equation f(z)2 + f2(z + c) = eαz+β can be written as(
f(z)

e
αz+β

2

)2

+

(
f(z + c)

e
αz+β

2

)2

= 1.

Therefore, by the result of Gross [8], it is easy to see that the general solution of

f(z)2 + f2(z + c) = eαz+β must be

f(z) = e
αz+β

2 sin (h(z)) and f(z + c) = e
αz+β

2 cos (h(z))

for an entire function h. Therefore, we obtain h(z + c) = h(z) + 2kπ + π/2 and

eαc/2 = 1, where k is an integer. Writing h(z) = (4k + 1)πz/2c+H(z), it is easy to

verify that H(z) is a c-periodic entire function. Therefore, the general non-constant

entire solution can be written as

f(z) = e
αz+β

2 sin

(
(4k + 1)πz

2c
+H(z)

)
.

In particular, if f is a finite order transcendental entire function, then by Pólya’s

theorem [25], the function H(z) must be constant, say, η. Hence, the general non-

constant transcendental entire solution becomes

f(z) = e
αz+β

2 sin

(
(4k + 1)πz

2c
+ η

)
.

Case 2. Let f be a meromorphic function.
18
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The difference equation f(z)2 + f2(z + c) = eαz+β can be written as

(4.21) [f(z) + if(z + c)][f(z)− if(z + c)] = eαz+β .

From (4.21), it is easy to see that the functions [f(z)+if(z+c)] and [f(z)−if(z+c)]

may have zeros and poles. Therefore, there exists a meromorphic function g and a

complex number δ such that [f(z)+if(z+c)] and [f(z)−if(z+c)] can be expressed

as

(4.22) f(z) + if(z + c) = eδ(αz+β)g(z)

and

(4.23) f(z)− if(z + c) = e(1−δ)(αz+β)
1

g(z)
.

Solving equations (4.22) and (4.23) for f(z) and f(z + c), we obtain

(4.24) f(z) =
1

2

(
eδ(αz+β)g(z) +

e(1−δ)(αz+β)

g(z)

)
and

(4.25) f(z + c) =
1

2i

(
eδ(αz+β)g(z)− e(1−δ)(αz+β)

g(z)

)
.

Combining (4.24) and (4.25), it is easy to see that

eδ(αz+β)eαδcg(z + c) +
e(1−δ)(αz+β)eα(1−δ)c

g(z + c)
(4.26)

= −i
(
eδ(αz+β)g(z)− e(1−δ)(αz+β)

g(z)

)
.

Clearly, (4.26) shows that the functions g(z) and g(z + c) have the same set of

zeros and poles with the same multiplicities, otherwise, comparing the zeros and

poles of g(z) and g(z+c) from both sides of (4.26), we can arrive at a contradiction.

Therefore, there exists a polynomial Q(z) in z such that

(4.27)
g(z + c)

g(z)
= eQ(z).

If eQ(z) ≡ 1, then g becomes a c-periodic function. Now equating the coefficients in

(4.26), we obtain,

ieδαc = 1 and ie(1−δ)αc = −1.

Therefore, we have eαc = 1 and eδαc = −i, which shows that δ = 1/4 or 3/4. Hence

the possible forms of the function f is one of the following:
f(z) =

e
1
4 (αz+β)

2

(
g(z) +

e
1
2 (αz+β)

g(z)

)
f(z) =

e
1
4 (αz+β)

2

(
e

1
2 (αz+β)g(z) +

1

g(z)

)
.
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If eQ(z) 6= 1, then substituting g(z + c) = eQ(z)g(z) in (4.26), we obtain that

(4.28) g2(z)e(2δ−1)(αz+β) = − ie
(1−δ)αc + eQ(z)

eQ(z) (ieδαc − 1)
.

Clearly, the function g in (4.28) cannot have any poles, hence g must be a

transcendental entire function. But note that, all the zeros of ie(1−δ)αc + eQ(z)

are the zeros of g(z) are of multiplicities at least 2, which leads to a contradiction.

This completes the proof. �

5. Future study

To continue the study, one can turn attention to the solutions of more general

Fermat-type equations. For example, Ramanujan observed that x = 9, y = 10 and

z = −12 is a solution of xn + yn + zn = 1 for the case n = 3. Therefore, looking

for the solutions of equation xn + yn + zn = 1 for n ≥ 4 will of great interests, and

the study will become more effective if x, y and z be non-constant functions. Since

the problem of finding solutions of (1.1) have been settled for the classes (i)-(iv)

mentioned above, it is therefore natural to turn attention to the functional equation

(5.1) fn + gn + hn = 1,

where n is a positive integer and f , g and h are functions in any one of the above

four function classes.

Finding non-constant entire as well as meromorphic solutions are effortless for

n = 1. For example, for n = 2, one can verify that

(f, g, h) = (sin(φ) cos(ψ), sin(φ) sin(ψ), cos(φ))

is an immediate entire solution and

(f, g, h) = (i sin(φ) tan(φ), i cos(φ) tan(φ), sec(φ))

is a meromorphic solution of the equation (5.1), where φ and ψ are two entire

functions. For n ≥ 3, looking for non-constant entire as well as meromorphic

solutions will be of utmost interest. For future course of work and to study Fermat-

type functional equations, we refer the reader to go through the article of Gundersen

[13] and references there in.
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Аннотация. В статье рассматривается уравнение ∂f(w)/∂w = u(w) в верх-
ней полуплоскости Π+. Для функций u класса Ck (k = 1, 2, 3, . . . ,∞) из весо-
вых Lp пространств (1 ≤ p <∞) с весовой функций типа (Imw)α · |w+ i|−γ ,
w ∈ Π+, строится семейство решений fβ , зависящее от комплексного пара-
метра β.

MSC2010 number: 32W05; 30H20; 30C40; 30E20.

Ключевые слова: ∂-уравнение; весовые пространства гладких функций.

1. Введение

В работе [1] приводится обобщение интегральной формулы Коши для гладких

функций. А именно, если Ω является ограниченной областью с кусочно-гладкой

границей и f ∈ C1(Ω), то справедлива следующая формула:

(1.1) f(z) =
1

2πi

∫
∂Ω

f(ζ)

ζ − z
dζ − 1

π

∫∫
Ω

∂f(ζ)

∂ζ

ζ − z
dm(ζ), z ∈ Ω,

где m - двумерная мера Лебега в комплексной области, а

(1.2)
∂

∂ζ
=

1

2

(
∂

∂x
+ i

∂

∂y

)
(ζ = x+ iy)

представляет собой известный оператор Коши-Римана, обращаюшийся в 0 на

голоморфных функциях. Поскольку первое слагаемое в (1.1) голоморфно в Ω,

мы можем заключить, что решение ∂-уравнения

(1.3)
∂g(z)

∂z
= v(z), z ∈ Ω,
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где функция v ∈ C1(Ω) задана, а функция g ∈ C1(Ω) искомая, может быть

представлено как

(1.4) g(z) = − 1

π
·
∫∫
Ω

v(ζ)

ζ − z
dm(ζ), z ∈ Ω.

Уравнение (1.3) играет важную роль во многих задачах комплексного анализа

(особенно в случае многих комплексных переменных).

В следующей теореме (см. [2, Теорема 1.2.2]) рассматривается важный случай,

когда формула (1.4) действительно даёт решение ∂-уравнения.

Теорема 1.1. Пусть Ω- открытое ограниченное множество в C, k = 1, 2, 3, ...,∞
и v ∈ Ckc (Ω), т.е. функция v ∈ Ck(Ω) и имеет компактный носитель, целиком

находящийся в Ω. Тогда функция g, определяемая формулой (1.4), принадлежит

Ck(Ω) и удовлетворяет уравнению (1.3).

Замечание. В [3, Предложение 16.3.2], [4, Теорема 1.1.3] рассмотрен случай,

когда v ∈ Ck(Ω) ∩ L∞(Ω) или v ∈ Ck(Ω) ∩ L1(Ω).

В работах [5], [6] отмечается следующее обобщение формулы (1.1) для еди-

ничного круга D = {ζ : |ζ| < 1} (Reβ > −1):

f(z) =
β + 1

π

∫∫
D

f(ζ)(1− |ζ|2)β

(1− zζ)2+β
dm(ζ)(1.5)

− 1

π

∫∫
D

∂f(ζ)

∂ζ

ζ − z
·
(

1− |ζ|2

1− zζ

)β+1

dm(ζ), z ∈ D,

где первое слагаемое голоморфно по z ∈ D и впервые появилось в работах [7],

[8], где рассмотрены классы голоморфных в D функций из весовых пространств

Lpα(D), порождённых нормой

(1.6) ‖f‖p,α =

∫∫
D

|f(ζ)|p(1− |ζ|)αdm(ζ)

 1
p

.

Естественно, по аналогии с (1.4), второе слагаемое в (1.5) может быть использо-

вано в качестве формульного решения уравнения (1.3):

(1.7) gβ(z) = − 1

π

∫∫
D

v(ζ)

ζ − z
·
(

1− |ζ|2

1− zζ

)β+1

dm(ζ), z ∈ D.

На самом деле справедливо следующее утверждение:
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Теорема 1.2. Пусть 1 ≤ p < +∞, α > −1 и Reβ > α. Если v ∈ C1(D)∩Lpα+1(D),

то функция gβ, определяемая по формуле (1.7), принадлежит C1(D) ∩ Lpα(D) и

удовлетворяет уравнению (1.3). Более того,

(1.8) ‖gβ‖p,α ≤ const(α, β) · ‖v‖p,α+1.

Эта теорема является следствием соответствующих многомерных результатов

работы [5], где рассматриваются случаи единичного шара Bn ⊂ Cn и единичного

полидиска Un ⊂ Cn.
Отметим, что различные многомерные аналоги формулы (1.5) были получены

в [9], [10].

Дальнейшие обобщения формулы (1.5) для единичного круга D были получе-

ны в [11], [12], [13], [14] (при различных условиях, налагаемых на f(ζ) и ∂f(ζ)/∂ζ)

и могут быть записаны следующим образом:

f(z) =

∫∫
D

f(ζ)Sβ,ρ,ϕ(z; ζ) · (1− |ζ|2ρ)β · |ζ|2ϕdm(ζ)(1.9)

− 1

π

∫∫
D

∂f(ζ)

∂ζ

ζ − z
·Qβ,ρ,ϕ(z; ζ)dm(ζ), z ∈ D,

где ядра S и Q записываются в явной форме (в виде интегралов или рядов).

В работах [12], [13], [15] было установлено, что формула второго слагаемого в

(1.9) (с заменой ∂f(ζ)

∂ζ
на v(ζ)) порождает семейство решений уравнения (1.3)

в D.

Формулы типа (1.1), (1.5) представляют интерес так же в случае неограни-

ченных областей. В случае верхней полуплоскости Π+ справедлива следующая

формула, являющаяся следствием соответствующего многомерного результата

[16, Теорема 2.2]:

f(w) =
2β(β + 1)

π

∫∫
Π+

f(η)(Imη)β

[i(η − w)]2+β
dm(η)(1.10)

− 2β+1

π

∫∫
Π+

∂f(η)/∂η

η − w
· (Imη)β+1

[i(η − w)]β+1
dm(η), w ∈ Π+,

где f(η) и ∂f(η)
∂η принадлежат определённым весовым Lp-пространствам в верхней

полуплоскости.

В случае голоморфных функций, когда второе слагаемое отсутствует, форму-

ла (1.10) получена в [17], [18].
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В настоящей работе будет показано, что формула второго слагаемого в (1.10)

даёт семейство решений уравнения (1.3) при определённых условиях, налагаемых

на правую часть.

Отметим, что в [19] приводятся решения уравнения (1.3) в Π+ в предположе-

нии, что правая часть суть комплексная мера Карлесона, решения понимаются

в смысле обобщённых функций, при этом решения записываются в виде нели-

нейных интегральных операторов.

В [20], [21] в многомерном случае приводятся решения ∂-уравнения с равно-

мерными оценками в трубе будущего (многомерном аналоге Π+), но при этом

обязательно предполагается, что правая часть имеет ограниченный носитель.

2. Предварительные результаты

Начнём с простых утверждений, доказательство которых не представляет труда.

Предложение 2.1. Пусть Ω ⊂ C, Ω1 ⊂ C, ϕ : Ω → Ω1, f : Ω1 → C и ϕ(ζ) ∈
H(Ω), f(η) ∈ C1(Ω1). Тогда

∂f(ϕ(ζ))

∂ζ
=
∂f(η)

∂η

∣∣∣∣
η=ϕ(ζ)

· ϕ′(ζ).

Предложение 2.2. Пусть η, w ∈ Π+, тогда:

(а) Re[i(η − w)] = Imη + Imw > 0.

(б) |i(η − w)|2 ≥ (Imη+Imw)2 ≥ 4·Imη ·Imw, причём равенство достигается

только при η = w.

Напомним, что биголоморфный изоморфизм единичного круга D и верхней

полуплоскости Π+ осуществляется посредством известных преобразований Кэли:

(2.1) Φ(ζ) = i · 1 + ζ

1− ζ
, ζ ∈ D, Φ−1(η) =

η − i
η + i

, η ∈ Π+.

В следующем утверждении приводятся основные свойства преобразований Кели,

необходимые для дальнейшего.

Предложение 2.3. Пусть ζ ∈ D и η ∈ Π+, тогда:

1◦. Φ′(ζ) =
2i

(1− ζ)2
,

(
Φ−1(η)

)′
=

2i

(η + i)2
.(2.2)

2◦. dm(Φ(ζ)) =
4

|1− ζ|4
dm(ζ), dm(Φ−1(η)) =

4

|η + i|4
dm(η).(2.3)

3◦. Если η = Φ(ζ), то

1− |ζ|2 =
4Imη

|η + i|2
, Imη =

1− |ζ|2

|1− ζ|2
.

(2.4)
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4◦. Если w, η ∈ Π+, то

1− Φ−1(w) · Φ−1(η) =
2i(η − w)

(w + i)(η − i)
,

(2.5)

1− |Φ−1(η)|2 =
4Imη

|η + i|2
,(2.6)

Φ−1(w)− Φ−1(η) =
2i(w − η)

(w + i)(η + i)
.(2.7)

Доказательство. Соотношения (2.2), (2.3) и (2.5), (2.6) следуют из [22, Лемма

1.1], а (2.4) и (2.7) проверяются непосредственно.

Предложение 2.4. Пусть w0 ∈ Π+ фиксировано и Im(w0) > r1 > r2 > 0.

Положим G(w0; r1) ≡ {w : |w−w0| < r1} и G(w0; r2) ≡ {w : |w−w0| < r2}. Тогда

при η ∈ Π+\G(w0; r1) и w ∈ G(w0; r2) имеем

(2.8) |η − w| � |η + i|, т.е. 0 < A ≤ |η − w|
|η + i|

≤ B < +∞.

Доказательство. Возьмём R > 0 так, что G(w0; r1) ⊂ {w : |w| ≤ R} и при

этом
∣∣∣∣ iη
∣∣∣∣ < 1

2
и
∣∣∣∣wη
∣∣∣∣ < 1

2
при |η| > R и w ∈ G(w0; r2). Тогда имеем:

|η − w|
|η + i|

=

∣∣∣ η|η| − w
|η|

∣∣∣∣∣∣ η|η| + i
|η|

∣∣∣ ≤ 3/2

1/2
= 3

и

|η − w|
|η + i|

=

∣∣∣ η|η| − w
|η|

∣∣∣∣∣∣ η|η| + i
|η|

∣∣∣ ≥ 1/2

3/2
=

1

3
.

Если же |η| ≤ R, то рассмотрим отношение
|η − w|
|η + i|

как функцию двух пере-

менных η и w, которая непрерывна и положительна на компактном множестве

{(η, w) ∈ C2 : η ∈ Π+\G(w0; r1), |η| ≤ R и w ∈ G(w0; r2)}. Следовательно, на этом

множестве рассматриваемое отношение находится между двумя фиксированны-

ми положительными числами. Утверждение доказано.

Определение 2.1. Для произвольных функций g(ζ), ζ ∈ D, и f(η), η ∈ Π+, и

для β ∈ C будем писать

g
β∼ f или f

β∼ g

если

(2.9) g(ζ) ≡ f(Φ(ζ))

(1− ζ)2+β
, ζ ∈ D,
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или, что то же самое,

(2.10) f(η) ≡ g(Φ−1(η)) ·
(

2i

η + i

)2+β

, η ∈ Π+.

Очевидно, что если g
β∼ f , то условие g ∈ Ck(D) эквивалентно условию f ∈

Ck(Π+) (k = 1, 2, 3, . . . ,∞). Кроме того, если g
β∼ f1 и g

β∼ f2, то f1 ≡ f2 в Π+ и

наоборот: если g1
β∼ f и g2

β∼ f , то g1 ≡ g2 в D.

Определение 2.2. Для произвольных функций v(ζ), ζ ∈ D, и u(η), η ∈ Π+, и

для β ∈ C будем писать

v
β
≈ u или u

β
≈ v

если

(2.11) v(ζ) =
u(Φ(ζ))

(1− ζ)2+β
· −2i

(1− ζ)2
, ζ ∈ D,

или, что то же самое,

(2.12) u(η) = v(Φ−1(η)) ·
(

2i

η + i

)2+β

· −2i

(η − i)2
, η ∈ Π+.

Очевидно, что если v
β
≈ u, то условие v ∈ Ck(D) эквивалентно условию u ∈

Ck(Π+) (k = 1, 2, 3, . . . ,∞). Кроме того, если v
β
≈ u1 и v

β
≈ u2, то u1 ≡ u2 в Π+ и

наоборот: если v1

β
≈ u и v2

β
≈ u, то v1 ≡ v2 в D.

Предложение 2.5. Пусть g ∈ Ck(D), f ∈ Ck(Π+), k = 1, 2, 3, . . . ,∞ и g
β∼ f

(β ∈ C). Тогда для функций v(ζ), ζ ∈ D, и u(η), η ∈ Π+, справедливы следующие

утверждения:

(а) Если v(ζ) ≡ ∂g(ζ)

∂ζ
и u(η) ≡ ∂f(η)

∂η
, то v

β
≈ u.

(б) Если v
β
≈ u, тогда равенство v(ζ) ≡ ∂g(ζ)

∂ζ
эквивалентно равенству u(η) ≡

∂f(η)

∂η
.

Доказательство. Очивидно, что (б) является следствием (а).

Для доказательства (а) воспользуемся соотношениями (2.9) и (2.10). Тогда ввиду

Предложения 2.1

v(ζ) ≡ ∂g(ζ)

∂ζ
=

∂f(η)
∂η

∣∣∣
η=Φ(ζ)

(1− ζ)2+β
· −2i

(1− ζ)2
,

u(η) ≡ ∂f(η)

∂η
=

(
2i

η + i

)2+β

· ∂g(ζ)

∂ζ

∣∣∣∣
ζ=Φ−1(η)

· −2i

(η − i)2
.
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Чтобы установить соотношение v
β
≈ u, достаточно показать, в силу (2.11), что

v(ζ) ≡ u(Φ(ζ))

(1− ζ)2+β
· −2i

(1− ζ)2
.

Действительно,

u(Φ(ζ))

(1− ζ)2+β
· −2i

(1− ζ)2

=
1

(1− ζ)2+β
· −2i

(1− ζ)2
·

(
2i

i 1+ζ
1−ζ + i

)2+β

· ∂g(ζ)

∂ζ
· −2i(
−i 1+ζ

1−ζ − i
)2 ≡

∂g(ζ)

∂ζ
≡ v(ζ).

При Reβ > −1 введём два интегральных оператора.

Для комплекснозначной измеримой функции v(ζ), ζ ∈ D, формально положим

(2.13) Tβ(v)(z) = − 1

π

∫∫
D

v(ζ)

ζ − z

(
1− |ζ|2

1− zζ

)β+1

dm(ζ), z ∈ D.

Для комплекснозначной измеримой функции u(η), η ∈ Π+, формально положим

(2.14) T ∗β (u)(w) = −2β+1

π
·
∫∫
Π+

u(η)

η − w
· (Imη)β+1

(i(η − w))β+1
dm(η), w ∈ Π+.

Заметим, что (2.13) и (2.14) вполне соответствуют структуре вторых слагаемых

в итегральных представлениях (1.5) и (1.10).

Теорема 2.1. Если v
β
≈ u, то Tβ(v)

β∼ T ∗β (u) при условии, что для заданных

функций v и u соответствующие интегралы в (2.13) и (2.14) абсолютно схо-

дятся.

Доказательство. По ходу доказательства будет показано, что при условиях

теоремы абсолютная сходимость одного из интегралов в (2.13) и (2.14) влечёт

абсолютную сходимость другого.

В силу (2.10) нужно доказать, что

T ∗β (u)(w) ≡ Tβ(v)(Φ−1(w)) ·
(

2i

w + i

)2+β

, w ∈ Π+.

Действительно, в силу (2.3) - (2.7)

Tβ(v)(Φ−1(w)) ·
(

2i

w + i

)2+β

= − 1

π
·
(

2i

w + i

)2+β ∫∫
D

v(ζ)

ζ − Φ−1(w)
· (1− |ζ|2)β+1

(1− Φ−1(w) · ζ)β+1
dm(ζ)
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= − 1

π
·
(

2i

w + i

)2+β ∫∫
Π+

v(Φ−1(η))

Φ−1(η)− Φ−1(w)
· (1− |Φ−1(η)|2)β+1dm(Φ−1(η))

(1− Φ−1(w) · Φ−1(η))β+1

= − 1

π
·
(

2i

w + i

)2+β ∫∫
Π+

v(Φ−1(η))

2i(η − w)

(w + i)(η + i)

·

(
4Imη

|η + i|2

)β+1

(
2i(η − w)

(w + i)(η − i)

)β+1
· 4dm(η)

|η + i|4

= − 1

π
·
(

2i

w + i

)2+β

· 1

2i
· 4β+2

2β+1
·
∫∫
Π+

v(Φ−1(η))

η − w
· (w + i)(η + i)

· (Imη)β+1

(η + i)β+3(η − i)β+3
· (w + i)β+1(η − i)β+1

(i(η − w))β+1
dm(η)

= − 1

π
· (2i)2+β · 2β+2 · 1

i
·
∫∫
Π+

v(Φ−1(η))

η − w
· (Imη)β+1

(i(η − w))β+1

· 1

(η + i)β+2
· −2i

(η − i)2
· 1

−2i
dm(η)

= −2β+1

π
·
∫∫
Π+

u(η)

η − w
· (Imη)β+1

(i(η − w))β+1
dm(η) ≡ T ∗β (u)(w), w ∈ Π+.

3. Весовые решения ∂-уравнения

Начнём с общих рассуждений. Пусть u ∈ Ck(Π+), (k = 1, 2, 3 . . . ,∞), тогда,

как уже отмечалось, существует единственная функция v, так что v
β
≈ u, причём

v ∈ Ck(D). Положим

g(z) = Tβ(v)(z), z ∈ D,

и пусть известно, что g ∈ Ck(D) и
∂g(z)

∂z
≡ v(z), z ∈ D.

Затем положим

f(w) = T ∗β (u)(w), w ∈ Π+.

Ввиду Теоремы 2.1 получаем, что f β∼ g, и при этом f ∈ Ck(Π+). Более того, в

силу Предложения 2.5 (б) имеем

u(w) ≡ ∂f(w)

∂w
, w ∈ Π+.

Следовательно оператор T ∗β решает ∂- уравнения в Π+.

Важным следствием приведённых рассуждений является следующее утвер-

ждение.
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Теорема 3.1. Пусть u ∈ Ckc (Π+), k = 1, 2, 3, . . . ,∞, Reβ > −1. Положим

fβ(w) ≡ T ∗β (u)(w), w ∈ Π+, тогда

(3.1) fβ ∈ Ck(Π+) и
∂fβ(w)

∂w
≡ u(w), w ∈ Π+.

Доказательство. Выберем v(ζ), ζ ∈ D так, что v
β
≈ u. Очевидно, имеем

v ∈ Ckc (D). Положим

g(z) = Tβ(v)(z), z ∈ D.

Тогда g ∈ Ck(D) и ∂g(z)
∂z ≡ v(z), z ∈ D (это следует из [5], когда k = 1, и из

[15], когда k ≥ 1). В силу приведённых в начале параграфа рассуждений мы

непосредственно получаем (3.1).

Теорема 3.2. Пусть u ∈ Ck(Π+), k = 1, 2, 3, . . . ,∞, Reβ > −1 и

(3.2)
|u(η)| · (Imη)Reβ+1

|η + i|Reβ+2
∈ L1(Π+).

Положим fβ(w) ≡ T ∗β (u)(w), w ∈ Π+, тогда имеет место (3.1).

Доказательство. Очевидно, что достаточно установить (3.1) локально, то

есть в окрестности произвольной точки из верхней полуплоскости. Зафиксируем

произвольное w0 ∈ Π+ и пусть Imw0 > r1 > r2 > 0. ПоложимG1 ≡ {w : |w−w0| <
r1}, G2 ≡ {w : |w−w0| < r2}. Мы покажем, что (3.1) имеет место в G2. Очевидно,

что существует функция ψ ∈ C∞c (C) такая, что

(3.3) ψ|G2
≡ 1,

(3.4) ψ|C\G1
≡ 0,

(3.5) ψ|G1\G2
∈ [0, 1].

Следовательно,

fβ(w) = −2β+1

π

∫∫
Π+

u(η)ψ(η)

η − w
· (Imη)β+1

(i(η − w))β+1
dm(η)

− 2β+1

π

∫∫
Π+

u(η)(1− ψ(η))

η − w
· (Imη)β+1

(i(η − w))β+1
dm(η) ≡ f1(w) + f2(w).

В силу Теоремы 3.1 имеем, что f1 ∈ Ck(Π+) и
∂f1(w)

∂w
≡ u(w) · ψ(w) ≡ u(w),

w ∈ G2. Если мы покажем, что f2 голоморфна в G2, то очевидным образом (3.1)
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будет установлено. Заметим, что

f2(w) = −2β+1

π

∫∫
Π+\G2

u(η)(1− ψ(η))

η − w
· (Imη)β+1

(i(η − w))β+1
dm(η), w ∈ G2.

Поскольку подинтегральное выражение в формуле f2 голоморфно по w ∈ G2 для

любого фиксированного η ∈ Π+\G2, достаточно найти F (η) ∈ L1(Π+\G2) так,

что ∣∣∣∣u(η)(1− ψ(η))

(η − w)
· (Imη)β+1

(i(η − w))β+1

∣∣∣∣ ≤ F (η),

для любого η ∈ Π+\G2 равномерно по w ∈ G3 ≡ {w : |w−w0| < r3}, где r3 ∈ (0, r2)

произвольно. Прежде всего заметим, что согласно Предложению 2.4

|η − w| � |η + i|, η ∈ Π+\G2, w ∈ G3.

Кроме того, очевидно, что |η − w| > |η − w|. Следовательно∣∣∣∣u(η)(1− ψ(η))

(η − w)
· (Imη)β+1

(i(η − w))β+1

∣∣∣∣ ≤ const(w0, r2, r3, β) · |u(η)| · (Imη)Reβ+1

|η + i|Reβ+2
≡ F (η).

Из условия теоремы получаем F ∈ L1(Π+\G2).

Пусть 1 ≤ p < ∞, α > −1 и γ ∈ R. Для комплекснозначной измеримой функ-

ции u, заданной в Π+, положим

(3.6) ‖u‖p,α,γ =

∫∫
Π+

|u(η)|p(Imη)α

|η + i|γ
dm(η)


1
p

.

Соответственно,

(3.7) Lpα,γ(Π+) = {u : ‖u‖p,α,γ < +∞}.

Отметим, что пространства подобного типа в верхней полуплоскости уже рас-

сматривались в [23].

Теорема 3.3. Пусть функция u ∈ Ck(Π+) (k = 1, 2, 3, . . . ,∞) и удовлетворяет

одному из следующих условий:

(а) u(η) · Imη ∈ L1
α,γ(Π+), α > −1, γ ≤ 2 + α,Reβ ≥ α,

(б) u(η) ·Imη ∈ Lpα,γ(Π+), 1 < p <∞, α > −1, γ < 2+α,Reβ > α+1
p −1. Положим

fβ(w) ≡ T ∗β (u)(w), w ∈ Π+, тогда имеет место (3.1).
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Доказательство. Ввиду Теоремы 3.2 достаточно показать, что условия (а)

или (б) обеспечивают выполнение условия

u(η) · Imη · (Imη)Reβ

|η + i|Reβ+2
∈ L1(Π+).

Положим u(η) · Imη = g(η), η ∈ Π+. Если имеет место (a), то есть g ∈ L1
α,γ(Π+),

то ∣∣∣∣g(η) · (Imη)Reβ

|η + i|Reβ+2

∣∣∣∣ =
|g(η)| · (Imη)α

|η + i|γ
· (Imη)Reβ−α

|η + i|Reβ−α
· 1

|η + i|α−γ+2

≤ |g(η)| · (Imη)α

|η + i|γ
∈ L1(Π+),

что и требовалось доказать. Если же имеет место (б), то есть g ∈ Lpα,γ(Π+), то в

силу интегрального неравенство Гёльдера (1/p+ 1/q = 1)∫∫
Π+

g(η) · (Imη)Reβ

|η + i|Reβ+2
dm(η) =

∫∫
Π+

g(η) · (Imη)
α
p

|η + i|
γ
p

· (Imη)Reβ−
α
q

|η + i|Reβ−
γ
p+2

dm(η)(3.8)

≤ ‖g‖p,α,γ ·

∫∫
Π+

(Imη)(Reβ−αp )q

|η + i|(Reβ−
γ
p+2)q

dm(η)


1
q

.

Для сходимости последнего интеграла необходимо выполнение следующих усло-

вий (см., например, [22, Лемма 3.1]):(
Reβ − α

p

)
q > −1 и

(
Reβ − γ

p
+ 2

)
q >

(
Reβ − α

p

)
q + 2,

которые соответственно эквивалентны условиям теоремы : Reβ > α+1
p − 1 и

γ < α+ 2. Теорема доказана.

4. Весовые Lp-оценки решений ∂-урвнения

Предложение 4.1. Пусть для комплекснозначных измеримых функций v(ζ), ζ ∈
D, и u(η), η ∈ Π+, имеем v

β
≈ u. Если 1 ≤ p < +∞, α > −1, γ ∈ R, тогда при

условии

(4.1) 4p+ pReβ + γ − 4− 2α ≥ 0

справедлива оценка

(4.2) ‖v‖p,4p+pReβ+γ−4−α ≤ const(p, β, α, γ) · ‖u‖p,α,γ .
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Доказательство. Отметим, что нормы в (4.2) понимаются соответственно в

смысле (1.6) и (3.6). В силу (2.11), поскольку β фиксировано, имеем

|v(ζ)|p � |u(Φ(ζ))|p

|1− ζ|p(4+Reβ)
, ζ ∈ D.

Следовательно, с учётом неравенства 1− |ζ|2 ≤ 2 · |1− ζ|, ζ ∈ D, и условия (4.1),

приходим к следующей цепочке неравенств:

‖u‖pp,α,γ
η=Φ(ζ)
====

∫∫
D

|u(Φ(ζ))|p ·
(

1−|ζ|2
|1−ζ|2

)α
∣∣∣ 2i

1−ζ

∣∣∣γ · 4

|1− ζ|4
dm(ζ)

= const(γ)

∫∫
D

|u(Φ(ζ))|p · (1− |ζ|2)αdm(ζ)

|1− ζ|4+2α−γ

≥ const(p, β, γ)

∫∫
D

|v(ζ)|p · (1− |ζ|2)αdm(ζ)

|1− ζ|4+2α−γ−4p−pReβ

≥ const(p, β, α, γ)

∫∫
D

|v(ζ)|p · (1− |ζ|2)α(1− |ζ|2)4p+pReβ+γ−4−2αdm(ζ)

= const(p, β, α, γ) · ‖v‖pp, 4p+pReβ+γ−4−α.

Таким образом, утверждение доказано. По ходу отметим, что (4.1) обеспечивает

выполнение условия 4p+ pReβ + γ − 4− α > −1.

Теорема 4.1. Пусть 1 ≤ p < ∞, α > −1, γ ∈ R. Предположим также выпол-

нение условия (4.1) и, кроме того,

(4.3) Reβ > 4p+ pReβ + γ − 5− α > −1.

Тогда для произвольной функции u ∈ Ck(Π+) ∩ Lpα,γ(Π+), k = 1, 2, 3, . . . ,∞, ин-

тегральный оператор T ∗β решает соответствующее ∂-уравнение в Π+, т.е. для

функции fβ(w) ≡ T ∗β (u)(w), w ∈ Π+, имеет место (3.1). Более того, справедли-

ва оценка

(4.4) ‖fβ‖p, 4p+pReβ+γ−5−α, 6p+pReβ+2γ−6−2α ≤ const(p, β, α, γ) · ‖u‖p,α,γ .

Доказательство. Исходя из функции u, заданной в Π+, построим функцию

v, заданную в D, так что v
β
≈ u и при этом справедлива оценка (4.2). Положим

gβ(z) = Tβ(v)(z), z ∈ D, тогда gβ ∈ Ck(D) (см. [5], [15]). Более того, в силу

Теоремы 1.2, условий (4.3) и оценки (4.2) имеем:

‖gβ‖p, 4p+pReβ+γ−5−α ≤ const(p, β, α, γ) · ‖v‖p, 4p+pReβ+γ−4−α(4.5)

≤ const(p, β, α, γ) · ‖u‖p,α,γ .
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Остаётся связать друг с другом нормы fβ и gβ . Поскольку fβ
β∼ gβ , и β фик-

сировано, в силу (2.10)

|fβ(η)|p � |gβ(Φ−1(η))|p

|η + i|p(2+Reβ)
, η ∈ Π+.

Следовательно, имеем:

‖gβ‖pp, 4p+pReβ+γ−5−α =

∫∫
D

|gβ(ζ)|p(1− |ζ|2)4p+pReβ+γ−5−αdm(ζ)

ζ=Φ−1(η)
=====

∫∫
Π+

|gβ(Φ−1(η))|p · (4Imη)4p+pReβ+γ−5−α

|η + i|2(4p+pReβ+γ−5−α)
· 4

|η + i|4
dm(η)

= const(p, β, α, γ) ·
∫∫
Π+

|gβ(Φ−1(η))|p · (Imη)4p+pReβ+γ−5−α

|η + i|2(4p+pReβ+γ−3−α)
dm(η)

≥ const(p, β, α, γ) ·
∫∫
Π+

|fβ(η))|p · (Imη)4p+pReβ+γ−5−α

|η + i|6p+pReβ+2γ−6−2α
dm(η)

= const(p, β, α, γ) · ‖fβ‖p, 4p+pReβ+γ−5−α, 6p+pReβ+2γ−6−2α.(4.6)

Комбинируя (4.6) и (4.5), получаем (4.4).

Замечание 4.1. Обилие условий на параметры p, β, α, γ (см (4.1) и (4.3)) на

самом деле даёт возможность (варьируя их) получать разнообразные оценки.

Например, полaгая p = 1, γ = 0, согласно (4.4) получаем:

‖fβ‖1, Reβ−α−1, Reβ−2α ≤ const(β, α) · ‖u‖1,α

при условиях Reβ > α > −1, Reβ ≥ 2α.

Abstract. The paper considers the equation ∂f(w)/∂w = u(w) in the upper

semiplane Π+. For a function u belonging to the class Ck (k = 1, 2, 3, . . . ,∞) and the

weighted space Lp, 1 ≤ p <∞ with a weight of type (Imw)α · |w + i|−γ , w ∈ Π+, a

family of solutions fβ depending on the complex parameter β is constructed.
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Abstract. Let a set of nodes X in the plane be n-independent, i.e., each node has a fundamental
polynomial of degree n. Assume that #X = d(n, k − 3) + 3 = (n+ 1) + n+ · · ·+ (n− k + 5) + 3

and 4 ≤ k ≤ n− 1. In this paper we prove that there are at most seven linearly independent curves
of degree less than or equal to k that pass through all the nodes of X . We provide a characterization
of the case when there are exactly seven such curves. Namely, we prove that then the set X has a

very special construction: all its nodes but three belong to a (maximal) curve of degree k − 3. Let us
mention that in a series of such results this is the third one. At the end an important application to
the bivariate polynomial interpolation is provided, which is essential also for the study of the Gasca-
Maeztu conjecture.

MSC2010 numbers: 14H50; 41A05; 41A63.
Keywords: algebraic curves; maximal curves; bivariate polynomial interpolation;
fundamental polynomial; n-independent nodes.

1. Introduction

Denote the space of all bivariate polynomials of total degree not exceeding n by

Πn =

 ∑
i+j≤n

aijx
iyj

 .

We have that

N := Nn := dim Πn = (1/2)(n+ 1)(n+ 2).

Denote by Π the space of all bivariate polynomials.

Consider a set of s distinct nodes X = Xs = {(x1, y1), (x2, y2), . . . , (xs, ys)}. The
problem of finding a polynomial p ∈ Πn, which satisfies the conditions

(1.1) p(xi, yi) = ci, i = 1, . . . , s,

is called interpolation problem.

A polynomial p ∈ Πn is called a fundamental polynomial for a node A ∈ X if

p(A) = 1 and p
∣∣
X\{A} = 0, where p

∣∣
X means the restriction of p on X . We denote

this n-fundamental polynomial by p?A := p?A,X .
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Definition 1.1. The interpolation problem with a set of nodes Xs is called n-

poised if for any data (c1, . . . , cs) there is a unique polynomial p ∈ Πn satisfying the

interpolation conditions (1.1).

A necessary condition of poisedness is #Xs = s = N.

Next, let us consider the concept of n-independence (see [2, 4]).

Definition 1.2. A set of nodes Xs is called n-independent, if all its nodes have

n-fundamental polynomials. Otherwise, it is called n-dependent.

Fundamental polynomials are linearly independent. Therefore a necessary condition

of n-independence for Xs is s ≤ N .

1.1. Some properties of n-independent nodes. Let us start with the following

Lemma 1.1 (Lemma 2.2, [6]). Suppose that a set of nodes X is n-independent and

the nodes of another set Y have n-fundamental polynomials with respect to the set

Z = X ∪ Y. Then the set Z is n-independent too.

Denote the distance between the points A and B by ρ(A,B). Let us recall the

following (see [3])

Lemma 1.2. Suppose that Xs = {Ai}si=1 is an n-independent set. Then there is a

number ε > 0 such that any set X ′s = {A′i}si=1, with the property that ρ(Ai, A
′
i) <

ε, i = 1, . . . , s, is n-independent too.

Next result concerns the extensions of n-independent sets.

Lemma 1.3 (Lemma 2.1, [4]). Any n-independent set X with #X < N can be

enlarged to an n-poised set.

Denote the linear space of polynomials of total degree at most n vanishing on X by

Pn,X :=
{
p ∈ Πn : p

∣∣
X = 0

}
.

The following two propositions are well-known (see, e.g.,[4]).

Proposition 1.1. For any node set X we have that

dimPn,X = N −#Y,

where Y is a maximal n-independent subset of X .

Proposition 1.2. If a polynomial p ∈ Πn vanishes at n+ 1 points of a line `, then

we have that p
∣∣
`

= 0 and p = `r, where r ∈ Πn−1.
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A plane algebraic curve is the zero set of some bivariate polynomial of degree ≥
1. To simplify notation, we shall use the same letter, say p, to denote the polynomial

p and the curve given by the equation p(x, y) = 0.

In the sequel we will need the following

Proposition 1.3 (Prop. 1.10, [6]). Let X be a set of nodes. Then Pn,X = {0} if

and only if X has an n-poised subset.

Set d(n, k) := Nn−Nn−k = (1/2)k(2n+ 3−k). The following is a generalization

of Proposition 1.2.

Proposition 1.4 (Prop. 3.1, [9]). Let q be an algebraic curve of degree k ≤ n with

no multiple components. Then the following hold:

i) any subset of q containing more than d(n, k) nodes is n-dependent;

ii) any subset X of q containing exactly d(n, k) nodes is n-independent if and

only if the following condition holds:

(1.2) p ∈ Πn and p|X = 0 =⇒ p = qr, where r ∈ Πn−k.

Thus, according to Proposition 1.4, i), at most d(n, k) n-independent nodes can

lie in a curve q of degree k ≤ n. This motivates the following

Definition 1.3 (Def. 3.1, [9]). Given an n-independent set of nodes X with #X ≥
d(n, k). A curve of degree k ≤ n passing through d(n, k) points of X is called

maximal.

Let us bring a characterization of maximal curves:

Proposition 1.5 (Prop. 3.3, [9]). Given an n-independent set of nodes X with

#X ≥ d(n, k). Then a curve µ of degree k, k ≤ n, is a maximal curve if and only

if p ∈ Πn, p|X∩µ = 0 =⇒ p = µs, s ∈ Πn−k.

Next result concerns maximal independent sets in curves.

Proposition 1.6 (Prop. 3.5, [8]). Assume that σ is an algebraic curve of degree

k with no multiple components and Xs ⊂ σ is any n-independent node set of

cardinality s, s < d(n, k). Then the set Xs can be enlarged to a maximal n-

independent set Xd ⊂ σ of cardinality d = d(n, k).

Below a replacement of a node in an n-independent set is described such that

the set remains n-independent.
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Lemma 1.4 (Lemma 6, [5]). Assume that X is an n-independent node set and a

node A ∈ X has an n-fundamental polynomial p?A such that p?A(A′) 6= 0. Then we

can replace the node A with A′ such that the resulted set X ′ := X ∪ {A′} \ {A} is
n-independent too. In particular, such replacement can be done in the following two

cases:

i) if a node A ∈ X belongs to several components of σ, then we can replace it

with a node A′, which belongs to only one (desired) component,

ii) if a curve q is not a component of an n-fundamental polynomial p?A then we

can replace the node A with a node A′ lying in q.

Next result from Algebraic Geometry will be used in the sequel:

Theorem 1.1 (Th. 2.2, [10]). If C is a curve of degree n with no multiple components,

then through any point O not in C there pass lines which intersect C in n distinct

points.

Let us mention also that, as it follows from the proof, if a line ` through a point O

intersects C in n distinct points then any line through O, sufficiently close to `, has

the same property. Finally, let us present a well-known

Lemma 1.5. Suppose that m linearly independent polynomials vanish at the set

X . Then for any node A /∈ X there are m− 1 linearly independent polynomials, in

their linear span, vanishing at A and the set X .

2. Main results and a series of results

Let us start with the first result of a series of results:

Theorem 2.1 (Th. 1, [7]). Assume that X is an n-independent set of d(n, k−1)+2

nodes lying in a curve of degree k with k ≤ n. Then the curve is determined uniquely

by these nodes.

The second result in this series is the following

Theorem 2.2 (Th. 4.2, [8]). Assume that X is an n-independent set of d(n, k−1)+1

nodes with 2 ≤ k ≤ n − 1. Then at most two different curves of degree ≤ k may

pass through all the nodes of X . Moreover, there are such two curves for the set X
if and only if all the nodes of X but one lie in a maximal curve of degree k − 1.

Next result is the following

Theorem 2.3 (Th. 3, [5]). Assume that X is an n-independent set of d(n, k−2)+2

nodes with 3 ≤ k ≤ n− 1. Then at most four linearly independent curves of degree
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≤ k may pass through all the nodes of X . Moreover, there are such four curves for

the set X if and only if all the nodes of X but two lie in a maximal curve of degree

k − 2.

Now let us present the main result of this paper:

Theorem 2.4. Assume that X is an n-independent set of d(n, k − 3) + 3 nodes

with 4 ≤ k ≤ n− 1. Then at most seven linearly independent curves of degree ≤ k

may pass through all the nodes of X . Moreover, there are such seven curves for the

set X if and only if all the nodes of X but three lie in a maximal curve of degree

k − 3.

Let us mention that the inverse implication in the “Moreover” part is straightforward.

Indeed, assume that d(n, k− 3) nodes of X are located in a curve µ of degree k− 3.

Therefore, the curve µ is maximal and the remaining three nodes of X , denoted by

A,B and C, are outside of it: A,B,C /∈ µ. Hence, in view of Proposition 1.5, we

have that

Pk,X = {p : p ∈ Πk, pX = 0} = {qµ : q ∈ Π3, q(A) = q(B) = q(C) = 0} .
Thus we get readily that dimPk,X = dim {q ∈ Π3 : q(A) = q(B) = q(C) = 0} =

dimP3,{A,B,C} = 10− 3 = 7. Note that in the last equality we use Proposition 1.1

and the fact that any three nodes are 3-independent.

We get also that it is enough to prove only the “Moreover” part. Indeed, assume

that the “Moreover” part is proved. Assume also that there are≥ 7 linearly independent

curves satisfying the hypothesis of Theorem 2.4. Then, as we showed above, we have

that dimPk,X = 7, i.e., there are exactly 7 such curves, Q.E.D.

It is worth mentioning that to prove of Theorem 2.4 we establish an interesting

version of Theorem 2.3, where we increase the number of nodes by one and decrease

the number of linearly independent curves by one:

Theorem 2.5. Assume that X is an n-independent set of d(n, k − 2) + 3 nodes

with 3 ≤ k ≤ n − 2. Then at most three linearly independent curves of degree ≤ k

may pass through all the nodes of X . Moreover, there are such three curves for the

set X if and only if all the nodes of X lie in a curve of degree k−1, or all the nodes

of X but three lie in a (maximal) curve of degree k − 2.

3. Some preliminaries

We will start the proof of Theorem 2.4 in Section 5. Since then we need to do

considerable amount of preliminary work.
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Lemma 3.1. Assume that the hypotheses of Theorem 2.4 hold and assume additionally

that there is a curve σ0 ∈ Πk−2 passing through all the nodes of X . Then all the

nodes of X but three (collinear) lie in a maximal curve µ of degree k − 3.

Proof. First note that the curve σ0 is of exact degree k−2, since it passes through

more than d(n, k−3) n-independent nodes. This implies also that σ0 has no multiple

components. Therefore, in view of Proposition 1.6, we can enlarge the set X to a

maximal n-independent set Z ⊂ σ0, by adding d(n, k−2)−d(n, k−3)−3 = n−k+1

nodes, i.e., Z = X ∪A, where A = {A0, . . . , An−k}.
In view of Lemma 1.4, i), we may suppose that the nodes from A are not

intersection points of the components of σ0.

Next, we are going to prove that these n − k + 1 nodes are collinear together

with m ≥ 3 nodes from X . To this end denote the line through the nodes A0 and

A1 by `01. Then for each i = 2 . . . , n− k, choose a line `i passing through the node

Ai, which is not a component of σ0. We require also that `i does not pass through

other nodes of A and therefore the lines are distinct.

Now suppose that σ∗ ∈ Πk vanishes on X . Consider the polynomial p = σ∗`01`2 · · · `n−k.
We have that p ∈ Πn and p vanishes on the node set Z, which is a maximal n-

independent set in the curve σ0. Therefore, we obtain that

p = σ∗`01`2 · · · `n−k = σ0r, where r ∈ Πn−k+2.

The lines `i, i = 2, . . . , n − k, are not components of σ0. Therefore, they are

components of the polynomial r. Hence we obtain that

σ∗`01 = σ0γ, where γ ∈ Π3.

Now let us verify that `01 is a component of σ0. Indeed, otherwise it is a component

of the cubic γ and we get that

σ∗ ∈ Πk, σ
∗∣∣
X = 0 =⇒ σ∗ = σβ, where β ∈ Π2.

Therefore, we obtain that dimPk,X ≤ 6, which contradicts the hypothesis.

Thus we have that

(3.1) σ0 = `01σk−3, where σk−3 ∈ Πk−3.

Now let us show that all the nodes of A belong to `01. Suppose conversely that

a node from A, say A2, does not belong to the line `01. Then in the same way as in

the case of the line `01 we get that `02 is a component of σ0. Therefore the node A0

is an intersection point of two components of σ0, i.e., `01 and `02, which contradicts

our assumption.
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Thus we get that A ⊂ `01. Note that `01 is not a component of σk−3 since then

it will be a multiple component of σ0.

Next, let us verify that when enlarging the set X ⊂ σ0 to an n-maximal set

one has to locate the added nodes outside the component σk−3. Indeed, what was

proved already implies that the only possible location of such a node in σk−3 is

an intersection point with `01. But in the latter case, by using Lemma 1.4, we

can replace the node, say A1, with one belonging only to the component σk−3,

say A′1, which is a contradiction. Indeed, again A0 is the intersection point of two

components of σ0, the line through A0, A1 and the line through A0, A
′
1.

Hence, in view of Proposition 1.6 we get that µ = σk−3 is a maximal curve for

X . Therefore, it vanishes at exactly d(n, k − 3) nodes of X . The remaining three

nodes, according to (3.1), belong to the line `01. �

The next result we prove with tools of mathematical analysis.

Proposition 3.1. Assume that p1, p2 ∈ Π, deg p2 ≤ deg p1 + 1, and p1 has no

multiple factors. Then, for sufficiently small ε, the polynomial p1 + εp2 has no

multiple factors either.

Proof. Assume by way of contradiction that there is a sequence εn such that

(3.2) p1 + εnp2 = qnr
2
n, where qn, rn ∈ Π, deg rn ≥ 1, and εn → 0.

We have that deg(p1 + εnp2) ≤ max(deg p1,deg p2), and hence

(3.3) deg qn + 2 deg rn ≤ max(deg p1,deg p2) ≤ deg p1 + 1.

We deduce from here that there is a subsequence nk such that

deg qnk
= m1 = const. and deg rnk

= m2 = const.

Without loss of generality assume that

(3.4) {εn} ≡ {εnk
}.

Thus we have that

qn =
∑

i+j≤m1

a
(n)
ij x

iyj , rn =
∑

i+j≤m2

b
(n)
ij x

iyj .

In view of (3.2), by a normalization of rn, i.e., by multiplying it by a constant c

and dividing qn by c2, we may assume that

(3.5) max |b(n)ij | = 1 ∀n.

Now, let us denote Mn := max |a(n)ij |.
Case 1. Assume that (a subsequence of) Mn is bounded: Mn ≤M. Note that in

the case of the subsequence we may use again a replacement (3.4) and have that
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the whole sequence Mn is bounded. In this case, by using the Bolzano–Weierstrass

theorem, we have for a subsequence {nk} that

a
(nk)
ij → a0ij and b

(nk)
ij → b0ij , ∀i, j.

Here, we use the fact that the number of the coefficients is finite.

By setting n = nk in (3.2) and tending k →∞ we obtain that p1 = q0r
2
0, where

q0 =
∑

i+j≤m1

a0ijx
iyj , r0 =

∑
i+j≤m2

b0ijx
iyj .

This contradicts the hypothesis for p1 if deg r0 ≥ 1.

Let us verify the latter inequality. Since deg rn ≥ 1, we get from (3.3) that

deg qn ≤ deg p1 − 1. Therefore m1 ≤ deg p1 − 1 and hence deg r0 ≥ 1.

Case 2. By taking into account a replacement (3.4) it remains to consider the

case Mn → +∞.
There are numbers i0, j0, i1, j1 and a subsequence n = {nk}, such that

(3.6) |a(nk)
i0j0
| = max

i,j
|a(nk)
ij | and |b

(nk)
i1j1
| = max

i,j
|b(nk)
ij | = 1 ∀k.

Here, again we use the fact that the number of the coefficients is finite. In the last

equality we use (3.5).

Now, let us set n = nk in (3.2) and divide both sides by Mnk
to get

(3.7)
1

Mnk

p1 +
εnk

Mnk

p2 =

(
1

Mnk

qnk

)
r2nk

.

Evidently, the left hand side here tends to zero. For the right hand side we have

that the coefficients of the polynomials 1
Mnk

qnk
and rnk

are bounded by 1. As

above by using the Bolzano–Weierstrass theorem and passing to a new subsequence

{n′k} ⊂ {nk} we obtain that

1

Mn′
k

a
(n′

k)
ij → a∗ij and b

(n′
k)

ij → b∗ij , ∀i, j.

In view of (3.6) we have that

(3.8) |a∗i0j0 | = 1 and |b∗i1j1 | = 1.

Now, by setting n = n′k in (3.2) and tending k →∞ we get that 0 = q∗r
2
∗, where

q∗ =
∑

i+j≤m1

a∗ijx
iyj , r∗ =

∑
i+j≤m2

b∗ijx
iyj .

In view of (3.8) this is a contradiction. �

Remark 3.1. In the same way one can prove the following statement: Assume that

p1, p2 ∈ Π, deg p2 ≤ deg p1, and p1 is not reducible. Then, for sufficiently small ε,

the polynomial p1 + εp2 is not reducible either.
44



ON PLANE ALGEBRAIC CURVES ...

Note that, as the example of p2 = xp1 shows, the condition deg p2 ≤ deg p1 is

essential here.

Next result will help to make the hypotheses of Theorem 2.4 more precise.

Proposition 3.2. Suppose that there are seven linearly independent polynomials

from Πk vanishing on a set X . Then, there are seven linearly independent polynomials

vanishing on a set X , each of which is of exact degree k and has no multiple

factors, or, alternatively there are three linearly independent polynomials from Πk−1

vanishing on X .

Proof. Let σi ∈ Πk, 0 ≤ i ≤ 6, be the given polynomials. We may assume that

a polynomial, say σ0, is of exact degree k. Indeed, if the degree of each of seven

polynomials is less than k then the conclusion of Proposition holds.

Therefore we may assume that all the polynomials σi, 0 ≤ i ≤ 6 are of exact

degree k. Indeed, it suffices to replace these polynomials with the seven polynomials

σ0 and σ0 + εσi, 1 ≤ i ≤ 6, for some ε 6= 0.

Next, let us prove that a polynomial, say σ0, has no multiple factors. Indeed

assume conversely that each of the seven polynomials has a multiple factor. In view

of Lemma 3.1 the multiple factors are lines with multiplicity two. Thus, we have

that

(3.9) σi = `2i qi, 0 ≤ i ≤ 6, where `i ∈ Π1, qi ∈ Πk−2.

Then we replace these polynomials with the seven polynomials σ̌i = `iqi ∈ Πk−1, 0 ≤
i ≤ 6, which clearly vanish at the node set X . Let us verify that among these latter

seven polynomials there are at least three linearly independent ones. Conversely

assume that the seven polynomials are linear combinations of two of them, say

σ̌i, i = 0, 1. Then we get readily that the seven linearly independent polynomials

in (3.9) are linear combinations of the following six polynomials:

σ̌i, xσ̌i, yσ̌i, i = 0, 1,

which is a contradiction. Indeed, assume that `i = Aix + Biy + Ci, i = 0, . . . , 6.

Then for i = 0, 1, we have that

σi = `2i qi = (Aix+Biy + Ci)σ̌i = Axσ̌i +Biyσ̌i + Ciσ̌i.

Now, assume that σ̌i = aiσ̌0 + biσ̌1, for i = 2, . . . , 6. Then we have that

σi = `2i qi = (Aix+Biy + Ci)σ̌i = (Aix+Biy + Ci)(aiσ̌0 + biσ̌1)

= aiAixσ̌0 + aiBiyσ̌0 + aiCiσ̌0 + biAixσ̌1 + biBiyσ̌1 + biCiσ̌1.
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Finally, by assuming that σ0, has no multiple factors, let us again replace the

seven polynomials σi, 0 ≤ i ≤ 6, with the seven polynomials σ0 and σ0 + εσi, 1 ≤
i ≤ 6, for a sufficiently small ε > 0. This, in view of Proposition 3.1, completes the

proof. �

Proposition 3.3. Suppose that σi, i = 0, . . . , 6, are linearly independent polynomials

of exact degree k and have no multiple factors. Then there is a polynomial in the

linear span of σi, i = 1, . . . , 6, which has no multiple factors and differs from σ0

with a factor of degree at least three.

Lemma 3.2. Let σ0, s1, s2, be linearly independent polynomials of exact degree k,

with no multiple factors. Suppose also that any linear combination of si, i = 1, 2,

differs from σ0 with a factor from Π2. Then we have that

(3.10) σ0 = σ̃0β0, s1 = σ̃0β1, s2 = σ̃0β2, where σ̃0 ∈ Πk−1, βi ∈ Π2.

Moreover, σ̃0 is uniquely determined from the first two relations here, if β0 and β1
are relatively prime.

Furthermore, if β0 has a common factor with β1 and a common factor with β2 then

the following alternative takes place: Either,

(i) βi = ``i, i = 0, 1, 2, i.e., they have a common linear factor, or

(ii) β0 and β1 + εβ2 are relatively prime ∀ε > 0.

Proof. Consider the polynomials σ0, s1 and s2. In view of the hypotheses and

Proposition 3.1 for sufficiently small c > 0 we have that

(3.11) (s1 + cs2)β(c) = σ0β(c),

where β(c), β(c) ∈ Π2 are relatively prime.

Then we have that β(c) is a linear or conic component of σ0. Suppose that σ0
has k such components. By considering k + 1 sufficiently small values of c we get

that there are constants c1 and c2 such that β(c1) = β(c2) =: β0.

Then we readily obtain from (3.11) that

(3.12) s1β0 = σ0β1 and s2β0 = σ0β2, where β1, β2 ∈ Π2.

In the case when β0 is relatively prime with β1 or β2 then it clearly divides σ0. By

denoting σ̃0 = σ0/β0 ∈ Πk−1, we get (3.10) from (3.12).

It remains to consider the case when β0 is a reducible conic and has a common

linear component with β1 as well as with β2. Below everywhere the letter ` denotes

a linear polynomial. Thus suppose that β0 = `0`
′
0. After a cancellation with a linear

polynomial in (3.12) two cases are possible:

Case 1. s1`0 = σ0`1 and s2`′0 = σ0`2; Case 2. s1`0 = σ0`1 and s2`0 = σ0`2.
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In Case 1 β0 = `0`
′
0 again divides σ0 and we get (3.10). In Case 2 β0 = `0 divides

σ0 and we get (3.10), where β0 therefore β1 and β2 are linear. Thus (3.10) is proved.

Note that if β0 and β1 are relatively prime then σ̃0 is uniquely determined from

the first two relations in (3.10) as the greatest common divisor of σ0 and s1.

Now, consider the “Furthermore” statement. Assume that the pairs β0, β1, and

β0, β2, have a common factor. Set β0 = ``0 and β1 = ``1. Then we have that either

β2 = ``2, or β2 = `0`3. The first case reduces to the item (i). Let us consider the

second case. It is easily seen that the polynomials β0 = ``0 and β1+εβ2 = ``1+ε`0`3

have no common factor.

Indeed, conversely suppose that ` is a common factor. Then the last equality

implies that ` = `0, or ` = `3. In the first case we get that β0 and hence, in view of

(3.10), σ0 has a double component `, while in the second case we get that β0 = β2

and hence σ0 = σ2.

Now conversely suppose that `0 is a common factor. In this case the same equality

implies that `0 = `, or `0 = `1. The first case was considered already, while the

second case implies that β0 = β1 and hence σ0 = σ1. �

Proof of Proposition 3.3. Assume by way of contradiction that any polynomial

from S := Linear span{σ1, . . . , σ6}, differs from σ0 with a factor of degree at most

two. By Lemma 3.2, for the polynomial σ0 and any two polynomials from S, the

relation (3.10) holds.

Case 1. Assume that there is a polynomial s1 ∈ S, say it is s1 = σ1, for which

the relation (3.10) holds with β1 being relatively prime with β0. Note that this

evidently takes place if β0 is linear.

Then, according to Lemma 3.2, σ̃0 is determined uniquely.

Now, let us apply Lemma 3.2 successively with the triples of polynomials σ0, σ1, σi, i =

2, . . . , 6. Then we get that

σi = σ̃0βi, i = 0, . . . , 6, where βi ∈ Π2.

Clearly the seven polynomials βi here, and consequently the seven polynomials

σi are linearly dependent, which contradicts our assumption.

Case 2. Assume that for any triple of polynomials σ0, s1 := σi, s2 := σj the

relation (3.10) holds with β0 having a common factor with βi as well as with βj .

Hence all three are of degree two.

Now, if for some triple the alternative (ii) holds then we have Case 1 with s1 :=

σi + εσj . Note that, in view of Proposition 3.1, s1 has no multiple factors if ε is

sufficiently small.

Next, suppose that the alternative (i) holds: β0 = ``0, βi = ``i, βj = ``j .
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This reduces to Case 1 since here (3.10) holds also with linear β’s:

σ0 = σ0`0, σi = σ0`i, σj = σ0`j , where σ = σ̃`. �

4. The existence of three curves of degree k − 1

Proposition 4.1. Assume that the hypotheses of Theorem 2.4 hold. Then, there

are three linearly independent curves of degree k − 1 passing through all the nodes

of the set X .

Proof. Let σ0, . . . , σ6, be the seven curves of degree ≤ k that pass through all the

nodes of the n-independent set X with #X = d(n, k − 3) + 3.

In view of Proposition 3.2 assume, without loss of generality, that each of these

polynomials is of exact degree k and has no multiple factors.

Step 1. Here we will prove that there is at least one curve of degree ≤ k − 1

passing through all the nodes of the set X .
We start by choosing two nodesB1, B2 /∈ X such that the following two conditions

are satisfied:

i) the set X ∪ {B1, B2} is n-independent;
ii) the line `0 through B1 and B2 does not pass through any node from X .

Let us verify that one can find such nodes. Indeed, in view of Lemma 1.3, we

can start by choosing some nodes Bi = B′i, i = 1, 2, satisfying the condition i).

Then, according to Lemma 1.2, for some positive ε all the nodes Bi, i = 1, 2, in

ε neighborhoods of B′i, i = 1, 2, respectively, satisfy the condition i). Finally, from

these neighborhoods we can choose the nodes Bi, i = 1, 2, satisfying the condition

ii) too.

Next we find one more node B3 ∈ `0 such that the set X ∪ {B1, B2, B3} is

n-independent. Indeed, if there is no such node then we obtain that

p ∈ Πk, p|X∪{B1,B2} = 0⇒ p|`0 = 0.

Therefore p = `0q, where q ∈ Πk−1 and, in view of the condition ii), q|X = 0. Hence,

if there is no B3 then, according to Lemma 1.5, there are five linearly independent

polynomials p ∈ Πk satisfying the condition p|X∪{B1,B2} = 0. Therefore, there are

five linearly independent q ∈ Πk−1 satisfying the condition q|X = 0.

Next, we find successively two more nodes B4, B5 ∈ `0 such that the set X ∪ B5
is n-independent, where B5 := {B1, B2, B3, B4, B5}. Indeed, if one cannot find the

node B4 or B5 then, in the same way as above, we obtain that there are four or

three linearly independent polynomials q ∈ Πk−1 satisfying the condition q|X = 0,

respectively.
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Then, in view of Lemma 1.5, there are two curves of degree ≤ k, which pass

through all the nodes of X ∪ B5. Denote one of them by σ0. We may assume that

it is of exact degree k and has no multiple factors. We may assume also that `0 is

not a component of σ0. Otherwise as above, we find a desired polynomial q.

Now, in view of Proposition 1.6, we enlarge the set X ∪ B5 to a maximal n-

independent set Z ⊂ σ0, by adding d(n, k) − (d(n, k − 3) + 3) − 5 = 3(n − k) + 1

nodes, i.e.,

Z = X ∪ B5 ∪ A, where #A = 3(n− k) + 1 = [3(n− k − 1)− 1] + 5.

Let us start with the description of the choice of 3(n − k − 1) − 1 nodes of A.
By using Proposition 3.3 we find a curve σ in the linear span of σi, i = 1, . . . , 6,

which has no multiple factors and differs from σ0 with a factor of degree at least

three: σ = γr, σ0 = γ0r, with d := deg γ = deg γ0 ≥ 3 and r ∈ Πk−d. We have that

γ0 and σ are relatively prime.

Below we are using Theorem 1.1 with respect to the curve C := γ0. Choose a point

O /∈ γ0 ∪ σ. Since O /∈ σ0 no line through the point O will be a component of σ0.

Consider a line `1 through O which intersects C at distinct points not belonging to

`0∪σ. Let A1, A2 and A3, be three of those intersection points. By using a continuity

argument we may assume that the lines `i, i = 2, . . . , n−k−1, pass through O and

are enough close to `1 so that each of them intersects C at distinct points, which do

not belong to `0∪σ.We assume also that `i∩(X ∪B5) = ∅, i = 1, . . . , n−k−1. As in

the case of the line `1 let A3i−2, A3i−1 and A3i, be three of those intersection points

belonging to γ0∩`i, i = 2, . . . , n−k+1. Finally, let us dismiss an intersection point,

say A1, and denote the desired set of the remaining 3(n − k − 1) − 1 intersection

nodes {Ai} by A(−1).

Let us prove that the set Y := X ∪ B5 ∪ A(−1) is n-independent.

We have that the set A(−1) is a subset of Berzolari-Radon construction of degree

n − k − 1. Hence it is (n − k − 1)-independent. Now suppose that p?A,A(−1) is a

fundamental polynomial of a node A ∈ A(−1) of degree n − k − 1. Then the

polynomial σ`0p?A,A(−1) is an n-fundamental polynomial of the node A for the set

Y. Here we use the fact that no node from A(−1) belongs to `0 or σ. Thus, according

to Lemma 1.1, the set Y is n-independent.

Finally, in view of Proposition 1.6, we enlarge the set Y ⊂ σ0 with a set A5

of the last 5 nodes to a maximal n-independent set Z ⊂ σ0. Thus we have that

Z := Y ∪ A5 and A = A(−1) ∪ A5.

Now suppose that σ∗ ∈ Πk vanishes on X and A5. According to Lemma 1.5 there

are 2 = 7−5 such polynomials. Hence we may assume that σ∗ 6= σ0. Then consider
49



H. A. HAKOPIAN, H. M. KLOYAN, D. S. VOSKANYAN

the polynomial p = σ∗`0`1 · · · `n−k−1.We have that p ∈ Πn vanishes on the maximal

n-independent set Z ⊂ σ0. Therefore, we have that p = σ∗`0`1 · · · `n−k−1 =

σ0s, where s ∈ Πn−k.

The lines `i, i = 1, . . . , n − k − 1, are not components of σ0 since they pass

through O /∈ σ0. Therefore, they are components of the polynomial s. Thus we

obtain

σ∗`0 = σ0`, where ` ∈ Π1.

Since σ∗ 6= σ0 therefore `0 6= `.Whence `0 is a component of σ0 : σ0 = `0q0, where q0 ∈
Πk−1. As above we get that q0 vanishes on X .

Step 2. Here we will prove that there are three linearly independent curves of

degree ≤ k − 1 passing through all the nodes of the set X .
We find a line `0 and collinear nodes B1, . . . , B4 ∈ `0, in the same way as in

the Step 1, such that `0 ∩ X = ∅ and the set X ∪ B4 is n-independent, where

B4 := {B1, B2, B3, B4}.
Next, in view of Proposition 1.5, there are three linearly independent curves

of degree at most k, which pass through all the nodes of the set X ∪ B4. Denote

these curves by σ0, σ
′
0, σ
′′
0 . If a curve here, say σ0, is of degree ≤ k − 1 and has

no multiple components then instead of given triple of curves we consider the

curves `1σ0, `2σ0, `3σ0, where the lines `i are chosen such that these three curves

are linearly independent and have no multiple factors.

Next, if a curve σ0, σ′0, σ′′0 , has a multiple factor then by throwing away the

excessed factor we are in the situation considered in the previous paragraph. Hence,

we may consider only the case when each of theses three polynomials is of exact

degree k and has no multiple components.

Now consider the curve σ0. In view of Proposition 1.6 we enlarge the set X ∪B4
to a maximal n-independent set Z ⊂ σ0, by adding d(n, k)− (d(n, k− 3) + 3)− 4 =

3(n− k) + 2 nodes, i.e.,

Z = X ∪ B4 ∪ A, where #A = 3(n− k) + 2 = [3(n− k − 1)− 1] + 1 + 5.

We find the set of 3(n− k − 1)− 1 points from A in the same way as in Step 1

and denote it again by A(−1). Then, in the same way as in Step 1, we prove the

independence of the set Y := X ∪ B4 ∪ A(−1).

Next, in view of Theorem 1.1, we choose a node Ã1 ∈ `1 such that Ã1 ∈ σ0 \ q0,
where q0 is the polynomial of degree ≤ k− 1 vanishing on X , found in Step 1. Note

that the line `1 is not a component of q0 since `1 ∩ X = ∅.
Then consider the case when Ã1 ∈ A(−1), i.e., Ã1 coincides with one of the

nodes A2, A3 ∈ A(−1) ∩ `1, say Ã1 = A2. In this case instead of A(−1) we would
50



ON PLANE ALGEBRAIC CURVES ...

start with the set A(−1)′ = A(−1) ∪ {A1} \ {A2} and we will have already that

Ã1 /∈ A(−1)′.

Since `0 is not a component of σ0 therefore the set F := `0 ∩ σ0 is a finite set

and we could suppose beforehand that `1 ∩ F = ∅. This will ensure that Ã1 /∈ `0.
Also we have that Ã1 6= O since O /∈ σ0.

Now let us prove the independence of the set Ỹ := Y ∪ {Ã1}. For this end, in

view of Lemma 1.1, it suffices to find a fundamental polynomial of the node Ã1

with respect to the set Ỹ. We readily verify that p?
Ã1,Ỹ

= q0`0`2 · · · `n−k−1`′`′′,
where `′ and `′′ are lines different from `1 and pass through the nodes A2 and A3,

respectively.

Finally, according to Proposition 1.6, let us enlarge the set Ỹ ⊂ σ0 with the

set of last 5 nodes, denoted by A5, to a maximal n-independent set. Thus the set

Z := Ỹ ∪ A5 is a maximal n-independent set in σ0.

Now suppose that σ∗ ∈ Πk vanishes on X and the 5 nodes of A5. According to

Lemma 1.5 there are at least two such polynomials. Hence we may assume that

σ∗ 6= σ0. Then consider the polynomial p = σ∗`0`1 · · · `n−k−1.We have that p ∈ Πn

and p vanishes on the node set Z, which is a maximal n-independent set in the

curve σ0. Therefore, we have that

p = σ∗`0`1 · · · `n−k−1 = σ0s, where s ∈ Πn−k.

The lines `i, i = 1, . . . , n− k− 1, are not components of σ0. Therefore, they are

components of the polynomial s. Thus we get that σ∗`0 = σ0`, where ` ∈ Π1. Since

σ∗ 6= σ0 therefore `0 6= `. Hence `0 is a component of σ0 :

σ0 = `0qk−1, where qk−1 ∈ Πk−1.

In the same way for the curves σ′0 and σ′′0 we get σ′0 = `0q
′
k−1, where q

′
k−1 ∈ Πk−1,

and σ′′0 = `0q
′′
k−1, where q

′′
k−1 ∈ Πk−1.

Obviously the curves qk−1, q′k−1, q
′′
k−1, are linearly independent. �

5. Proofs of Theorems 2.4 and 2.5

Proof of Theorem 2.5. Assume by way of contradiction that there are four curves

passing through all the nodes of the set X . Then, according to Theorem 2.3, all the

nodes of X but three belong to a maximal curve µ of degree k − 2. The curve µ is

maximal and the remaining three nodes of X , denoted by A,B and C, are outside

of it: A,B,C /∈ µ. Hence we have that

Pk,X = {p : p ∈ Πk, p|X = 0} = {qµ : q ∈ Π2, q(A) = q(B) = q(C) = 0} .
51



H. A. HAKOPIAN, H. M. KLOYAN, D. S. VOSKANYAN

Thus we get readily that dimPk,X = dim {q ∈ Π2 : q(A) = q(B) = q(C) = 0} =

dimP2,{A,B,C} = 6−3 = 3, which contradicts our assumption. Note that in the last

equality we use Proposition 1.1 and the fact that any three nodes are 2-independent.

Now, let us verify the part “if”. By assuming that there is a curve σ of degree

k − 1 passing through the nodes of X we find readily three linearly independent

curves of degree ≤ k : σ, xσ, yσ, passing through X . While if we assume that all

the nodes of X but three lie in a curve µ of degree k − 2 then above evaluation

shows that dimPk,X = 3.

Finally, let us verify the part “only if”. Denote the three curves passing through

all the nodes of X by σ0, σ′0, σ′′0 . If one of them is of degree k−1 then the conclusion

of Theorem is satisfied and we are done. Thus, we may assume that each curve is

of degree k and has no multiple components. Now consider the curve σ0.

By using Proposition 1.6 let us enlarge the set X to a maximal n-independent

set Z ⊂ σ0. Since #Z = d(n, k), we need to add a set of d(n, k)− (d(n, k−2)+3) =

2(n− k) + 2 nodes, denoted by

A := {A1, . . . , A2(n−k)+2}.

Thus we have that Z := X ∪ A. In view of Lemma 1.4, i), we require that each

node of A may belong only to one component of the curve σ0.

Case 1, n = k + 2, A := {A1, . . . , A6}.
Consider 5 nodes from A and a conic β∗ passing through them. Denote the sixth

node by A∗. We have three polynomials from Πk vanishing on X . By using Lemma

1.5 we get two linearly independent curves of degree at most k, that pass through all

the nodes of X and the node A∗ ∈ A. Thus we may consider a such curve σ∗ ∈ Πk

by assuming that σ∗ 6= σ0. Now, notice that the polynomial σ∗ β∗ of degree n

vanishes at all the nodes of Z ⊂ σ0. Consequently, according to Proposition 1.4, σ0
divides this polynomial:

(5.1) σ∗ β∗ = σ0 β, β ∈ Π2.

We have that β∗ 6= β since σ∗ 6= σ0. Hence if β∗ is irreducible then it divides

σ0. Now suppose that β∗ is reducible: β∗ = `1`2, where `i ∈ Π1. Then we have

that both lines `1, `2, cannot divide β, hence either `1`2 or only one of them is a

component of σ0.

Let us consider the latter case. Suppose that the line `1 is a component of σ0
and `2 is a component of β. Then we get from (5.1) that

(5.2) σ∗ `1 = σ0 `, where ` ∈ Π1.
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Now, we have that σ0 = `1q, where deg q = k − 1. Then we get from (5.2) that

σ∗ = `q. From the last two equalities we conclude that X ⊂ q∪{E}, where E = `1∩`.
Therefore all the nodes of X , except possibly E, belong to the curve q. Here q is

a component of σ0 of degree k − 1 and E belongs to its line component `1.

We briefly express the above conditions by saying that the line component `1 of

σ0 satisfies (−1)-node condition for X .
At the end we will see that if this property holds for all three given curves

σ0, σ
′
0, σ
′′
0 , then we can readily complete the proof of Theorem.

Therefore, from now on we may assume that the equality (5.1) implies that

deg β∗ = 2 and β∗ is a component of σ0. Thus we obtain also that β∗ is determined

uniquely by the 5 nodes from A.
Next, we are going to prove that there is a conic passing through all the six

nodes of A. Assume conversely that there is no such conic. Denote by βi the conic

passing through the five nodes of A \ {Ai}, i = 1, 2.

We have that these two conics are different components of σ0. First assume that

one of these two conics, say, β1, is irreducible. Then consider a common node of β1
and β2, say, A3. It is easily seen that A3 belongs to two different components of

σ0, which contradicts our assumption. Indeed, one is β1 and another is β2 if it is

irreducible or a line component of β2 if it is reducible.

Now, assume that both β1 and β2 are reducible: β1 = `1`
′
1, β2 = `2`

′
2.Without

loss of generality assume that

(5.3) `1 6= `2, `1 6= `′2.

We have that `1 passes through at least one of the common nodes A3, . . . , A6, say

A3. Then A3 belongs either to `2 or to `′2. In both cases, in view of (5.3), we have

that A3 belongs to two different line components of σ0, which is a contradiction.

Thus we proved that A ⊂ β0, where β0 ∈ Π2.

Next let us show that β0 divides σ0. Consider a polynomial σ ∈ Πk that vanishes

on X and σ 6= σ0. Notice that the following polynomial σ β0 of degree k + 2 = n

vanishes at all the d(n, k) nodes of Z ⊂ σ0. Consequently, according to Proposition

1.4, σ0 divides this polynomial:

(5.4) σ β0 = σ0β, β ∈ Π2.

This is a type (5.1) equality which, as we mentioned above, implies that deg β0 = 2

and β0 is a component of σ0, i.e., σ = β0q, q ∈ Πk−2. We conclude also that β0 is

uniquely determined by any 5 nodes from A.
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Thus to enlarge the set X ⊂ σ0 to a maximal n-independent set Z = X ∪ A we

have to add all the six nodes of A to the conic β0. Let us verify that the added

nodes cannot belong to the component q. Indeed, suppose conversely that a node

belongs to β0 ∩ q. Then, in view of Lemma 1.4, we can move the node to q \ β0
such that the resulted set is also n-independent. This is a contradiction, since now

the six nodes do not belong to a conic. Indeed, the five nodes determine a unique

conic and the sixth node is outside of it. Thus the factor q ∈ Πk−2 to which one

can not add a new independent node is merely maximal with respect to X . This
means that q passes through exactly d(n, k) nodes of X .

Case 2, n ≥ k + 3.

Consider a subset of A of cardinality 4 and denote it by A4. Denote also by

Ā := A \ A4. We have that #Ā = 2(n− k)− 2.

There are three linearly independent polynomials σ0, σ′0, σ′′0 ∈ Πk, vanishing on

X . Now suppose that σ∗ ∈ Πk vanishes on X and at an arbitrary node A∗ ∈
Ā, which will be specified below. According to Lemma 1.5 there are two such

polynomials. Hence we may assume that σ∗ 6= σ0. We call the node A∗ associated

with σ∗.

We associate another node A′ ∈ Ā with the set A4 and denote by β′ a conic that

passes through A′ and the four nodes of A4.

For any line component ` of σ0 denote by r` ∈ Πk−1 for which

(5.5) σ0 = `r`.

Assume that a line component ` of the curve σ0, passes through exactly m nodes

from X , at which r` does not vanish. Then we obtain from (5.5) that r` ∈ Πk−1

vanishes at the all nodes of the set X except m nodes, which belong to `.

Note that if for a line ` we have that m ≤ 1, then the line component ` of σ0
satisfies the (−1)-node condition for X .

Therefore we may suppose that m ≥ 2 for all lines `, meaning that the following

condition takes place:

(C) Any line component of the curve σ0, passes through at least two nodes from

X , at which r` does not vanish.
Later, in Section 5.1, by using the condition (C), we divide the set of nodes Ā

into n− k − 2 pairs such that the lines `1, . . . , `n−k−2, through them, respectively,

are not components of σ0. The remaining two nodes denoted by A∗ and A′, are

associated with the curve σ∗ and A4, respectively.

Now, let us continue the proof by assuming that the above-described division of

Ā is established.
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Notice that the following polynomial σ∗ β′ `1 . . . `n−k−2 of degree n vanishes at

all the d(n, k) nodes of Z ⊂ σ0. Consequently, according to Proposition 1.4, σ0
divides this polynomial:

(5.6) σ∗ β′ `1 . . . `n−k−2 = σ0 r, r ∈ Πn−k.

The distinct lines `1, . . . , `n−k−2 do not divide the polynomial σ0 ∈ Πk, therefore,

all they have to divide r. Hence, we get from (5.6) that σ∗ β′ = σ0 β, where β ∈ Π2.

Then, we have that β′ 6= β since σ∗ 6= σ0. Now, in the same way as in Case 1 we

obtain that σ0 = β′q where q ∈ Πk−2.

Next, we are going to prove that there is a conic passing through all the nodes

of A. Assume by way of contradiction that there is no such conic. Then, in view of

Proposition 1.3, we have that there is a set of six nodes, say A6 := {A1, . . . , A6} ⊂
A, that does not lie in a conic.

Now, let us choose three noncollinear nodes in A6, say A1, A2, A3, and consider

the following sets of four nodes:

A1, A2, A3, A4; A1, A2, A3, A5; A1, A2, A3, A6.

Then, consider these three sets with the respective associated nodes:

(5.7) A1, A2, A3, A4, A
′; A1, A2, A3, A5, A

′′; A1, A2, A3, A6, A
′′′.

We have that the three conics through these sets are components of σ0. Since A6

does not lie in a conic we obtain that these three conics cannot coincide. Hence

there are two different conics, say the conics β′ and β′′, passing through the first

two sets in (5.7), respectively.

First assume that one of these two conics, say, β′, is irreducible. Then consider a

common node, say, A1. It is easily seen that A1 belongs to two different components

of σ0, which contradicts our assumption. Indeed, one is β′ and another is β′′, if it

is irreducible too, or a line component of β′′, if it is reducible.

Next, assume that both β′ and β′′ are reducible: β′ = `1`
′
1, β′′ = `2`

′
2.Without

loss of generality assume that

(5.8) `1 6= `2, `1 6= `′2.

Note that `1 passes through at least one of the common nodes A1, A2, A3, say A1.

Indeed, if `1 passes through only A′ and A4 then we obtain that `′1 passes through

the three noncolinear nodes A1, A2, A3. Now, we have that A1 belongs either to `2
or `′2. In both cases, in view of (5.8), we have that A1 belongs to two different line

components of σ0, which is a contradiction.
55



H. A. HAKOPIAN, H. M. KLOYAN, D. S. VOSKANYAN

Thus we proved that A ⊂ β0, where β0 ∈ Π2. Next, in the same way as in Case

1, we show that β0 divides σ0 : σ0 = β0q, q ∈ Πk−2. Also we have that β0 is

uniquely determined by the nodes of A \ {A}, ∀A ∈ A.
Indeed, assume conversely that β0 is not uniquely determined by the nodes from

A \ {A0}, where A0 ∈ A. Therefore there are infinitely many conics β0 passing

through the nodes of A \ {A0}. Recall that for (any) A0 one can find a curve,

denoted by σ∗, of degree at most k, that passes through all the nodes of X and is

different from σ0. Then, as in Case 1, we readily get σ∗β0 = σ0β, where β ∈ Π2. This

implies that β0 is a component of σ0. Therefore σ0 has infinitely many components,

which is a contradiction.

Thus to enlarge the set X ⊂ σ0 to a maximal n-independent set Z = X ∪ A we

have to add all the nodes of A to the conic β0. Let us verify that the added nodes do

not belong to the component q. Suppose conversely that a node A0 ∈ A belongs to

β0 ∩ q. Then, in view of Lemma 1.4, let us move A0 to q \ β0 such that the resulted

set A remains n-independent. This is a contradiction, since now the nodes of A do

not belong to a conic. Indeed, the nodes A \ {A0} determine a unique conic and

the moved node is outside of it. Therfore, the factor r ∈ Πk−2 to which one cannot

add a new independent node is merely maximal with respect to X . Hence, r passes
through exactly d(n, k) nodes of X .

At the end, before establishing the division of the set Ā, it remains to consider

the case when the division may be not possible for all three curves σ0, σ′0, σ′′0 , i.e., the

case when the condition (C) does not hold. Then, we obtain three curves q, q′, q′′,

which are components of degree k− 1 of the curves σ0, σ′0, σ′′0 , respectively, passing

through all the nodes of X except possibly one.

Assume that q, q′, q′′, pass through all the nodes of X except E,E′, E′′, respectively.

First assume that two of these three nodes are different, say E 6= E′.We have that q

and q′ pass through all the nodes of the set Y := X \{E,E′}, #Y = d(n, k−3)+1.

If q = q′ then we have that E = E′, contradicting our assumption. If q 6= q′ then,

according to Theorem 2.2, all the nodes of Y except one belong to a (maximal)

curve µ of degree k − 2. Thus all the nodes of X except three belong to µ.

It remains to consider the case E = E′ = E′′. Then we have that q, q′, q′′, pass

through all the nodes of the set Y := X \ {E}, #Y = d(n, k − 2) + 2. We get from

Theorem 2.1 that q = q′ = q′′ =: q.

Next, in view of the condition (C), we get that σ = `q, σ′ = `′q, σ′′ = `′′, where

`, `′`′′ ∈ Π1. This contradicts the linear independence of σ, σ′σ′′, since we have that

E ∈ ` ∩ `′ ∩ `′′. �
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Proof of Theorem 2.4. It is easily seen that Theorem 2.4 follows from Proposition

4.1, Theorem 2.5 and Lemma 3.1. �

5.1. The division of the set Ā. Next let us establish the above mentioned

division of the node set Ā := A \ A4 in the case n ≥ k + 3. Note that this is

the case when we need the division.

Recall that each node of A belongs only to one component of the curve σ0. By

using induction on m one can prove easily the following

Lemma 5.1 (Proof of Th. 3, [5]). Suppose that a finite set of lines L and 2m nodes

lying in these lines are given. Suppose also that no node is an intersetion point of

two lines. Then one can divide the node set into m pairs such that no pair belongs

to the same line from L if and only if each line from L contains no more than m

nodes.

Thus the above mentioned division of the node set Ā into n − k − 2 pairs is

possible if and only if no n − k − 1 nodes of Ā0 := Ā \ {A∗, A′} are located in a

line component of σ0, where the nodes A∗ and A′ are the nodes associated with the

curve σ∗ and A4, respectively. Observe also that we may associate any two nodes

A∗ and A′ of A with σ∗ and A4,

Now notice that, in view of #Ā = 2(n − k − 1), there can be at most two

undesirable line components for the set Ā, i.e., lines containing at least n − k − 1

nodes from it. In this case a node from each line we assign as associated and leave

in the two lines ≤ n− k − 2 nodes.

Then assume that we have one undesirable line component for the set Ā, containing
≤ n−k nodes from it. In this case two nodes from this line we nominate as associated

and leave in the line ≤ n− k − 2 nodes.

Finally consider the case of one undesirable line component ` of σ0 with m ≥
n− k + 1 nodes. We have that

σ0 = `r`, where r` ∈ Πk−1.

Now we are going to move m − n + k nodes, one by one, from ` to the other

component r` such that the set Z := X ∪A remains n-independent. Again, in view

of Lemma 1.4, i), we require that each moved node belongs only to one component

of the curve σ0.

To establish each described movement, in view of Lemma 1.4, ii), it suffices

to prove that during this process each node A ∈ ` ∩ A, has no n-fundamental

polynomial for which the curve r` is a component. Suppose conversely that

(5.9) p?A = r`s, s ∈ Πn−k+1.
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Now, we have that s vanishes at ≥ n − k nodes in ` ∩ A \ {A}. Indeed, the nodes

of the set A in the line ` do not belong to another component. Therefore, r` does

not vanish at these nodes and hence, in view of (5.9), s vanishes. According to the

condition (C) r` does not vanish also at least at two nodes from `∩X , and hence s

vanishes there too. Thus the number of zeroes of s in the line ` is greater or equal

to n−k+ 2 and s together with p?A vanishes at the whole line `, including the node

A, which is a contradiction.

It remains to note that there will be no more undesirable lines, except `, in

the resulted set A, after the described movement of the nodes, since we finish by

keeping exactly n−k nodes in `∩A and outside of it there are only n−k−2 nodes.

6. An application to bivariate interpolation

A GCn set X in the plane is an n-poised set of nodes, where the fundamental

polynomial of each node is a product of n linear factors. The Gasca–Maeztu conjecture

states that any GCn-set possesses a subset of n+ 1 collinear nodes.

Recall that a node A ∈ X uses a line ` means that ` is a factor of the fundamental

polynomial, i.e., p?A = `r for some r ∈ Πn−1.

It was proved by Carnicer and Gasca in [1], that any line passing through exactly

2 nodes of a GCn set X can be used at most by one node from X . Next, it was

proved in [8] that any used line passing through exactly 3 nodes of an n-poised set

X can be used either by exactly one or three nodes from X . In [5] was proved that

a line ` passing through exactly 4 nodes can be used at most by six nodes from X .
Moreover, if it is used by at least four nodes then it is used by exactly six nodes

from X .
Below we consider the case of lines passing through exactly 5 nodes.

Corollary 6.1. Let X be an n-poised set of nodes and ` be a line which passes

through exactly 5 nodes. Then ` can be used at most by ten nodes from X . Moreover,

if ` is used by at least seven nodes from X then it is used by exactly ten nodes from

X . Furthermore, if it is used by ten nodes, then they form a 3-poised set. In the

latter case, if X is a GCn set then the ten nodes form a GC3 set too.

Proof. Assume that `∩X = {A1, . . . , A5} =: A. Assume also that the seven nodes

in B := {B1, . . . , B7} ∈ X use the line ` : p?Bi
= ` qi, i = 1, . . . , 7, where qi ∈ Πn−1.

The polynomials q1, . . . , q7, vanish at N − 12 nodes of the set X ′ := X \ (A∪B).

Hence through these N−12 = d(n, n−4)+3 nodes pass seven linearly independent

curves of degree n − 1. By Theorem 2.4 there exists a maximal curve µ of degree

n−4 passing through N−15 nodes of X ′ and the remaining three nodes denoted by
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C1, C2, C3, are outside of it. Now, according to Proposition 1.5, the nodes C1, C2, C3,

use µ : p?Ci
= µri, ri ∈ Π4, i = 1, 2, 3.

These polynomials ri have to vanish at the five nodes of A ⊂ `. Hence ri =

`γi, i = 1, 2, 3, with γi ∈ Π3. Therefore, the nodes C1, C2, C3, use the line ` :

p?Ci
= µ`γi, i = 1, 2, 3. Hence if seven nodes in B ⊂ X use the line ` then there

exist three more nodes C1, C2, C3 ∈ X using it and all the nodes of Y := X \ (A ∪
B ∪ {C1, C2, C3}) lie in a maximal curve µ of degree n− 4 :

(6.1) Y ⊂ µ.

Next, let us show that there is no eleventh node using `. Assume conversely that

except of the ten nodes in S := {B1, . . . , B7, C1, C2, C3}, there is an eleventh node

D using `. Of course we have that D ∈ Y.
Then we have that the seven nodes B1, . . . , B6 and D are using ` therefore,

as was proved above, there exist three more nodes E1, E2, E3 ∈ X (which may

coincide or not with B7 or C1, C2, C3) using it and all the nodes of Y ′ := X \ (A∪
{B1, . . . , B6, D,E1, E2, E3}) lie in a maximal curve µ′ of degree n− 4.

We have also that

(6.2) p?D = µ′q′, q′ ∈ Π4.

Now, notice that both the curves µ and µ′ pass through all the nodes of the set

Z := X \ (A ∪ B ∪ {C1, C2, C3, D,E1, E2, E3}) with #Z ≥ N − 19.

Then, we get from Theorem 2.1, with k = n− 5, that N − 19 = d(n, n− 5) + 2

nodes determine the curve of degree n− 4 passing through them uniquely. Thus µ

and µ′ coincide.

Therefore, in view of (6.1) and (6.2), p?D vanishes at all the nodes of Y, which is

a contradiction since D ∈ Y.
Now, let us verify the “Moreover” statement. Suppose ten nodes in S ⊂ X use

the line `. Then, as we obtained earlier, the nodes Y := X \ (A∪ S) are located in

a maximal curve µ of degree n− 4. Therefore the fundamental polynomial of each

A ∈ S uses µ and hence ` :

p?A = µ`qA, where qA ∈ Π3.

It is easily seen that qA is a 3-fundamental polynomial of A ∈ S. �
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1. Introduction

Let D be the unit disk in the complex plane C and H(D) be the class of functions

analytic in D. The Hardy space Hp (0 < p < ∞) is the set of all f ∈ H(D) with

(see [4])

‖f‖pHp = sup
0<r<1

1

2π

∫ 2π

0

|f(reiθ)|pdθ <∞.

Let H∞ be the space of all bounded analytic functions with the supremum norm

‖f‖H∞ = supz∈D |f(z)|.
For 1 < p < ∞, the Besov space, denoted by Bp, is the space of all functions

f ∈ H(D) satisfy

‖f‖pBp = |f(0)|p +

∫
D
|f ′(z)|p(1− |z|2)p−2dA(z) <∞.

Let 0 < p < ∞, −2 < q < ∞ and 0 ≤ s < ∞. The space F (p, q, s) is the space

consisting of all f ∈ H(D) such that

‖f‖pF (p,q,s) = |f(0)|p + sup
a∈D

∫
D
|f ′(z)|p(1− |z|2)q(1− |ϕa(z)|2)sdA(z) <∞,

where ϕa(z) = a−z
1−az . This space was first introduced by Zhao in [22]. F (2, 0, s)

is the Qs space (see [18]). F (2, 0, 1) is the BMOA space. F (p, α, 0) is called the

Dirichlet type space, denoted by Dpα. In particular, F (p, p− 2, 0) is the Besov space

1The first author was supported by NNSF of China (No.11801250, No.11871257), Overseas
Scholarship Program for Elite Young and Middle-aged Teachers of Lingnan Normal University,
Yanling Youqing Program of Lingnan Normal University (No. YL20200202), the Key Program
of Lingnan Normal University (No.LZ1905) and the Innovation and developing School Project of
Guangdong Province (No. 2019KZDXM032).
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Bp. F (p, p, 0) is just the classical Bergman space Ap. When s > 1, from [22] we see

that F (p, p− 2, s) is equivalent to the Bloch space, denoted by B, which consisting

of all f ∈ H(D) such that ‖f‖B = |f(0)|+ supz∈D(1− |z|2)|f ′(z)| <∞.
The Volterra integral operator Tg was introduced by Pommerenke in [13]. Pommerenke

showed that Tg is bounded on H2 if and only if g ∈ BMOA, where

Tgf(z) =

∫ z

0

f(w)g′(w)dw, f ∈ H(D).

The companion operator Ig induced by g ∈ H(D) is defined by

Igf(z) =

∫ z

0

f ′(w)g(w)dw, f ∈ H(D).

The multiplication operator Mg is defined by Mgf(z) = f(z)g(z). It is easy to see

that Mgf(z) = f(0)g(0) + Igf(z) +Tgf(z). Recently, much attention has been paid

to the operators Tg and Ig.

See [1, 2], [5]-[9], [11]-[16], [20, 21] and the references therein for more study of

the operators Tg and Ig.

For any arc I ⊆ ∂D, the boundary of D, let |I| = 1
2π

∫
I
|dζ| denote the normalized

length of I and S(I) be the Carleson box defined by

S(I) = {z ∈ D : 1− |I| ≤ |z| < 1, z/|z| ∈ I}.

Let 0 ≤ s < ∞, 0 < q < ∞ and µ be a positive Borel measure on D. Let T qs (µ) be

the space of all µ-measurable functions f such that (see, e.g., [12])

sup
I⊆∂D

1

|I|s

∫
S(I)

|f(z)|qdµ(z) <∞.

Let 0 ≤ α <∞, 0 < s <∞ and µ be a positive Borel measureon D. We say that

µ is a α-logarithmic s-Carleson measure if (see [21])

‖µ‖LCMα,s
:= sup

I⊆∂D

(log 2
|I| )

αµ(S(I))

|I|s
<∞.

When α = 0, it gives the s-Carleson measure. When α = 0, s = 1, it gives the

classical Carleson measure. µ is said to be a vanishing α-logarithmic s-Carleson

measure if (see [11])

lim
|I|→0

(log 2
|I| )

αµ(S(I))

|I|s
= 0.

The Carleson measure is very useful in the theory of function spaces and operator

theory. The famous embedding theorem say that the inclusion mapping i : Hp →
Lp(dµ) is bounded if and only if µ is a Carleson measure (see [4]). See [3] for

the study of Carleson measure for the Besov space Bp. In [5], Girela and Peláez

studied the Carleson measure for Dirichlet type spaces. Among others, under the

assumption that 0 < p < q <∞, they showed that the inclusion mapping i : Bp →
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Lq(dµ) is bounded if and only if µ is q(1 − 1
p )-logarithmic 0-Carleson measure. In

[20], Xiao proved that the inclusion mapping i : Qs → T 2
s (µ) is bounded if and

only if µ is 2-logarithmic s-Carleson measure. In [10], Liu and Lou showed that

the inclusion mapping i : L2,s → T 2
s (µ) is bounded if and only if µ is a Carleson

measure, where L2,s is the Morrey space. The main ideas and methods used in [10]

more or less are motivated by the three sections 3.2, 4.3, 6.4 of [19]. In [12], Pau

and Zhao showed that the inclusion mapping i : F (p, p− 2, s)→ T ps (µ) is bounded

if and only if µ is p-logarithmic s-Carleson measure. In [7], Li, Liu and Yuan proved

that the inclusion mapping i : Dpp−1 → T ps (µ) is bounded if and only if µ is a

(s + 1)-Carleson measure by using the Carleson embedding theorem for Bergman

spaces.

Motivated by [5, 7, 10, 12, 20], in this paper, we study the boundedness and

compactness of the inclusion mapping from Bp into T qs (µ). More precisely, we show

that the inclusion mapping i : Bp → T qs (µ) is bounded (resp. compact) if and

only if µ is a q(1 − 1
p )-logarithmic s-Carleson measure (resp. vanishing q(1 − 1

p )-

logarithmic s-Carleson measure) under the assumption that 1 < p < q < ∞ and

0 < s <∞. Moreover, we study the boundedness, compactness and essential norm

of the operators Tg and Ig acting from Bp to F (q, q − 2, s).

In this paper, the symbol f ≈ g means that f . g . f . We say that f . g if

there exists a constant C such that f ≤ Cg.

2. Embedding from Besov spaces Bp to T qs (µ)

We need the following equivalent description of p-logarithmic s-Carleson measure,

see Lemma 2.2 in [12].

Lemma 2.1. Let 0 ≤ α < ∞, 0 < s, t < ∞ and µ be a positive Borel measure on

D. Then µ is a α-logarithmic s-Carleson measure if and only if

sup
a∈D

(
log

2

1− |a|2

)α ∫
D

(1− |a|2)t

|1− āz|s+t
dµ(z) <∞.

Moreover,

‖µ‖LCMα,s ≈ sup
a∈D

(
log

2

1− |a|2

)α ∫
D

(1− |a|2)t

|1− āz|s+t
dµ(z).

Using [23, Lemma 3.10], we can easily obtain the following result.

Lemma 2.2. Let 1 < p <∞ and w ∈ D. Set

fw(z) =

(
1

log 2
1−|w|2

)1/p

log
2

1− wz
, Fw(z) =

1− |w|2

w(1− wz)
, z ∈ D.

Then fw, Fw ∈ Bp.
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Lemma 2.3. Let 1 < p ≤ q <∞, 0 < s <∞ and µ be a positive Borel measure on

D. Suppose that f ∈ Bp and µ is a q(1− 1
p )-logarithmic s-Carleson measure. Then∫

D
|f(z)|qdµ(z) .

∫
D
|f ′(z)|p(1− |z|2)p−2+s(log

2

1− |z|2
)
q
p dA(z).

Proof. Suppose that f ∈ Bp. For any fixed q, s, let α be big enough such that

qα− s > 0 and qα+ 2− q − 2s > 0. From the proof of [12, Lemma 3.2] we have

|f(z)|q .
∫
D

|f ′(w)|q(1− |w|2)qα

|1− wz|qα+2−q

(
log

2

1− |w|2

)q
dA(w).

Since µ is a q(1 − 1
p )-logarithmic s-Carleson measure, combining with Lemma 2.1

and the fact that Bp ⊆ B, we obtain∫
D
|f(z)|qdµ(z) .

∫
D

∫
D

|f ′(w)|q(1− |w|2)qα

|1− wz|qα+2−q

(
log

2

1− |w|2

)q
dA(w)dµ(z)

.
∫
D
|f ′(w)|q(1− |w|2)q−2+s(log

2

1− |w|2
)
q
p

((
log

2

1− |w|2

)q(1− 1
p )

×

×
∫
D

(1− |w|2)s

|1− wz|2s
dµ(z)

)
dA(w) .

∫
D
|f ′(w)|p(1− |w|2)p−2+s(log

2

1− |w|2
)
q
p dA(w).

The proof is complete. �

Theorem 2.1. Let 1 < p < q <∞, 0 < s <∞ and µ be a positive Borel measure

on D. Then the inclusion mapping i : Bp → T qs (µ) is bounded if and only if µ is a

q(1− 1
p )-logarithmic s-Carleson measure.

Proof. First we assume that i : Bp → T qs (µ) is bounded. For any given arc

I ⊆ ∂D, set a = (1− |I|)η and η is the center point of I. It is easy to see that

|1− az| ≈ 1− |a|2 ≈ |I|, z ∈ S(I).

Let

fa(z) =

(
1

log 2
1−|a|2

)1/p

log
2

1− az
.

By Lemma 2.2, we see that fa ∈ Bp. From the boundedness of i : Bp → T qs (µ), we

have

‖fa‖qT qs (µ)
= sup
I⊆∂D

1

|I|s

∫
S(I)

|fa(z)|qdµ(z) <∞.

By the fact that |fa(z)| ≈ (log 2
|I| )

1− 1
p when z ∈ S(I), we get

sup
I⊆∂D

(log 2
|I| )

q(1− 1
p )µ(S(I))

|I|s
<∞.

Hence µ is a q(1− 1
p )-logarithmic s-Carleson measure.
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Conversely, assume that µ is a q(1 − 1
p )-logarithmic s-Carleson measure. Let

f ∈ Bp. For any given arc I ⊆ ∂D, set w = (1 − |I|)η and η is the center point of

I. Then
1

|I|s

∫
S(I)

|f(z)|qdµ(z) .
1

|I|s

∫
S(I)

|f(z)− f(w)|qdµ(z) +
1

|I|s

∫
S(I)

|f(w)|qdµ(z)

=A+B,

where

A =
1

|I|s

∫
S(I)

|f(z)− f(w)|qdµ(z), B =
1

|I|s

∫
S(I)

|f(w)|qdµ(z).

Since

|f(w)| .
(

log
2

1− |w|2

)1− 1
p

‖f‖Bp .
(

log
2

|I|

)1− 1
p

‖f‖Bp ,

we get

B .
(log 2

|I| )
q(1− 1

p )µ(S(I))

|I|s
‖f‖qBp . ‖f‖

q
Bp
.

By Lemma 2.3, we have

A .(1− |w|2)s
∫
S(I)

∣∣∣∣∣f(z)− f(w)

(1− wz)
2s
q

∣∣∣∣∣
q

dµ(z)

.(1− |w|2)s
∫
D

∣∣∣∣∣
(
f(z)− f(w)

(1− wz)
2s
q

)′∣∣∣∣∣
p

(1− |z|2)p−2+s(log
2

1− |z|2
)
q
p dA(z).

Since(
f(z)− f(w)

(1− wz)
2s
q

)′
=
f ′(z)(1− wz)

2s
q + w( 2s

q )(f(z)− f(w))(1− wz)
2s
q −1

(1− wz)
4s
q

,

we deduce that A .W1 +W2, where

W1 = (1− |w|2)s
∫
D

|f ′(z)|p

|1− wz|
2ps
q

(1− |z|2)p−2+s(log
2

1− |z|2
)
q
p dA(z)

and

W2 = (1− |w|2)s
∫
D

|f(z)− f(w)|p

|1− wz|
2ps
q +p

(1− |z|2)p−2+s(log
2

1− |z|2
)
q
p dA(z).

Since p < q and supz∈D(1− |z|2)2s(1− pq )(log 2
1−|z|2 )

q
p <∞, we get that

W1 . ‖f‖pBp .

Let 0 < ε < min{p2 , s, 2s(1 −
p
q )}. Combining with the fact that supz∈D(1 −

|z|2)ε(log 2
1−|z|2 )

q
p <∞, we obtain

W2 = (1− |w|2)s
∫
D

|f(z)− f(w)|p

|1− wz|
2ps
q +p

(1− |z|2)p−2+s−εdA(z).
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Making the change of variable η = ϕw(z) and combining with [23, Proposition 4.2],

we have

W2 = (1− |w|2)s
∫
D

|(f ◦ ϕw)(η)− (f ◦ ϕw)(0)|p

|1− wϕw(η)|
2ps
q +p

(1− |ϕw(η)|2)p−2+s−ε

× (1− |w|2)2

|1− wη|4
dA(η)

=(1− |w|2)2s− 2ps
q −ε

∫
D
|(f ◦ ϕw)(η)− (f ◦ ϕw)(0)|p (1− |η|2)p−2+s−ε

|1− wη|p+2s− 2ps
q −2ε

dA(η)

.(1− |w|2)2s− 2ps
q −ε

∫
D
|(f ◦ ϕw)′(η)|p (1− |η|2)2p−2+s−ε

|1− wη|p+2s− 2ps
q −2ε

dA(η)

.(1− |w|2)2s− 2ps
q −ε

∫
D
|f ′(ϕw(η))|p(1− |ϕw(η)|2)p

(1− |η|2)p−2+s−ε

|1− wη|p+2s− 2ps
q −2ε

dA(η)

.(1− |w|2)2s− 2ps
q −ε

∫
D
|f ′(z)|p(1− |z|2)p

(1− |ϕw(z)|2)p−2+s−ε

|1− wϕw(z)|p+2s− 2ps
q −2ε

(1− |w|2)2

|1− wz|4
dA(z)

.(1− |w|2)s
∫
D
|f ′(z)|p (1− |z|2)2p−2+s−ε

|1− wz|p+
2ps
q

dA(z) . ‖f‖pBp .

Therefore,

sup
I⊆∂D

1

|I|s

∫
S(I)

|f(z)|qdµ(z) . ‖f‖pBp ,

which implies the desired result. The proof is complete. �

We say that the inclusion mapping i : Bp → T qs (µ) is compact if

lim
n→∞

1

|I|s

∫
S(I)

|fn(z)|qdµ(z) = 0

whenever I ⊆ ∂D and {fn} is a bounded sequence in Bp that converges to 0

uniformly on compact subsets of D.

Theorem 2.2. Let 1 < p < q < ∞, 0 < s < ∞. Let µ be a nonnegative Borel

measure on D such that point evaluation is a bounded functional on T qs (µ). Then

the inclusion mapping i : Bp → T qs (µ) is compact if and only if µ is a vanishing

q(1− 1
p )-logarithmic s-Carleson measure.

Proof. First we assume that i : Bp → T qs (µ) is compact. Let {Ik} be a sequence

arcs with limk→∞ |Ik| = 0. Set ak = (1 − |Ik|)ηk, where ηk is the midpoint of arc

Ik. Take

fk(z) =

(
1

log 2
1−|ak|2

)1/p

log
2

1− akz
.
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We see that fk ∈ Bp and {fk} converges to 0 uniformly on compact subsets of D
when k →∞. Then we get(

log 2
|Ik|

)q(1− 1
p )

µ(S(Ik))

|Ik|s
.

1

|Ik|s

∫
S(Ik)

|fk(z)|qdµ(z)→ 0,

as k → ∞, which implies that µ is a vanishing q(1 − 1
p )-logarithmic s-Carleson

measure.

Conversely, assume that µ is a vanishing q(1− 1
p )-logarithmic s-Carleson measure.

From [12] we see that

‖µ− µr‖LCM
q(1− 1

p
),s
→ 0, r → 1.

Here µr(z) = µ(z) for |z| < r and µr(z) = 0 for r ≤ |z| < 1. Let ‖fk‖Bp . 1 and

{fk} converge to 0 uniformly on compact subsets of D. Then
1

|I|s

∫
S(I)

|fk(z)|qdµ(z) .
1

|I|s

∫
S(I)

|fk(z)|qdµr(z) +
1

|I|s

∫
S(I)

|fk(z)|qd(µ− µr)(z)

.
1

|I|s

∫
S(I)

|fk(z)|qdµr(z) + ‖µ− µr‖LCM
q(1− 1

p
),s
‖fk‖qBp

.
1

|I|s

∫
S(I)

|fk(z)|qdµr(z) + ‖µ− µr‖LCM
q(1− 1

p
),s
.

Letting k →∞ and then r → 1, we have limk→∞ ‖fk‖T qs (µ) = 0. Therefore i : Bp →
T qs (µ) is compact. �

3. The operators Tg and Ig from Bp to F (q, q − 2, s)

In this section, we consider the boundedness, compactness and essential norm of

operators Tg and Ig from Bp to F (q, q − 2, s). Before we state our results in this

section, let us recall some definitions.

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces and T : X → Y be a bounded

linear operator. The essential norm of T : X → Y is defined by

‖T‖e,X→Y = inf
K
{‖T −K‖X→Y : K is compact from X to Y }.

Let Φ be a closed subspace of X. Given f ∈ X, the distance from f to Φ, denoted

by distX(f,Φ), is defined by distX(f,Φ) = infg∈Φ ‖f − g‖X .

Suppose that 0 ≤ α <∞, 0 < q, s <∞. The space FL(q, q − 2, s, α) is the space

consisting of all f ∈ H(D) such that

‖f‖qL = sup
a∈D

(
log

2

1− |a|2

)α ∫
D
|f ′(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z) <∞.

It is easy to check that FL(q, q−2, s, α) is a Banach space under the norm ‖f‖qFL(q,q−2,s,α)

= |f(0)|q + ‖f‖qL when q ≥ 1. When α = 0, FL(q, q − 2, s, 0) is just the space
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F (q, q−2, s). Let F 0
L(q, q−2, s, α) denote the space of all f ∈ FL(q, q−2, s, α) such

that

lim
|a|→1

(
log

2

1− |a|2

)α ∫
D
|f ′(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z) = 0.

By Lemma 2.1 we easily obtain the following equivalent characterization of the

space FL(q, q − 2, s, α).

Lemma 3.1. Let 0 ≤ α < ∞, 0 < q, s < ∞. Then f ∈ FL(q, q − 2, s, α) if and

only if

sup
I⊆∂D

(
log 2
|I|

)α
|I|s

∫
S(I)

|f ′(z)|q(1− |z|2)q−2+sdA(z) <∞.

Moreover,

‖f‖qFL(q,q−2,s,α) ≈ sup
I⊆∂D

(
log 2
|I|

)α
|I|s

∫
S(I)

|f ′(z)|q(1− |z|2)q−2+sdA(z).

Lemma 3.2. Let 0 ≤ α <∞, 0 < q, s <∞. If g ∈ FL(q, q − 2, s, α), then

lim sup
|a|→1

((
log

2

1− |a|2

)α ∫
D
|g′(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

)1/q

≈ distFL(q,q−2,s,α)(g, F
0
L(q, q − 2, s, α)) ≈ lim sup

r→1−
‖g − gr‖FL(q,q−2,s,α).

Here gr(z) = g(rz), 0 < r < 1, z ∈ D.

Proof. For any given g ∈ FL(q, q − 2, s, α), then gr ∈ F 0
L(q, q − 2, s, α) and

‖gr‖FL(q,q−2,s,α) . ‖g‖FL(q,q−2,s,α).

Let δ ∈ (0, 1). We choose a ∈ (0, δ). Then ϕa(z) lies in a compact subset of D. So
limr→1 supz∈D |g′(ϕa(z))− rg′(rϕa(z))| = 0. Making a change of variables, we have

lim
r→1

sup
|a|≤δ

(
log

2

1− |a|2

)α ∫
D
|g′(z)− g′r(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

= lim
r→1

sup
|a|≤δ

(
log

2

1− |a|2

)α ∫
D
|g′(σa(z))− g′r(σa(z))|q(1− |z|2)q+s−2|ϕ′a(z)|qdA(z)

= lim
r→1

sup
|a|≤δ

sup
z∈D
|g′(ϕa(z))− g′r(ϕa(z))|q

(
log

2

1− |a|2

)α
×

×
∫
D

(1− |z|2)q+s−2|ϕ′a(z)|qdA(z) = 0.

By the definition of distance, we obtain

distFL(q,q−2,s,α)(g, F
0
L(q, q − 2, s, α)) = inf

f∈F 0
L(q,q−2,s,α)

‖g − f‖FL(q,q−2,s,α)

≤ lim
r→1
‖g − gr‖FL(q,q−2,s,α)
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= lim
r→1

(
sup
|a|>δ

(
log

2

1− |a|2

)α ∫
D
|g′(z)− g′r(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

) 1
q

+ lim
r→1

(
sup
|a|≤δ

(
log

2

1− |a|2

)α ∫
D
|g′(z)− g′r(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

) 1
q

.

(
sup
|a|>δ

(
log

2

1− |a|2

)α ∫
D
|g′(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

) 1
q

+ lim
r→1

(
sup
|a|>δ

(
log

2

1− |a|2

)α ∫
D
|g′r(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

) 1
q

.

Let ψr,a(z) = ϕra ◦ rϕa(z). Then ψr,a is an analytic self-map of D and ψr,a(0) = 0.

Making a change variable of z = ϕa(z) and applying the Littlewood’s subordination

theorem (see Theorem 1.7 of [4]), we have(
log

2

1− |a|2

)α ∫
D
|g′r(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

=

(
log

2

1− |a|2

)α ∫
D
|g′r(ϕa(z))|q(1− |ϕa(z)|2)q(1− |z|2)s−2dA(z)

≤
(

log
2

1− |a|2

)α ∫
D
|g′ ◦ ϕra ◦ ψr,a(z)|q(1− |ϕra ◦ ψr,a(z)|2)q(1− |z|2)s−2dA(z)

≤
(

log
2

1− |a|2

)α ∫
D
|g′ ◦ ϕra ◦ ψr,a(z)|q(1− |ϕra ◦ ψr,a(z)|2)q(1− |z|2)s−2dA(z)

≤
(

log
2

1− |a|2

)α ∫
D
|g′ ◦ ϕra(z)|q(1− |ϕra(z)|2)q(1− |z|2)s−2dA(z)

≤
(

log
2

1− |a|2

)α ∫
D
|g′(z)|q(1− |z|2)q−2(1− |ϕra(z)|2)sdA(z).

Since δ is arbitrary, we get

distFL(q,q−2,s,α)(g, F
0
L(q, q − 2, s, α))

. lim sup
|a|→1

((
log

2

1− |a|2

)α ∫
D
|g′(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

)1/q

.

On the other hand, for any g ∈ FL(q, q − 2, s, q(1− 1
p )),

distFL(q,q−2,s,α)(g, F
0
L(q, q − 2, s, α)) = inf

f∈F 0
L(q,q−2,s,α)

‖g − f‖FL(q,q−2,s,α)

& lim sup
|a|→1

((
log

2

1− |a|2

)α ∫
D
|g′(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

)1/q

,

implies the desired result. �
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Lemma 3.3. Let 1 < p < q < ∞, 0 < s < ∞. If 0 < r < 1 and g ∈ FL(q, q −
2, s, q(1− 1

p )), then Tgr : Bp → F (q, q − 2, s) is compact.

Proof. Given {fk} ⊂ Bp such that {fk} converges to zero uniformly on any

compact subset of D and supk ‖fk‖Bp ≤ 1. For each a ∈ D,

‖Tgrfk‖
q
F (q,q−2,s) = sup

a∈D

∫
D
|fk(z)|q|g′r(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

.
‖g‖q

FL(q,q−2,s,q(1− 1
p ))(

log 2
1−r2

)q(1− 1
p )

(1− r2)q
sup
a∈D

∫
D
|fk(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)sdA(z)

.
‖g‖q

FL(q,q−2,s,q(1− 1
p ))(

log 2
1−r2

)q(1− 1
p )

(1− r2)q

∫
D
|fk(z)|q(1− |z|2)q−2dA(z)

.
‖g‖q

FL(q,q−2,s,q(1− 1
p ))(

log 2
1−r2

)q(1− 1
p )

(1− r2)q

∫
D
|f ′k(z)|q(1− |z|2)q−2dA(z)

.
‖g‖q

FL(q,q−2,s,q(1− 1
p ))(

log 2
1−r2

)q(1− 1
p )

(1− r2)q
‖fk‖qBp

∫
D

1dA(z).

By the dominated convergence theorem, we get

lim
k→∞

‖Tgrfk‖
q
F (q,q−2,s) . lim

k→∞

∫
D
|fk(z)|q(1− |z|2)q−2dA(z)

.
∫
D

lim
k→∞

|fk(z)|q(1− |z|2)q−2dA(z) = 0,

as desired. The proof is complete. �

The following result is very useful to study the essential norm of operators on

some analytic function spaces, see [17].

Lemma 3.4. Let X,Y be two Banach spaces of analytic functions on D. Suppose

that

(1) The point evaluation functionals on Y are continuous.

(2) The closed unit ball of X is a compact subset of X in the topology of uniform

convergence on compact sets.

(3) T : X → Y is continuous when X and Y are given the topology of uniform

convergence on compact sets.

Then, T is a compact operator if and only if for any bounded sequence {fn} in X

such that {fn} converges to zero uniformly on every compact set of D, then the

sequence {Tfn} converges to zero in the norm of Y .
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Theorem 3.1. Let 1 < p < q < ∞, 0 < s < ∞ and g ∈ H(D). Then Tg : Bp →
F (q, q − 2, s) is bounded if and only if g ∈ FL(q, q − 2, s, q(1− 1

p )).

Proof. Suppose that f ∈ Bp and g ∈ FL(q, q−2, s, q(1− 1
p )). From Lemma 3.2 we

see that dµg(z) = |g′(z)|q(1− |z|2)q−2+sdA(z) is a q(1− 1
p )-logarithmic s-Carleson

measure. By Theorem 1, for any I ⊆ ∂D we deduce that
1

|I|s

∫
S(I)

|(Tgf)′(z)|q(1− |z|2)q−2+sdA(z)

=
1

|I|s

∫
S(I)

|f(z)|q|g′(z)|q(1− |z|2)q−2+s+ q
p dA(z)

=
1

|I|s

∫
S(I)

|f(z)|qdµg(z) . ‖f‖qBp‖g‖
q
FL(q,q−2,s) <∞,

which implies that Tg : Bp → F (q, q − 2, s) is bounded by Lemma 3.1 again.

Conversely, suppose that Tg : Bp → F (q, q − 2, s) is bounded. For any I ⊆ ∂D,
let a = (1−|I|)ζ, where ζ is the center of I. Then 1−|a| ≈ |1−az| ≈ |I|, z ∈ S(I).

Let fa be defined as in Lemma 2.2. We have(
log 2
|I|

)q(1− 1
p )

|I|s

∫
S(I)

|g′(z)|q(1− |z|2)q−2+sdA(z)

.
1

|I|s

∫
S(I)

|fa(z)|q|g′(z)|q(1− |z|2)q−2+sdA(z)

.
1

|I|s

∫
S(I)

|(Tgfa)′(z)|q(1− |z|2)q−2+sdA(z)

.‖Tgfa‖qF (q,q−2,s) <∞,

which implies that g ∈ FL(q, q − 2, s, q(1− 1
p )) by Lemma 3.1. �

Theorem 3.2. Let 1 < p < q < ∞, 0 < s < ∞ and g ∈ H(D). Then Ig : Bp →
F (q, q − 2, s) is bounded if and only if g ∈ H∞.

Proof. Let f ∈ Bp and g ∈ H∞. By the fact that Bp ⊂ B, we get∫
D
|(Igf)′(z)|q(1− |z|2)q−2

(
1− |ϕa(z)|2

)s
dA(z)

=

∫
D
|f ′(z)|q|g(z)|q(1− |z|2)q−2

(
1− |ϕa(z)|2

)s
dA(z)

=‖g‖qH∞‖f‖
q−p
B

∫
D
|f ′(z)|p(1− |z|2)p−2dA(z) . ‖g‖qH∞‖f‖

q
Bp

<∞,

which implies that Ig : Bp → F (q, q − 2, s) is bounded.

Conversely, assume that Ig : Bp → F (q, q − 2, s) is bounded. For a ∈ D and

r > 0, let D(a, r) = {z ∈ D : β(a, z) < r} denote the Bergman metric disk centered

at a with radius r. Here β(a, z) is the Bergman metric between z and a. For any
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w ∈ D, let Fw be defined as in Lemma 2.2. Using the subharmonic property of |g|q

and the fact that (see [23])

(1− |w|2)2

|1− w̄z|4
≈ 1

(1− |z|2)2
≈ 1

(1− |w|2)2
≈ 1

|D(w, r)|
, z ∈ D(w, r),

where |D(w, r)| denotes the area of the Bergman disk D(w, r), we have

∞ >‖IgFw‖qF (q,q−2,s)

& sup
a∈D

∫
D
|F ′w(z)|q|g(z)|q(1− |z|2)q−2

(
1− |ϕa(z)|2

)s
dA(z)

&
∫
D
|F ′w(z)|q|g(z)|q(1− |z|2)q−2

(
1− |ϕw(z)|2

)s
dA(z)

&
∫
D(w,r)

|g(z)|q(1− |z|2)−2
(
1− |ϕw(z)|2

)s
dA(z)

&
1

(1− |w|2)2

∫
D(w,r)

|g(z)|qdA(z) & |g(w)|q,

which implies

∞ > ‖IgFw‖qF (q,q−2,s) & ‖g‖
q
H∞ ,

as desired. The proof is complete. �

Remark. Let 1 < p < q <∞, 0 < s <∞ and g ∈ H(D). From the fact that

Mgf(z) = f(0)g(0) + Igf(z) + Tgf(z),

we see that Mg : Bp → F (q, q − 2, s) is bounded if and only if

g ∈ FL(q, q − 2, s, q(1− 1

p
)) ∩H∞.

Theorem 3.3. Let 1 < p < q < ∞, 0 < s < ∞ and g ∈ H(D). If Tg : Bp →
F (q, q − 2, s) is bounded, then

‖Tg‖e,Bp→F (q,q−2,s) ≈ distFL(q,q−2,s,q(1− 1
p ))(g, F

0
L(q, q − 2, s, q(1− 1

p
))).

Proof. Let {ak} be a sequence in D such that limk→∞ |ak| = 1. For each k, set

fak(z) =

(
1

log 2
1−|ak|2

)1/p

log
2

1− akz
.

Then {fak} is bounded in Bp and {fak} converges to zero uniformly on every

compact subset of D. For any given compact operator K : Bp → F (q, q − 2, s), by
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Lemma 3.4 we have limk→∞ ‖Kfak‖F (q,q−2,s) = 0. So

‖Tg −K‖ & lim sup
k→∞

‖(Tg −K)fak‖F (q,q−2,s)

& lim sup
k→∞

(
‖Tgfak‖F (q,q−2,s) − ‖Kfak‖F (q,q−2,s)

)
= lim sup

k→∞
‖Tgfak‖F (q,q−2,s)

≥ lim sup
k→∞

(∫
D
|fak(z)|q|g′(z)|q(1− |z|2)q−2(1− |ϕak(z)|2)sdA(z)

) 1
q

& lim sup
|ak|→1

((
log

2

1− |ak|2

)q(1− 1
p ) ∫

D
|g′(z)|q(1− |z|2)q−2(1− |ϕak(z)|2)sdA(z)

) 1
q

.

Hence

‖Tg‖e,Bp→F (q,q−2,s)

& lim sup
k→∞

((
log

2

1− |ak|2

)q(1− 1
p ) ∫

D
|g′(z)|q(1− |z|2)q−2(1− |ϕak(z)|2)sdA(z)

) 1
q

.

By Lemma 3.2 and the arbitrariness of {ak}, we get that

‖Tg‖e,Bp→F (q,q−2,s) & distFL(q,q−2,s,q(1− 1
p ))(g, F

0
L(q, q − 2, s, q(1− 1

p
))).

On the other hand, by Lemma 3.3, Tgr : Bp → F (q, q − 2, s) is compact. Then

‖Tg‖e,Bp→F (q,q−2,s) ≤ ‖Tg − Tgr‖ = ‖Tg−gr‖ ≈ ‖g − gr‖FL(q,q−2,s,q(1− 1
p )).

Using Lemma 3.2 again, we get

‖Tg‖e,Bp→F (q,q−2,s) . lim sup
r→1−

‖g − gr‖FL(q,q−2,s,q(1− 1
p ))

≈ distFL(q,q−2,s,q(1− 1
p ))(g, F

0
L(q, q − 2, s, q(1− 1

p
))).

The proof is complete. �

By the well-known result that T : X → Y is compact if and only if ‖T‖e,X→Y =

0, we get the following result by Theorem 3.3 directly.

Corollary 3.1. Let 1 < p < q < ∞ and 0 < s < ∞. If g ∈ H(D), then Tg : Bp →
F (q, q − 2, s) is compact if and only if

g ∈ F 0
L(q, q − 2, s, q(1− 1

p
)).

Theorem 3.4. Let 1 < p < q < ∞ and 0 < s < ∞. If g ∈ H(D) such that

Ig : Bp → F (q, q − 2, s) is bounded, then

‖Ig‖e,Bp→F (q,q−2,s) ≈ ‖g‖H∞ .
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Proof. Let {ak} and K be defined as in the proof of Theorem 3.3. Set

Fak(z) =
1− |ak|2

ak(1− akz)
, z ∈ D.

By Lemma 2.2 we see that Fak ∈ Bp. By Lemma 3.4 we get limk→∞ ‖KFak‖F (q,q−2,s) =

0. Hence,

‖Ig −K‖ & lim sup
k→∞

‖(Ig −K)Fak‖F (q,q−2,s)

& lim sup
k→∞

(
‖IgFak‖F (q,q−2,s) − ‖KFak‖F (q,q−2,s)

)
= lim sup

k→∞
‖IgFak‖F (q,q−2,s),

which implies

‖Ig‖e,Bp→F (q,q−2,s) & lim sup
k→∞

‖IgFak‖F (q,q−2,s).

Similarly to the proof of Theorem 3.2 we get that ‖IgFak‖F (q,q−2,s) & |g(ak)|, which
implies that

‖Ig‖e,Bp→F (q,q−2,s) & ‖g‖H∞ .

On the other hand, by Theorem 3.2 we obtain

‖Ig‖e,Bp→F (q,q−2,s) = inf
K
‖Ig −K‖ ≤ ‖Ig‖ . ‖g‖H∞ .

The proof is complete. �

From Theorem 3.4 we get the following result.

Corollary 3.2. Let 1 < p < q < ∞ and 0 < s < ∞. If g ∈ H(D), then Ig : Bp →
F (q, q − 2, s) is compact if and only if g = 0.
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Abstract. In recent years, nonhomogeneous wavelet frames have been widely studied by many
researchers, while the ones in L2(R+) have not. Some practical applications indicate that it is
desirable to have a nonhomogeneous dual wavelet frame in L2(R+) because of the time variable
can not take negative values in signal sampling. In addition, similar to the homogeneous dual

wavelet frames, the nonhomogeneous ones derived from refinable functions have fast wavelet algo-
rithms. In view of this, under the setting of L2(R+), we study the properties of nonhomogeneous
dual wavelet frames, and obtain a construction of nonhomogeneous dual wavelet frames from a
pair of p-refinable functions.

MSC2010 numbers: 42C40; 42C15.
Keywords: Bessel sequence; wavelet frame; nonhomogeneous dual wavelet frame;
Walsh-Fourier transform.

1. Introduction

The concept of frames was introduced already in 1952 by Duffin and Schaeffer [10]

in the study of nonharmonic Fourier series, but the importance of this concept was

not recognized by mathematicians until the ground-breaking work of Daubechies

et al. [7]. In the past three decades, the theory of frames has attracted many

mathematicians and engineers, and has achieved fruitful results (see [5, 6, 27, 28]

and many references therein).

An important example about frames is wavelet frames, which are generated

by translation and dilation of a finite number of functions. Wavelet frames have

many good properties that make them useful in the study of signal processing,

image restorations, sampling theory, function spaces [2, 17, 24, 32] and so forth.

In order to make the wavelet frames have more applications, several generalized

notions of wavelet frames are proposed and studied, namely tight wavelet frames

[18], dual wavelet frames [19], (quasi) affine frames and (quasi) affine dual frames

[3, 27]. One of the fundamental methods to construct tight wavelet frames from

refinable functions is the unitary extension principle (UEP) which was proposed

1Supported by the National Natural Science Foundation of China (Grant No. 11961072);
the Natural Science Basic Research Program of Shanxi (Grant No: 2020JM-547); the Doctoral
Research Project of Yan’an University (Grant No.YDBK2017-21).
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by Ron and Shen [27, 28], and then was extended by Daubechies et al. [5] in the

form of the oblique extension principle (OEP). They gave sufficient conditions for

constructing tight affine frames and affine dual frames from any given refinable

functions. From then on, many works along this direction can be found in [1, 4, 25,

34]. Observe that all above works main focus on homogeneous (dual) wavelet frames.

In applications, fast wavelet transforms are our main concern, and nonhomogeneous

(dual) wavelet frames derived from refinable functions have fast wavelet algorithms.

Han in [20–22] comprehensive studied nonhomogeneous (dual) wavelet frames and

they connect with homogeneous ones. Similar to the homogeneous dual wavelet

frames, the nonhomogeneous ones derived from refinable functions have fast wavelet

algorithms, which play an important role in wavelet analysis.

Wavelets and frames have been generalized in many different settings. For example,

Lang [23] constructed compactly supported orthogonal wavelets on the locally

compact Cantor dyadic group by following the procedure of Daubechies [8] (or

see [9]) via scaling filters, and these wavelets turn out to be certain lacunary Walsh

series on the real line. Recent works about wavelets and frames on the Cantor

group and Vilenkin groups can be found in [12–16]. It is worth noting that the first

constructions of wavelet frames on the positive half line with binary addition were

proposed by Farkov [11], in which wavelets and frames on the half line R+ related to

the Walsh-Dirichlet kernel and its modification are considered. Shah and Debnath

[30] studied Dyadic wavelet frames on a half-line using the Walsh-Fourier transform.

Shah in [31] give an explicit construction of tight wavelet frames generated by the

Walsh polynomials on positive half-line R+ using the extension principles, and

derive the wavelet frames decomposition and reconstruction formulas.

Intuitively, we can obtain L2(R+) wavelet frames by projection from L2(R) ones,

while it is not the case for L2(R+) since the projections do not have complete

affine structure. Furthermore, in many practical problems of nature and physics, the

time variable can not take negative values in signal sampling; and in mathematics,

R+ is not closed according to the usual addition “+”. As a result, the classical

Fourier transform method can not be directly applied to the wavelet frames in

L2(R+). However, R+ is closed in terms of the operation “⊕”, and the Walsh-Fourier

transform is defined by ⊕.
Inspired by the above observation, in this paper we investigate nonhomogeneous

dual wavelet frames under the setting of L2(R+). In Section 2 we give some preliminaries

and notations. In Section 3 we present some properties of nonhomogeneous dual
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wavelet frames in L2(R+). Section 4 is devoted to constructing nonhomogeneous

dual wavelet frames from a pair of general p-refinable functions.

2. Preliminaries and notations

We first recall some basics of addition “⊕"and subtraction “	". We denote by Z,
Z+ and N the set of integers, the set of nonnegative integers and the set of positive

integers, respectively; and by Nt the set of {0, 1, · · · , t− 1} for t ∈ N. Let p > 1 be

a fixed integer. For x, y ∈ Np, we define the ⊕ and 	 on Np respectively by

x⊕ y = (x+ y)(mod p) =

{
x+ y, x+ y < p,
x+ y − p, x+ y > p,

and

x	 y = (x− y)(mod p) =

{
x− y, x > y,
x− y + p, x < y.

Given x ∈ R+, we denote by [x] its integer part, and by {x} its fraction part. Then

we have

(2.1) x =

kx∑
j=1

x−jp
j−1 +

∞∑
j=1

xjp
−j = [x] + {x},

where kx ∈ Z+, xj , x−j ∈ Np for j ∈ N, and the sequence {xj}∞j=1 is required to

have only finitely many nonzero terms when x is rational. For y, ω ∈ R+, we define

yj , y−j and ωj , ω−j similarly. Using the above operations on Np, we define the ⊕
and 	 on R+ respectively by

(2.2) x⊕ y =

∞∑
j=1

(xj ⊕ yj)pj−1 +

∞∑
j=1

(x−j ⊕ y−j)p−j

and

(2.3) x	 y =

∞∑
j=1

(xj 	 yj)pj−1 +

∞∑
j=1

(x−j 	 y−j)p−j

for x, y ∈ R+. Note that z = x	 y if z ⊕ y = x, and it is easy to check that R+ is

a group under the operation “⊕ ”. Given x, ω ∈ R+, write

(2.4) χ(x, ω) = exp

2πi

p

∞∑
j=1

(xjω−j + x−jωj)

 .

For a function f ∈ L1(R+) ∩ L2(R+), its Walsh-Fourier transform is defined by

Ff(·) =

∫
R+

f(x)χ(x, ·)dx,

and is extended uniquely to the whole space L2(R+). The details of the Walsh-

Fourier transform and Walsh series can be found in [29]. Similarly to the classical

Fourier transform, the Walsh-Fourier transform is an unitary operator on L2(R+),

and the system {χ(k, ·) : k ∈ Z+} is an orthonormal basis for L2(T) with T = [0, 1).
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We define the dilation operator D and the translation operator Tk with k ∈ Z+

respectively by

Df(·) = p1/2f(p ·) and Tkf(·) = f(· 	 k) for f ∈ L2(R+).

Obviously, they are both unitary operators on L2(R+). And we write

fj,k = DjTkf for j ∈ Z and k ∈ Z+.

Let J ∈ Z, ψ0 ∈ L2(R+) and Ψ = {ψ1, ψ2, · · · , ψL} with L ∈ N be a finite subset in

L2(R+). We define the homogeneous wavelet systemX(Ψ) and the nonhomogeneous

wavelet system XJ(ψ0, Ψ) respectively by

(2.5) X(Ψ) = {ψl,j,k : j ∈ Z, k ∈ Z+, 1 ≤ l ≤ L}

and

(2.6) XJ(ψ0, Ψ) = {ψ0,J,k : k ∈ Z+} ∪ {ψl,j,k : j ≥ J, k ∈ Z+, 1 ≤ l ≤ L}.

And we write X0(ψ0, Ψ) = X(ψ0, Ψ) for simplicity. Let X(Ψ̃) and XJ(ψ̃0, Ψ̃) be

defined similarly. We say X(Ψ) is a homogeneous wavelet frame (HWF) in L2(R+)

if there exist two constants 0 < A ≤ B <∞ such that

(2.7) A‖f‖2 ≤
L∑

l=1

∑
j∈Z

∑
k∈Z+

|〈f, ψl,j,k〉|2 ≤ B‖f‖2 for f ∈ L2(R+),

where A,B are called frame bounds. It is called a Bessel sequence in L2(R+) if

only the right-hand side of (2.7) holds, where B is called a Bessel bound. We say

(X(Ψ), X(Ψ̃)) is a homogeneous dual wavelet frame (HDWF) in L2(R+) if X(Ψ)

and X(Ψ̃) are both Bessel sequences in L2(R+), and the identity

(2.8) 〈f, g〉 =

L∑
l=1

∑
j∈Z

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉

holds for f, g ∈ L2(R+). Similarly, we say XJ(ψ0, Ψ) is a nonhomogeneous wavelet

frame (NWF) in L2(R+) if there exist two constants 0 < A ≤ B <∞ such that

(2.9)

A‖f‖2 ≤
∑
k∈Z+

|〈f, ψ0,J,k〉|2 +

L∑
l=1

∞∑
j=J

∑
k∈Z+

|〈f, ψl,j,k〉|2 ≤ B‖f‖2 for f ∈ L2(R+),

where A,B are called frame bounds. It is called a Bessel sequence in L2(R+) if

only the right-hand side of (2.9) holds, where B is called a Bessel bound. We

say
(
XJ(ψ0; Ψ), XJ(ψ̃0; Ψ̃)

)
is a nonhomogeneous dual wavelet frame (NDWF) in

L2(R+) if XJ(ψ0; Ψ) and XJ(ψ̃0; Ψ̃) are both Bessel sequences in L2(R+), and the
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identity

(2.10) 〈f, g〉 =
∑
k∈Z+

〈f, ψ̃0,J,k〉〈ψ0,J,k, g〉+

L∑
l=1

∞∑
j=J

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉

holds for f, g ∈ L2(R+). It is easy to check that both XJ(ψ0; Ψ) and XJ(ψ̃0; Ψ̃) are

frames for L2(R+), and reconstruction formula

f =
∑
k∈Z+

〈f, ψ̃0,J,k〉ψ0,J,k +

L∑
l=1

∞∑
j=J

∑
k∈Z+

〈f, ψ̃l,j,k〉ψl,j,k,

or

f =
∑
k∈Z+

〈f, ψ0,J,k〉ψ̃0,J,k +

L∑
l=1

∞∑
j=J

∑
k∈Z+

〈f, ψl,j,k〉ψ̃l,j,k

holds for f ∈ L2(R+) if
(
XJ(ψ0; Ψ), XJ(ψ̃0; Ψ̃)

)
is a NDWF in L2(R+).

Nonhomogeneous (dual) wavelet frames play an important role in frame theory

because they are related to filter banks and have a natural relationship with refinable

structures as pointed out in [26] where this type of wavelet frames was introduced

for the first time. It is worth noting that Han named the term ‘nonhomogeneous’

for this type of frames and widely studied them in the distribution space and in

L2(Rd) [21, 22]. In particular, Han proved that if
(
XJ0

(ψ0; Ψ), XJ0
(ψ̃0; Ψ̃)

)
is a

NDWF in L2(Rd) for some J0 ∈ Z, then
(
XJ(ψ0; Ψ), XJ(ψ̃0; Ψ̃)

)
is a NDWF in

L2(Rd) for a general J ∈ Z, and (X(Ψ), X(Ψ̃)) is a HDWF in L2(Rd).

3. Some properties of NDWFs in L2(R+)

This section is devoted to some properties of NDWFs in L2(R+). Observe that

the dilation operator and the Walsh-Fourier transforms are unitary operator on

L2(R+). Let {Tkψ0 : k ∈ Z+} and {Tkψ̃0 : k ∈ Z+} be Bessel sequences in L2(R+),

define a quasi-interpolatory operator PJ on L2(R+) with J ∈ Z by

(3.1) PJf =
∑
k∈Z+

〈f, ψ̃0,J,k〉ψ0,J,k for f ∈ L2(R+).

It is not difficult to prove that {ψ0,J,k : k ∈ Z+} and {ψ̃0,J,k : k ∈ Z+} are also Bessel
sequences for each J ∈ Z under the Bessel assumptions of integer translation of ψ0

and ψ̃0. Therefore, PJ is a bounded operator by the Cauchy-Schwarz inequality,

and is well defined. Also we have next result.

Lemma 3.1. Given J ∈ Z, let {Tkψ0 : k ∈ Z+} and {Tkψ̃0 : k ∈ Z+} be Bessel

sequences in L2(R+), then we have

(3.2) lim
J→−∞

PJf = 0 for f ∈ L2(R+).
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Proof. Fix f ∈ L2(R+). For an arbitrary ε > 0, let g ∈ L2(R+) with supp(g) ⊂
[0, R] for some R > 0 such that ‖f − g‖ < ε. Then by the above argument, we have

‖PJf‖ ≤ ‖PJ(f − g)‖+ ‖PJg‖ ≤ Cε+ ‖PJg‖ for some constant C > 0.

Next, we prove lim
J→−∞

PJg = 0 to complete the proof. We estimate

‖PJg‖2 ≤ C
∑
k∈Z+

|〈g, ψ̃0,J,k〉|2 ≤ C‖g‖2
∑
k∈Z+

∫
[0, R]

|ψ̃0,J,k(x)|2dx

= C‖g‖2
∑
k∈Z+

∫
[0, R]

|pJ/2ψ̃0(pJx	 k)|2dx = C‖g‖2
∫
∪k∈Z+ [0, pJR+k]

|ψ̃0(y)|2dy,

(3.3)

it tends to 0 as J → −∞ by Lebesgue’s dominate convergence theorem, and thus

lim
J→−∞

PJg = 0. �

The following theorem shows that the equivalence of NDWFs between different

scale levels, and an NDWF in L2(R+) can derive an HDWF.

Theorem 3.1. Given an integer J0. Let ψ0 ∈ L2(R+) and Ψ = {ψ1, ψ2, · · · , ψL}
be a finite subset in L2(R+). Suppose

(
XJ0

(ψ0; Ψ), XJ0
(ψ̃0; Ψ̃)

)
is a NDWF for

L2(R+), then
(
XJ(ψ0; Ψ), XJ(ψ̃0; Ψ̃)

)
is a NDWF for L2(R+) for all integer J .

In particular,
(
X(Ψ), X(Ψ̃)

)
is a HDWF for L2(R+).

Proof. For any integer J and f, g ∈ L2(R+), we have

(3.4) 〈f, ψ̃0,J,k〉 = 〈DJ0−Jf, ψ̃0,J0,k〉, 〈ψ0,J,k, g〉 = 〈ψ0,J0,k, D
J0−Jg〉

and

(3.5) 〈f, ψ̃l,j,k〉 = 〈DJ0−Jf, ψ̃l,j+J0−J,k〉, 〈ψl,j,k, g〉 = 〈ψl,j+J0−J,k, D
J0−Jg〉

due to D is a unitary operator on L2(R+). And thus, we have∑
k∈Z+

〈f, ψ̃0J,k〉〈ψ0,J,k, g〉+

L∑
l=1

∞∑
j=J

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉(3.6)

=
∑
k∈Z+

〈DJ0−Jf, ψ̃0J0,k〉〈ψ0,J0,k, D
J0−Jg〉

+

L∑
l=1

∞∑
j=J

∑
k∈Z+

〈DJ0−Jf, ψ̃l,j+J0−J,k〉〈ψl,j+J0−J,k, D
J0−Jg〉

=
∑
k∈Z+

〈DJ0−Jf, ψ̃0,J0,k〉〈ψ0,J0,k, D
J0−Jg〉

+

L∑
l=1

∞∑
j=J0

∑
k∈Z+

〈DJ0−Jf, ψ̃l,j,k〉〈ψl,j,k, D
J0−Jg〉,
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it equals to 〈DJ0−Jf, DJ0−Jg〉, and then equals to 〈f, g〉, since (XJ0
(ψ0; Ψ),XJ0

(ψ̃0; Ψ̃))

is a NWDF for L2(R+). So
(
XJ(ψ0; Ψ), XJ(ψ̃0; Ψ̃)

)
is a NDWF for L2(R+) for all

integer J , and thus

(3.7) 〈PJf, g〉+

L∑
l=1

∞∑
j=J

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉 = 〈f, g〉 for f, g ∈ L2(R+).

Letting J → −∞ in (3.7) and using Lemma 3.1, we obtain

(3.8)
L∑

l=1

∑
j∈Z

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉 = 〈f, g〉 for f, g ∈ L2(R+).

Therefore,
(
X(Ψ), X(Ψ̃)

)
is a HDWF for L2(R+). The proof is completed. �

Theory 3.1 tells us that the study of NDWFs of the form
(
XJ0

(ψ0; Ψ), XJ0
(ψ̃0; Ψ̃)

)
with general J0 ∈ Z can reduces to the study of NDWFs with J0 = 0. The next

theorem characterizes NDWFs in L2(R+) under the general Bessel assumption.

Theorem 3.2. Let ψ0 ∈ L2(R+) and Ψ = {ψ1, ψ2, · · · , ψL} be a finite subset in

L2(R+). Suppose {Tkψl : k ∈ Z+, 0 ≤ l ≤ L} and {Tkψ̃l : k ∈ Z+, 0 ≤ l ≤ L} are

Bessel sequences in L2(R+). Then
(
X(ψ0, Ψ), X(ψ̃0, Ψ̃)

)
is a NDWF for L2(R+)

if and only if

(3.9) lim
J→∞

〈PJf, g〉 = 〈f, g〉

and

(3.10) 〈PJ+1f, g〉 = 〈PJf, g〉+

L∑
l=1

∑
k∈Z+

〈f, ψ̃l,J,k〉〈ψl,J,k, g〉

for f, g ∈ L2(R+) and J ∈ Z, where PJ is defined as in (3.1).

Proof. “⇐”: It follows from (3.10) that

(3.11) 〈PJ+1f, g〉 = 〈P0f, g〉+

L∑
l=1

J∑
j=0

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉

for f, g ∈ L2(R+) and J ∈ Z. Letting J →∞ in (3.11) and using (3.9), we have

(3.12) 〈f, g〉 = 〈P0f, g〉+

L∑
l=1

∞∑
j=0

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉

for f, g ∈ L2(R+). Therefore,
(
X(ψ0, Ψ), X(ψ̃0, Ψ̃)

)
is a NDWF for L2(R+).
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“⇒”: Suppose
(
X(ψ0, Ψ), X(ψ̃0, Ψ̃)

)
is a NDWF for L2(R+), then (XJ(ψ0, Ψ),

XJ(ψ̃0, Ψ̃)) is a NDWF for L2(R+) for all integer J by Theory 3.1. It follows that

〈f, g〉 = 〈PJ+1f, g〉+

L∑
l=1

∞∑
j=J+1

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉

= 〈PJf, g〉+

L∑
l=1

∞∑
j=J

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉(3.13)

for f, g ∈ L2(R+) and J ∈ Z, which leads to (3.10), and thus

(3.14) 〈PJ+1f, g〉 = 〈P0f, g〉+

L∑
l=1

J∑
j=0

∑
k∈Z+

〈f, ψ̃l,j,k〉〈ψl,j,k, g〉

for f, g ∈ L2(R+) and J ∈ Z. Also, observe that
(
X(ψ0, Ψ), X(ψ̃0, Ψ̃)

)
is a NDWF

for L2(R+). Letting J →∞ in (3.14), we obtain (3.9). The proof is completed. �

4. Refinable functions based construction of NDWFs in L2(R+)

This section is devoted to constructing NDWFs from a pair of general refinable

functions.

For f, g ∈ L2(R+), we define

(4.1) [f, g](·) =
∑
k∈Z+

f(· ⊕ k)g(· ⊕ k) a.e. on R+,

then it belongs to L1(T), and is well defined. And we write

(4.2) D := {f ∈ L2(R+) : Ff ∈ L∞(R+) and supp(Ff) is bounded},

where supp(Ff) = {ξ ∈ R+ : Ff(ξ) 6= 0} for f ∈ L2(R+) and is well defined up to

a set 0. It is not difficult to verify that D is dense in L2(R+).

Now, let us make some assumptions:

Assumption 1. ψ0, ψ̃0 ∈ L2(R+) are p-refinable functions with symbols in

L∞(T), i.e., there exist m0, m̃0 ∈ L∞(T) such that

(4.3) Fψ0(p ·) = m0(·)Fψ0(·) and F ψ̃0(p ·) = m̃0(·)F ψ̃0(·) a.e. on R+.

Assumption 2. lim
j→∞

Fψ0(p−j ·)F ψ̃0(p−j ·) = 1 a.e. on R+.

Assumption 3. [Fψ0, Fψ0], [F ψ̃0, F ψ̃0] ∈ L∞(T).

Given L ∈ N, let ml, m̃l ∈ L∞(T) with 1 ≤ l ≤ L, and define ψl and ψ̃l by

(4.4) Fψl(p ·) = ml(·)Fψ0(·) and F ψ̃l(p ·) = m̃l(·)F ψ̃0(·) a.e. on R+.
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With ml and m̃l, l = 0, 1, · · · , L as the framelet symbols, we write

(4.5)

M(·) =


m0(·) m1(·) · · · mL(·)

m0(· ⊕ 1/p) m1(· ⊕ 1/p) · · · mL(· ⊕ 1/p)
...

...
. . .

...
m0(· ⊕ (p− 1)/p) m1(· ⊕ (p− 1)/p) · · · mL(· ⊕ (p− 1)/p)


and

(4.6)

M̃(·) =


m̃0(·) m̃1(·) · · · m̃L(·)

m̃0(· ⊕ 1/p) m̃1(· ⊕ 1/p) · · · m̃L(· ⊕ 1/p)
...

...
. . .

...
m̃0(· ⊕ (p− 1)/p) m̃1(· ⊕ (p− 1)/p) · · · m̃L(· ⊕ (p− 1)/p)


We will study what ml, m̃l ∈ L∞(T) with 0 ≤ l ≤ L are qualified for (X(ψ0, Ψ),

X(ψ̃0, Ψ̃)) to be a NDWF in L2(R+). We begin with some lemmas for latter use.

The following lemma shows that Assumption 3 is equivalent to the fact that

{Tkψ0 : k ∈ Z+} is a Bessel sequence in L2(R+).

Lemma 4.1. ([33, Theorem 2.1]) Let ψ0 ∈ L2(R+). Then {Tkψ0 : k ∈ Z+} is a

Bessel sequence in L2(R+) with Bessel bound B if and only if

[Fψ0, Fψ0](·) ≤ B a.e. on T.

Observe that {χ(k, ·) : k ∈ Z+} is an orthonormal basis for L2(T) and the

Walsh-Fourier transform is a unitary operator on L2(R+) .

Lemma 4.2. Let k ∈ Z+ and f, ψ ∈ L2(R+). Then, 〈f, ψj,k〉 is the k-th Walsh

Fourier coefficient of [pj/2Ff(pj ·), Fψ(·)] for each j ∈ Z+. In particular, we have

(4.7) [pj/2Ff(pj ·), Fψ(·)](ξ) =
∑
k∈Z+

〈f, ψj,k〉χ(k, ξ) a.e. ξ ∈ R+,

if {Tkψ : k ∈ Z+} is a Bessel sequence in L2(R+).

Proof. Since f, ψ ∈ L2(R+), we have Ff(pj ·)Fψ(·) ∈ L1(R+), and thus∫
T
[pj/2Ff(pj ·), Fψ(·)](ξ)χ(k, ξ)dξ =pj/2

∫
R+

Ff(pjξ)Fψ(ξ)χ(k, ξ)dξ

=p−j/2
∫
R+

Ff(ξ)Fψ(p−jξ)χ(k, p−jξ)dξ

=

∫
R+

Ff(ξ)[F (ψj,k) (·)] (ξ)dξ = 〈f, ψj,k〉,(4.8)

so 〈f, ψj,k〉 is the k-th Walsh-Fourier coefficient of [pj/2Ff(pj ·), Fψ(·)] for each

j ∈ Z+.
84



NONHOMOGENEOUS DUAL WAVELET FRAMES WITH ...

If {Tkψ : k ∈ Z+} is a Bessel sequence in L2(R+), then {DjTkψ : k ∈ Z+}, that
is, {ψj,k : k ∈ Z+} is a Bessel sequence in L2(R+) for each j ∈ Z+ due to Dj being

unitary, it follows that {〈f, ψj,k : k ∈ Z+〉} ∈ `2(Z+), and thus (4.7) holds. �

As an application of Lemma 4.2, we have the following lemma immediately

Lemma 4.3. Let ψ0, ψ̃0 ∈ L2(R+) satisfy Assumption 3. Then we have

〈Pnf, g〉 = pn
∫
T
[Ff(pn·), F ψ̃0(·)](ξ)[Fψ0, Fg(pn·)](ξ)dξ

for f, g ∈ L2(R+) and n ∈ Z, where Pn is defined as in (3.1).

The following two lemmas are necessary for us to prove the main result.

Lemma 4.4. Let ψ0, ψ̃0 ∈ L2(R+) satisfy Assumptions 2 and 3. Then

lim
n→∞

〈Pnf, g〉 = 〈f, g〉 for f, g ∈ D,

where D is defined as in (4.2).

Proof. By Lemma 4.3, we have

〈Pnf, g〉 = pn
∫
[0, 1]

[Ff(pn·), F ψ̃0(·)](ξ)[Fψ0, Fg(pn·)](ξ)dξ.

Since p > 1 and supp(Ff) and supp(Fg) are bounded, then there exists N > 0

such that supp(Ff(pn·)), supp(Fg(pn·)) ⊂ [0, 1) when n > N , and thus

[Ff(pn·), F ψ̃0(·)](ξ) = Ff(pnξ)F ψ̃0(ξ)

and

[Fψ0(·), Fg(pn·)](ξ) = Fg(pnξ)Fψ0(ξ)

for a.e. ξ ∈ (0, 1) and n > N . So

〈Pnf, g〉 = pn
∫
[0, 1]

Ff(pnξ)Fg(pnξ)F ψ̃0(ξ)Fψ0(ξ)dξ

=

∫
R+

Ff(ξ)Fg(ξ)F ψ̃0(p−nξ)Fψ0(p−nξ)χ[0, 1](p
−nξ)dξ(4.9)

when n > N . By Assumption 3 and the Cauchy-Schwarz inequality, we have∣∣∣F ψ̃0(·)Fψ0(·)
∣∣∣ ≤ ∑

l∈Z+

∣∣∣F ψ̃0(· ⊕ l)Fψ0(· ⊕ l)
∣∣∣

≤
(

[F ψ̃0, F ψ̃0](·)
)1/2

([Fψ0, Fψ0](·))1/2 ≤ C

for some constant C > 0. Therefore, the integrand in (4.9) is dominated in module

by C|Ff(·)Fg(·)|, which belongs to L1(R+). Applying the Lebesgue dominated

convergence theorem to (4.9), we obtain

lim
n→∞

〈Pnf, g〉 = 〈f, g〉

by Assumption 2. �
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Lemma 4.5. Let ψ0, ψ̃0 ∈ L2(R+) satisfy Assumptions 1 and 3. Assume that

ml, m̃l ∈ L∞(T) with 1 ≤ l ≤ L, are such that

(4.10) M(·)M̃∗(·) = Ip a.e. on T,

where M and M̃ are defined as in (4.5) and (4.6). Define ψl, ψ̃l, 1 ≤ l ≤ L as in

(4.4). Then

(4.11) 〈Pn+1f, g〉 = 〈Pnf, g〉+

L∑
l=1

∑
k∈Z+

〈f, ψ̃l,n,k〉〈ψl,n,k, g〉

for f, g ∈ L2(R+) and n ∈ Z.

Proof. First, we claim that (4.11) is equivalent to

(4.12) 〈P1f, g〉 = 〈P0f, g〉+

L∑
l=1

∑
k∈Z+

〈f, ψ̃l,0,k〉〈ψl,0,k, g〉

for f, g ∈ L2(R+). Indeed, if (4.12) holds, we can get (4.11) by replacing f by D−nf

and g by D−ng in (4.12), respectively. And, by Lemma 4.3, (4.12) can be written

as

(4.13)

p

∫
T
[Ff(p ·), F ψ̃0(·)](ξ)[Fψ0(·), Fg(pn·)](ξ)dξ =

∫
T

L∑
l=0

[Ff, F ψ̃l](ξ)[Fψl, Fg](ξ)dξ

for f, g ∈ L2(R+).

Next, we prove (4.13) to complete the proof. Note that, ml, m̃l, 1 ≤ l ≤ L are

1-periodic functions. By the definitions of ψ̃l, 1 ≤ l ≤ L and Assumption 1, we have

[Ff, F ψ̃l](ξ) =
∑
k∈Z+

Ff(ξ ⊕ k)m̃l(p−1(ξ ⊕ k))F ψ̃0(p−1(ξ ⊕ k))

=

p−1∑
i=0

m̃l(p−1(ξ ⊕ i/p))
∑
k∈Z+

Ff(ξ ⊕ i/p⊕ pk)F ψ̃0(p−1(ξ ⊕ i/p)⊕ k)

=

p−1∑
i=0

m̃l(p−1(ξ ⊕ i/p))[Ff(p ·), F ψ̃0(·)](p−1(ξ ⊕ i/p))(4.14)

for 0 ≤ l ≤ L. Similarly, we have

(4.15) [Fψl, Fg](ξ) =

p−1∑
i′=0

ml(p
−1(ξ ⊕ i′/p))[Fψ0(·), Fg(p ·)](p−1(ξ ⊕ i′/p))

for 0 ≤ l ≤ L. By a simple computation, we obtain
L∑

l=0

[Ff, F ψ̃l](ξ)[Fψl, Fg](ξ) =

p−1∑
i=0

[Ff(p ·), F ψ̃0(·)](p−1(ξ ⊕ i/p))×(4.16)

×
p−1∑
i′=0

(
MM̃∗(p−1ξ)

)
i,i′

[Fψ0(·), Fg(p ·)](p−1(ξ ⊕ i′/p)),
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where
(
MM̃∗(·)

)
i,i′

denotes the (i, i′)-entry of MM̃∗(·), 0 ≤ i, i′ ≤ p − 1. By

(4.10), (4.13) therefore follows that∫
T

L∑
l=0

[Ff, F ψ̃l](ξ)[Fψl, Fg](ξ)dξ

=

∫
T

p−1∑
i=0

[Ff(p ·), F ψ̃0(·)](p−1(ξ ⊕ i/p))[Fψ0(·), Fg(p ·)](p−1(ξ ⊕ i/p))dξ

=p

p−1∑
i=0

∫
p−1(T+i/p)

[Ff(p ·), F ψ̃0(·)](ξ)[Fψ0(·), Fg(p ·)](ξ)dξ

=p

∫
T
[Ff(p ·), F ψ̃0(·)](ξ)[Fψ0(·), Fg(pn·)](ξ)dξ.(4.17)

Therefore, (4.13) holds. The proof is completed. �

The following theorem gives a sufficient condition for
(
X(ψ0, Ψ), X(ψ̃0, Ψ̃)

)
to

be a NDWF in L2(R+).

Theorem 4.1. Let ψ0, ψ̃0 ∈ L2(R+) satisfy Assumptions 1-3. Assume thatml, m̃l,∈
L∞(T) with 1 ≤ l ≤ L, are such that

(4.18) M(·)M̃∗(·) = Ip a.e. on T.

where M and M̃ are defined as in (4.5) and (4.6). Define ψl and ψ̃l, 1 ≤ l ≤ L as

in (4.4). Then
(
X(ψ0, Ψ), X(ψ̃0, Ψ̃)

)
is a NDWF for L2(R+).

Proof. Since ml, m̃l,∈ L∞(T) for 1 ≤ l ≤ L, by Lemma 4.1 and Assumptions 1

and 3, then we have

{Tkψl : k ∈ Z+, 1 ≤ l ≤ L} and {Tkψ̃l : k ∈ Z+, 1 ≤ l ≤ L}

are Bessel sequences in L2(R+). Therefore, the conclusion follows directly by Theory

3.2, Lemmas 4.4 and 4.5. The proof is completed. �

Список литературы

[1] N. Atreas, A. Melas and T. Stavropoulos, “Affine dual frames and extension principles”, Appl.
Comput. Harmon. Anal., 36(1), 51 – 62 (2014).

[2] J. Cai, B. Dong and Z. Shen, “Image restoration: A wavelet frame based model for piecewise
smooth functions and beyond”, Appl. Comput. Harmon. Anal., 41 (1), 94 – 138 (2015).
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